/* * thread-stack.c: Synthesize a thread's stack using call / return events * Copyright (c) 2014, Intel Corporation. * * This program is free software; you can redistribute it and/or modify it * under the terms and conditions of the GNU General Public License, * version 2, as published by the Free Software Foundation. * * This program is distributed in the hope it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * */ #include #include #include #include #include "thread.h" #include "event.h" #include "machine.h" #include "util.h" #include "debug.h" #include "symbol.h" #include "comm.h" #include "call-path.h" #include "thread-stack.h" #define STACK_GROWTH 2048 /** * struct thread_stack_entry - thread stack entry. * @ret_addr: return address * @timestamp: timestamp (if known) * @ref: external reference (e.g. db_id of sample) * @branch_count: the branch count when the entry was created * @cp: call path * @no_call: a 'call' was not seen * @trace_end: a 'call' but trace ended */ struct thread_stack_entry { u64 ret_addr; u64 timestamp; u64 ref; u64 branch_count; struct call_path *cp; bool no_call; bool trace_end; }; /** * struct thread_stack - thread stack constructed from 'call' and 'return' * branch samples. * @stack: array that holds the stack * @cnt: number of entries in the stack * @sz: current maximum stack size * @trace_nr: current trace number * @branch_count: running branch count * @kernel_start: kernel start address * @last_time: last timestamp * @crp: call/return processor * @comm: current comm * @arr_sz: size of array if this is the first element of an array */ struct thread_stack { struct thread_stack_entry *stack; size_t cnt; size_t sz; u64 trace_nr; u64 branch_count; u64 kernel_start; u64 last_time; struct call_return_processor *crp; struct comm *comm; unsigned int arr_sz; }; /* * Assume pid == tid == 0 identifies the idle task as defined by * perf_session__register_idle_thread(). The idle task is really 1 task per cpu, * and therefore requires a stack for each cpu. */ static inline bool thread_stack__per_cpu(struct thread *thread) { return !(thread->tid || thread->pid_); } static int thread_stack__grow(struct thread_stack *ts) { struct thread_stack_entry *new_stack; size_t sz, new_sz; new_sz = ts->sz + STACK_GROWTH; sz = new_sz * sizeof(struct thread_stack_entry); new_stack = realloc(ts->stack, sz); if (!new_stack) return -ENOMEM; ts->stack = new_stack; ts->sz = new_sz; return 0; } static int thread_stack__init(struct thread_stack *ts, struct thread *thread, struct call_return_processor *crp) { int err; err = thread_stack__grow(ts); if (err) return err; if (thread->mg && thread->mg->machine) ts->kernel_start = machine__kernel_start(thread->mg->machine); else ts->kernel_start = 1ULL << 63; ts->crp = crp; return 0; } static struct thread_stack *thread_stack__new(struct thread *thread, int cpu, struct call_return_processor *crp) { struct thread_stack *ts = thread->ts, *new_ts; unsigned int old_sz = ts ? ts->arr_sz : 0; unsigned int new_sz = 1; if (thread_stack__per_cpu(thread) && cpu > 0) new_sz = roundup_pow_of_two(cpu + 1); if (!ts || new_sz > old_sz) { new_ts = calloc(new_sz, sizeof(*ts)); if (!new_ts) return NULL; if (ts) memcpy(new_ts, ts, old_sz * sizeof(*ts)); new_ts->arr_sz = new_sz; zfree(&thread->ts); thread->ts = new_ts; ts = new_ts; } if (thread_stack__per_cpu(thread) && cpu > 0 && (unsigned int)cpu < ts->arr_sz) ts += cpu; if (!ts->stack && thread_stack__init(ts, thread, crp)) return NULL; return ts; } static struct thread_stack *thread__cpu_stack(struct thread *thread, int cpu) { struct thread_stack *ts = thread->ts; if (cpu < 0) cpu = 0; if (!ts || (unsigned int)cpu >= ts->arr_sz) return NULL; ts += cpu; if (!ts->stack) return NULL; return ts; } static inline struct thread_stack *thread__stack(struct thread *thread, int cpu) { if (!thread) return NULL; if (thread_stack__per_cpu(thread)) return thread__cpu_stack(thread, cpu); return thread->ts; } static int thread_stack__push(struct thread_stack *ts, u64 ret_addr, bool trace_end) { int err = 0; if (ts->cnt == ts->sz) { err = thread_stack__grow(ts); if (err) { pr_warning("Out of memory: discarding thread stack\n"); ts->cnt = 0; } } ts->stack[ts->cnt].trace_end = trace_end; ts->stack[ts->cnt++].ret_addr = ret_addr; return err; } static void thread_stack__pop(struct thread_stack *ts, u64 ret_addr) { size_t i; /* * In some cases there may be functions which are not seen to return. * For example when setjmp / longjmp has been used. Or the perf context * switch in the kernel which doesn't stop and start tracing in exactly * the same code path. When that happens the return address will be * further down the stack. If the return address is not found at all, * we assume the opposite (i.e. this is a return for a call that wasn't * seen for some reason) and leave the stack alone. */ for (i = ts->cnt; i; ) { if (ts->stack[--i].ret_addr == ret_addr) { ts->cnt = i; return; } } } static void thread_stack__pop_trace_end(struct thread_stack *ts) { size_t i; for (i = ts->cnt; i; ) { if (ts->stack[--i].trace_end) ts->cnt = i; else return; } } static bool thread_stack__in_kernel(struct thread_stack *ts) { if (!ts->cnt) return false; return ts->stack[ts->cnt - 1].cp->in_kernel; } static int thread_stack__call_return(struct thread *thread, struct thread_stack *ts, size_t idx, u64 timestamp, u64 ref, bool no_return) { struct call_return_processor *crp = ts->crp; struct thread_stack_entry *tse; struct call_return cr = { .thread = thread, .comm = ts->comm, .db_id = 0, }; tse = &ts->stack[idx]; cr.cp = tse->cp; cr.call_time = tse->timestamp; cr.return_time = timestamp; cr.branch_count = ts->branch_count - tse->branch_count; cr.call_ref = tse->ref; cr.return_ref = ref; if (tse->no_call) cr.flags |= CALL_RETURN_NO_CALL; if (no_return) cr.flags |= CALL_RETURN_NO_RETURN; return crp->process(&cr, crp->data); } static int __thread_stack__flush(struct thread *thread, struct thread_stack *ts) { struct call_return_processor *crp = ts->crp; int err; if (!crp) { ts->cnt = 0; return 0; } while (ts->cnt) { err = thread_stack__call_return(thread, ts, --ts->cnt, ts->last_time, 0, true); if (err) { pr_err("Error flushing thread stack!\n"); ts->cnt = 0; return err; } } return 0; } int thread_stack__flush(struct thread *thread) { struct thread_stack *ts = thread->ts; unsigned int pos; int err = 0; if (ts) { for (pos = 0; pos < ts->arr_sz; pos++) { int ret = __thread_stack__flush(thread, ts + pos); if (ret) err = ret; } } return err; } int thread_stack__event(struct thread *thread, int cpu, u32 flags, u64 from_ip, u64 to_ip, u16 insn_len, u64 trace_nr) { struct thread_stack *ts = thread__stack(thread, cpu); if (!thread) return -EINVAL; if (!ts) { ts = thread_stack__new(thread, cpu, NULL); if (!ts) { pr_warning("Out of memory: no thread stack\n"); return -ENOMEM; } ts->trace_nr = trace_nr; } /* * When the trace is discontinuous, the trace_nr changes. In that case * the stack might be completely invalid. Better to report nothing than * to report something misleading, so flush the stack. */ if (trace_nr != ts->trace_nr) { if (ts->trace_nr) __thread_stack__flush(thread, ts); ts->trace_nr = trace_nr; } /* Stop here if thread_stack__process() is in use */ if (ts->crp) return 0; if (flags & PERF_IP_FLAG_CALL) { u64 ret_addr; if (!to_ip) return 0; ret_addr = from_ip + insn_len; if (ret_addr == to_ip) return 0; /* Zero-length calls are excluded */ return thread_stack__push(ts, ret_addr, flags & PERF_IP_FLAG_TRACE_END); } else if (flags & PERF_IP_FLAG_TRACE_BEGIN) { /* * If the caller did not change the trace number (which would * have flushed the stack) then try to make sense of the stack. * Possibly, tracing began after returning to the current * address, so try to pop that. Also, do not expect a call made * when the trace ended, to return, so pop that. */ thread_stack__pop(ts, to_ip); thread_stack__pop_trace_end(ts); } else if ((flags & PERF_IP_FLAG_RETURN) && from_ip) { thread_stack__pop(ts, to_ip); } return 0; } void thread_stack__set_trace_nr(struct thread *thread, int cpu, u64 trace_nr) { struct thread_stack *ts = thread__stack(thread, cpu); if (!ts) return; if (trace_nr != ts->trace_nr) { if (ts->trace_nr) __thread_stack__flush(thread, ts); ts->trace_nr = trace_nr; } } static void __thread_stack__free(struct thread *thread, struct thread_stack *ts) { __thread_stack__flush(thread, ts); zfree(&ts->stack); } static void thread_stack__reset(struct thread *thread, struct thread_stack *ts) { unsigned int arr_sz = ts->arr_sz; __thread_stack__free(thread, ts); memset(ts, 0, sizeof(*ts)); ts->arr_sz = arr_sz; } void thread_stack__free(struct thread *thread) { struct thread_stack *ts = thread->ts; unsigned int pos; if (ts) { for (pos = 0; pos < ts->arr_sz; pos++) __thread_stack__free(thread, ts + pos); zfree(&thread->ts); } } static inline u64 callchain_context(u64 ip, u64 kernel_start) { return ip < kernel_start ? PERF_CONTEXT_USER : PERF_CONTEXT_KERNEL; } void thread_stack__sample(struct thread *thread, int cpu, struct ip_callchain *chain, size_t sz, u64 ip, u64 kernel_start) { struct thread_stack *ts = thread__stack(thread, cpu); u64 context = callchain_context(ip, kernel_start); u64 last_context; size_t i, j; if (sz < 2) { chain->nr = 0; return; } chain->ips[0] = context; chain->ips[1] = ip; if (!ts) { chain->nr = 2; return; } last_context = context; for (i = 2, j = 1; i < sz && j <= ts->cnt; i++, j++) { ip = ts->stack[ts->cnt - j].ret_addr; context = callchain_context(ip, kernel_start); if (context != last_context) { if (i >= sz - 1) break; chain->ips[i++] = context; last_context = context; } chain->ips[i] = ip; } chain->nr = i; } struct call_return_processor * call_return_processor__new(int (*process)(struct call_return *cr, void *data), void *data) { struct call_return_processor *crp; crp = zalloc(sizeof(struct call_return_processor)); if (!crp) return NULL; crp->cpr = call_path_root__new(); if (!crp->cpr) goto out_free; crp->process = process; crp->data = data; return crp; out_free: free(crp); return NULL; } void call_return_processor__free(struct call_return_processor *crp) { if (crp) { call_path_root__free(crp->cpr); free(crp); } } static int thread_stack__push_cp(struct thread_stack *ts, u64 ret_addr, u64 timestamp, u64 ref, struct call_path *cp, bool no_call, bool trace_end) { struct thread_stack_entry *tse; int err; if (!cp) return -ENOMEM; if (ts->cnt == ts->sz) { err = thread_stack__grow(ts); if (err) return err; } tse = &ts->stack[ts->cnt++]; tse->ret_addr = ret_addr; tse->timestamp = timestamp; tse->ref = ref; tse->branch_count = ts->branch_count; tse->cp = cp; tse->no_call = no_call; tse->trace_end = trace_end; return 0; } static int thread_stack__pop_cp(struct thread *thread, struct thread_stack *ts, u64 ret_addr, u64 timestamp, u64 ref, struct symbol *sym) { int err; if (!ts->cnt) return 1; if (ts->cnt == 1) { struct thread_stack_entry *tse = &ts->stack[0]; if (tse->cp->sym == sym) return thread_stack__call_return(thread, ts, --ts->cnt, timestamp, ref, false); } if (ts->stack[ts->cnt - 1].ret_addr == ret_addr) { return thread_stack__call_return(thread, ts, --ts->cnt, timestamp, ref, false); } else { size_t i = ts->cnt - 1; while (i--) { if (ts->stack[i].ret_addr != ret_addr) continue; i += 1; while (ts->cnt > i) { err = thread_stack__call_return(thread, ts, --ts->cnt, timestamp, ref, true); if (err) return err; } return thread_stack__call_return(thread, ts, --ts->cnt, timestamp, ref, false); } } return 1; } static int thread_stack__bottom(struct thread_stack *ts, struct perf_sample *sample, struct addr_location *from_al, struct addr_location *to_al, u64 ref) { struct call_path_root *cpr = ts->crp->cpr; struct call_path *cp; struct symbol *sym; u64 ip; if (sample->ip) { ip = sample->ip; sym = from_al->sym; } else if (sample->addr) { ip = sample->addr; sym = to_al->sym; } else { return 0; } cp = call_path__findnew(cpr, &cpr->call_path, sym, ip, ts->kernel_start); return thread_stack__push_cp(ts, ip, sample->time, ref, cp, true, false); } static int thread_stack__no_call_return(struct thread *thread, struct thread_stack *ts, struct perf_sample *sample, struct addr_location *from_al, struct addr_location *to_al, u64 ref) { struct call_path_root *cpr = ts->crp->cpr; struct call_path *root = &cpr->call_path; struct symbol *fsym = from_al->sym; struct symbol *tsym = to_al->sym; struct call_path *cp, *parent; u64 ks = ts->kernel_start; u64 addr = sample->addr; u64 tm = sample->time; u64 ip = sample->ip; int err; if (ip >= ks && addr < ks) { /* Return to userspace, so pop all kernel addresses */ while (thread_stack__in_kernel(ts)) { err = thread_stack__call_return(thread, ts, --ts->cnt, tm, ref, true); if (err) return err; } /* If the stack is empty, push the userspace address */ if (!ts->cnt) { cp = call_path__findnew(cpr, root, tsym, addr, ks); return thread_stack__push_cp(ts, 0, tm, ref, cp, true, false); } } else if (thread_stack__in_kernel(ts) && ip < ks) { /* Return to userspace, so pop all kernel addresses */ while (thread_stack__in_kernel(ts)) { err = thread_stack__call_return(thread, ts, --ts->cnt, tm, ref, true); if (err) return err; } } if (ts->cnt) parent = ts->stack[ts->cnt - 1].cp; else parent = root; /* This 'return' had no 'call', so push and pop top of stack */ cp = call_path__findnew(cpr, parent, fsym, ip, ks); err = thread_stack__push_cp(ts, addr, tm, ref, cp, true, false); if (err) return err; return thread_stack__pop_cp(thread, ts, addr, tm, ref, tsym); } static int thread_stack__trace_begin(struct thread *thread, struct thread_stack *ts, u64 timestamp, u64 ref) { struct thread_stack_entry *tse; int err; if (!ts->cnt) return 0; /* Pop trace end */ tse = &ts->stack[ts->cnt - 1]; if (tse->trace_end) { err = thread_stack__call_return(thread, ts, --ts->cnt, timestamp, ref, false); if (err) return err; } return 0; } static int thread_stack__trace_end(struct thread_stack *ts, struct perf_sample *sample, u64 ref) { struct call_path_root *cpr = ts->crp->cpr; struct call_path *cp; u64 ret_addr; /* No point having 'trace end' on the bottom of the stack */ if (!ts->cnt || (ts->cnt == 1 && ts->stack[0].ref == ref)) return 0; cp = call_path__findnew(cpr, ts->stack[ts->cnt - 1].cp, NULL, 0, ts->kernel_start); ret_addr = sample->ip + sample->insn_len; return thread_stack__push_cp(ts, ret_addr, sample->time, ref, cp, false, true); } int thread_stack__process(struct thread *thread, struct comm *comm, struct perf_sample *sample, struct addr_location *from_al, struct addr_location *to_al, u64 ref, struct call_return_processor *crp) { struct thread_stack *ts = thread__stack(thread, sample->cpu); int err = 0; if (ts && !ts->crp) { /* Supersede thread_stack__event() */ thread_stack__reset(thread, ts); ts = NULL; } if (!ts) { ts = thread_stack__new(thread, sample->cpu, crp); if (!ts) return -ENOMEM; ts->comm = comm; } /* Flush stack on exec */ if (ts->comm != comm && thread->pid_ == thread->tid) { err = __thread_stack__flush(thread, ts); if (err) return err; ts->comm = comm; } /* If the stack is empty, put the current symbol on the stack */ if (!ts->cnt) { err = thread_stack__bottom(ts, sample, from_al, to_al, ref); if (err) return err; } ts->branch_count += 1; ts->last_time = sample->time; if (sample->flags & PERF_IP_FLAG_CALL) { bool trace_end = sample->flags & PERF_IP_FLAG_TRACE_END; struct call_path_root *cpr = ts->crp->cpr; struct call_path *cp; u64 ret_addr; if (!sample->ip || !sample->addr) return 0; ret_addr = sample->ip + sample->insn_len; if (ret_addr == sample->addr) return 0; /* Zero-length calls are excluded */ cp = call_path__findnew(cpr, ts->stack[ts->cnt - 1].cp, to_al->sym, sample->addr, ts->kernel_start); err = thread_stack__push_cp(ts, ret_addr, sample->time, ref, cp, false, trace_end); } else if (sample->flags & PERF_IP_FLAG_RETURN) { if (!sample->ip || !sample->addr) return 0; err = thread_stack__pop_cp(thread, ts, sample->addr, sample->time, ref, from_al->sym); if (err) { if (err < 0) return err; err = thread_stack__no_call_return(thread, ts, sample, from_al, to_al, ref); } } else if (sample->flags & PERF_IP_FLAG_TRACE_BEGIN) { err = thread_stack__trace_begin(thread, ts, sample->time, ref); } else if (sample->flags & PERF_IP_FLAG_TRACE_END) { err = thread_stack__trace_end(ts, sample, ref); } return err; } size_t thread_stack__depth(struct thread *thread, int cpu) { struct thread_stack *ts = thread__stack(thread, cpu); if (!ts) return 0; return ts->cnt; }