/* * Kernel-based Virtual Machine driver for Linux * * This module enables machines with Intel VT-x extensions to run virtual * machines without emulation or binary translation. * * Copyright (C) 2006 Qumranet, Inc. * * Authors: * Avi Kivity * Yaniv Kamay * * This work is licensed under the terms of the GNU GPL, version 2. See * the COPYING file in the top-level directory. * */ #include "kvm.h" #include "x86_emulate.h" #include "segment_descriptor.h" #include "irq.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include MODULE_AUTHOR("Qumranet"); MODULE_LICENSE("GPL"); static DEFINE_SPINLOCK(kvm_lock); static LIST_HEAD(vm_list); static cpumask_t cpus_hardware_enabled; struct kvm_arch_ops *kvm_arch_ops; struct kmem_cache *kvm_vcpu_cache; EXPORT_SYMBOL_GPL(kvm_vcpu_cache); static __read_mostly struct preempt_ops kvm_preempt_ops; #define STAT_OFFSET(x) offsetof(struct kvm_vcpu, stat.x) static struct kvm_stats_debugfs_item { const char *name; int offset; struct dentry *dentry; } debugfs_entries[] = { { "pf_fixed", STAT_OFFSET(pf_fixed) }, { "pf_guest", STAT_OFFSET(pf_guest) }, { "tlb_flush", STAT_OFFSET(tlb_flush) }, { "invlpg", STAT_OFFSET(invlpg) }, { "exits", STAT_OFFSET(exits) }, { "io_exits", STAT_OFFSET(io_exits) }, { "mmio_exits", STAT_OFFSET(mmio_exits) }, { "signal_exits", STAT_OFFSET(signal_exits) }, { "irq_window", STAT_OFFSET(irq_window_exits) }, { "halt_exits", STAT_OFFSET(halt_exits) }, { "request_irq", STAT_OFFSET(request_irq_exits) }, { "irq_exits", STAT_OFFSET(irq_exits) }, { "light_exits", STAT_OFFSET(light_exits) }, { "efer_reload", STAT_OFFSET(efer_reload) }, { NULL } }; static struct dentry *debugfs_dir; #define MAX_IO_MSRS 256 #define CR0_RESERVED_BITS \ (~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \ | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \ | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG)) #define CR4_RESERVED_BITS \ (~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\ | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE \ | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR \ | X86_CR4_OSXMMEXCPT | X86_CR4_VMXE)) #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR) #define EFER_RESERVED_BITS 0xfffffffffffff2fe #ifdef CONFIG_X86_64 // LDT or TSS descriptor in the GDT. 16 bytes. struct segment_descriptor_64 { struct segment_descriptor s; u32 base_higher; u32 pad_zero; }; #endif static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl, unsigned long arg); unsigned long segment_base(u16 selector) { struct descriptor_table gdt; struct segment_descriptor *d; unsigned long table_base; typedef unsigned long ul; unsigned long v; if (selector == 0) return 0; asm ("sgdt %0" : "=m"(gdt)); table_base = gdt.base; if (selector & 4) { /* from ldt */ u16 ldt_selector; asm ("sldt %0" : "=g"(ldt_selector)); table_base = segment_base(ldt_selector); } d = (struct segment_descriptor *)(table_base + (selector & ~7)); v = d->base_low | ((ul)d->base_mid << 16) | ((ul)d->base_high << 24); #ifdef CONFIG_X86_64 if (d->system == 0 && (d->type == 2 || d->type == 9 || d->type == 11)) v |= ((ul)((struct segment_descriptor_64 *)d)->base_higher) << 32; #endif return v; } EXPORT_SYMBOL_GPL(segment_base); static inline int valid_vcpu(int n) { return likely(n >= 0 && n < KVM_MAX_VCPUS); } void kvm_load_guest_fpu(struct kvm_vcpu *vcpu) { if (!vcpu->fpu_active || vcpu->guest_fpu_loaded) return; vcpu->guest_fpu_loaded = 1; fx_save(&vcpu->host_fx_image); fx_restore(&vcpu->guest_fx_image); } EXPORT_SYMBOL_GPL(kvm_load_guest_fpu); void kvm_put_guest_fpu(struct kvm_vcpu *vcpu) { if (!vcpu->guest_fpu_loaded) return; vcpu->guest_fpu_loaded = 0; fx_save(&vcpu->guest_fx_image); fx_restore(&vcpu->host_fx_image); } EXPORT_SYMBOL_GPL(kvm_put_guest_fpu); /* * Switches to specified vcpu, until a matching vcpu_put() */ static void vcpu_load(struct kvm_vcpu *vcpu) { int cpu; mutex_lock(&vcpu->mutex); cpu = get_cpu(); preempt_notifier_register(&vcpu->preempt_notifier); kvm_arch_ops->vcpu_load(vcpu, cpu); put_cpu(); } static void vcpu_put(struct kvm_vcpu *vcpu) { preempt_disable(); kvm_arch_ops->vcpu_put(vcpu); preempt_notifier_unregister(&vcpu->preempt_notifier); preempt_enable(); mutex_unlock(&vcpu->mutex); } static void ack_flush(void *_completed) { atomic_t *completed = _completed; atomic_inc(completed); } void kvm_flush_remote_tlbs(struct kvm *kvm) { int i, cpu, needed; cpumask_t cpus; struct kvm_vcpu *vcpu; atomic_t completed; atomic_set(&completed, 0); cpus_clear(cpus); needed = 0; for (i = 0; i < KVM_MAX_VCPUS; ++i) { vcpu = kvm->vcpus[i]; if (!vcpu) continue; if (test_and_set_bit(KVM_TLB_FLUSH, &vcpu->requests)) continue; cpu = vcpu->cpu; if (cpu != -1 && cpu != raw_smp_processor_id()) if (!cpu_isset(cpu, cpus)) { cpu_set(cpu, cpus); ++needed; } } /* * We really want smp_call_function_mask() here. But that's not * available, so ipi all cpus in parallel and wait for them * to complete. */ for (cpu = first_cpu(cpus); cpu != NR_CPUS; cpu = next_cpu(cpu, cpus)) smp_call_function_single(cpu, ack_flush, &completed, 1, 0); while (atomic_read(&completed) != needed) { cpu_relax(); barrier(); } } int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id) { struct page *page; int r; mutex_init(&vcpu->mutex); vcpu->cpu = -1; vcpu->mmu.root_hpa = INVALID_PAGE; vcpu->kvm = kvm; vcpu->vcpu_id = id; page = alloc_page(GFP_KERNEL | __GFP_ZERO); if (!page) { r = -ENOMEM; goto fail; } vcpu->run = page_address(page); page = alloc_page(GFP_KERNEL | __GFP_ZERO); if (!page) { r = -ENOMEM; goto fail_free_run; } vcpu->pio_data = page_address(page); r = kvm_mmu_create(vcpu); if (r < 0) goto fail_free_pio_data; return 0; fail_free_pio_data: free_page((unsigned long)vcpu->pio_data); fail_free_run: free_page((unsigned long)vcpu->run); fail: return -ENOMEM; } EXPORT_SYMBOL_GPL(kvm_vcpu_init); void kvm_vcpu_uninit(struct kvm_vcpu *vcpu) { kvm_mmu_destroy(vcpu); free_page((unsigned long)vcpu->pio_data); free_page((unsigned long)vcpu->run); } EXPORT_SYMBOL_GPL(kvm_vcpu_uninit); static struct kvm *kvm_create_vm(void) { struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL); if (!kvm) return ERR_PTR(-ENOMEM); kvm_io_bus_init(&kvm->pio_bus); mutex_init(&kvm->lock); INIT_LIST_HEAD(&kvm->active_mmu_pages); kvm_io_bus_init(&kvm->mmio_bus); spin_lock(&kvm_lock); list_add(&kvm->vm_list, &vm_list); spin_unlock(&kvm_lock); return kvm; } /* * Free any memory in @free but not in @dont. */ static void kvm_free_physmem_slot(struct kvm_memory_slot *free, struct kvm_memory_slot *dont) { int i; if (!dont || free->phys_mem != dont->phys_mem) if (free->phys_mem) { for (i = 0; i < free->npages; ++i) if (free->phys_mem[i]) __free_page(free->phys_mem[i]); vfree(free->phys_mem); } if (!dont || free->dirty_bitmap != dont->dirty_bitmap) vfree(free->dirty_bitmap); free->phys_mem = NULL; free->npages = 0; free->dirty_bitmap = NULL; } static void kvm_free_physmem(struct kvm *kvm) { int i; for (i = 0; i < kvm->nmemslots; ++i) kvm_free_physmem_slot(&kvm->memslots[i], NULL); } static void free_pio_guest_pages(struct kvm_vcpu *vcpu) { int i; for (i = 0; i < ARRAY_SIZE(vcpu->pio.guest_pages); ++i) if (vcpu->pio.guest_pages[i]) { __free_page(vcpu->pio.guest_pages[i]); vcpu->pio.guest_pages[i] = NULL; } } static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu) { vcpu_load(vcpu); kvm_mmu_unload(vcpu); vcpu_put(vcpu); } static void kvm_free_vcpus(struct kvm *kvm) { unsigned int i; /* * Unpin any mmu pages first. */ for (i = 0; i < KVM_MAX_VCPUS; ++i) if (kvm->vcpus[i]) kvm_unload_vcpu_mmu(kvm->vcpus[i]); for (i = 0; i < KVM_MAX_VCPUS; ++i) { if (kvm->vcpus[i]) { kvm_arch_ops->vcpu_free(kvm->vcpus[i]); kvm->vcpus[i] = NULL; } } } static void kvm_destroy_vm(struct kvm *kvm) { spin_lock(&kvm_lock); list_del(&kvm->vm_list); spin_unlock(&kvm_lock); kvm_io_bus_destroy(&kvm->pio_bus); kvm_io_bus_destroy(&kvm->mmio_bus); kfree(kvm->vpic); kvm_free_vcpus(kvm); kvm_free_physmem(kvm); kfree(kvm); } static int kvm_vm_release(struct inode *inode, struct file *filp) { struct kvm *kvm = filp->private_data; kvm_destroy_vm(kvm); return 0; } static void inject_gp(struct kvm_vcpu *vcpu) { kvm_arch_ops->inject_gp(vcpu, 0); } /* * Load the pae pdptrs. Return true is they are all valid. */ static int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3) { gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT; unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2; int i; u64 *pdpt; int ret; struct page *page; u64 pdpte[ARRAY_SIZE(vcpu->pdptrs)]; mutex_lock(&vcpu->kvm->lock); page = gfn_to_page(vcpu->kvm, pdpt_gfn); if (!page) { ret = 0; goto out; } pdpt = kmap_atomic(page, KM_USER0); memcpy(pdpte, pdpt+offset, sizeof(pdpte)); kunmap_atomic(pdpt, KM_USER0); for (i = 0; i < ARRAY_SIZE(pdpte); ++i) { if ((pdpte[i] & 1) && (pdpte[i] & 0xfffffff0000001e6ull)) { ret = 0; goto out; } } ret = 1; memcpy(vcpu->pdptrs, pdpte, sizeof(vcpu->pdptrs)); out: mutex_unlock(&vcpu->kvm->lock); return ret; } void set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0) { if (cr0 & CR0_RESERVED_BITS) { printk(KERN_DEBUG "set_cr0: 0x%lx #GP, reserved bits 0x%lx\n", cr0, vcpu->cr0); inject_gp(vcpu); return; } if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) { printk(KERN_DEBUG "set_cr0: #GP, CD == 0 && NW == 1\n"); inject_gp(vcpu); return; } if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) { printk(KERN_DEBUG "set_cr0: #GP, set PG flag " "and a clear PE flag\n"); inject_gp(vcpu); return; } if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) { #ifdef CONFIG_X86_64 if ((vcpu->shadow_efer & EFER_LME)) { int cs_db, cs_l; if (!is_pae(vcpu)) { printk(KERN_DEBUG "set_cr0: #GP, start paging " "in long mode while PAE is disabled\n"); inject_gp(vcpu); return; } kvm_arch_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l); if (cs_l) { printk(KERN_DEBUG "set_cr0: #GP, start paging " "in long mode while CS.L == 1\n"); inject_gp(vcpu); return; } } else #endif if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->cr3)) { printk(KERN_DEBUG "set_cr0: #GP, pdptrs " "reserved bits\n"); inject_gp(vcpu); return; } } kvm_arch_ops->set_cr0(vcpu, cr0); vcpu->cr0 = cr0; mutex_lock(&vcpu->kvm->lock); kvm_mmu_reset_context(vcpu); mutex_unlock(&vcpu->kvm->lock); return; } EXPORT_SYMBOL_GPL(set_cr0); void lmsw(struct kvm_vcpu *vcpu, unsigned long msw) { set_cr0(vcpu, (vcpu->cr0 & ~0x0ful) | (msw & 0x0f)); } EXPORT_SYMBOL_GPL(lmsw); void set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) { if (cr4 & CR4_RESERVED_BITS) { printk(KERN_DEBUG "set_cr4: #GP, reserved bits\n"); inject_gp(vcpu); return; } if (is_long_mode(vcpu)) { if (!(cr4 & X86_CR4_PAE)) { printk(KERN_DEBUG "set_cr4: #GP, clearing PAE while " "in long mode\n"); inject_gp(vcpu); return; } } else if (is_paging(vcpu) && !is_pae(vcpu) && (cr4 & X86_CR4_PAE) && !load_pdptrs(vcpu, vcpu->cr3)) { printk(KERN_DEBUG "set_cr4: #GP, pdptrs reserved bits\n"); inject_gp(vcpu); return; } if (cr4 & X86_CR4_VMXE) { printk(KERN_DEBUG "set_cr4: #GP, setting VMXE\n"); inject_gp(vcpu); return; } kvm_arch_ops->set_cr4(vcpu, cr4); mutex_lock(&vcpu->kvm->lock); kvm_mmu_reset_context(vcpu); mutex_unlock(&vcpu->kvm->lock); } EXPORT_SYMBOL_GPL(set_cr4); void set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3) { if (is_long_mode(vcpu)) { if (cr3 & CR3_L_MODE_RESERVED_BITS) { printk(KERN_DEBUG "set_cr3: #GP, reserved bits\n"); inject_gp(vcpu); return; } } else { if (is_pae(vcpu)) { if (cr3 & CR3_PAE_RESERVED_BITS) { printk(KERN_DEBUG "set_cr3: #GP, reserved bits\n"); inject_gp(vcpu); return; } if (is_paging(vcpu) && !load_pdptrs(vcpu, cr3)) { printk(KERN_DEBUG "set_cr3: #GP, pdptrs " "reserved bits\n"); inject_gp(vcpu); return; } } else { if (cr3 & CR3_NONPAE_RESERVED_BITS) { printk(KERN_DEBUG "set_cr3: #GP, reserved bits\n"); inject_gp(vcpu); return; } } } mutex_lock(&vcpu->kvm->lock); /* * Does the new cr3 value map to physical memory? (Note, we * catch an invalid cr3 even in real-mode, because it would * cause trouble later on when we turn on paging anyway.) * * A real CPU would silently accept an invalid cr3 and would * attempt to use it - with largely undefined (and often hard * to debug) behavior on the guest side. */ if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT))) inject_gp(vcpu); else { vcpu->cr3 = cr3; vcpu->mmu.new_cr3(vcpu); } mutex_unlock(&vcpu->kvm->lock); } EXPORT_SYMBOL_GPL(set_cr3); void set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8) { if (cr8 & CR8_RESERVED_BITS) { printk(KERN_DEBUG "set_cr8: #GP, reserved bits 0x%lx\n", cr8); inject_gp(vcpu); return; } vcpu->cr8 = cr8; } EXPORT_SYMBOL_GPL(set_cr8); unsigned long get_cr8(struct kvm_vcpu *vcpu) { return vcpu->cr8; } EXPORT_SYMBOL_GPL(get_cr8); u64 kvm_get_apic_base(struct kvm_vcpu *vcpu) { return vcpu->apic_base; } EXPORT_SYMBOL_GPL(kvm_get_apic_base); void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data) { vcpu->apic_base = data; } EXPORT_SYMBOL_GPL(kvm_set_apic_base); void fx_init(struct kvm_vcpu *vcpu) { unsigned after_mxcsr_mask; /* Initialize guest FPU by resetting ours and saving into guest's */ preempt_disable(); fx_save(&vcpu->host_fx_image); fpu_init(); fx_save(&vcpu->guest_fx_image); fx_restore(&vcpu->host_fx_image); preempt_enable(); after_mxcsr_mask = offsetof(struct i387_fxsave_struct, st_space); vcpu->guest_fx_image.mxcsr = 0x1f80; memset((void *)&vcpu->guest_fx_image + after_mxcsr_mask, 0, sizeof(struct i387_fxsave_struct) - after_mxcsr_mask); } EXPORT_SYMBOL_GPL(fx_init); /* * Allocate some memory and give it an address in the guest physical address * space. * * Discontiguous memory is allowed, mostly for framebuffers. */ static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm, struct kvm_memory_region *mem) { int r; gfn_t base_gfn; unsigned long npages; unsigned long i; struct kvm_memory_slot *memslot; struct kvm_memory_slot old, new; int memory_config_version; r = -EINVAL; /* General sanity checks */ if (mem->memory_size & (PAGE_SIZE - 1)) goto out; if (mem->guest_phys_addr & (PAGE_SIZE - 1)) goto out; if (mem->slot >= KVM_MEMORY_SLOTS) goto out; if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr) goto out; memslot = &kvm->memslots[mem->slot]; base_gfn = mem->guest_phys_addr >> PAGE_SHIFT; npages = mem->memory_size >> PAGE_SHIFT; if (!npages) mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES; raced: mutex_lock(&kvm->lock); memory_config_version = kvm->memory_config_version; new = old = *memslot; new.base_gfn = base_gfn; new.npages = npages; new.flags = mem->flags; /* Disallow changing a memory slot's size. */ r = -EINVAL; if (npages && old.npages && npages != old.npages) goto out_unlock; /* Check for overlaps */ r = -EEXIST; for (i = 0; i < KVM_MEMORY_SLOTS; ++i) { struct kvm_memory_slot *s = &kvm->memslots[i]; if (s == memslot) continue; if (!((base_gfn + npages <= s->base_gfn) || (base_gfn >= s->base_gfn + s->npages))) goto out_unlock; } /* * Do memory allocations outside lock. memory_config_version will * detect any races. */ mutex_unlock(&kvm->lock); /* Deallocate if slot is being removed */ if (!npages) new.phys_mem = NULL; /* Free page dirty bitmap if unneeded */ if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES)) new.dirty_bitmap = NULL; r = -ENOMEM; /* Allocate if a slot is being created */ if (npages && !new.phys_mem) { new.phys_mem = vmalloc(npages * sizeof(struct page *)); if (!new.phys_mem) goto out_free; memset(new.phys_mem, 0, npages * sizeof(struct page *)); for (i = 0; i < npages; ++i) { new.phys_mem[i] = alloc_page(GFP_HIGHUSER | __GFP_ZERO); if (!new.phys_mem[i]) goto out_free; set_page_private(new.phys_mem[i],0); } } /* Allocate page dirty bitmap if needed */ if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) { unsigned dirty_bytes = ALIGN(npages, BITS_PER_LONG) / 8; new.dirty_bitmap = vmalloc(dirty_bytes); if (!new.dirty_bitmap) goto out_free; memset(new.dirty_bitmap, 0, dirty_bytes); } mutex_lock(&kvm->lock); if (memory_config_version != kvm->memory_config_version) { mutex_unlock(&kvm->lock); kvm_free_physmem_slot(&new, &old); goto raced; } r = -EAGAIN; if (kvm->busy) goto out_unlock; if (mem->slot >= kvm->nmemslots) kvm->nmemslots = mem->slot + 1; *memslot = new; ++kvm->memory_config_version; kvm_mmu_slot_remove_write_access(kvm, mem->slot); kvm_flush_remote_tlbs(kvm); mutex_unlock(&kvm->lock); kvm_free_physmem_slot(&old, &new); return 0; out_unlock: mutex_unlock(&kvm->lock); out_free: kvm_free_physmem_slot(&new, &old); out: return r; } /* * Get (and clear) the dirty memory log for a memory slot. */ static int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log) { struct kvm_memory_slot *memslot; int r, i; int n; unsigned long any = 0; mutex_lock(&kvm->lock); /* * Prevent changes to guest memory configuration even while the lock * is not taken. */ ++kvm->busy; mutex_unlock(&kvm->lock); r = -EINVAL; if (log->slot >= KVM_MEMORY_SLOTS) goto out; memslot = &kvm->memslots[log->slot]; r = -ENOENT; if (!memslot->dirty_bitmap) goto out; n = ALIGN(memslot->npages, BITS_PER_LONG) / 8; for (i = 0; !any && i < n/sizeof(long); ++i) any = memslot->dirty_bitmap[i]; r = -EFAULT; if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n)) goto out; /* If nothing is dirty, don't bother messing with page tables. */ if (any) { mutex_lock(&kvm->lock); kvm_mmu_slot_remove_write_access(kvm, log->slot); kvm_flush_remote_tlbs(kvm); memset(memslot->dirty_bitmap, 0, n); mutex_unlock(&kvm->lock); } r = 0; out: mutex_lock(&kvm->lock); --kvm->busy; mutex_unlock(&kvm->lock); return r; } /* * Set a new alias region. Aliases map a portion of physical memory into * another portion. This is useful for memory windows, for example the PC * VGA region. */ static int kvm_vm_ioctl_set_memory_alias(struct kvm *kvm, struct kvm_memory_alias *alias) { int r, n; struct kvm_mem_alias *p; r = -EINVAL; /* General sanity checks */ if (alias->memory_size & (PAGE_SIZE - 1)) goto out; if (alias->guest_phys_addr & (PAGE_SIZE - 1)) goto out; if (alias->slot >= KVM_ALIAS_SLOTS) goto out; if (alias->guest_phys_addr + alias->memory_size < alias->guest_phys_addr) goto out; if (alias->target_phys_addr + alias->memory_size < alias->target_phys_addr) goto out; mutex_lock(&kvm->lock); p = &kvm->aliases[alias->slot]; p->base_gfn = alias->guest_phys_addr >> PAGE_SHIFT; p->npages = alias->memory_size >> PAGE_SHIFT; p->target_gfn = alias->target_phys_addr >> PAGE_SHIFT; for (n = KVM_ALIAS_SLOTS; n > 0; --n) if (kvm->aliases[n - 1].npages) break; kvm->naliases = n; kvm_mmu_zap_all(kvm); mutex_unlock(&kvm->lock); return 0; out: return r; } static gfn_t unalias_gfn(struct kvm *kvm, gfn_t gfn) { int i; struct kvm_mem_alias *alias; for (i = 0; i < kvm->naliases; ++i) { alias = &kvm->aliases[i]; if (gfn >= alias->base_gfn && gfn < alias->base_gfn + alias->npages) return alias->target_gfn + gfn - alias->base_gfn; } return gfn; } static struct kvm_memory_slot *__gfn_to_memslot(struct kvm *kvm, gfn_t gfn) { int i; for (i = 0; i < kvm->nmemslots; ++i) { struct kvm_memory_slot *memslot = &kvm->memslots[i]; if (gfn >= memslot->base_gfn && gfn < memslot->base_gfn + memslot->npages) return memslot; } return NULL; } struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn) { gfn = unalias_gfn(kvm, gfn); return __gfn_to_memslot(kvm, gfn); } struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn) { struct kvm_memory_slot *slot; gfn = unalias_gfn(kvm, gfn); slot = __gfn_to_memslot(kvm, gfn); if (!slot) return NULL; return slot->phys_mem[gfn - slot->base_gfn]; } EXPORT_SYMBOL_GPL(gfn_to_page); /* WARNING: Does not work on aliased pages. */ void mark_page_dirty(struct kvm *kvm, gfn_t gfn) { struct kvm_memory_slot *memslot; memslot = __gfn_to_memslot(kvm, gfn); if (memslot && memslot->dirty_bitmap) { unsigned long rel_gfn = gfn - memslot->base_gfn; /* avoid RMW */ if (!test_bit(rel_gfn, memslot->dirty_bitmap)) set_bit(rel_gfn, memslot->dirty_bitmap); } } int emulator_read_std(unsigned long addr, void *val, unsigned int bytes, struct kvm_vcpu *vcpu) { void *data = val; while (bytes) { gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, addr); unsigned offset = addr & (PAGE_SIZE-1); unsigned tocopy = min(bytes, (unsigned)PAGE_SIZE - offset); unsigned long pfn; struct page *page; void *page_virt; if (gpa == UNMAPPED_GVA) return X86EMUL_PROPAGATE_FAULT; pfn = gpa >> PAGE_SHIFT; page = gfn_to_page(vcpu->kvm, pfn); if (!page) return X86EMUL_UNHANDLEABLE; page_virt = kmap_atomic(page, KM_USER0); memcpy(data, page_virt + offset, tocopy); kunmap_atomic(page_virt, KM_USER0); bytes -= tocopy; data += tocopy; addr += tocopy; } return X86EMUL_CONTINUE; } EXPORT_SYMBOL_GPL(emulator_read_std); static int emulator_write_std(unsigned long addr, const void *val, unsigned int bytes, struct kvm_vcpu *vcpu) { pr_unimpl(vcpu, "emulator_write_std: addr %lx n %d\n", addr, bytes); return X86EMUL_UNHANDLEABLE; } static struct kvm_io_device *vcpu_find_mmio_dev(struct kvm_vcpu *vcpu, gpa_t addr) { /* * Note that its important to have this wrapper function because * in the very near future we will be checking for MMIOs against * the LAPIC as well as the general MMIO bus */ return kvm_io_bus_find_dev(&vcpu->kvm->mmio_bus, addr); } static struct kvm_io_device *vcpu_find_pio_dev(struct kvm_vcpu *vcpu, gpa_t addr) { return kvm_io_bus_find_dev(&vcpu->kvm->pio_bus, addr); } static int emulator_read_emulated(unsigned long addr, void *val, unsigned int bytes, struct kvm_vcpu *vcpu) { struct kvm_io_device *mmio_dev; gpa_t gpa; if (vcpu->mmio_read_completed) { memcpy(val, vcpu->mmio_data, bytes); vcpu->mmio_read_completed = 0; return X86EMUL_CONTINUE; } else if (emulator_read_std(addr, val, bytes, vcpu) == X86EMUL_CONTINUE) return X86EMUL_CONTINUE; gpa = vcpu->mmu.gva_to_gpa(vcpu, addr); if (gpa == UNMAPPED_GVA) return X86EMUL_PROPAGATE_FAULT; /* * Is this MMIO handled locally? */ mmio_dev = vcpu_find_mmio_dev(vcpu, gpa); if (mmio_dev) { kvm_iodevice_read(mmio_dev, gpa, bytes, val); return X86EMUL_CONTINUE; } vcpu->mmio_needed = 1; vcpu->mmio_phys_addr = gpa; vcpu->mmio_size = bytes; vcpu->mmio_is_write = 0; return X86EMUL_UNHANDLEABLE; } static int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa, const void *val, int bytes) { struct page *page; void *virt; if (((gpa + bytes - 1) >> PAGE_SHIFT) != (gpa >> PAGE_SHIFT)) return 0; page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT); if (!page) return 0; mark_page_dirty(vcpu->kvm, gpa >> PAGE_SHIFT); virt = kmap_atomic(page, KM_USER0); kvm_mmu_pte_write(vcpu, gpa, val, bytes); memcpy(virt + offset_in_page(gpa), val, bytes); kunmap_atomic(virt, KM_USER0); return 1; } static int emulator_write_emulated_onepage(unsigned long addr, const void *val, unsigned int bytes, struct kvm_vcpu *vcpu) { struct kvm_io_device *mmio_dev; gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, addr); if (gpa == UNMAPPED_GVA) { kvm_arch_ops->inject_page_fault(vcpu, addr, 2); return X86EMUL_PROPAGATE_FAULT; } if (emulator_write_phys(vcpu, gpa, val, bytes)) return X86EMUL_CONTINUE; /* * Is this MMIO handled locally? */ mmio_dev = vcpu_find_mmio_dev(vcpu, gpa); if (mmio_dev) { kvm_iodevice_write(mmio_dev, gpa, bytes, val); return X86EMUL_CONTINUE; } vcpu->mmio_needed = 1; vcpu->mmio_phys_addr = gpa; vcpu->mmio_size = bytes; vcpu->mmio_is_write = 1; memcpy(vcpu->mmio_data, val, bytes); return X86EMUL_CONTINUE; } int emulator_write_emulated(unsigned long addr, const void *val, unsigned int bytes, struct kvm_vcpu *vcpu) { /* Crossing a page boundary? */ if (((addr + bytes - 1) ^ addr) & PAGE_MASK) { int rc, now; now = -addr & ~PAGE_MASK; rc = emulator_write_emulated_onepage(addr, val, now, vcpu); if (rc != X86EMUL_CONTINUE) return rc; addr += now; val += now; bytes -= now; } return emulator_write_emulated_onepage(addr, val, bytes, vcpu); } EXPORT_SYMBOL_GPL(emulator_write_emulated); static int emulator_cmpxchg_emulated(unsigned long addr, const void *old, const void *new, unsigned int bytes, struct kvm_vcpu *vcpu) { static int reported; if (!reported) { reported = 1; printk(KERN_WARNING "kvm: emulating exchange as write\n"); } return emulator_write_emulated(addr, new, bytes, vcpu); } static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg) { return kvm_arch_ops->get_segment_base(vcpu, seg); } int emulate_invlpg(struct kvm_vcpu *vcpu, gva_t address) { return X86EMUL_CONTINUE; } int emulate_clts(struct kvm_vcpu *vcpu) { unsigned long cr0; cr0 = vcpu->cr0 & ~X86_CR0_TS; kvm_arch_ops->set_cr0(vcpu, cr0); return X86EMUL_CONTINUE; } int emulator_get_dr(struct x86_emulate_ctxt* ctxt, int dr, unsigned long *dest) { struct kvm_vcpu *vcpu = ctxt->vcpu; switch (dr) { case 0 ... 3: *dest = kvm_arch_ops->get_dr(vcpu, dr); return X86EMUL_CONTINUE; default: pr_unimpl(vcpu, "%s: unexpected dr %u\n", __FUNCTION__, dr); return X86EMUL_UNHANDLEABLE; } } int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value) { unsigned long mask = (ctxt->mode == X86EMUL_MODE_PROT64) ? ~0ULL : ~0U; int exception; kvm_arch_ops->set_dr(ctxt->vcpu, dr, value & mask, &exception); if (exception) { /* FIXME: better handling */ return X86EMUL_UNHANDLEABLE; } return X86EMUL_CONTINUE; } static void report_emulation_failure(struct x86_emulate_ctxt *ctxt) { static int reported; u8 opcodes[4]; unsigned long rip = ctxt->vcpu->rip; unsigned long rip_linear; rip_linear = rip + get_segment_base(ctxt->vcpu, VCPU_SREG_CS); if (reported) return; emulator_read_std(rip_linear, (void *)opcodes, 4, ctxt->vcpu); printk(KERN_ERR "emulation failed but !mmio_needed?" " rip %lx %02x %02x %02x %02x\n", rip, opcodes[0], opcodes[1], opcodes[2], opcodes[3]); reported = 1; } struct x86_emulate_ops emulate_ops = { .read_std = emulator_read_std, .write_std = emulator_write_std, .read_emulated = emulator_read_emulated, .write_emulated = emulator_write_emulated, .cmpxchg_emulated = emulator_cmpxchg_emulated, }; int emulate_instruction(struct kvm_vcpu *vcpu, struct kvm_run *run, unsigned long cr2, u16 error_code) { struct x86_emulate_ctxt emulate_ctxt; int r; int cs_db, cs_l; vcpu->mmio_fault_cr2 = cr2; kvm_arch_ops->cache_regs(vcpu); kvm_arch_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l); emulate_ctxt.vcpu = vcpu; emulate_ctxt.eflags = kvm_arch_ops->get_rflags(vcpu); emulate_ctxt.cr2 = cr2; emulate_ctxt.mode = (emulate_ctxt.eflags & X86_EFLAGS_VM) ? X86EMUL_MODE_REAL : cs_l ? X86EMUL_MODE_PROT64 : cs_db ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16; if (emulate_ctxt.mode == X86EMUL_MODE_PROT64) { emulate_ctxt.cs_base = 0; emulate_ctxt.ds_base = 0; emulate_ctxt.es_base = 0; emulate_ctxt.ss_base = 0; } else { emulate_ctxt.cs_base = get_segment_base(vcpu, VCPU_SREG_CS); emulate_ctxt.ds_base = get_segment_base(vcpu, VCPU_SREG_DS); emulate_ctxt.es_base = get_segment_base(vcpu, VCPU_SREG_ES); emulate_ctxt.ss_base = get_segment_base(vcpu, VCPU_SREG_SS); } emulate_ctxt.gs_base = get_segment_base(vcpu, VCPU_SREG_GS); emulate_ctxt.fs_base = get_segment_base(vcpu, VCPU_SREG_FS); vcpu->mmio_is_write = 0; vcpu->pio.string = 0; r = x86_emulate_memop(&emulate_ctxt, &emulate_ops); if (vcpu->pio.string) return EMULATE_DO_MMIO; if ((r || vcpu->mmio_is_write) && run) { run->exit_reason = KVM_EXIT_MMIO; run->mmio.phys_addr = vcpu->mmio_phys_addr; memcpy(run->mmio.data, vcpu->mmio_data, 8); run->mmio.len = vcpu->mmio_size; run->mmio.is_write = vcpu->mmio_is_write; } if (r) { if (kvm_mmu_unprotect_page_virt(vcpu, cr2)) return EMULATE_DONE; if (!vcpu->mmio_needed) { report_emulation_failure(&emulate_ctxt); return EMULATE_FAIL; } return EMULATE_DO_MMIO; } kvm_arch_ops->decache_regs(vcpu); kvm_arch_ops->set_rflags(vcpu, emulate_ctxt.eflags); if (vcpu->mmio_is_write) { vcpu->mmio_needed = 0; return EMULATE_DO_MMIO; } return EMULATE_DONE; } EXPORT_SYMBOL_GPL(emulate_instruction); int kvm_emulate_halt(struct kvm_vcpu *vcpu) { if (vcpu->irq_summary || (irqchip_in_kernel(vcpu->kvm) && kvm_cpu_has_interrupt(vcpu))) return 1; vcpu->run->exit_reason = KVM_EXIT_HLT; ++vcpu->stat.halt_exits; return 0; } EXPORT_SYMBOL_GPL(kvm_emulate_halt); int kvm_hypercall(struct kvm_vcpu *vcpu, struct kvm_run *run) { unsigned long nr, a0, a1, a2, a3, a4, a5, ret; kvm_arch_ops->cache_regs(vcpu); ret = -KVM_EINVAL; #ifdef CONFIG_X86_64 if (is_long_mode(vcpu)) { nr = vcpu->regs[VCPU_REGS_RAX]; a0 = vcpu->regs[VCPU_REGS_RDI]; a1 = vcpu->regs[VCPU_REGS_RSI]; a2 = vcpu->regs[VCPU_REGS_RDX]; a3 = vcpu->regs[VCPU_REGS_RCX]; a4 = vcpu->regs[VCPU_REGS_R8]; a5 = vcpu->regs[VCPU_REGS_R9]; } else #endif { nr = vcpu->regs[VCPU_REGS_RBX] & -1u; a0 = vcpu->regs[VCPU_REGS_RAX] & -1u; a1 = vcpu->regs[VCPU_REGS_RCX] & -1u; a2 = vcpu->regs[VCPU_REGS_RDX] & -1u; a3 = vcpu->regs[VCPU_REGS_RSI] & -1u; a4 = vcpu->regs[VCPU_REGS_RDI] & -1u; a5 = vcpu->regs[VCPU_REGS_RBP] & -1u; } switch (nr) { default: run->hypercall.nr = nr; run->hypercall.args[0] = a0; run->hypercall.args[1] = a1; run->hypercall.args[2] = a2; run->hypercall.args[3] = a3; run->hypercall.args[4] = a4; run->hypercall.args[5] = a5; run->hypercall.ret = ret; run->hypercall.longmode = is_long_mode(vcpu); kvm_arch_ops->decache_regs(vcpu); return 0; } vcpu->regs[VCPU_REGS_RAX] = ret; kvm_arch_ops->decache_regs(vcpu); return 1; } EXPORT_SYMBOL_GPL(kvm_hypercall); static u64 mk_cr_64(u64 curr_cr, u32 new_val) { return (curr_cr & ~((1ULL << 32) - 1)) | new_val; } void realmode_lgdt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base) { struct descriptor_table dt = { limit, base }; kvm_arch_ops->set_gdt(vcpu, &dt); } void realmode_lidt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base) { struct descriptor_table dt = { limit, base }; kvm_arch_ops->set_idt(vcpu, &dt); } void realmode_lmsw(struct kvm_vcpu *vcpu, unsigned long msw, unsigned long *rflags) { lmsw(vcpu, msw); *rflags = kvm_arch_ops->get_rflags(vcpu); } unsigned long realmode_get_cr(struct kvm_vcpu *vcpu, int cr) { kvm_arch_ops->decache_cr4_guest_bits(vcpu); switch (cr) { case 0: return vcpu->cr0; case 2: return vcpu->cr2; case 3: return vcpu->cr3; case 4: return vcpu->cr4; default: vcpu_printf(vcpu, "%s: unexpected cr %u\n", __FUNCTION__, cr); return 0; } } void realmode_set_cr(struct kvm_vcpu *vcpu, int cr, unsigned long val, unsigned long *rflags) { switch (cr) { case 0: set_cr0(vcpu, mk_cr_64(vcpu->cr0, val)); *rflags = kvm_arch_ops->get_rflags(vcpu); break; case 2: vcpu->cr2 = val; break; case 3: set_cr3(vcpu, val); break; case 4: set_cr4(vcpu, mk_cr_64(vcpu->cr4, val)); break; default: vcpu_printf(vcpu, "%s: unexpected cr %u\n", __FUNCTION__, cr); } } /* * Register the para guest with the host: */ static int vcpu_register_para(struct kvm_vcpu *vcpu, gpa_t para_state_gpa) { struct kvm_vcpu_para_state *para_state; hpa_t para_state_hpa, hypercall_hpa; struct page *para_state_page; unsigned char *hypercall; gpa_t hypercall_gpa; printk(KERN_DEBUG "kvm: guest trying to enter paravirtual mode\n"); printk(KERN_DEBUG ".... para_state_gpa: %08Lx\n", para_state_gpa); /* * Needs to be page aligned: */ if (para_state_gpa != PAGE_ALIGN(para_state_gpa)) goto err_gp; para_state_hpa = gpa_to_hpa(vcpu, para_state_gpa); printk(KERN_DEBUG ".... para_state_hpa: %08Lx\n", para_state_hpa); if (is_error_hpa(para_state_hpa)) goto err_gp; mark_page_dirty(vcpu->kvm, para_state_gpa >> PAGE_SHIFT); para_state_page = pfn_to_page(para_state_hpa >> PAGE_SHIFT); para_state = kmap(para_state_page); printk(KERN_DEBUG ".... guest version: %d\n", para_state->guest_version); printk(KERN_DEBUG ".... size: %d\n", para_state->size); para_state->host_version = KVM_PARA_API_VERSION; /* * We cannot support guests that try to register themselves * with a newer API version than the host supports: */ if (para_state->guest_version > KVM_PARA_API_VERSION) { para_state->ret = -KVM_EINVAL; goto err_kunmap_skip; } hypercall_gpa = para_state->hypercall_gpa; hypercall_hpa = gpa_to_hpa(vcpu, hypercall_gpa); printk(KERN_DEBUG ".... hypercall_hpa: %08Lx\n", hypercall_hpa); if (is_error_hpa(hypercall_hpa)) { para_state->ret = -KVM_EINVAL; goto err_kunmap_skip; } printk(KERN_DEBUG "kvm: para guest successfully registered.\n"); vcpu->para_state_page = para_state_page; vcpu->para_state_gpa = para_state_gpa; vcpu->hypercall_gpa = hypercall_gpa; mark_page_dirty(vcpu->kvm, hypercall_gpa >> PAGE_SHIFT); hypercall = kmap_atomic(pfn_to_page(hypercall_hpa >> PAGE_SHIFT), KM_USER1) + (hypercall_hpa & ~PAGE_MASK); kvm_arch_ops->patch_hypercall(vcpu, hypercall); kunmap_atomic(hypercall, KM_USER1); para_state->ret = 0; err_kunmap_skip: kunmap(para_state_page); return 0; err_gp: return 1; } int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata) { u64 data; switch (msr) { case 0xc0010010: /* SYSCFG */ case 0xc0010015: /* HWCR */ case MSR_IA32_PLATFORM_ID: case MSR_IA32_P5_MC_ADDR: case MSR_IA32_P5_MC_TYPE: case MSR_IA32_MC0_CTL: case MSR_IA32_MCG_STATUS: case MSR_IA32_MCG_CAP: case MSR_IA32_MC0_MISC: case MSR_IA32_MC0_MISC+4: case MSR_IA32_MC0_MISC+8: case MSR_IA32_MC0_MISC+12: case MSR_IA32_MC0_MISC+16: case MSR_IA32_UCODE_REV: case MSR_IA32_PERF_STATUS: case MSR_IA32_EBL_CR_POWERON: /* MTRR registers */ case 0xfe: case 0x200 ... 0x2ff: data = 0; break; case 0xcd: /* fsb frequency */ data = 3; break; case MSR_IA32_APICBASE: data = kvm_get_apic_base(vcpu); break; case MSR_IA32_MISC_ENABLE: data = vcpu->ia32_misc_enable_msr; break; #ifdef CONFIG_X86_64 case MSR_EFER: data = vcpu->shadow_efer; break; #endif default: pr_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr); return 1; } *pdata = data; return 0; } EXPORT_SYMBOL_GPL(kvm_get_msr_common); /* * Reads an msr value (of 'msr_index') into 'pdata'. * Returns 0 on success, non-0 otherwise. * Assumes vcpu_load() was already called. */ int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata) { return kvm_arch_ops->get_msr(vcpu, msr_index, pdata); } #ifdef CONFIG_X86_64 static void set_efer(struct kvm_vcpu *vcpu, u64 efer) { if (efer & EFER_RESERVED_BITS) { printk(KERN_DEBUG "set_efer: 0x%llx #GP, reserved bits\n", efer); inject_gp(vcpu); return; } if (is_paging(vcpu) && (vcpu->shadow_efer & EFER_LME) != (efer & EFER_LME)) { printk(KERN_DEBUG "set_efer: #GP, change LME while paging\n"); inject_gp(vcpu); return; } kvm_arch_ops->set_efer(vcpu, efer); efer &= ~EFER_LMA; efer |= vcpu->shadow_efer & EFER_LMA; vcpu->shadow_efer = efer; } #endif int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data) { switch (msr) { #ifdef CONFIG_X86_64 case MSR_EFER: set_efer(vcpu, data); break; #endif case MSR_IA32_MC0_STATUS: pr_unimpl(vcpu, "%s: MSR_IA32_MC0_STATUS 0x%llx, nop\n", __FUNCTION__, data); break; case MSR_IA32_MCG_STATUS: pr_unimpl(vcpu, "%s: MSR_IA32_MCG_STATUS 0x%llx, nop\n", __FUNCTION__, data); break; case MSR_IA32_UCODE_REV: case MSR_IA32_UCODE_WRITE: case 0x200 ... 0x2ff: /* MTRRs */ break; case MSR_IA32_APICBASE: kvm_set_apic_base(vcpu, data); break; case MSR_IA32_MISC_ENABLE: vcpu->ia32_misc_enable_msr = data; break; /* * This is the 'probe whether the host is KVM' logic: */ case MSR_KVM_API_MAGIC: return vcpu_register_para(vcpu, data); default: pr_unimpl(vcpu, "unhandled wrmsr: 0x%x\n", msr); return 1; } return 0; } EXPORT_SYMBOL_GPL(kvm_set_msr_common); /* * Writes msr value into into the appropriate "register". * Returns 0 on success, non-0 otherwise. * Assumes vcpu_load() was already called. */ int kvm_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data) { return kvm_arch_ops->set_msr(vcpu, msr_index, data); } void kvm_resched(struct kvm_vcpu *vcpu) { if (!need_resched()) return; cond_resched(); } EXPORT_SYMBOL_GPL(kvm_resched); void kvm_emulate_cpuid(struct kvm_vcpu *vcpu) { int i; u32 function; struct kvm_cpuid_entry *e, *best; kvm_arch_ops->cache_regs(vcpu); function = vcpu->regs[VCPU_REGS_RAX]; vcpu->regs[VCPU_REGS_RAX] = 0; vcpu->regs[VCPU_REGS_RBX] = 0; vcpu->regs[VCPU_REGS_RCX] = 0; vcpu->regs[VCPU_REGS_RDX] = 0; best = NULL; for (i = 0; i < vcpu->cpuid_nent; ++i) { e = &vcpu->cpuid_entries[i]; if (e->function == function) { best = e; break; } /* * Both basic or both extended? */ if (((e->function ^ function) & 0x80000000) == 0) if (!best || e->function > best->function) best = e; } if (best) { vcpu->regs[VCPU_REGS_RAX] = best->eax; vcpu->regs[VCPU_REGS_RBX] = best->ebx; vcpu->regs[VCPU_REGS_RCX] = best->ecx; vcpu->regs[VCPU_REGS_RDX] = best->edx; } kvm_arch_ops->decache_regs(vcpu); kvm_arch_ops->skip_emulated_instruction(vcpu); } EXPORT_SYMBOL_GPL(kvm_emulate_cpuid); static int pio_copy_data(struct kvm_vcpu *vcpu) { void *p = vcpu->pio_data; void *q; unsigned bytes; int nr_pages = vcpu->pio.guest_pages[1] ? 2 : 1; q = vmap(vcpu->pio.guest_pages, nr_pages, VM_READ|VM_WRITE, PAGE_KERNEL); if (!q) { free_pio_guest_pages(vcpu); return -ENOMEM; } q += vcpu->pio.guest_page_offset; bytes = vcpu->pio.size * vcpu->pio.cur_count; if (vcpu->pio.in) memcpy(q, p, bytes); else memcpy(p, q, bytes); q -= vcpu->pio.guest_page_offset; vunmap(q); free_pio_guest_pages(vcpu); return 0; } static int complete_pio(struct kvm_vcpu *vcpu) { struct kvm_pio_request *io = &vcpu->pio; long delta; int r; kvm_arch_ops->cache_regs(vcpu); if (!io->string) { if (io->in) memcpy(&vcpu->regs[VCPU_REGS_RAX], vcpu->pio_data, io->size); } else { if (io->in) { r = pio_copy_data(vcpu); if (r) { kvm_arch_ops->cache_regs(vcpu); return r; } } delta = 1; if (io->rep) { delta *= io->cur_count; /* * The size of the register should really depend on * current address size. */ vcpu->regs[VCPU_REGS_RCX] -= delta; } if (io->down) delta = -delta; delta *= io->size; if (io->in) vcpu->regs[VCPU_REGS_RDI] += delta; else vcpu->regs[VCPU_REGS_RSI] += delta; } kvm_arch_ops->decache_regs(vcpu); io->count -= io->cur_count; io->cur_count = 0; if (!io->count) kvm_arch_ops->skip_emulated_instruction(vcpu); return 0; } static void kernel_pio(struct kvm_io_device *pio_dev, struct kvm_vcpu *vcpu, void *pd) { /* TODO: String I/O for in kernel device */ if (vcpu->pio.in) kvm_iodevice_read(pio_dev, vcpu->pio.port, vcpu->pio.size, pd); else kvm_iodevice_write(pio_dev, vcpu->pio.port, vcpu->pio.size, pd); } static void pio_string_write(struct kvm_io_device *pio_dev, struct kvm_vcpu *vcpu) { struct kvm_pio_request *io = &vcpu->pio; void *pd = vcpu->pio_data; int i; for (i = 0; i < io->cur_count; i++) { kvm_iodevice_write(pio_dev, io->port, io->size, pd); pd += io->size; } } int kvm_emulate_pio (struct kvm_vcpu *vcpu, struct kvm_run *run, int in, int size, unsigned port) { struct kvm_io_device *pio_dev; vcpu->run->exit_reason = KVM_EXIT_IO; vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT; vcpu->run->io.size = vcpu->pio.size = size; vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE; vcpu->run->io.count = vcpu->pio.count = vcpu->pio.cur_count = 1; vcpu->run->io.port = vcpu->pio.port = port; vcpu->pio.in = in; vcpu->pio.string = 0; vcpu->pio.down = 0; vcpu->pio.guest_page_offset = 0; vcpu->pio.rep = 0; kvm_arch_ops->cache_regs(vcpu); memcpy(vcpu->pio_data, &vcpu->regs[VCPU_REGS_RAX], 4); kvm_arch_ops->decache_regs(vcpu); pio_dev = vcpu_find_pio_dev(vcpu, port); if (pio_dev) { kernel_pio(pio_dev, vcpu, vcpu->pio_data); complete_pio(vcpu); return 1; } return 0; } EXPORT_SYMBOL_GPL(kvm_emulate_pio); int kvm_emulate_pio_string(struct kvm_vcpu *vcpu, struct kvm_run *run, int in, int size, unsigned long count, int down, gva_t address, int rep, unsigned port) { unsigned now, in_page; int i, ret = 0; int nr_pages = 1; struct page *page; struct kvm_io_device *pio_dev; vcpu->run->exit_reason = KVM_EXIT_IO; vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT; vcpu->run->io.size = vcpu->pio.size = size; vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE; vcpu->run->io.count = vcpu->pio.count = vcpu->pio.cur_count = count; vcpu->run->io.port = vcpu->pio.port = port; vcpu->pio.in = in; vcpu->pio.string = 1; vcpu->pio.down = down; vcpu->pio.guest_page_offset = offset_in_page(address); vcpu->pio.rep = rep; if (!count) { kvm_arch_ops->skip_emulated_instruction(vcpu); return 1; } if (!down) in_page = PAGE_SIZE - offset_in_page(address); else in_page = offset_in_page(address) + size; now = min(count, (unsigned long)in_page / size); if (!now) { /* * String I/O straddles page boundary. Pin two guest pages * so that we satisfy atomicity constraints. Do just one * transaction to avoid complexity. */ nr_pages = 2; now = 1; } if (down) { /* * String I/O in reverse. Yuck. Kill the guest, fix later. */ pr_unimpl(vcpu, "guest string pio down\n"); inject_gp(vcpu); return 1; } vcpu->run->io.count = now; vcpu->pio.cur_count = now; for (i = 0; i < nr_pages; ++i) { mutex_lock(&vcpu->kvm->lock); page = gva_to_page(vcpu, address + i * PAGE_SIZE); if (page) get_page(page); vcpu->pio.guest_pages[i] = page; mutex_unlock(&vcpu->kvm->lock); if (!page) { inject_gp(vcpu); free_pio_guest_pages(vcpu); return 1; } } pio_dev = vcpu_find_pio_dev(vcpu, port); if (!vcpu->pio.in) { /* string PIO write */ ret = pio_copy_data(vcpu); if (ret >= 0 && pio_dev) { pio_string_write(pio_dev, vcpu); complete_pio(vcpu); if (vcpu->pio.count == 0) ret = 1; } } else if (pio_dev) pr_unimpl(vcpu, "no string pio read support yet, " "port %x size %d count %ld\n", port, size, count); return ret; } EXPORT_SYMBOL_GPL(kvm_emulate_pio_string); static int kvm_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run) { int r; sigset_t sigsaved; vcpu_load(vcpu); if (vcpu->sigset_active) sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved); /* re-sync apic's tpr */ set_cr8(vcpu, kvm_run->cr8); if (vcpu->pio.cur_count) { r = complete_pio(vcpu); if (r) goto out; } if (vcpu->mmio_needed) { memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8); vcpu->mmio_read_completed = 1; vcpu->mmio_needed = 0; r = emulate_instruction(vcpu, kvm_run, vcpu->mmio_fault_cr2, 0); if (r == EMULATE_DO_MMIO) { /* * Read-modify-write. Back to userspace. */ r = 0; goto out; } } if (kvm_run->exit_reason == KVM_EXIT_HYPERCALL) { kvm_arch_ops->cache_regs(vcpu); vcpu->regs[VCPU_REGS_RAX] = kvm_run->hypercall.ret; kvm_arch_ops->decache_regs(vcpu); } r = kvm_arch_ops->run(vcpu, kvm_run); out: if (vcpu->sigset_active) sigprocmask(SIG_SETMASK, &sigsaved, NULL); vcpu_put(vcpu); return r; } static int kvm_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) { vcpu_load(vcpu); kvm_arch_ops->cache_regs(vcpu); regs->rax = vcpu->regs[VCPU_REGS_RAX]; regs->rbx = vcpu->regs[VCPU_REGS_RBX]; regs->rcx = vcpu->regs[VCPU_REGS_RCX]; regs->rdx = vcpu->regs[VCPU_REGS_RDX]; regs->rsi = vcpu->regs[VCPU_REGS_RSI]; regs->rdi = vcpu->regs[VCPU_REGS_RDI]; regs->rsp = vcpu->regs[VCPU_REGS_RSP]; regs->rbp = vcpu->regs[VCPU_REGS_RBP]; #ifdef CONFIG_X86_64 regs->r8 = vcpu->regs[VCPU_REGS_R8]; regs->r9 = vcpu->regs[VCPU_REGS_R9]; regs->r10 = vcpu->regs[VCPU_REGS_R10]; regs->r11 = vcpu->regs[VCPU_REGS_R11]; regs->r12 = vcpu->regs[VCPU_REGS_R12]; regs->r13 = vcpu->regs[VCPU_REGS_R13]; regs->r14 = vcpu->regs[VCPU_REGS_R14]; regs->r15 = vcpu->regs[VCPU_REGS_R15]; #endif regs->rip = vcpu->rip; regs->rflags = kvm_arch_ops->get_rflags(vcpu); /* * Don't leak debug flags in case they were set for guest debugging */ if (vcpu->guest_debug.enabled && vcpu->guest_debug.singlestep) regs->rflags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF); vcpu_put(vcpu); return 0; } static int kvm_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) { vcpu_load(vcpu); vcpu->regs[VCPU_REGS_RAX] = regs->rax; vcpu->regs[VCPU_REGS_RBX] = regs->rbx; vcpu->regs[VCPU_REGS_RCX] = regs->rcx; vcpu->regs[VCPU_REGS_RDX] = regs->rdx; vcpu->regs[VCPU_REGS_RSI] = regs->rsi; vcpu->regs[VCPU_REGS_RDI] = regs->rdi; vcpu->regs[VCPU_REGS_RSP] = regs->rsp; vcpu->regs[VCPU_REGS_RBP] = regs->rbp; #ifdef CONFIG_X86_64 vcpu->regs[VCPU_REGS_R8] = regs->r8; vcpu->regs[VCPU_REGS_R9] = regs->r9; vcpu->regs[VCPU_REGS_R10] = regs->r10; vcpu->regs[VCPU_REGS_R11] = regs->r11; vcpu->regs[VCPU_REGS_R12] = regs->r12; vcpu->regs[VCPU_REGS_R13] = regs->r13; vcpu->regs[VCPU_REGS_R14] = regs->r14; vcpu->regs[VCPU_REGS_R15] = regs->r15; #endif vcpu->rip = regs->rip; kvm_arch_ops->set_rflags(vcpu, regs->rflags); kvm_arch_ops->decache_regs(vcpu); vcpu_put(vcpu); return 0; } static void get_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg) { return kvm_arch_ops->get_segment(vcpu, var, seg); } static int kvm_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) { struct descriptor_table dt; vcpu_load(vcpu); get_segment(vcpu, &sregs->cs, VCPU_SREG_CS); get_segment(vcpu, &sregs->ds, VCPU_SREG_DS); get_segment(vcpu, &sregs->es, VCPU_SREG_ES); get_segment(vcpu, &sregs->fs, VCPU_SREG_FS); get_segment(vcpu, &sregs->gs, VCPU_SREG_GS); get_segment(vcpu, &sregs->ss, VCPU_SREG_SS); get_segment(vcpu, &sregs->tr, VCPU_SREG_TR); get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR); kvm_arch_ops->get_idt(vcpu, &dt); sregs->idt.limit = dt.limit; sregs->idt.base = dt.base; kvm_arch_ops->get_gdt(vcpu, &dt); sregs->gdt.limit = dt.limit; sregs->gdt.base = dt.base; kvm_arch_ops->decache_cr4_guest_bits(vcpu); sregs->cr0 = vcpu->cr0; sregs->cr2 = vcpu->cr2; sregs->cr3 = vcpu->cr3; sregs->cr4 = vcpu->cr4; sregs->cr8 = get_cr8(vcpu); sregs->efer = vcpu->shadow_efer; sregs->apic_base = kvm_get_apic_base(vcpu); memcpy(sregs->interrupt_bitmap, vcpu->irq_pending, sizeof sregs->interrupt_bitmap); vcpu_put(vcpu); return 0; } static void set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg) { return kvm_arch_ops->set_segment(vcpu, var, seg); } static int kvm_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) { int mmu_reset_needed = 0; int i; struct descriptor_table dt; vcpu_load(vcpu); dt.limit = sregs->idt.limit; dt.base = sregs->idt.base; kvm_arch_ops->set_idt(vcpu, &dt); dt.limit = sregs->gdt.limit; dt.base = sregs->gdt.base; kvm_arch_ops->set_gdt(vcpu, &dt); vcpu->cr2 = sregs->cr2; mmu_reset_needed |= vcpu->cr3 != sregs->cr3; vcpu->cr3 = sregs->cr3; set_cr8(vcpu, sregs->cr8); mmu_reset_needed |= vcpu->shadow_efer != sregs->efer; #ifdef CONFIG_X86_64 kvm_arch_ops->set_efer(vcpu, sregs->efer); #endif kvm_set_apic_base(vcpu, sregs->apic_base); kvm_arch_ops->decache_cr4_guest_bits(vcpu); mmu_reset_needed |= vcpu->cr0 != sregs->cr0; kvm_arch_ops->set_cr0(vcpu, sregs->cr0); mmu_reset_needed |= vcpu->cr4 != sregs->cr4; kvm_arch_ops->set_cr4(vcpu, sregs->cr4); if (!is_long_mode(vcpu) && is_pae(vcpu)) load_pdptrs(vcpu, vcpu->cr3); if (mmu_reset_needed) kvm_mmu_reset_context(vcpu); memcpy(vcpu->irq_pending, sregs->interrupt_bitmap, sizeof vcpu->irq_pending); vcpu->irq_summary = 0; for (i = 0; i < ARRAY_SIZE(vcpu->irq_pending); ++i) if (vcpu->irq_pending[i]) __set_bit(i, &vcpu->irq_summary); set_segment(vcpu, &sregs->cs, VCPU_SREG_CS); set_segment(vcpu, &sregs->ds, VCPU_SREG_DS); set_segment(vcpu, &sregs->es, VCPU_SREG_ES); set_segment(vcpu, &sregs->fs, VCPU_SREG_FS); set_segment(vcpu, &sregs->gs, VCPU_SREG_GS); set_segment(vcpu, &sregs->ss, VCPU_SREG_SS); set_segment(vcpu, &sregs->tr, VCPU_SREG_TR); set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR); vcpu_put(vcpu); return 0; } /* * List of msr numbers which we expose to userspace through KVM_GET_MSRS * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST. * * This list is modified at module load time to reflect the * capabilities of the host cpu. */ static u32 msrs_to_save[] = { MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP, MSR_K6_STAR, #ifdef CONFIG_X86_64 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR, #endif MSR_IA32_TIME_STAMP_COUNTER, }; static unsigned num_msrs_to_save; static u32 emulated_msrs[] = { MSR_IA32_MISC_ENABLE, }; static __init void kvm_init_msr_list(void) { u32 dummy[2]; unsigned i, j; for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) { if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0) continue; if (j < i) msrs_to_save[j] = msrs_to_save[i]; j++; } num_msrs_to_save = j; } /* * Adapt set_msr() to msr_io()'s calling convention */ static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data) { return kvm_set_msr(vcpu, index, *data); } /* * Read or write a bunch of msrs. All parameters are kernel addresses. * * @return number of msrs set successfully. */ static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs, struct kvm_msr_entry *entries, int (*do_msr)(struct kvm_vcpu *vcpu, unsigned index, u64 *data)) { int i; vcpu_load(vcpu); for (i = 0; i < msrs->nmsrs; ++i) if (do_msr(vcpu, entries[i].index, &entries[i].data)) break; vcpu_put(vcpu); return i; } /* * Read or write a bunch of msrs. Parameters are user addresses. * * @return number of msrs set successfully. */ static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs, int (*do_msr)(struct kvm_vcpu *vcpu, unsigned index, u64 *data), int writeback) { struct kvm_msrs msrs; struct kvm_msr_entry *entries; int r, n; unsigned size; r = -EFAULT; if (copy_from_user(&msrs, user_msrs, sizeof msrs)) goto out; r = -E2BIG; if (msrs.nmsrs >= MAX_IO_MSRS) goto out; r = -ENOMEM; size = sizeof(struct kvm_msr_entry) * msrs.nmsrs; entries = vmalloc(size); if (!entries) goto out; r = -EFAULT; if (copy_from_user(entries, user_msrs->entries, size)) goto out_free; r = n = __msr_io(vcpu, &msrs, entries, do_msr); if (r < 0) goto out_free; r = -EFAULT; if (writeback && copy_to_user(user_msrs->entries, entries, size)) goto out_free; r = n; out_free: vfree(entries); out: return r; } /* * Translate a guest virtual address to a guest physical address. */ static int kvm_vcpu_ioctl_translate(struct kvm_vcpu *vcpu, struct kvm_translation *tr) { unsigned long vaddr = tr->linear_address; gpa_t gpa; vcpu_load(vcpu); mutex_lock(&vcpu->kvm->lock); gpa = vcpu->mmu.gva_to_gpa(vcpu, vaddr); tr->physical_address = gpa; tr->valid = gpa != UNMAPPED_GVA; tr->writeable = 1; tr->usermode = 0; mutex_unlock(&vcpu->kvm->lock); vcpu_put(vcpu); return 0; } static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu, struct kvm_interrupt *irq) { if (irq->irq < 0 || irq->irq >= 256) return -EINVAL; vcpu_load(vcpu); set_bit(irq->irq, vcpu->irq_pending); set_bit(irq->irq / BITS_PER_LONG, &vcpu->irq_summary); vcpu_put(vcpu); return 0; } static int kvm_vcpu_ioctl_debug_guest(struct kvm_vcpu *vcpu, struct kvm_debug_guest *dbg) { int r; vcpu_load(vcpu); r = kvm_arch_ops->set_guest_debug(vcpu, dbg); vcpu_put(vcpu); return r; } static struct page *kvm_vcpu_nopage(struct vm_area_struct *vma, unsigned long address, int *type) { struct kvm_vcpu *vcpu = vma->vm_file->private_data; unsigned long pgoff; struct page *page; pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff; if (pgoff == 0) page = virt_to_page(vcpu->run); else if (pgoff == KVM_PIO_PAGE_OFFSET) page = virt_to_page(vcpu->pio_data); else return NOPAGE_SIGBUS; get_page(page); if (type != NULL) *type = VM_FAULT_MINOR; return page; } static struct vm_operations_struct kvm_vcpu_vm_ops = { .nopage = kvm_vcpu_nopage, }; static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma) { vma->vm_ops = &kvm_vcpu_vm_ops; return 0; } static int kvm_vcpu_release(struct inode *inode, struct file *filp) { struct kvm_vcpu *vcpu = filp->private_data; fput(vcpu->kvm->filp); return 0; } static struct file_operations kvm_vcpu_fops = { .release = kvm_vcpu_release, .unlocked_ioctl = kvm_vcpu_ioctl, .compat_ioctl = kvm_vcpu_ioctl, .mmap = kvm_vcpu_mmap, }; /* * Allocates an inode for the vcpu. */ static int create_vcpu_fd(struct kvm_vcpu *vcpu) { int fd, r; struct inode *inode; struct file *file; r = anon_inode_getfd(&fd, &inode, &file, "kvm-vcpu", &kvm_vcpu_fops, vcpu); if (r) return r; atomic_inc(&vcpu->kvm->filp->f_count); return fd; } /* * Creates some virtual cpus. Good luck creating more than one. */ static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, int n) { int r; struct kvm_vcpu *vcpu; if (!valid_vcpu(n)) return -EINVAL; vcpu = kvm_arch_ops->vcpu_create(kvm, n); if (IS_ERR(vcpu)) return PTR_ERR(vcpu); preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops); /* We do fxsave: this must be aligned. */ BUG_ON((unsigned long)&vcpu->host_fx_image & 0xF); vcpu_load(vcpu); r = kvm_mmu_setup(vcpu); vcpu_put(vcpu); if (r < 0) goto free_vcpu; mutex_lock(&kvm->lock); if (kvm->vcpus[n]) { r = -EEXIST; mutex_unlock(&kvm->lock); goto mmu_unload; } kvm->vcpus[n] = vcpu; mutex_unlock(&kvm->lock); /* Now it's all set up, let userspace reach it */ r = create_vcpu_fd(vcpu); if (r < 0) goto unlink; return r; unlink: mutex_lock(&kvm->lock); kvm->vcpus[n] = NULL; mutex_unlock(&kvm->lock); mmu_unload: vcpu_load(vcpu); kvm_mmu_unload(vcpu); vcpu_put(vcpu); free_vcpu: kvm_arch_ops->vcpu_free(vcpu); return r; } static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu) { u64 efer; int i; struct kvm_cpuid_entry *e, *entry; rdmsrl(MSR_EFER, efer); entry = NULL; for (i = 0; i < vcpu->cpuid_nent; ++i) { e = &vcpu->cpuid_entries[i]; if (e->function == 0x80000001) { entry = e; break; } } if (entry && (entry->edx & (1 << 20)) && !(efer & EFER_NX)) { entry->edx &= ~(1 << 20); printk(KERN_INFO "kvm: guest NX capability removed\n"); } } static int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu, struct kvm_cpuid *cpuid, struct kvm_cpuid_entry __user *entries) { int r; r = -E2BIG; if (cpuid->nent > KVM_MAX_CPUID_ENTRIES) goto out; r = -EFAULT; if (copy_from_user(&vcpu->cpuid_entries, entries, cpuid->nent * sizeof(struct kvm_cpuid_entry))) goto out; vcpu->cpuid_nent = cpuid->nent; cpuid_fix_nx_cap(vcpu); return 0; out: return r; } static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset) { if (sigset) { sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP)); vcpu->sigset_active = 1; vcpu->sigset = *sigset; } else vcpu->sigset_active = 0; return 0; } /* * fxsave fpu state. Taken from x86_64/processor.h. To be killed when * we have asm/x86/processor.h */ struct fxsave { u16 cwd; u16 swd; u16 twd; u16 fop; u64 rip; u64 rdp; u32 mxcsr; u32 mxcsr_mask; u32 st_space[32]; /* 8*16 bytes for each FP-reg = 128 bytes */ #ifdef CONFIG_X86_64 u32 xmm_space[64]; /* 16*16 bytes for each XMM-reg = 256 bytes */ #else u32 xmm_space[32]; /* 8*16 bytes for each XMM-reg = 128 bytes */ #endif }; static int kvm_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) { struct fxsave *fxsave = (struct fxsave *)&vcpu->guest_fx_image; vcpu_load(vcpu); memcpy(fpu->fpr, fxsave->st_space, 128); fpu->fcw = fxsave->cwd; fpu->fsw = fxsave->swd; fpu->ftwx = fxsave->twd; fpu->last_opcode = fxsave->fop; fpu->last_ip = fxsave->rip; fpu->last_dp = fxsave->rdp; memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space); vcpu_put(vcpu); return 0; } static int kvm_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) { struct fxsave *fxsave = (struct fxsave *)&vcpu->guest_fx_image; vcpu_load(vcpu); memcpy(fxsave->st_space, fpu->fpr, 128); fxsave->cwd = fpu->fcw; fxsave->swd = fpu->fsw; fxsave->twd = fpu->ftwx; fxsave->fop = fpu->last_opcode; fxsave->rip = fpu->last_ip; fxsave->rdp = fpu->last_dp; memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space); vcpu_put(vcpu); return 0; } static long kvm_vcpu_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg) { struct kvm_vcpu *vcpu = filp->private_data; void __user *argp = (void __user *)arg; int r = -EINVAL; switch (ioctl) { case KVM_RUN: r = -EINVAL; if (arg) goto out; r = kvm_vcpu_ioctl_run(vcpu, vcpu->run); break; case KVM_GET_REGS: { struct kvm_regs kvm_regs; memset(&kvm_regs, 0, sizeof kvm_regs); r = kvm_vcpu_ioctl_get_regs(vcpu, &kvm_regs); if (r) goto out; r = -EFAULT; if (copy_to_user(argp, &kvm_regs, sizeof kvm_regs)) goto out; r = 0; break; } case KVM_SET_REGS: { struct kvm_regs kvm_regs; r = -EFAULT; if (copy_from_user(&kvm_regs, argp, sizeof kvm_regs)) goto out; r = kvm_vcpu_ioctl_set_regs(vcpu, &kvm_regs); if (r) goto out; r = 0; break; } case KVM_GET_SREGS: { struct kvm_sregs kvm_sregs; memset(&kvm_sregs, 0, sizeof kvm_sregs); r = kvm_vcpu_ioctl_get_sregs(vcpu, &kvm_sregs); if (r) goto out; r = -EFAULT; if (copy_to_user(argp, &kvm_sregs, sizeof kvm_sregs)) goto out; r = 0; break; } case KVM_SET_SREGS: { struct kvm_sregs kvm_sregs; r = -EFAULT; if (copy_from_user(&kvm_sregs, argp, sizeof kvm_sregs)) goto out; r = kvm_vcpu_ioctl_set_sregs(vcpu, &kvm_sregs); if (r) goto out; r = 0; break; } case KVM_TRANSLATE: { struct kvm_translation tr; r = -EFAULT; if (copy_from_user(&tr, argp, sizeof tr)) goto out; r = kvm_vcpu_ioctl_translate(vcpu, &tr); if (r) goto out; r = -EFAULT; if (copy_to_user(argp, &tr, sizeof tr)) goto out; r = 0; break; } case KVM_INTERRUPT: { struct kvm_interrupt irq; r = -EFAULT; if (copy_from_user(&irq, argp, sizeof irq)) goto out; r = kvm_vcpu_ioctl_interrupt(vcpu, &irq); if (r) goto out; r = 0; break; } case KVM_DEBUG_GUEST: { struct kvm_debug_guest dbg; r = -EFAULT; if (copy_from_user(&dbg, argp, sizeof dbg)) goto out; r = kvm_vcpu_ioctl_debug_guest(vcpu, &dbg); if (r) goto out; r = 0; break; } case KVM_GET_MSRS: r = msr_io(vcpu, argp, kvm_get_msr, 1); break; case KVM_SET_MSRS: r = msr_io(vcpu, argp, do_set_msr, 0); break; case KVM_SET_CPUID: { struct kvm_cpuid __user *cpuid_arg = argp; struct kvm_cpuid cpuid; r = -EFAULT; if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid)) goto out; r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries); if (r) goto out; break; } case KVM_SET_SIGNAL_MASK: { struct kvm_signal_mask __user *sigmask_arg = argp; struct kvm_signal_mask kvm_sigmask; sigset_t sigset, *p; p = NULL; if (argp) { r = -EFAULT; if (copy_from_user(&kvm_sigmask, argp, sizeof kvm_sigmask)) goto out; r = -EINVAL; if (kvm_sigmask.len != sizeof sigset) goto out; r = -EFAULT; if (copy_from_user(&sigset, sigmask_arg->sigset, sizeof sigset)) goto out; p = &sigset; } r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset); break; } case KVM_GET_FPU: { struct kvm_fpu fpu; memset(&fpu, 0, sizeof fpu); r = kvm_vcpu_ioctl_get_fpu(vcpu, &fpu); if (r) goto out; r = -EFAULT; if (copy_to_user(argp, &fpu, sizeof fpu)) goto out; r = 0; break; } case KVM_SET_FPU: { struct kvm_fpu fpu; r = -EFAULT; if (copy_from_user(&fpu, argp, sizeof fpu)) goto out; r = kvm_vcpu_ioctl_set_fpu(vcpu, &fpu); if (r) goto out; r = 0; break; } default: ; } out: return r; } static long kvm_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg) { struct kvm *kvm = filp->private_data; void __user *argp = (void __user *)arg; int r = -EINVAL; switch (ioctl) { case KVM_CREATE_VCPU: r = kvm_vm_ioctl_create_vcpu(kvm, arg); if (r < 0) goto out; break; case KVM_SET_MEMORY_REGION: { struct kvm_memory_region kvm_mem; r = -EFAULT; if (copy_from_user(&kvm_mem, argp, sizeof kvm_mem)) goto out; r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_mem); if (r) goto out; break; } case KVM_GET_DIRTY_LOG: { struct kvm_dirty_log log; r = -EFAULT; if (copy_from_user(&log, argp, sizeof log)) goto out; r = kvm_vm_ioctl_get_dirty_log(kvm, &log); if (r) goto out; break; } case KVM_SET_MEMORY_ALIAS: { struct kvm_memory_alias alias; r = -EFAULT; if (copy_from_user(&alias, argp, sizeof alias)) goto out; r = kvm_vm_ioctl_set_memory_alias(kvm, &alias); if (r) goto out; break; } case KVM_CREATE_IRQCHIP: r = -ENOMEM; kvm->vpic = kvm_create_pic(kvm); if (kvm->vpic) r = 0; else goto out; break; case KVM_IRQ_LINE: { struct kvm_irq_level irq_event; r = -EFAULT; if (copy_from_user(&irq_event, argp, sizeof irq_event)) goto out; if (irqchip_in_kernel(kvm)) { if (irq_event.irq < 16) kvm_pic_set_irq(pic_irqchip(kvm), irq_event.irq, irq_event.level); /* TODO: IOAPIC */ r = 0; } break; } default: ; } out: return r; } static struct page *kvm_vm_nopage(struct vm_area_struct *vma, unsigned long address, int *type) { struct kvm *kvm = vma->vm_file->private_data; unsigned long pgoff; struct page *page; pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff; page = gfn_to_page(kvm, pgoff); if (!page) return NOPAGE_SIGBUS; get_page(page); if (type != NULL) *type = VM_FAULT_MINOR; return page; } static struct vm_operations_struct kvm_vm_vm_ops = { .nopage = kvm_vm_nopage, }; static int kvm_vm_mmap(struct file *file, struct vm_area_struct *vma) { vma->vm_ops = &kvm_vm_vm_ops; return 0; } static struct file_operations kvm_vm_fops = { .release = kvm_vm_release, .unlocked_ioctl = kvm_vm_ioctl, .compat_ioctl = kvm_vm_ioctl, .mmap = kvm_vm_mmap, }; static int kvm_dev_ioctl_create_vm(void) { int fd, r; struct inode *inode; struct file *file; struct kvm *kvm; kvm = kvm_create_vm(); if (IS_ERR(kvm)) return PTR_ERR(kvm); r = anon_inode_getfd(&fd, &inode, &file, "kvm-vm", &kvm_vm_fops, kvm); if (r) { kvm_destroy_vm(kvm); return r; } kvm->filp = file; return fd; } static long kvm_dev_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg) { void __user *argp = (void __user *)arg; long r = -EINVAL; switch (ioctl) { case KVM_GET_API_VERSION: r = -EINVAL; if (arg) goto out; r = KVM_API_VERSION; break; case KVM_CREATE_VM: r = -EINVAL; if (arg) goto out; r = kvm_dev_ioctl_create_vm(); break; case KVM_GET_MSR_INDEX_LIST: { struct kvm_msr_list __user *user_msr_list = argp; struct kvm_msr_list msr_list; unsigned n; r = -EFAULT; if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list)) goto out; n = msr_list.nmsrs; msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs); if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list)) goto out; r = -E2BIG; if (n < num_msrs_to_save) goto out; r = -EFAULT; if (copy_to_user(user_msr_list->indices, &msrs_to_save, num_msrs_to_save * sizeof(u32))) goto out; if (copy_to_user(user_msr_list->indices + num_msrs_to_save * sizeof(u32), &emulated_msrs, ARRAY_SIZE(emulated_msrs) * sizeof(u32))) goto out; r = 0; break; } case KVM_CHECK_EXTENSION: { int ext = (long)argp; switch (ext) { case KVM_CAP_IRQCHIP: r = 1; break; default: r = 0; break; } break; } case KVM_GET_VCPU_MMAP_SIZE: r = -EINVAL; if (arg) goto out; r = 2 * PAGE_SIZE; break; default: ; } out: return r; } static struct file_operations kvm_chardev_ops = { .unlocked_ioctl = kvm_dev_ioctl, .compat_ioctl = kvm_dev_ioctl, }; static struct miscdevice kvm_dev = { KVM_MINOR, "kvm", &kvm_chardev_ops, }; /* * Make sure that a cpu that is being hot-unplugged does not have any vcpus * cached on it. */ static void decache_vcpus_on_cpu(int cpu) { struct kvm *vm; struct kvm_vcpu *vcpu; int i; spin_lock(&kvm_lock); list_for_each_entry(vm, &vm_list, vm_list) for (i = 0; i < KVM_MAX_VCPUS; ++i) { vcpu = vm->vcpus[i]; if (!vcpu) continue; /* * If the vcpu is locked, then it is running on some * other cpu and therefore it is not cached on the * cpu in question. * * If it's not locked, check the last cpu it executed * on. */ if (mutex_trylock(&vcpu->mutex)) { if (vcpu->cpu == cpu) { kvm_arch_ops->vcpu_decache(vcpu); vcpu->cpu = -1; } mutex_unlock(&vcpu->mutex); } } spin_unlock(&kvm_lock); } static void hardware_enable(void *junk) { int cpu = raw_smp_processor_id(); if (cpu_isset(cpu, cpus_hardware_enabled)) return; cpu_set(cpu, cpus_hardware_enabled); kvm_arch_ops->hardware_enable(NULL); } static void hardware_disable(void *junk) { int cpu = raw_smp_processor_id(); if (!cpu_isset(cpu, cpus_hardware_enabled)) return; cpu_clear(cpu, cpus_hardware_enabled); decache_vcpus_on_cpu(cpu); kvm_arch_ops->hardware_disable(NULL); } static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val, void *v) { int cpu = (long)v; switch (val) { case CPU_DYING: case CPU_DYING_FROZEN: printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n", cpu); hardware_disable(NULL); break; case CPU_UP_CANCELED: case CPU_UP_CANCELED_FROZEN: printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n", cpu); smp_call_function_single(cpu, hardware_disable, NULL, 0, 1); break; case CPU_ONLINE: case CPU_ONLINE_FROZEN: printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n", cpu); smp_call_function_single(cpu, hardware_enable, NULL, 0, 1); break; } return NOTIFY_OK; } static int kvm_reboot(struct notifier_block *notifier, unsigned long val, void *v) { if (val == SYS_RESTART) { /* * Some (well, at least mine) BIOSes hang on reboot if * in vmx root mode. */ printk(KERN_INFO "kvm: exiting hardware virtualization\n"); on_each_cpu(hardware_disable, NULL, 0, 1); } return NOTIFY_OK; } static struct notifier_block kvm_reboot_notifier = { .notifier_call = kvm_reboot, .priority = 0, }; void kvm_io_bus_init(struct kvm_io_bus *bus) { memset(bus, 0, sizeof(*bus)); } void kvm_io_bus_destroy(struct kvm_io_bus *bus) { int i; for (i = 0; i < bus->dev_count; i++) { struct kvm_io_device *pos = bus->devs[i]; kvm_iodevice_destructor(pos); } } struct kvm_io_device *kvm_io_bus_find_dev(struct kvm_io_bus *bus, gpa_t addr) { int i; for (i = 0; i < bus->dev_count; i++) { struct kvm_io_device *pos = bus->devs[i]; if (pos->in_range(pos, addr)) return pos; } return NULL; } void kvm_io_bus_register_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev) { BUG_ON(bus->dev_count > (NR_IOBUS_DEVS-1)); bus->devs[bus->dev_count++] = dev; } static struct notifier_block kvm_cpu_notifier = { .notifier_call = kvm_cpu_hotplug, .priority = 20, /* must be > scheduler priority */ }; static u64 stat_get(void *_offset) { unsigned offset = (long)_offset; u64 total = 0; struct kvm *kvm; struct kvm_vcpu *vcpu; int i; spin_lock(&kvm_lock); list_for_each_entry(kvm, &vm_list, vm_list) for (i = 0; i < KVM_MAX_VCPUS; ++i) { vcpu = kvm->vcpus[i]; if (vcpu) total += *(u32 *)((void *)vcpu + offset); } spin_unlock(&kvm_lock); return total; } DEFINE_SIMPLE_ATTRIBUTE(stat_fops, stat_get, NULL, "%llu\n"); static __init void kvm_init_debug(void) { struct kvm_stats_debugfs_item *p; debugfs_dir = debugfs_create_dir("kvm", NULL); for (p = debugfs_entries; p->name; ++p) p->dentry = debugfs_create_file(p->name, 0444, debugfs_dir, (void *)(long)p->offset, &stat_fops); } static void kvm_exit_debug(void) { struct kvm_stats_debugfs_item *p; for (p = debugfs_entries; p->name; ++p) debugfs_remove(p->dentry); debugfs_remove(debugfs_dir); } static int kvm_suspend(struct sys_device *dev, pm_message_t state) { hardware_disable(NULL); return 0; } static int kvm_resume(struct sys_device *dev) { hardware_enable(NULL); return 0; } static struct sysdev_class kvm_sysdev_class = { set_kset_name("kvm"), .suspend = kvm_suspend, .resume = kvm_resume, }; static struct sys_device kvm_sysdev = { .id = 0, .cls = &kvm_sysdev_class, }; hpa_t bad_page_address; static inline struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn) { return container_of(pn, struct kvm_vcpu, preempt_notifier); } static void kvm_sched_in(struct preempt_notifier *pn, int cpu) { struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn); kvm_arch_ops->vcpu_load(vcpu, cpu); } static void kvm_sched_out(struct preempt_notifier *pn, struct task_struct *next) { struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn); kvm_arch_ops->vcpu_put(vcpu); } int kvm_init_arch(struct kvm_arch_ops *ops, unsigned int vcpu_size, struct module *module) { int r; int cpu; if (kvm_arch_ops) { printk(KERN_ERR "kvm: already loaded the other module\n"); return -EEXIST; } if (!ops->cpu_has_kvm_support()) { printk(KERN_ERR "kvm: no hardware support\n"); return -EOPNOTSUPP; } if (ops->disabled_by_bios()) { printk(KERN_ERR "kvm: disabled by bios\n"); return -EOPNOTSUPP; } kvm_arch_ops = ops; r = kvm_arch_ops->hardware_setup(); if (r < 0) goto out; for_each_online_cpu(cpu) { smp_call_function_single(cpu, kvm_arch_ops->check_processor_compatibility, &r, 0, 1); if (r < 0) goto out_free_0; } on_each_cpu(hardware_enable, NULL, 0, 1); r = register_cpu_notifier(&kvm_cpu_notifier); if (r) goto out_free_1; register_reboot_notifier(&kvm_reboot_notifier); r = sysdev_class_register(&kvm_sysdev_class); if (r) goto out_free_2; r = sysdev_register(&kvm_sysdev); if (r) goto out_free_3; /* A kmem cache lets us meet the alignment requirements of fx_save. */ kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size, __alignof__(struct kvm_vcpu), 0, 0); if (!kvm_vcpu_cache) { r = -ENOMEM; goto out_free_4; } kvm_chardev_ops.owner = module; r = misc_register(&kvm_dev); if (r) { printk (KERN_ERR "kvm: misc device register failed\n"); goto out_free; } kvm_preempt_ops.sched_in = kvm_sched_in; kvm_preempt_ops.sched_out = kvm_sched_out; return r; out_free: kmem_cache_destroy(kvm_vcpu_cache); out_free_4: sysdev_unregister(&kvm_sysdev); out_free_3: sysdev_class_unregister(&kvm_sysdev_class); out_free_2: unregister_reboot_notifier(&kvm_reboot_notifier); unregister_cpu_notifier(&kvm_cpu_notifier); out_free_1: on_each_cpu(hardware_disable, NULL, 0, 1); out_free_0: kvm_arch_ops->hardware_unsetup(); out: kvm_arch_ops = NULL; return r; } void kvm_exit_arch(void) { misc_deregister(&kvm_dev); kmem_cache_destroy(kvm_vcpu_cache); sysdev_unregister(&kvm_sysdev); sysdev_class_unregister(&kvm_sysdev_class); unregister_reboot_notifier(&kvm_reboot_notifier); unregister_cpu_notifier(&kvm_cpu_notifier); on_each_cpu(hardware_disable, NULL, 0, 1); kvm_arch_ops->hardware_unsetup(); kvm_arch_ops = NULL; } static __init int kvm_init(void) { static struct page *bad_page; int r; r = kvm_mmu_module_init(); if (r) goto out4; kvm_init_debug(); kvm_init_msr_list(); if ((bad_page = alloc_page(GFP_KERNEL)) == NULL) { r = -ENOMEM; goto out; } bad_page_address = page_to_pfn(bad_page) << PAGE_SHIFT; memset(__va(bad_page_address), 0, PAGE_SIZE); return 0; out: kvm_exit_debug(); kvm_mmu_module_exit(); out4: return r; } static __exit void kvm_exit(void) { kvm_exit_debug(); __free_page(pfn_to_page(bad_page_address >> PAGE_SHIFT)); kvm_mmu_module_exit(); } module_init(kvm_init) module_exit(kvm_exit) EXPORT_SYMBOL_GPL(kvm_init_arch); EXPORT_SYMBOL_GPL(kvm_exit_arch);