/* * New driver for Marvell Yukon 2 chipset. * Based on earlier sk98lin, and skge driver. * * This driver intentionally does not support all the features * of the original driver such as link fail-over and link management because * those should be done at higher levels. * * Copyright (C) 2005 Stephen Hemminger * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ /* * TODO * - coalescing setting? * * TOTEST * - speed setting * - suspend/resume */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE) #define SKY2_VLAN_TAG_USED 1 #endif #include "sky2.h" #define DRV_NAME "sky2" #define DRV_VERSION "0.7" #define PFX DRV_NAME " " /* * The Yukon II chipset takes 64 bit command blocks (called list elements) * that are organized into three (receive, transmit, status) different rings * similar to Tigon3. A transmit can require several elements; * a receive requires one (or two if using 64 bit dma). */ #define is_ec_a1(hw) \ unlikely((hw)->chip_id == CHIP_ID_YUKON_EC && \ (hw)->chip_rev == CHIP_REV_YU_EC_A1) #define RX_LE_SIZE 512 #define RX_LE_BYTES (RX_LE_SIZE*sizeof(struct sky2_rx_le)) #define RX_MAX_PENDING (RX_LE_SIZE/2 - 2) #define RX_DEF_PENDING RX_MAX_PENDING #define RX_COPY_THRESHOLD 256 #define TX_RING_SIZE 512 #define TX_DEF_PENDING (TX_RING_SIZE - 1) #define TX_MIN_PENDING 64 #define MAX_SKB_TX_LE (4 + 2*MAX_SKB_FRAGS) #define STATUS_RING_SIZE 2048 /* 2 ports * (TX + 2*RX) */ #define STATUS_LE_BYTES (STATUS_RING_SIZE*sizeof(struct sky2_status_le)) #define ETH_JUMBO_MTU 9000 #define TX_WATCHDOG (5 * HZ) #define NAPI_WEIGHT 64 #define PHY_RETRIES 1000 static const u32 default_msg = NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK | NETIF_MSG_TIMER | NETIF_MSG_TX_ERR | NETIF_MSG_RX_ERR | NETIF_MSG_IFUP | NETIF_MSG_IFDOWN | NETIF_MSG_INTR; static int debug = -1; /* defaults above */ module_param(debug, int, 0); MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)"); static const struct pci_device_id sky2_id_table[] = { { PCI_DEVICE(PCI_VENDOR_ID_SYSKONNECT, 0x9000) }, { PCI_DEVICE(PCI_VENDOR_ID_SYSKONNECT, 0x9E00) }, { PCI_DEVICE(PCI_VENDOR_ID_DLINK, 0x4b00) }, { PCI_DEVICE(PCI_VENDOR_ID_DLINK, 0x4b01) }, { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4340) }, { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4341) }, { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4342) }, { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4343) }, { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4344) }, { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4345) }, { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4346) }, { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4347) }, { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4350) }, { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4351) }, { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4352) }, { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4360) }, { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4361) }, { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4362) }, { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4363) }, { 0 } }; MODULE_DEVICE_TABLE(pci, sky2_id_table); /* Avoid conditionals by using array */ static const unsigned txqaddr[] = { Q_XA1, Q_XA2 }; static const unsigned rxqaddr[] = { Q_R1, Q_R2 }; static const char *yukon_name[] = { [CHIP_ID_YUKON_LITE - CHIP_ID_YUKON] = "Lite", /* 0xb0 */ [CHIP_ID_YUKON_LP - CHIP_ID_YUKON] = "LP", /* 0xb2 */ [CHIP_ID_YUKON_XL - CHIP_ID_YUKON] = "XL", /* 0xb3 */ [CHIP_ID_YUKON_EC_U - CHIP_ID_YUKON] = "EC Ultra", /* 0xb4 */ [CHIP_ID_YUKON_EC - CHIP_ID_YUKON] = "EC", /* 0xb6 */ [CHIP_ID_YUKON_FE - CHIP_ID_YUKON] = "FE", /* 0xb7 */ }; /* Access to external PHY */ static int gm_phy_write(struct sky2_hw *hw, unsigned port, u16 reg, u16 val) { int i; gma_write16(hw, port, GM_SMI_DATA, val); gma_write16(hw, port, GM_SMI_CTRL, GM_SMI_CT_PHY_AD(PHY_ADDR_MARV) | GM_SMI_CT_REG_AD(reg)); for (i = 0; i < PHY_RETRIES; i++) { if (!(gma_read16(hw, port, GM_SMI_CTRL) & GM_SMI_CT_BUSY)) return 0; udelay(1); } printk(KERN_WARNING PFX "%s: phy write timeout\n", hw->dev[port]->name); return -ETIMEDOUT; } static int __gm_phy_read(struct sky2_hw *hw, unsigned port, u16 reg, u16 *val) { int i; gma_write16(hw, port, GM_SMI_CTRL, GM_SMI_CT_PHY_AD(PHY_ADDR_MARV) | GM_SMI_CT_REG_AD(reg) | GM_SMI_CT_OP_RD); for (i = 0; i < PHY_RETRIES; i++) { if (gma_read16(hw, port, GM_SMI_CTRL) & GM_SMI_CT_RD_VAL) { *val = gma_read16(hw, port, GM_SMI_DATA); return 0; } udelay(1); } return -ETIMEDOUT; } static u16 gm_phy_read(struct sky2_hw *hw, unsigned port, u16 reg) { u16 v; if (__gm_phy_read(hw, port, reg, &v) != 0) printk(KERN_WARNING PFX "%s: phy read timeout\n", hw->dev[port]->name); return v; } static int sky2_set_power_state(struct sky2_hw *hw, pci_power_t state) { u16 power_control; u32 reg1; int vaux; int ret = 0; pr_debug("sky2_set_power_state %d\n", state); sky2_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON); pci_read_config_word(hw->pdev, hw->pm_cap + PCI_PM_PMC, &power_control); vaux = (sky2_read8(hw, B0_CTST) & Y2_VAUX_AVAIL) && (power_control & PCI_PM_CAP_PME_D3cold); pci_read_config_word(hw->pdev, hw->pm_cap + PCI_PM_CTRL, &power_control); power_control |= PCI_PM_CTRL_PME_STATUS; power_control &= ~(PCI_PM_CTRL_STATE_MASK); switch (state) { case PCI_D0: /* switch power to VCC (WA for VAUX problem) */ sky2_write8(hw, B0_POWER_CTRL, PC_VAUX_ENA | PC_VCC_ENA | PC_VAUX_OFF | PC_VCC_ON); /* disable Core Clock Division, */ sky2_write32(hw, B2_Y2_CLK_CTRL, Y2_CLK_DIV_DIS); if (hw->chip_id == CHIP_ID_YUKON_XL && hw->chip_rev > 1) /* enable bits are inverted */ sky2_write8(hw, B2_Y2_CLK_GATE, Y2_PCI_CLK_LNK1_DIS | Y2_COR_CLK_LNK1_DIS | Y2_CLK_GAT_LNK1_DIS | Y2_PCI_CLK_LNK2_DIS | Y2_COR_CLK_LNK2_DIS | Y2_CLK_GAT_LNK2_DIS); else sky2_write8(hw, B2_Y2_CLK_GATE, 0); /* Turn off phy power saving */ pci_read_config_dword(hw->pdev, PCI_DEV_REG1, ®1); reg1 &= ~(PCI_Y2_PHY1_POWD | PCI_Y2_PHY2_POWD); /* looks like this XL is back asswards .. */ if (hw->chip_id == CHIP_ID_YUKON_XL && hw->chip_rev > 1) { reg1 |= PCI_Y2_PHY1_COMA; if (hw->ports > 1) reg1 |= PCI_Y2_PHY2_COMA; } pci_write_config_dword(hw->pdev, PCI_DEV_REG1, reg1); break; case PCI_D3hot: case PCI_D3cold: /* Turn on phy power saving */ pci_read_config_dword(hw->pdev, PCI_DEV_REG1, ®1); if (hw->chip_id == CHIP_ID_YUKON_XL && hw->chip_rev > 1) reg1 &= ~(PCI_Y2_PHY1_POWD | PCI_Y2_PHY2_POWD); else reg1 |= (PCI_Y2_PHY1_POWD | PCI_Y2_PHY2_POWD); pci_write_config_dword(hw->pdev, PCI_DEV_REG1, reg1); if (hw->chip_id == CHIP_ID_YUKON_XL && hw->chip_rev > 1) sky2_write8(hw, B2_Y2_CLK_GATE, 0); else /* enable bits are inverted */ sky2_write8(hw, B2_Y2_CLK_GATE, Y2_PCI_CLK_LNK1_DIS | Y2_COR_CLK_LNK1_DIS | Y2_CLK_GAT_LNK1_DIS | Y2_PCI_CLK_LNK2_DIS | Y2_COR_CLK_LNK2_DIS | Y2_CLK_GAT_LNK2_DIS); /* switch power to VAUX */ if (vaux && state != PCI_D3cold) sky2_write8(hw, B0_POWER_CTRL, (PC_VAUX_ENA | PC_VCC_ENA | PC_VAUX_ON | PC_VCC_OFF)); break; default: printk(KERN_ERR PFX "Unknown power state %d\n", state); ret = -1; } pci_write_config_byte(hw->pdev, hw->pm_cap + PCI_PM_CTRL, power_control); sky2_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF); return ret; } static void sky2_phy_reset(struct sky2_hw *hw, unsigned port) { u16 reg; /* disable all GMAC IRQ's */ sky2_write8(hw, SK_REG(port, GMAC_IRQ_MSK), 0); /* disable PHY IRQs */ gm_phy_write(hw, port, PHY_MARV_INT_MASK, 0); gma_write16(hw, port, GM_MC_ADDR_H1, 0); /* clear MC hash */ gma_write16(hw, port, GM_MC_ADDR_H2, 0); gma_write16(hw, port, GM_MC_ADDR_H3, 0); gma_write16(hw, port, GM_MC_ADDR_H4, 0); reg = gma_read16(hw, port, GM_RX_CTRL); reg |= GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA; gma_write16(hw, port, GM_RX_CTRL, reg); } static void sky2_phy_init(struct sky2_hw *hw, unsigned port) { struct sky2_port *sky2 = netdev_priv(hw->dev[port]); u16 ctrl, ct1000, adv, pg, ledctrl, ledover; if (sky2->autoneg == AUTONEG_ENABLE && hw->chip_id != CHIP_ID_YUKON_XL) { u16 ectrl = gm_phy_read(hw, port, PHY_MARV_EXT_CTRL); ectrl &= ~(PHY_M_EC_M_DSC_MSK | PHY_M_EC_S_DSC_MSK | PHY_M_EC_MAC_S_MSK); ectrl |= PHY_M_EC_MAC_S(MAC_TX_CLK_25_MHZ); if (hw->chip_id == CHIP_ID_YUKON_EC) ectrl |= PHY_M_EC_DSC_2(2) | PHY_M_EC_DOWN_S_ENA; else ectrl |= PHY_M_EC_M_DSC(2) | PHY_M_EC_S_DSC(3); gm_phy_write(hw, port, PHY_MARV_EXT_CTRL, ectrl); } ctrl = gm_phy_read(hw, port, PHY_MARV_PHY_CTRL); if (hw->copper) { if (hw->chip_id == CHIP_ID_YUKON_FE) { /* enable automatic crossover */ ctrl |= PHY_M_PC_MDI_XMODE(PHY_M_PC_ENA_AUTO) >> 1; } else { /* disable energy detect */ ctrl &= ~PHY_M_PC_EN_DET_MSK; /* enable automatic crossover */ ctrl |= PHY_M_PC_MDI_XMODE(PHY_M_PC_ENA_AUTO); if (sky2->autoneg == AUTONEG_ENABLE && hw->chip_id == CHIP_ID_YUKON_XL) { ctrl &= ~PHY_M_PC_DSC_MSK; ctrl |= PHY_M_PC_DSC(2) | PHY_M_PC_DOWN_S_ENA; } } gm_phy_write(hw, port, PHY_MARV_PHY_CTRL, ctrl); } else { /* workaround for deviation #4.88 (CRC errors) */ /* disable Automatic Crossover */ ctrl &= ~PHY_M_PC_MDIX_MSK; gm_phy_write(hw, port, PHY_MARV_PHY_CTRL, ctrl); if (hw->chip_id == CHIP_ID_YUKON_XL) { /* Fiber: select 1000BASE-X only mode MAC Specific Ctrl Reg. */ gm_phy_write(hw, port, PHY_MARV_EXT_ADR, 2); ctrl = gm_phy_read(hw, port, PHY_MARV_PHY_CTRL); ctrl &= ~PHY_M_MAC_MD_MSK; ctrl |= PHY_M_MAC_MODE_SEL(PHY_M_MAC_MD_1000BX); gm_phy_write(hw, port, PHY_MARV_PHY_CTRL, ctrl); /* select page 1 to access Fiber registers */ gm_phy_write(hw, port, PHY_MARV_EXT_ADR, 1); } } ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL); if (sky2->autoneg == AUTONEG_DISABLE) ctrl &= ~PHY_CT_ANE; else ctrl |= PHY_CT_ANE; ctrl |= PHY_CT_RESET; gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl); ctrl = 0; ct1000 = 0; adv = PHY_AN_CSMA; if (sky2->autoneg == AUTONEG_ENABLE) { if (hw->copper) { if (sky2->advertising & ADVERTISED_1000baseT_Full) ct1000 |= PHY_M_1000C_AFD; if (sky2->advertising & ADVERTISED_1000baseT_Half) ct1000 |= PHY_M_1000C_AHD; if (sky2->advertising & ADVERTISED_100baseT_Full) adv |= PHY_M_AN_100_FD; if (sky2->advertising & ADVERTISED_100baseT_Half) adv |= PHY_M_AN_100_HD; if (sky2->advertising & ADVERTISED_10baseT_Full) adv |= PHY_M_AN_10_FD; if (sky2->advertising & ADVERTISED_10baseT_Half) adv |= PHY_M_AN_10_HD; } else /* special defines for FIBER (88E1011S only) */ adv |= PHY_M_AN_1000X_AHD | PHY_M_AN_1000X_AFD; /* Set Flow-control capabilities */ if (sky2->tx_pause && sky2->rx_pause) adv |= PHY_AN_PAUSE_CAP; /* symmetric */ else if (sky2->rx_pause && !sky2->tx_pause) adv |= PHY_AN_PAUSE_ASYM | PHY_AN_PAUSE_CAP; else if (!sky2->rx_pause && sky2->tx_pause) adv |= PHY_AN_PAUSE_ASYM; /* local */ /* Restart Auto-negotiation */ ctrl |= PHY_CT_ANE | PHY_CT_RE_CFG; } else { /* forced speed/duplex settings */ ct1000 = PHY_M_1000C_MSE; if (sky2->duplex == DUPLEX_FULL) ctrl |= PHY_CT_DUP_MD; switch (sky2->speed) { case SPEED_1000: ctrl |= PHY_CT_SP1000; break; case SPEED_100: ctrl |= PHY_CT_SP100; break; } ctrl |= PHY_CT_RESET; } if (hw->chip_id != CHIP_ID_YUKON_FE) gm_phy_write(hw, port, PHY_MARV_1000T_CTRL, ct1000); gm_phy_write(hw, port, PHY_MARV_AUNE_ADV, adv); gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl); /* Setup Phy LED's */ ledctrl = PHY_M_LED_PULS_DUR(PULS_170MS); ledover = 0; switch (hw->chip_id) { case CHIP_ID_YUKON_FE: /* on 88E3082 these bits are at 11..9 (shifted left) */ ledctrl |= PHY_M_LED_BLINK_RT(BLINK_84MS) << 1; ctrl = gm_phy_read(hw, port, PHY_MARV_FE_LED_PAR); /* delete ACT LED control bits */ ctrl &= ~PHY_M_FELP_LED1_MSK; /* change ACT LED control to blink mode */ ctrl |= PHY_M_FELP_LED1_CTRL(LED_PAR_CTRL_ACT_BL); gm_phy_write(hw, port, PHY_MARV_FE_LED_PAR, ctrl); break; case CHIP_ID_YUKON_XL: pg = gm_phy_read(hw, port, PHY_MARV_EXT_ADR); /* select page 3 to access LED control register */ gm_phy_write(hw, port, PHY_MARV_EXT_ADR, 3); /* set LED Function Control register */ gm_phy_write(hw, port, PHY_MARV_PHY_CTRL, (PHY_M_LEDC_LOS_CTRL(1) | /* LINK/ACT */ PHY_M_LEDC_INIT_CTRL(7) | /* 10 Mbps */ PHY_M_LEDC_STA1_CTRL(7) | /* 100 Mbps */ PHY_M_LEDC_STA0_CTRL(7))); /* 1000 Mbps */ /* set Polarity Control register */ gm_phy_write(hw, port, PHY_MARV_PHY_STAT, (PHY_M_POLC_LS1_P_MIX(4) | PHY_M_POLC_IS0_P_MIX(4) | PHY_M_POLC_LOS_CTRL(2) | PHY_M_POLC_INIT_CTRL(2) | PHY_M_POLC_STA1_CTRL(2) | PHY_M_POLC_STA0_CTRL(2))); /* restore page register */ gm_phy_write(hw, port, PHY_MARV_EXT_ADR, pg); break; default: /* set Tx LED (LED_TX) to blink mode on Rx OR Tx activity */ ledctrl |= PHY_M_LED_BLINK_RT(BLINK_84MS) | PHY_M_LEDC_TX_CTRL; /* turn off the Rx LED (LED_RX) */ ledover |= PHY_M_LED_MO_RX(MO_LED_OFF); } gm_phy_write(hw, port, PHY_MARV_LED_CTRL, ledctrl); if (sky2->autoneg == AUTONEG_DISABLE || sky2->speed == SPEED_100) { /* turn on 100 Mbps LED (LED_LINK100) */ ledover |= PHY_M_LED_MO_100(MO_LED_ON); } if (ledover) gm_phy_write(hw, port, PHY_MARV_LED_OVER, ledover); /* Enable phy interrupt on auto-negotiation complete (or link up) */ if (sky2->autoneg == AUTONEG_ENABLE) gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_AN_COMPL); else gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_DEF_MSK); } static void sky2_mac_init(struct sky2_hw *hw, unsigned port) { struct sky2_port *sky2 = netdev_priv(hw->dev[port]); u16 reg; int i; const u8 *addr = hw->dev[port]->dev_addr; sky2_write32(hw, SK_REG(port, GPHY_CTRL), GPC_RST_SET); sky2_write32(hw, SK_REG(port, GPHY_CTRL), GPC_RST_CLR|GPC_ENA_PAUSE); sky2_write8(hw, SK_REG(port, GMAC_CTRL), GMC_RST_CLR); if (hw->chip_id == CHIP_ID_YUKON_XL && hw->chip_rev == 0 && port == 1) { /* WA DEV_472 -- looks like crossed wires on port 2 */ /* clear GMAC 1 Control reset */ sky2_write8(hw, SK_REG(0, GMAC_CTRL), GMC_RST_CLR); do { sky2_write8(hw, SK_REG(1, GMAC_CTRL), GMC_RST_SET); sky2_write8(hw, SK_REG(1, GMAC_CTRL), GMC_RST_CLR); } while (gm_phy_read(hw, 1, PHY_MARV_ID0) != PHY_MARV_ID0_VAL || gm_phy_read(hw, 1, PHY_MARV_ID1) != PHY_MARV_ID1_Y2 || gm_phy_read(hw, 1, PHY_MARV_INT_MASK) != 0); } if (sky2->autoneg == AUTONEG_DISABLE) { reg = gma_read16(hw, port, GM_GP_CTRL); reg |= GM_GPCR_AU_ALL_DIS; gma_write16(hw, port, GM_GP_CTRL, reg); gma_read16(hw, port, GM_GP_CTRL); switch (sky2->speed) { case SPEED_1000: reg |= GM_GPCR_SPEED_1000; /* fallthru */ case SPEED_100: reg |= GM_GPCR_SPEED_100; } if (sky2->duplex == DUPLEX_FULL) reg |= GM_GPCR_DUP_FULL; } else reg = GM_GPCR_SPEED_1000 | GM_GPCR_SPEED_100 | GM_GPCR_DUP_FULL; if (!sky2->tx_pause && !sky2->rx_pause) { sky2_write32(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_OFF); reg |= GM_GPCR_FC_TX_DIS | GM_GPCR_FC_RX_DIS | GM_GPCR_AU_FCT_DIS; } else if (sky2->tx_pause && !sky2->rx_pause) { /* disable Rx flow-control */ reg |= GM_GPCR_FC_RX_DIS | GM_GPCR_AU_FCT_DIS; } gma_write16(hw, port, GM_GP_CTRL, reg); sky2_read16(hw, SK_REG(port, GMAC_IRQ_SRC)); spin_lock_bh(&hw->phy_lock); sky2_phy_init(hw, port); spin_unlock_bh(&hw->phy_lock); /* MIB clear */ reg = gma_read16(hw, port, GM_PHY_ADDR); gma_write16(hw, port, GM_PHY_ADDR, reg | GM_PAR_MIB_CLR); for (i = 0; i < GM_MIB_CNT_SIZE; i++) gma_read16(hw, port, GM_MIB_CNT_BASE + 8 * i); gma_write16(hw, port, GM_PHY_ADDR, reg); /* transmit control */ gma_write16(hw, port, GM_TX_CTRL, TX_COL_THR(TX_COL_DEF)); /* receive control reg: unicast + multicast + no FCS */ gma_write16(hw, port, GM_RX_CTRL, GM_RXCR_UCF_ENA | GM_RXCR_CRC_DIS | GM_RXCR_MCF_ENA); /* transmit flow control */ gma_write16(hw, port, GM_TX_FLOW_CTRL, 0xffff); /* transmit parameter */ gma_write16(hw, port, GM_TX_PARAM, TX_JAM_LEN_VAL(TX_JAM_LEN_DEF) | TX_JAM_IPG_VAL(TX_JAM_IPG_DEF) | TX_IPG_JAM_DATA(TX_IPG_JAM_DEF) | TX_BACK_OFF_LIM(TX_BOF_LIM_DEF)); /* serial mode register */ reg = DATA_BLIND_VAL(DATA_BLIND_DEF) | GM_SMOD_VLAN_ENA | IPG_DATA_VAL(IPG_DATA_DEF); if (hw->dev[port]->mtu > ETH_DATA_LEN) reg |= GM_SMOD_JUMBO_ENA; gma_write16(hw, port, GM_SERIAL_MODE, reg); /* virtual address for data */ gma_set_addr(hw, port, GM_SRC_ADDR_2L, addr); /* physical address: used for pause frames */ gma_set_addr(hw, port, GM_SRC_ADDR_1L, addr); /* ignore counter overflows */ gma_write16(hw, port, GM_TX_IRQ_MSK, 0); gma_write16(hw, port, GM_RX_IRQ_MSK, 0); gma_write16(hw, port, GM_TR_IRQ_MSK, 0); /* Configure Rx MAC FIFO */ sky2_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_CLR); sky2_write16(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RX_CTRL_DEF); /* Flush Rx MAC FIFO on any flow control or error */ sky2_write16(hw, SK_REG(port, RX_GMF_FL_MSK), GMR_FS_ANY_ERR); /* Set threshold to 0xa (64 bytes) * ASF disabled so no need to do WA dev #4.30 */ sky2_write16(hw, SK_REG(port, RX_GMF_FL_THR), RX_GMF_FL_THR_DEF); /* Configure Tx MAC FIFO */ sky2_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_RST_CLR); sky2_write16(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_OPER_ON); if (hw->chip_id == CHIP_ID_YUKON_EC_U) { sky2_write8(hw, SK_REG(port, RX_GMF_LP_THR), 768/8); sky2_write8(hw, SK_REG(port, RX_GMF_UP_THR), 1024/8); if (hw->dev[port]->mtu > ETH_DATA_LEN) { /* set Tx GMAC FIFO Almost Empty Threshold */ sky2_write32(hw, SK_REG(port, TX_GMF_AE_THR), 0x180); /* Disable Store & Forward mode for TX */ sky2_write32(hw, SK_REG(port, TX_GMF_CTRL_T), TX_STFW_DIS); } } } static void sky2_ramset(struct sky2_hw *hw, u16 q, u32 start, size_t len) { u32 end; start /= 8; len /= 8; end = start + len - 1; sky2_write8(hw, RB_ADDR(q, RB_CTRL), RB_RST_CLR); sky2_write32(hw, RB_ADDR(q, RB_START), start); sky2_write32(hw, RB_ADDR(q, RB_END), end); sky2_write32(hw, RB_ADDR(q, RB_WP), start); sky2_write32(hw, RB_ADDR(q, RB_RP), start); if (q == Q_R1 || q == Q_R2) { u32 rxup, rxlo; rxlo = len/2; rxup = rxlo + len/4; /* Set thresholds on receive queue's */ sky2_write32(hw, RB_ADDR(q, RB_RX_UTPP), rxup); sky2_write32(hw, RB_ADDR(q, RB_RX_LTPP), rxlo); } else { /* Enable store & forward on Tx queue's because * Tx FIFO is only 1K on Yukon */ sky2_write8(hw, RB_ADDR(q, RB_CTRL), RB_ENA_STFWD); } sky2_write8(hw, RB_ADDR(q, RB_CTRL), RB_ENA_OP_MD); sky2_read8(hw, RB_ADDR(q, RB_CTRL)); } /* Setup Bus Memory Interface */ static void sky2_qset(struct sky2_hw *hw, u16 q, u32 wm) { sky2_write32(hw, Q_ADDR(q, Q_CSR), BMU_CLR_RESET); sky2_write32(hw, Q_ADDR(q, Q_CSR), BMU_OPER_INIT); sky2_write32(hw, Q_ADDR(q, Q_CSR), BMU_FIFO_OP_ON); sky2_write32(hw, Q_ADDR(q, Q_WM), wm); } /* Setup prefetch unit registers. This is the interface between * hardware and driver list elements */ static inline void sky2_prefetch_init(struct sky2_hw *hw, u32 qaddr, u64 addr, u32 last) { sky2_write32(hw, Y2_QADDR(qaddr, PREF_UNIT_CTRL), PREF_UNIT_RST_SET); sky2_write32(hw, Y2_QADDR(qaddr, PREF_UNIT_CTRL), PREF_UNIT_RST_CLR); sky2_write32(hw, Y2_QADDR(qaddr, PREF_UNIT_ADDR_HI), addr >> 32); sky2_write32(hw, Y2_QADDR(qaddr, PREF_UNIT_ADDR_LO), (u32) addr); sky2_write16(hw, Y2_QADDR(qaddr, PREF_UNIT_LAST_IDX), last); sky2_write32(hw, Y2_QADDR(qaddr, PREF_UNIT_CTRL), PREF_UNIT_OP_ON); sky2_read32(hw, Y2_QADDR(qaddr, PREF_UNIT_CTRL)); } static inline struct sky2_tx_le *get_tx_le(struct sky2_port *sky2) { struct sky2_tx_le *le = sky2->tx_le + sky2->tx_prod; sky2->tx_prod = (sky2->tx_prod + 1) % TX_RING_SIZE; return le; } /* * This is a workaround code taken from SysKonnect sk98lin driver * to deal with chip bug on Yukon EC rev 0 in the wraparound case. */ static inline void sky2_put_idx(struct sky2_hw *hw, unsigned q, u16 idx, u16 *last, u16 size) { if (is_ec_a1(hw) && idx < *last) { u16 hwget = sky2_read16(hw, Y2_QADDR(q, PREF_UNIT_GET_IDX)); if (hwget == 0) { /* Start prefetching again */ sky2_write8(hw, Y2_QADDR(q, PREF_UNIT_FIFO_WM), 0xe0); goto setnew; } if (hwget == size - 1) { /* set watermark to one list element */ sky2_write8(hw, Y2_QADDR(q, PREF_UNIT_FIFO_WM), 8); /* set put index to first list element */ sky2_write16(hw, Y2_QADDR(q, PREF_UNIT_PUT_IDX), 0); } else /* have hardware go to end of list */ sky2_write16(hw, Y2_QADDR(q, PREF_UNIT_PUT_IDX), size - 1); } else { setnew: sky2_write16(hw, Y2_QADDR(q, PREF_UNIT_PUT_IDX), idx); } *last = idx; } static inline struct sky2_rx_le *sky2_next_rx(struct sky2_port *sky2) { struct sky2_rx_le *le = sky2->rx_le + sky2->rx_put; sky2->rx_put = (sky2->rx_put + 1) % RX_LE_SIZE; return le; } /* Return high part of DMA address (could be 32 or 64 bit) */ static inline u32 high32(dma_addr_t a) { return (a >> 16) >> 16; } /* Build description to hardware about buffer */ static inline void sky2_rx_add(struct sky2_port *sky2, struct ring_info *re) { struct sky2_rx_le *le; u32 hi = high32(re->mapaddr); re->idx = sky2->rx_put; if (sky2->rx_addr64 != hi) { le = sky2_next_rx(sky2); le->addr = cpu_to_le32(hi); le->ctrl = 0; le->opcode = OP_ADDR64 | HW_OWNER; sky2->rx_addr64 = high32(re->mapaddr + re->maplen); } le = sky2_next_rx(sky2); le->addr = cpu_to_le32((u32) re->mapaddr); le->length = cpu_to_le16(re->maplen); le->ctrl = 0; le->opcode = OP_PACKET | HW_OWNER; } /* Tell chip where to start receive checksum. * Actually has two checksums, but set both same to avoid possible byte * order problems. */ static void rx_set_checksum(struct sky2_port *sky2) { struct sky2_rx_le *le; le = sky2_next_rx(sky2); le->addr = (ETH_HLEN << 16) | ETH_HLEN; le->ctrl = 0; le->opcode = OP_TCPSTART | HW_OWNER; sky2_write32(sky2->hw, Q_ADDR(rxqaddr[sky2->port], Q_CSR), sky2->rx_csum ? BMU_ENA_RX_CHKSUM : BMU_DIS_RX_CHKSUM); } /* * The RX Stop command will not work for Yukon-2 if the BMU does not * reach the end of packet and since we can't make sure that we have * incoming data, we must reset the BMU while it is not doing a DMA * transfer. Since it is possible that the RX path is still active, * the RX RAM buffer will be stopped first, so any possible incoming * data will not trigger a DMA. After the RAM buffer is stopped, the * BMU is polled until any DMA in progress is ended and only then it * will be reset. */ static void sky2_rx_stop(struct sky2_port *sky2) { struct sky2_hw *hw = sky2->hw; unsigned rxq = rxqaddr[sky2->port]; int i; /* disable the RAM Buffer receive queue */ sky2_write8(hw, RB_ADDR(rxq, RB_CTRL), RB_DIS_OP_MD); for (i = 0; i < 0xffff; i++) if (sky2_read8(hw, RB_ADDR(rxq, Q_RSL)) == sky2_read8(hw, RB_ADDR(rxq, Q_RL))) goto stopped; printk(KERN_WARNING PFX "%s: receiver stop failed\n", sky2->netdev->name); stopped: sky2_write32(hw, Q_ADDR(rxq, Q_CSR), BMU_RST_SET | BMU_FIFO_RST); /* reset the Rx prefetch unit */ sky2_write32(hw, Y2_QADDR(rxq, PREF_UNIT_CTRL), PREF_UNIT_RST_SET); } /* Clean out receive buffer area, assumes receiver hardware stopped */ static void sky2_rx_clean(struct sky2_port *sky2) { unsigned i; memset(sky2->rx_le, 0, RX_LE_BYTES); for (i = 0; i < sky2->rx_pending; i++) { struct ring_info *re = sky2->rx_ring + i; if (re->skb) { pci_unmap_single(sky2->hw->pdev, re->mapaddr, re->maplen, PCI_DMA_FROMDEVICE); kfree_skb(re->skb); re->skb = NULL; } } } /* Basic MII support */ static int sky2_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd) { struct mii_ioctl_data *data = if_mii(ifr); struct sky2_port *sky2 = netdev_priv(dev); struct sky2_hw *hw = sky2->hw; int err = -EOPNOTSUPP; if (!netif_running(dev)) return -ENODEV; /* Phy still in reset */ switch(cmd) { case SIOCGMIIPHY: data->phy_id = PHY_ADDR_MARV; /* fallthru */ case SIOCGMIIREG: { u16 val = 0; spin_lock_bh(&hw->phy_lock); err = __gm_phy_read(hw, sky2->port, data->reg_num & 0x1f, &val); spin_unlock_bh(&hw->phy_lock); data->val_out = val; break; } case SIOCSMIIREG: if (!capable(CAP_NET_ADMIN)) return -EPERM; spin_lock_bh(&hw->phy_lock); err = gm_phy_write(hw, sky2->port, data->reg_num & 0x1f, data->val_in); spin_unlock_bh(&hw->phy_lock); break; } return err; } #ifdef SKY2_VLAN_TAG_USED static void sky2_vlan_rx_register(struct net_device *dev, struct vlan_group *grp) { struct sky2_port *sky2 = netdev_priv(dev); struct sky2_hw *hw = sky2->hw; u16 port = sky2->port; unsigned long flags; spin_lock_irqsave(&sky2->tx_lock, flags); sky2_write32(hw, SK_REG(port, RX_GMF_CTRL_T), RX_VLAN_STRIP_ON); sky2_write32(hw, SK_REG(port, TX_GMF_CTRL_T), TX_VLAN_TAG_ON); sky2->vlgrp = grp; spin_unlock_irqrestore(&sky2->tx_lock, flags); } static void sky2_vlan_rx_kill_vid(struct net_device *dev, unsigned short vid) { struct sky2_port *sky2 = netdev_priv(dev); struct sky2_hw *hw = sky2->hw; u16 port = sky2->port; unsigned long flags; spin_lock_irqsave(&sky2->tx_lock, flags); sky2_write32(hw, SK_REG(port, RX_GMF_CTRL_T), RX_VLAN_STRIP_OFF); sky2_write32(hw, SK_REG(port, TX_GMF_CTRL_T), TX_VLAN_TAG_OFF); if (sky2->vlgrp) sky2->vlgrp->vlan_devices[vid] = NULL; spin_unlock_irqrestore(&sky2->tx_lock, flags); } #endif #define roundup(x, y) ((((x)+((y)-1))/(y))*(y)) static inline unsigned rx_size(const struct sky2_port *sky2) { return roundup(sky2->netdev->mtu + ETH_HLEN + 4, 8); } /* * Allocate and setup receiver buffer pool. * In case of 64 bit dma, there are 2X as many list elements * available as ring entries * and need to reserve one list element so we don't wrap around. * * It appears the hardware has a bug in the FIFO logic that * cause it to hang if the FIFO gets overrun and the receive buffer * is not aligned. This means we can't use skb_reserve to align * the IP header. */ static int sky2_rx_start(struct sky2_port *sky2) { struct sky2_hw *hw = sky2->hw; unsigned size = rx_size(sky2); unsigned rxq = rxqaddr[sky2->port]; int i; sky2->rx_put = sky2->rx_next = 0; sky2_qset(hw, rxq, is_pciex(hw) ? 0x80 : 0x600); sky2_prefetch_init(hw, rxq, sky2->rx_le_map, RX_LE_SIZE - 1); rx_set_checksum(sky2); for (i = 0; i < sky2->rx_pending; i++) { struct ring_info *re = sky2->rx_ring + i; re->skb = dev_alloc_skb(size); if (!re->skb) goto nomem; re->mapaddr = pci_map_single(hw->pdev, re->skb->data, size, PCI_DMA_FROMDEVICE); re->maplen = size; sky2_rx_add(sky2, re); } /* Tell chip about available buffers */ sky2_write16(hw, Y2_QADDR(rxq, PREF_UNIT_PUT_IDX), sky2->rx_put); sky2->rx_last_put = sky2_read16(hw, Y2_QADDR(rxq, PREF_UNIT_PUT_IDX)); return 0; nomem: sky2_rx_clean(sky2); return -ENOMEM; } /* Bring up network interface. */ static int sky2_up(struct net_device *dev) { struct sky2_port *sky2 = netdev_priv(dev); struct sky2_hw *hw = sky2->hw; unsigned port = sky2->port; u32 ramsize, rxspace; int err = -ENOMEM; if (netif_msg_ifup(sky2)) printk(KERN_INFO PFX "%s: enabling interface\n", dev->name); /* must be power of 2 */ sky2->tx_le = pci_alloc_consistent(hw->pdev, TX_RING_SIZE * sizeof(struct sky2_tx_le), &sky2->tx_le_map); if (!sky2->tx_le) goto err_out; sky2->tx_ring = kzalloc(TX_RING_SIZE * sizeof(struct ring_info), GFP_KERNEL); if (!sky2->tx_ring) goto err_out; sky2->tx_prod = sky2->tx_cons = 0; sky2->rx_le = pci_alloc_consistent(hw->pdev, RX_LE_BYTES, &sky2->rx_le_map); if (!sky2->rx_le) goto err_out; memset(sky2->rx_le, 0, RX_LE_BYTES); sky2->rx_ring = kzalloc(sky2->rx_pending * sizeof(struct ring_info), GFP_KERNEL); if (!sky2->rx_ring) goto err_out; sky2_mac_init(hw, port); /* Configure RAM buffers */ if (hw->chip_id == CHIP_ID_YUKON_FE || (hw->chip_id == CHIP_ID_YUKON_EC && hw->chip_rev == 2)) ramsize = 4096; else { u8 e0 = sky2_read8(hw, B2_E_0); ramsize = (e0 == 0) ? (128 * 1024) : (e0 * 4096); } /* 2/3 for Rx */ rxspace = (2 * ramsize) / 3; sky2_ramset(hw, rxqaddr[port], 0, rxspace); sky2_ramset(hw, txqaddr[port], rxspace, ramsize - rxspace); /* Make sure SyncQ is disabled */ sky2_write8(hw, RB_ADDR(port == 0 ? Q_XS1 : Q_XS2, RB_CTRL), RB_RST_SET); sky2_qset(hw, txqaddr[port], 0x600); if (hw->chip_id == CHIP_ID_YUKON_EC_U) sky2_write16(hw, Q_ADDR(txqaddr[port], Q_AL), 0x1a0); sky2_prefetch_init(hw, txqaddr[port], sky2->tx_le_map, TX_RING_SIZE - 1); err = sky2_rx_start(sky2); if (err) goto err_out; /* Enable interrupts from phy/mac for port */ hw->intr_mask |= (port == 0) ? Y2_IS_PORT_1 : Y2_IS_PORT_2; sky2_write32(hw, B0_IMSK, hw->intr_mask); return 0; err_out: if (sky2->rx_le) pci_free_consistent(hw->pdev, RX_LE_BYTES, sky2->rx_le, sky2->rx_le_map); if (sky2->tx_le) pci_free_consistent(hw->pdev, TX_RING_SIZE * sizeof(struct sky2_tx_le), sky2->tx_le, sky2->tx_le_map); if (sky2->tx_ring) kfree(sky2->tx_ring); if (sky2->rx_ring) kfree(sky2->rx_ring); return err; } /* Modular subtraction in ring */ static inline int tx_dist(unsigned tail, unsigned head) { return (head >= tail ? head : head + TX_RING_SIZE) - tail; } /* Number of list elements available for next tx */ static inline int tx_avail(const struct sky2_port *sky2) { return sky2->tx_pending - tx_dist(sky2->tx_cons, sky2->tx_prod); } /* Estimate of number of transmit list elements required */ static inline unsigned tx_le_req(const struct sk_buff *skb) { unsigned count; count = sizeof(dma_addr_t) / sizeof(u32); count += skb_shinfo(skb)->nr_frags * count; if (skb_shinfo(skb)->tso_size) ++count; if (skb->ip_summed) ++count; return count; } /* * Put one packet in ring for transmit. * A single packet can generate multiple list elements, and * the number of ring elements will probably be less than the number * of list elements used. */ static int sky2_xmit_frame(struct sk_buff *skb, struct net_device *dev) { struct sky2_port *sky2 = netdev_priv(dev); struct sky2_hw *hw = sky2->hw; struct sky2_tx_le *le = NULL; struct ring_info *re; unsigned long flags; unsigned i, len; dma_addr_t mapping; u32 addr64; u16 mss; u8 ctrl; local_irq_save(flags); if (!spin_trylock(&sky2->tx_lock)) { local_irq_restore(flags); return NETDEV_TX_LOCKED; } if (unlikely(tx_avail(sky2) < tx_le_req(skb))) { netif_stop_queue(dev); spin_unlock_irqrestore(&sky2->tx_lock, flags); printk(KERN_WARNING PFX "%s: ring full when queue awake!\n", dev->name); return NETDEV_TX_BUSY; } if (unlikely(netif_msg_tx_queued(sky2))) printk(KERN_DEBUG "%s: tx queued, slot %u, len %d\n", dev->name, sky2->tx_prod, skb->len); len = skb_headlen(skb); mapping = pci_map_single(hw->pdev, skb->data, len, PCI_DMA_TODEVICE); addr64 = high32(mapping); re = sky2->tx_ring + sky2->tx_prod; /* Send high bits if changed or crosses boundary */ if (addr64 != sky2->tx_addr64 || high32(mapping + len) != sky2->tx_addr64) { le = get_tx_le(sky2); le->tx.addr = cpu_to_le32(addr64); le->ctrl = 0; le->opcode = OP_ADDR64 | HW_OWNER; sky2->tx_addr64 = high32(mapping + len); } /* Check for TCP Segmentation Offload */ mss = skb_shinfo(skb)->tso_size; if (mss != 0) { /* just drop the packet if non-linear expansion fails */ if (skb_header_cloned(skb) && pskb_expand_head(skb, 0, 0, GFP_ATOMIC)) { dev_kfree_skb_any(skb); goto out_unlock; } mss += ((skb->h.th->doff - 5) * 4); /* TCP options */ mss += (skb->nh.iph->ihl * 4) + sizeof(struct tcphdr); mss += ETH_HLEN; } if (mss != sky2->tx_last_mss) { le = get_tx_le(sky2); le->tx.tso.size = cpu_to_le16(mss); le->tx.tso.rsvd = 0; le->opcode = OP_LRGLEN | HW_OWNER; le->ctrl = 0; sky2->tx_last_mss = mss; } ctrl = 0; #ifdef SKY2_VLAN_TAG_USED /* Add VLAN tag, can piggyback on LRGLEN or ADDR64 */ if (sky2->vlgrp && vlan_tx_tag_present(skb)) { if (!le) { le = get_tx_le(sky2); le->tx.addr = 0; le->opcode = OP_VLAN|HW_OWNER; le->ctrl = 0; } else le->opcode |= OP_VLAN; le->length = cpu_to_be16(vlan_tx_tag_get(skb)); ctrl |= INS_VLAN; } #endif /* Handle TCP checksum offload */ if (skb->ip_summed == CHECKSUM_HW) { u16 hdr = skb->h.raw - skb->data; u16 offset = hdr + skb->csum; ctrl = CALSUM | WR_SUM | INIT_SUM | LOCK_SUM; if (skb->nh.iph->protocol == IPPROTO_UDP) ctrl |= UDPTCP; le = get_tx_le(sky2); le->tx.csum.start = cpu_to_le16(hdr); le->tx.csum.offset = cpu_to_le16(offset); le->length = 0; /* initial checksum value */ le->ctrl = 1; /* one packet */ le->opcode = OP_TCPLISW | HW_OWNER; } le = get_tx_le(sky2); le->tx.addr = cpu_to_le32((u32) mapping); le->length = cpu_to_le16(len); le->ctrl = ctrl; le->opcode = mss ? (OP_LARGESEND | HW_OWNER) : (OP_PACKET | HW_OWNER); /* Record the transmit mapping info */ re->skb = skb; re->mapaddr = mapping; re->maplen = len; for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; struct ring_info *fre; mapping = pci_map_page(hw->pdev, frag->page, frag->page_offset, frag->size, PCI_DMA_TODEVICE); addr64 = (mapping >> 16) >> 16; if (addr64 != sky2->tx_addr64) { le = get_tx_le(sky2); le->tx.addr = cpu_to_le32(addr64); le->ctrl = 0; le->opcode = OP_ADDR64 | HW_OWNER; sky2->tx_addr64 = addr64; } le = get_tx_le(sky2); le->tx.addr = cpu_to_le32((u32) mapping); le->length = cpu_to_le16(frag->size); le->ctrl = ctrl; le->opcode = OP_BUFFER | HW_OWNER; fre = sky2->tx_ring + ((re - sky2->tx_ring) + i + 1) % TX_RING_SIZE; fre->skb = NULL; fre->mapaddr = mapping; fre->maplen = frag->size; } re->idx = sky2->tx_prod; le->ctrl |= EOP; sky2_put_idx(hw, txqaddr[sky2->port], sky2->tx_prod, &sky2->tx_last_put, TX_RING_SIZE); if (tx_avail(sky2) < MAX_SKB_TX_LE + 1) netif_stop_queue(dev); out_unlock: mmiowb(); spin_unlock_irqrestore(&sky2->tx_lock, flags); dev->trans_start = jiffies; return NETDEV_TX_OK; } /* * Free ring elements from starting at tx_cons until "done" * * NB: the hardware will tell us about partial completion of multi-part * buffers; these are deferred until completion. */ static void sky2_tx_complete(struct sky2_port *sky2, u16 done) { struct net_device *dev = sky2->netdev; unsigned i; if (done == sky2->tx_cons) return; if (unlikely(netif_msg_tx_done(sky2))) printk(KERN_DEBUG "%s: tx done, up to %u\n", dev->name, done); spin_lock(&sky2->tx_lock); while (sky2->tx_cons != done) { struct ring_info *re = sky2->tx_ring + sky2->tx_cons; struct sk_buff *skb; /* Check for partial status */ if (tx_dist(sky2->tx_cons, done) < tx_dist(sky2->tx_cons, re->idx)) goto out; skb = re->skb; pci_unmap_single(sky2->hw->pdev, re->mapaddr, re->maplen, PCI_DMA_TODEVICE); for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { struct ring_info *fre; fre = sky2->tx_ring + (sky2->tx_cons + i + 1) % TX_RING_SIZE; pci_unmap_page(sky2->hw->pdev, fre->mapaddr, fre->maplen, PCI_DMA_TODEVICE); } dev_kfree_skb_any(skb); sky2->tx_cons = re->idx; } out: if (netif_queue_stopped(dev) && tx_avail(sky2) > MAX_SKB_TX_LE) netif_wake_queue(dev); spin_unlock(&sky2->tx_lock); } /* Cleanup all untransmitted buffers, assume transmitter not running */ static inline void sky2_tx_clean(struct sky2_port *sky2) { sky2_tx_complete(sky2, sky2->tx_prod); } /* Network shutdown */ static int sky2_down(struct net_device *dev) { struct sky2_port *sky2 = netdev_priv(dev); struct sky2_hw *hw = sky2->hw; unsigned port = sky2->port; u16 ctrl; if (netif_msg_ifdown(sky2)) printk(KERN_INFO PFX "%s: disabling interface\n", dev->name); /* Stop more packets from being queued */ netif_stop_queue(dev); /* Disable port IRQ */ local_irq_disable(); hw->intr_mask &= ~((sky2->port == 0) ? Y2_IS_IRQ_PHY1 : Y2_IS_IRQ_PHY2); sky2_write32(hw, B0_IMSK, hw->intr_mask); local_irq_enable(); sky2_phy_reset(hw, port); /* Stop transmitter */ sky2_write32(hw, Q_ADDR(txqaddr[port], Q_CSR), BMU_STOP); sky2_read32(hw, Q_ADDR(txqaddr[port], Q_CSR)); sky2_write32(hw, RB_ADDR(txqaddr[port], RB_CTRL), RB_RST_SET | RB_DIS_OP_MD); ctrl = gma_read16(hw, port, GM_GP_CTRL); ctrl &= ~(GM_GPCR_TX_ENA | GM_GPCR_RX_ENA); gma_write16(hw, port, GM_GP_CTRL, ctrl); sky2_write8(hw, SK_REG(port, GPHY_CTRL), GPC_RST_SET); /* Workaround shared GMAC reset */ if (!(hw->chip_id == CHIP_ID_YUKON_XL && hw->chip_rev == 0 && port == 0 && hw->dev[1] && netif_running(hw->dev[1]))) sky2_write8(hw, SK_REG(port, GMAC_CTRL), GMC_RST_SET); /* Disable Force Sync bit and Enable Alloc bit */ sky2_write8(hw, SK_REG(port, TXA_CTRL), TXA_DIS_FSYNC | TXA_DIS_ALLOC | TXA_STOP_RC); /* Stop Interval Timer and Limit Counter of Tx Arbiter */ sky2_write32(hw, SK_REG(port, TXA_ITI_INI), 0L); sky2_write32(hw, SK_REG(port, TXA_LIM_INI), 0L); /* Reset the PCI FIFO of the async Tx queue */ sky2_write32(hw, Q_ADDR(txqaddr[port], Q_CSR), BMU_RST_SET | BMU_FIFO_RST); /* Reset the Tx prefetch units */ sky2_write32(hw, Y2_QADDR(txqaddr[port], PREF_UNIT_CTRL), PREF_UNIT_RST_SET); sky2_write32(hw, RB_ADDR(txqaddr[port], RB_CTRL), RB_RST_SET); sky2_rx_stop(sky2); sky2_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_SET); sky2_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_RST_SET); /* turn off LED's */ sky2_write16(hw, B0_Y2LED, LED_STAT_OFF); synchronize_irq(hw->pdev->irq); sky2_tx_clean(sky2); sky2_rx_clean(sky2); pci_free_consistent(hw->pdev, RX_LE_BYTES, sky2->rx_le, sky2->rx_le_map); kfree(sky2->rx_ring); pci_free_consistent(hw->pdev, TX_RING_SIZE * sizeof(struct sky2_tx_le), sky2->tx_le, sky2->tx_le_map); kfree(sky2->tx_ring); return 0; } static u16 sky2_phy_speed(const struct sky2_hw *hw, u16 aux) { if (!hw->copper) return SPEED_1000; if (hw->chip_id == CHIP_ID_YUKON_FE) return (aux & PHY_M_PS_SPEED_100) ? SPEED_100 : SPEED_10; switch (aux & PHY_M_PS_SPEED_MSK) { case PHY_M_PS_SPEED_1000: return SPEED_1000; case PHY_M_PS_SPEED_100: return SPEED_100; default: return SPEED_10; } } static void sky2_link_up(struct sky2_port *sky2) { struct sky2_hw *hw = sky2->hw; unsigned port = sky2->port; u16 reg; /* Enable Transmit FIFO Underrun */ sky2_write8(hw, SK_REG(port, GMAC_IRQ_MSK), GMAC_DEF_MSK); reg = gma_read16(hw, port, GM_GP_CTRL); if (sky2->duplex == DUPLEX_FULL || sky2->autoneg == AUTONEG_ENABLE) reg |= GM_GPCR_DUP_FULL; /* enable Rx/Tx */ reg |= GM_GPCR_RX_ENA | GM_GPCR_TX_ENA; gma_write16(hw, port, GM_GP_CTRL, reg); gma_read16(hw, port, GM_GP_CTRL); gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_DEF_MSK); netif_carrier_on(sky2->netdev); netif_wake_queue(sky2->netdev); /* Turn on link LED */ sky2_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_ON | LINKLED_BLINK_OFF | LINKLED_LINKSYNC_OFF); if (hw->chip_id == CHIP_ID_YUKON_XL) { u16 pg = gm_phy_read(hw, port, PHY_MARV_EXT_ADR); gm_phy_write(hw, port, PHY_MARV_EXT_ADR, 3); gm_phy_write(hw, port, PHY_MARV_PHY_CTRL, PHY_M_LEDC_LOS_CTRL(1) | /* LINK/ACT */ PHY_M_LEDC_INIT_CTRL(sky2->speed == SPEED_10 ? 7 : 0) | PHY_M_LEDC_STA1_CTRL(sky2->speed == SPEED_100 ? 7 : 0) | PHY_M_LEDC_STA0_CTRL(sky2->speed == SPEED_1000 ? 7 : 0)); gm_phy_write(hw, port, PHY_MARV_EXT_ADR, pg); } if (netif_msg_link(sky2)) printk(KERN_INFO PFX "%s: Link is up at %d Mbps, %s duplex, flow control %s\n", sky2->netdev->name, sky2->speed, sky2->duplex == DUPLEX_FULL ? "full" : "half", (sky2->tx_pause && sky2->rx_pause) ? "both" : sky2->tx_pause ? "tx" : sky2->rx_pause ? "rx" : "none"); } static void sky2_link_down(struct sky2_port *sky2) { struct sky2_hw *hw = sky2->hw; unsigned port = sky2->port; u16 reg; gm_phy_write(hw, port, PHY_MARV_INT_MASK, 0); reg = gma_read16(hw, port, GM_GP_CTRL); reg &= ~(GM_GPCR_RX_ENA | GM_GPCR_TX_ENA); gma_write16(hw, port, GM_GP_CTRL, reg); gma_read16(hw, port, GM_GP_CTRL); /* PCI post */ if (sky2->rx_pause && !sky2->tx_pause) { /* restore Asymmetric Pause bit */ gm_phy_write(hw, port, PHY_MARV_AUNE_ADV, gm_phy_read(hw, port, PHY_MARV_AUNE_ADV) | PHY_M_AN_ASP); } sky2_phy_reset(hw, port); netif_carrier_off(sky2->netdev); netif_stop_queue(sky2->netdev); /* Turn on link LED */ sky2_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_OFF); if (netif_msg_link(sky2)) printk(KERN_INFO PFX "%s: Link is down.\n", sky2->netdev->name); sky2_phy_init(hw, port); } static int sky2_autoneg_done(struct sky2_port *sky2, u16 aux) { struct sky2_hw *hw = sky2->hw; unsigned port = sky2->port; u16 lpa; lpa = gm_phy_read(hw, port, PHY_MARV_AUNE_LP); if (lpa & PHY_M_AN_RF) { printk(KERN_ERR PFX "%s: remote fault", sky2->netdev->name); return -1; } if (hw->chip_id != CHIP_ID_YUKON_FE && gm_phy_read(hw, port, PHY_MARV_1000T_STAT) & PHY_B_1000S_MSF) { printk(KERN_ERR PFX "%s: master/slave fault", sky2->netdev->name); return -1; } if (!(aux & PHY_M_PS_SPDUP_RES)) { printk(KERN_ERR PFX "%s: speed/duplex mismatch", sky2->netdev->name); return -1; } sky2->duplex = (aux & PHY_M_PS_FULL_DUP) ? DUPLEX_FULL : DUPLEX_HALF; sky2->speed = sky2_phy_speed(hw, aux); /* Pause bits are offset (9..8) */ if (hw->chip_id == CHIP_ID_YUKON_XL) aux >>= 6; sky2->rx_pause = (aux & PHY_M_PS_RX_P_EN) != 0; sky2->tx_pause = (aux & PHY_M_PS_TX_P_EN) != 0; if ((sky2->tx_pause || sky2->rx_pause) && !(sky2->speed < SPEED_1000 && sky2->duplex == DUPLEX_HALF)) sky2_write8(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_ON); else sky2_write8(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_OFF); return 0; } /* * Interrupt from PHY are handled in tasklet (soft irq) * because accessing phy registers requires spin wait which might * cause excess interrupt latency. */ static void sky2_phy_task(unsigned long data) { struct sky2_port *sky2 = (struct sky2_port *)data; struct sky2_hw *hw = sky2->hw; u16 istatus, phystat; spin_lock(&hw->phy_lock); istatus = gm_phy_read(hw, sky2->port, PHY_MARV_INT_STAT); phystat = gm_phy_read(hw, sky2->port, PHY_MARV_PHY_STAT); if (netif_msg_intr(sky2)) printk(KERN_INFO PFX "%s: phy interrupt status 0x%x 0x%x\n", sky2->netdev->name, istatus, phystat); if (istatus & PHY_M_IS_AN_COMPL) { if (sky2_autoneg_done(sky2, phystat) == 0) sky2_link_up(sky2); goto out; } if (istatus & PHY_M_IS_LSP_CHANGE) sky2->speed = sky2_phy_speed(hw, phystat); if (istatus & PHY_M_IS_DUP_CHANGE) sky2->duplex = (phystat & PHY_M_PS_FULL_DUP) ? DUPLEX_FULL : DUPLEX_HALF; if (istatus & PHY_M_IS_LST_CHANGE) { if (phystat & PHY_M_PS_LINK_UP) sky2_link_up(sky2); else sky2_link_down(sky2); } out: spin_unlock(&hw->phy_lock); local_irq_disable(); hw->intr_mask |= (sky2->port == 0) ? Y2_IS_IRQ_PHY1 : Y2_IS_IRQ_PHY2; sky2_write32(hw, B0_IMSK, hw->intr_mask); local_irq_enable(); } static void sky2_tx_timeout(struct net_device *dev) { struct sky2_port *sky2 = netdev_priv(dev); if (netif_msg_timer(sky2)) printk(KERN_ERR PFX "%s: tx timeout\n", dev->name); sky2_write32(sky2->hw, Q_ADDR(txqaddr[sky2->port], Q_CSR), BMU_STOP); sky2_read32(sky2->hw, Q_ADDR(txqaddr[sky2->port], Q_CSR)); sky2_tx_clean(sky2); } static int sky2_change_mtu(struct net_device *dev, int new_mtu) { struct sky2_port *sky2 = netdev_priv(dev); struct sky2_hw *hw = sky2->hw; int err; u16 ctl, mode; if (new_mtu < ETH_ZLEN || new_mtu > ETH_JUMBO_MTU) return -EINVAL; if (hw->chip_id == CHIP_ID_YUKON_EC_U && new_mtu > ETH_DATA_LEN) return -EINVAL; if (!netif_running(dev)) { dev->mtu = new_mtu; return 0; } sky2_write32(hw, B0_IMSK, 0); dev->trans_start = jiffies; /* prevent tx timeout */ netif_stop_queue(dev); netif_poll_disable(hw->dev[0]); ctl = gma_read16(hw, sky2->port, GM_GP_CTRL); gma_write16(hw, sky2->port, GM_GP_CTRL, ctl & ~GM_GPCR_RX_ENA); sky2_rx_stop(sky2); sky2_rx_clean(sky2); dev->mtu = new_mtu; mode = DATA_BLIND_VAL(DATA_BLIND_DEF) | GM_SMOD_VLAN_ENA | IPG_DATA_VAL(IPG_DATA_DEF); if (dev->mtu > ETH_DATA_LEN) mode |= GM_SMOD_JUMBO_ENA; gma_write16(hw, sky2->port, GM_SERIAL_MODE, mode); sky2_write8(hw, RB_ADDR(rxqaddr[sky2->port], RB_CTRL), RB_ENA_OP_MD); err = sky2_rx_start(sky2); gma_write16(hw, sky2->port, GM_GP_CTRL, ctl); netif_poll_disable(hw->dev[0]); netif_wake_queue(dev); sky2_write32(hw, B0_IMSK, hw->intr_mask); return err; } /* * Receive one packet. * For small packets or errors, just reuse existing skb. * For larger packets, get new buffer. */ static struct sk_buff *sky2_receive(struct sky2_port *sky2, u16 length, u32 status) { struct ring_info *re = sky2->rx_ring + sky2->rx_next; struct sk_buff *skb = NULL; const unsigned int bufsize = rx_size(sky2); if (unlikely(netif_msg_rx_status(sky2))) printk(KERN_DEBUG PFX "%s: rx slot %u status 0x%x len %d\n", sky2->netdev->name, sky2->rx_next, status, length); sky2->rx_next = (sky2->rx_next + 1) % sky2->rx_pending; if (status & GMR_FS_ANY_ERR) goto error; if (!(status & GMR_FS_RX_OK)) goto resubmit; if (length < RX_COPY_THRESHOLD) { skb = alloc_skb(length + 2, GFP_ATOMIC); if (!skb) goto resubmit; skb_reserve(skb, 2); pci_dma_sync_single_for_cpu(sky2->hw->pdev, re->mapaddr, length, PCI_DMA_FROMDEVICE); memcpy(skb->data, re->skb->data, length); skb->ip_summed = re->skb->ip_summed; skb->csum = re->skb->csum; pci_dma_sync_single_for_device(sky2->hw->pdev, re->mapaddr, length, PCI_DMA_FROMDEVICE); } else { struct sk_buff *nskb; nskb = dev_alloc_skb(bufsize); if (!nskb) goto resubmit; skb = re->skb; re->skb = nskb; pci_unmap_single(sky2->hw->pdev, re->mapaddr, re->maplen, PCI_DMA_FROMDEVICE); prefetch(skb->data); re->mapaddr = pci_map_single(sky2->hw->pdev, nskb->data, bufsize, PCI_DMA_FROMDEVICE); re->maplen = bufsize; } skb_put(skb, length); resubmit: re->skb->ip_summed = CHECKSUM_NONE; sky2_rx_add(sky2, re); /* Tell receiver about new buffers. */ sky2_put_idx(sky2->hw, rxqaddr[sky2->port], sky2->rx_put, &sky2->rx_last_put, RX_LE_SIZE); return skb; error: if (netif_msg_rx_err(sky2)) printk(KERN_INFO PFX "%s: rx error, status 0x%x length %d\n", sky2->netdev->name, status, length); if (status & (GMR_FS_LONG_ERR | GMR_FS_UN_SIZE)) sky2->net_stats.rx_length_errors++; if (status & GMR_FS_FRAGMENT) sky2->net_stats.rx_frame_errors++; if (status & GMR_FS_CRC_ERR) sky2->net_stats.rx_crc_errors++; if (status & GMR_FS_RX_FF_OV) sky2->net_stats.rx_fifo_errors++; goto resubmit; } /* * Check for transmit complete */ static inline void sky2_tx_check(struct sky2_hw *hw, int port) { struct net_device *dev = hw->dev[port]; if (dev && netif_running(dev)) { sky2_tx_complete(netdev_priv(dev), sky2_read16(hw, port == 0 ? STAT_TXA1_RIDX : STAT_TXA2_RIDX)); } } /* * Both ports share the same status interrupt, therefore there is only * one poll routine. */ static int sky2_poll(struct net_device *dev0, int *budget) { struct sky2_hw *hw = ((struct sky2_port *) netdev_priv(dev0))->hw; unsigned int to_do = min(dev0->quota, *budget); unsigned int work_done = 0; u16 hwidx; hwidx = sky2_read16(hw, STAT_PUT_IDX); BUG_ON(hwidx >= STATUS_RING_SIZE); rmb(); while (hwidx != hw->st_idx) { struct sky2_status_le *le = hw->st_le + hw->st_idx; struct net_device *dev; struct sky2_port *sky2; struct sk_buff *skb; u32 status; u16 length; u8 op; le = hw->st_le + hw->st_idx; hw->st_idx = (hw->st_idx + 1) % STATUS_RING_SIZE; prefetch(hw->st_le + hw->st_idx); BUG_ON(le->link >= hw->ports || !hw->dev[le->link]); BUG_ON(le->link >= 2); dev = hw->dev[le->link]; if (dev == NULL || !netif_running(dev)) continue; sky2 = netdev_priv(dev); status = le32_to_cpu(le->status); length = le16_to_cpu(le->length); op = le->opcode & ~HW_OWNER; le->opcode = 0; switch (op) { case OP_RXSTAT: skb = sky2_receive(sky2, length, status); if (!skb) break; skb->dev = dev; skb->protocol = eth_type_trans(skb, dev); dev->last_rx = jiffies; #ifdef SKY2_VLAN_TAG_USED if (sky2->vlgrp && (status & GMR_FS_VLAN)) { vlan_hwaccel_receive_skb(skb, sky2->vlgrp, be16_to_cpu(sky2->rx_tag)); } else #endif netif_receive_skb(skb); if (++work_done >= to_do) goto exit_loop; break; #ifdef SKY2_VLAN_TAG_USED case OP_RXVLAN: sky2->rx_tag = length; break; case OP_RXCHKSVLAN: sky2->rx_tag = length; /* fall through */ #endif case OP_RXCHKS: skb = sky2->rx_ring[sky2->rx_next].skb; skb->ip_summed = CHECKSUM_HW; skb->csum = le16_to_cpu(status); break; case OP_TXINDEXLE: /* pick up transmit status later */ break; default: if (net_ratelimit()) printk(KERN_WARNING PFX "unknown status opcode 0x%x\n", op); break; } } exit_loop: sky2_tx_check(hw, 0); sky2_tx_check(hw, 1); mmiowb(); if (work_done < to_do) { /* * Another chip workaround, need to restart TX timer if status * LE was handled. WA_DEV_43_418 */ if (is_ec_a1(hw)) { sky2_write8(hw, STAT_TX_TIMER_CTRL, TIM_STOP); sky2_write8(hw, STAT_TX_TIMER_CTRL, TIM_START); } netif_rx_complete(dev0); hw->intr_mask |= Y2_IS_STAT_BMU; sky2_write32(hw, B0_IMSK, hw->intr_mask); mmiowb(); return 0; } else { *budget -= work_done; dev0->quota -= work_done; return 1; } } static void sky2_hw_error(struct sky2_hw *hw, unsigned port, u32 status) { struct net_device *dev = hw->dev[port]; printk(KERN_INFO PFX "%s: hw error interrupt status 0x%x\n", dev->name, status); if (status & Y2_IS_PAR_RD1) { printk(KERN_ERR PFX "%s: ram data read parity error\n", dev->name); /* Clear IRQ */ sky2_write16(hw, RAM_BUFFER(port, B3_RI_CTRL), RI_CLR_RD_PERR); } if (status & Y2_IS_PAR_WR1) { printk(KERN_ERR PFX "%s: ram data write parity error\n", dev->name); sky2_write16(hw, RAM_BUFFER(port, B3_RI_CTRL), RI_CLR_WR_PERR); } if (status & Y2_IS_PAR_MAC1) { printk(KERN_ERR PFX "%s: MAC parity error\n", dev->name); sky2_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_CLI_TX_PE); } if (status & Y2_IS_PAR_RX1) { printk(KERN_ERR PFX "%s: RX parity error\n", dev->name); sky2_write32(hw, Q_ADDR(rxqaddr[port], Q_CSR), BMU_CLR_IRQ_PAR); } if (status & Y2_IS_TCP_TXA1) { printk(KERN_ERR PFX "%s: TCP segmentation error\n", dev->name); sky2_write32(hw, Q_ADDR(txqaddr[port], Q_CSR), BMU_CLR_IRQ_TCP); } } static void sky2_hw_intr(struct sky2_hw *hw) { u32 status = sky2_read32(hw, B0_HWE_ISRC); if (status & Y2_IS_TIST_OV) sky2_write8(hw, GMAC_TI_ST_CTRL, GMT_ST_CLR_IRQ); if (status & (Y2_IS_MST_ERR | Y2_IS_IRQ_STAT)) { u16 pci_err; pci_read_config_word(hw->pdev, PCI_STATUS, &pci_err); printk(KERN_ERR PFX "%s: pci hw error (0x%x)\n", pci_name(hw->pdev), pci_err); sky2_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON); pci_write_config_word(hw->pdev, PCI_STATUS, pci_err | PCI_STATUS_ERROR_BITS); sky2_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF); } if (status & Y2_IS_PCI_EXP) { /* PCI-Express uncorrectable Error occurred */ u32 pex_err; pci_read_config_dword(hw->pdev, PEX_UNC_ERR_STAT, &pex_err); printk(KERN_ERR PFX "%s: pci express error (0x%x)\n", pci_name(hw->pdev), pex_err); /* clear the interrupt */ sky2_write32(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON); pci_write_config_dword(hw->pdev, PEX_UNC_ERR_STAT, 0xffffffffUL); sky2_write32(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF); if (pex_err & PEX_FATAL_ERRORS) { u32 hwmsk = sky2_read32(hw, B0_HWE_IMSK); hwmsk &= ~Y2_IS_PCI_EXP; sky2_write32(hw, B0_HWE_IMSK, hwmsk); } } if (status & Y2_HWE_L1_MASK) sky2_hw_error(hw, 0, status); status >>= 8; if (status & Y2_HWE_L1_MASK) sky2_hw_error(hw, 1, status); } static void sky2_mac_intr(struct sky2_hw *hw, unsigned port) { struct net_device *dev = hw->dev[port]; struct sky2_port *sky2 = netdev_priv(dev); u8 status = sky2_read8(hw, SK_REG(port, GMAC_IRQ_SRC)); if (netif_msg_intr(sky2)) printk(KERN_INFO PFX "%s: mac interrupt status 0x%x\n", dev->name, status); if (status & GM_IS_RX_FF_OR) { ++sky2->net_stats.rx_fifo_errors; sky2_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_CLI_RX_FO); } if (status & GM_IS_TX_FF_UR) { ++sky2->net_stats.tx_fifo_errors; sky2_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_CLI_TX_FU); } } static void sky2_phy_intr(struct sky2_hw *hw, unsigned port) { struct net_device *dev = hw->dev[port]; struct sky2_port *sky2 = netdev_priv(dev); hw->intr_mask &= ~(port == 0 ? Y2_IS_IRQ_PHY1 : Y2_IS_IRQ_PHY2); sky2_write32(hw, B0_IMSK, hw->intr_mask); tasklet_schedule(&sky2->phy_task); } static irqreturn_t sky2_intr(int irq, void *dev_id, struct pt_regs *regs) { struct sky2_hw *hw = dev_id; struct net_device *dev0 = hw->dev[0]; u32 status; status = sky2_read32(hw, B0_Y2_SP_ISRC2); if (status == 0 || status == ~0) return IRQ_NONE; if (status & Y2_IS_HW_ERR) sky2_hw_intr(hw); /* Do NAPI for Rx and Tx status */ if (status & Y2_IS_STAT_BMU) { hw->intr_mask &= ~Y2_IS_STAT_BMU; sky2_write32(hw, B0_IMSK, hw->intr_mask); if (likely(__netif_rx_schedule_prep(dev0))) { prefetch(&hw->st_le[hw->st_idx]); __netif_rx_schedule(dev0); } } if (status & Y2_IS_IRQ_PHY1) sky2_phy_intr(hw, 0); if (status & Y2_IS_IRQ_PHY2) sky2_phy_intr(hw, 1); if (status & Y2_IS_IRQ_MAC1) sky2_mac_intr(hw, 0); if (status & Y2_IS_IRQ_MAC2) sky2_mac_intr(hw, 1); sky2_write32(hw, B0_Y2_SP_ICR, 2); sky2_read32(hw, B0_IMSK); return IRQ_HANDLED; } #ifdef CONFIG_NET_POLL_CONTROLLER static void sky2_netpoll(struct net_device *dev) { struct sky2_port *sky2 = netdev_priv(dev); sky2_intr(sky2->hw->pdev->irq, sky2->hw, NULL); } #endif /* Chip internal frequency for clock calculations */ static inline u32 sky2_khz(const struct sky2_hw *hw) { switch (hw->chip_id) { case CHIP_ID_YUKON_EC: case CHIP_ID_YUKON_EC_U: return 125000; /* 125 Mhz */ case CHIP_ID_YUKON_FE: return 100000; /* 100 Mhz */ default: /* YUKON_XL */ return 156000; /* 156 Mhz */ } } static inline u32 sky2_ms2clk(const struct sky2_hw *hw, u32 ms) { return sky2_khz(hw) * ms; } static inline u32 sky2_us2clk(const struct sky2_hw *hw, u32 us) { return (sky2_khz(hw) * us) / 1000; } static int sky2_reset(struct sky2_hw *hw) { u32 ctst; u16 status; u8 t8, pmd_type; int i; ctst = sky2_read32(hw, B0_CTST); sky2_write8(hw, B0_CTST, CS_RST_CLR); hw->chip_id = sky2_read8(hw, B2_CHIP_ID); if (hw->chip_id < CHIP_ID_YUKON_XL || hw->chip_id > CHIP_ID_YUKON_FE) { printk(KERN_ERR PFX "%s: unsupported chip type 0x%x\n", pci_name(hw->pdev), hw->chip_id); return -EOPNOTSUPP; } /* ring for status responses */ hw->st_le = pci_alloc_consistent(hw->pdev, STATUS_LE_BYTES, &hw->st_dma); if (!hw->st_le) return -ENOMEM; /* disable ASF */ if (hw->chip_id <= CHIP_ID_YUKON_EC) { sky2_write8(hw, B28_Y2_ASF_STAT_CMD, Y2_ASF_RESET); sky2_write16(hw, B0_CTST, Y2_ASF_DISABLE); } /* do a SW reset */ sky2_write8(hw, B0_CTST, CS_RST_SET); sky2_write8(hw, B0_CTST, CS_RST_CLR); /* clear PCI errors, if any */ pci_read_config_word(hw->pdev, PCI_STATUS, &status); sky2_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON); pci_write_config_word(hw->pdev, PCI_STATUS, status | PCI_STATUS_ERROR_BITS); sky2_write8(hw, B0_CTST, CS_MRST_CLR); /* clear any PEX errors */ if (is_pciex(hw)) { u16 lstat; pci_write_config_dword(hw->pdev, PEX_UNC_ERR_STAT, 0xffffffffUL); pci_read_config_word(hw->pdev, PEX_LNK_STAT, &lstat); } pmd_type = sky2_read8(hw, B2_PMD_TYP); hw->copper = !(pmd_type == 'L' || pmd_type == 'S'); hw->ports = 1; t8 = sky2_read8(hw, B2_Y2_HW_RES); if ((t8 & CFG_DUAL_MAC_MSK) == CFG_DUAL_MAC_MSK) { if (!(sky2_read8(hw, B2_Y2_CLK_GATE) & Y2_STATUS_LNK2_INAC)) ++hw->ports; } hw->chip_rev = (sky2_read8(hw, B2_MAC_CFG) & CFG_CHIP_R_MSK) >> 4; sky2_set_power_state(hw, PCI_D0); for (i = 0; i < hw->ports; i++) { sky2_write8(hw, SK_REG(i, GMAC_LINK_CTRL), GMLC_RST_SET); sky2_write8(hw, SK_REG(i, GMAC_LINK_CTRL), GMLC_RST_CLR); } sky2_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF); /* Clear I2C IRQ noise */ sky2_write32(hw, B2_I2C_IRQ, 1); /* turn off hardware timer (unused) */ sky2_write8(hw, B2_TI_CTRL, TIM_STOP); sky2_write8(hw, B2_TI_CTRL, TIM_CLR_IRQ); sky2_write8(hw, B0_Y2LED, LED_STAT_ON); /* Turn on descriptor polling (every 75us) */ sky2_write32(hw, B28_DPT_INI, sky2_us2clk(hw, 75)); sky2_write8(hw, B28_DPT_CTRL, DPT_START); /* Turn off receive timestamp */ sky2_write8(hw, GMAC_TI_ST_CTRL, GMT_ST_STOP); sky2_write8(hw, GMAC_TI_ST_CTRL, GMT_ST_CLR_IRQ); /* enable the Tx Arbiters */ for (i = 0; i < hw->ports; i++) sky2_write8(hw, SK_REG(i, TXA_CTRL), TXA_ENA_ARB); /* Initialize ram interface */ for (i = 0; i < hw->ports; i++) { sky2_write8(hw, RAM_BUFFER(i, B3_RI_CTRL), RI_RST_CLR); sky2_write8(hw, RAM_BUFFER(i, B3_RI_WTO_R1), SK_RI_TO_53); sky2_write8(hw, RAM_BUFFER(i, B3_RI_WTO_XA1), SK_RI_TO_53); sky2_write8(hw, RAM_BUFFER(i, B3_RI_WTO_XS1), SK_RI_TO_53); sky2_write8(hw, RAM_BUFFER(i, B3_RI_RTO_R1), SK_RI_TO_53); sky2_write8(hw, RAM_BUFFER(i, B3_RI_RTO_XA1), SK_RI_TO_53); sky2_write8(hw, RAM_BUFFER(i, B3_RI_RTO_XS1), SK_RI_TO_53); sky2_write8(hw, RAM_BUFFER(i, B3_RI_WTO_R2), SK_RI_TO_53); sky2_write8(hw, RAM_BUFFER(i, B3_RI_WTO_XA2), SK_RI_TO_53); sky2_write8(hw, RAM_BUFFER(i, B3_RI_WTO_XS2), SK_RI_TO_53); sky2_write8(hw, RAM_BUFFER(i, B3_RI_RTO_R2), SK_RI_TO_53); sky2_write8(hw, RAM_BUFFER(i, B3_RI_RTO_XA2), SK_RI_TO_53); sky2_write8(hw, RAM_BUFFER(i, B3_RI_RTO_XS2), SK_RI_TO_53); } if (is_pciex(hw)) { u16 pctrl; /* change Max. Read Request Size to 2048 bytes */ pci_read_config_word(hw->pdev, PEX_DEV_CTRL, &pctrl); pctrl &= ~PEX_DC_MAX_RRS_MSK; pctrl |= PEX_DC_MAX_RD_RQ_SIZE(4); sky2_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON); pci_write_config_word(hw->pdev, PEX_DEV_CTRL, pctrl); sky2_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF); } sky2_write32(hw, B0_HWE_IMSK, Y2_HWE_ALL_MASK); spin_lock_bh(&hw->phy_lock); for (i = 0; i < hw->ports; i++) sky2_phy_reset(hw, i); spin_unlock_bh(&hw->phy_lock); memset(hw->st_le, 0, STATUS_LE_BYTES); hw->st_idx = 0; sky2_write32(hw, STAT_CTRL, SC_STAT_RST_SET); sky2_write32(hw, STAT_CTRL, SC_STAT_RST_CLR); sky2_write32(hw, STAT_LIST_ADDR_LO, hw->st_dma); sky2_write32(hw, STAT_LIST_ADDR_HI, (u64) hw->st_dma >> 32); /* Set the list last index */ sky2_write16(hw, STAT_LAST_IDX, STATUS_RING_SIZE - 1); sky2_write32(hw, STAT_TX_TIMER_INI, sky2_ms2clk(hw, 10)); /* These status setup values are copied from SysKonnect's driver */ if (is_ec_a1(hw)) { /* WA for dev. #4.3 */ sky2_write16(hw, STAT_TX_IDX_TH, 0xfff); /* Tx Threshold */ /* set Status-FIFO watermark */ sky2_write8(hw, STAT_FIFO_WM, 0x21); /* WA for dev. #4.18 */ /* set Status-FIFO ISR watermark */ sky2_write8(hw, STAT_FIFO_ISR_WM, 0x07); /* WA for dev. #4.18 */ } else { sky2_write16(hw, STAT_TX_IDX_TH, 0x000a); /* set Status-FIFO watermark */ sky2_write8(hw, STAT_FIFO_WM, 0x10); /* set Status-FIFO ISR watermark */ if (hw->chip_id == CHIP_ID_YUKON_XL && hw->chip_rev == 0) sky2_write8(hw, STAT_FIFO_ISR_WM, 0x10); else /* WA dev 4.109 */ sky2_write8(hw, STAT_FIFO_ISR_WM, 0x04); sky2_write32(hw, STAT_ISR_TIMER_INI, 0x0190); } /* enable status unit */ sky2_write32(hw, STAT_CTRL, SC_STAT_OP_ON); sky2_write8(hw, STAT_TX_TIMER_CTRL, TIM_START); sky2_write8(hw, STAT_LEV_TIMER_CTRL, TIM_START); sky2_write8(hw, STAT_ISR_TIMER_CTRL, TIM_START); return 0; } static inline u32 sky2_supported_modes(const struct sky2_hw *hw) { u32 modes; if (hw->copper) { modes = SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full | SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full | SUPPORTED_Autoneg | SUPPORTED_TP; if (hw->chip_id != CHIP_ID_YUKON_FE) modes |= SUPPORTED_1000baseT_Half | SUPPORTED_1000baseT_Full; } else modes = SUPPORTED_1000baseT_Full | SUPPORTED_FIBRE | SUPPORTED_Autoneg; return modes; } static int sky2_get_settings(struct net_device *dev, struct ethtool_cmd *ecmd) { struct sky2_port *sky2 = netdev_priv(dev); struct sky2_hw *hw = sky2->hw; ecmd->transceiver = XCVR_INTERNAL; ecmd->supported = sky2_supported_modes(hw); ecmd->phy_address = PHY_ADDR_MARV; if (hw->copper) { ecmd->supported = SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full | SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full | SUPPORTED_1000baseT_Half | SUPPORTED_1000baseT_Full | SUPPORTED_Autoneg | SUPPORTED_TP; ecmd->port = PORT_TP; } else ecmd->port = PORT_FIBRE; ecmd->advertising = sky2->advertising; ecmd->autoneg = sky2->autoneg; ecmd->speed = sky2->speed; ecmd->duplex = sky2->duplex; return 0; } static int sky2_set_settings(struct net_device *dev, struct ethtool_cmd *ecmd) { struct sky2_port *sky2 = netdev_priv(dev); const struct sky2_hw *hw = sky2->hw; u32 supported = sky2_supported_modes(hw); if (ecmd->autoneg == AUTONEG_ENABLE) { ecmd->advertising = supported; sky2->duplex = -1; sky2->speed = -1; } else { u32 setting; switch (ecmd->speed) { case SPEED_1000: if (ecmd->duplex == DUPLEX_FULL) setting = SUPPORTED_1000baseT_Full; else if (ecmd->duplex == DUPLEX_HALF) setting = SUPPORTED_1000baseT_Half; else return -EINVAL; break; case SPEED_100: if (ecmd->duplex == DUPLEX_FULL) setting = SUPPORTED_100baseT_Full; else if (ecmd->duplex == DUPLEX_HALF) setting = SUPPORTED_100baseT_Half; else return -EINVAL; break; case SPEED_10: if (ecmd->duplex == DUPLEX_FULL) setting = SUPPORTED_10baseT_Full; else if (ecmd->duplex == DUPLEX_HALF) setting = SUPPORTED_10baseT_Half; else return -EINVAL; break; default: return -EINVAL; } if ((setting & supported) == 0) return -EINVAL; sky2->speed = ecmd->speed; sky2->duplex = ecmd->duplex; } sky2->autoneg = ecmd->autoneg; sky2->advertising = ecmd->advertising; if (netif_running(dev)) { sky2_down(dev); sky2_up(dev); } return 0; } static void sky2_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info) { struct sky2_port *sky2 = netdev_priv(dev); strcpy(info->driver, DRV_NAME); strcpy(info->version, DRV_VERSION); strcpy(info->fw_version, "N/A"); strcpy(info->bus_info, pci_name(sky2->hw->pdev)); } static const struct sky2_stat { char name[ETH_GSTRING_LEN]; u16 offset; } sky2_stats[] = { { "tx_bytes", GM_TXO_OK_HI }, { "rx_bytes", GM_RXO_OK_HI }, { "tx_broadcast", GM_TXF_BC_OK }, { "rx_broadcast", GM_RXF_BC_OK }, { "tx_multicast", GM_TXF_MC_OK }, { "rx_multicast", GM_RXF_MC_OK }, { "tx_unicast", GM_TXF_UC_OK }, { "rx_unicast", GM_RXF_UC_OK }, { "tx_mac_pause", GM_TXF_MPAUSE }, { "rx_mac_pause", GM_RXF_MPAUSE }, { "collisions", GM_TXF_SNG_COL }, { "late_collision",GM_TXF_LAT_COL }, { "aborted", GM_TXF_ABO_COL }, { "multi_collisions", GM_TXF_MUL_COL }, { "fifo_underrun", GM_TXE_FIFO_UR }, { "fifo_overflow", GM_RXE_FIFO_OV }, { "rx_toolong", GM_RXF_LNG_ERR }, { "rx_jabber", GM_RXF_JAB_PKT }, { "rx_runt", GM_RXE_FRAG }, { "rx_too_long", GM_RXF_LNG_ERR }, { "rx_fcs_error", GM_RXF_FCS_ERR }, }; static u32 sky2_get_rx_csum(struct net_device *dev) { struct sky2_port *sky2 = netdev_priv(dev); return sky2->rx_csum; } static int sky2_set_rx_csum(struct net_device *dev, u32 data) { struct sky2_port *sky2 = netdev_priv(dev); sky2->rx_csum = data; sky2_write32(sky2->hw, Q_ADDR(rxqaddr[sky2->port], Q_CSR), data ? BMU_ENA_RX_CHKSUM : BMU_DIS_RX_CHKSUM); return 0; } static u32 sky2_get_msglevel(struct net_device *netdev) { struct sky2_port *sky2 = netdev_priv(netdev); return sky2->msg_enable; } static int sky2_nway_reset(struct net_device *dev) { struct sky2_port *sky2 = netdev_priv(dev); struct sky2_hw *hw = sky2->hw; if (sky2->autoneg != AUTONEG_ENABLE) return -EINVAL; netif_stop_queue(dev); spin_lock_irq(&hw->phy_lock); sky2_phy_reset(hw, sky2->port); sky2_phy_init(hw, sky2->port); spin_unlock_irq(&hw->phy_lock); return 0; } static void sky2_phy_stats(struct sky2_port *sky2, u64 * data, unsigned count) { struct sky2_hw *hw = sky2->hw; unsigned port = sky2->port; int i; data[0] = (u64) gma_read32(hw, port, GM_TXO_OK_HI) << 32 | (u64) gma_read32(hw, port, GM_TXO_OK_LO); data[1] = (u64) gma_read32(hw, port, GM_RXO_OK_HI) << 32 | (u64) gma_read32(hw, port, GM_RXO_OK_LO); for (i = 2; i < count; i++) data[i] = (u64) gma_read32(hw, port, sky2_stats[i].offset); } static void sky2_set_msglevel(struct net_device *netdev, u32 value) { struct sky2_port *sky2 = netdev_priv(netdev); sky2->msg_enable = value; } static int sky2_get_stats_count(struct net_device *dev) { return ARRAY_SIZE(sky2_stats); } static void sky2_get_ethtool_stats(struct net_device *dev, struct ethtool_stats *stats, u64 * data) { struct sky2_port *sky2 = netdev_priv(dev); sky2_phy_stats(sky2, data, ARRAY_SIZE(sky2_stats)); } static void sky2_get_strings(struct net_device *dev, u32 stringset, u8 * data) { int i; switch (stringset) { case ETH_SS_STATS: for (i = 0; i < ARRAY_SIZE(sky2_stats); i++) memcpy(data + i * ETH_GSTRING_LEN, sky2_stats[i].name, ETH_GSTRING_LEN); break; } } /* Use hardware MIB variables for critical path statistics and * transmit feedback not reported at interrupt. * Other errors are accounted for in interrupt handler. */ static struct net_device_stats *sky2_get_stats(struct net_device *dev) { struct sky2_port *sky2 = netdev_priv(dev); u64 data[13]; sky2_phy_stats(sky2, data, ARRAY_SIZE(data)); sky2->net_stats.tx_bytes = data[0]; sky2->net_stats.rx_bytes = data[1]; sky2->net_stats.tx_packets = data[2] + data[4] + data[6]; sky2->net_stats.rx_packets = data[3] + data[5] + data[7]; sky2->net_stats.multicast = data[5] + data[7]; sky2->net_stats.collisions = data[10]; sky2->net_stats.tx_aborted_errors = data[12]; return &sky2->net_stats; } static int sky2_set_mac_address(struct net_device *dev, void *p) { struct sky2_port *sky2 = netdev_priv(dev); struct sockaddr *addr = p; int err = 0; if (!is_valid_ether_addr(addr->sa_data)) return -EADDRNOTAVAIL; sky2_down(dev); memcpy(dev->dev_addr, addr->sa_data, ETH_ALEN); memcpy_toio(sky2->hw->regs + B2_MAC_1 + sky2->port * 8, dev->dev_addr, ETH_ALEN); memcpy_toio(sky2->hw->regs + B2_MAC_2 + sky2->port * 8, dev->dev_addr, ETH_ALEN); if (dev->flags & IFF_UP) err = sky2_up(dev); return err; } static void sky2_set_multicast(struct net_device *dev) { struct sky2_port *sky2 = netdev_priv(dev); struct sky2_hw *hw = sky2->hw; unsigned port = sky2->port; struct dev_mc_list *list = dev->mc_list; u16 reg; u8 filter[8]; memset(filter, 0, sizeof(filter)); reg = gma_read16(hw, port, GM_RX_CTRL); reg |= GM_RXCR_UCF_ENA; if (dev->flags & IFF_PROMISC) /* promiscuous */ reg &= ~(GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA); else if ((dev->flags & IFF_ALLMULTI) || dev->mc_count > 16) /* all multicast */ memset(filter, 0xff, sizeof(filter)); else if (dev->mc_count == 0) /* no multicast */ reg &= ~GM_RXCR_MCF_ENA; else { int i; reg |= GM_RXCR_MCF_ENA; for (i = 0; list && i < dev->mc_count; i++, list = list->next) { u32 bit = ether_crc(ETH_ALEN, list->dmi_addr) & 0x3f; filter[bit / 8] |= 1 << (bit % 8); } } gma_write16(hw, port, GM_MC_ADDR_H1, (u16) filter[0] | ((u16) filter[1] << 8)); gma_write16(hw, port, GM_MC_ADDR_H2, (u16) filter[2] | ((u16) filter[3] << 8)); gma_write16(hw, port, GM_MC_ADDR_H3, (u16) filter[4] | ((u16) filter[5] << 8)); gma_write16(hw, port, GM_MC_ADDR_H4, (u16) filter[6] | ((u16) filter[7] << 8)); gma_write16(hw, port, GM_RX_CTRL, reg); } /* Can have one global because blinking is controlled by * ethtool and that is always under RTNL mutex */ static inline void sky2_led(struct sky2_hw *hw, unsigned port, int on) { u16 pg; spin_lock_bh(&hw->phy_lock); switch (hw->chip_id) { case CHIP_ID_YUKON_XL: pg = gm_phy_read(hw, port, PHY_MARV_EXT_ADR); gm_phy_write(hw, port, PHY_MARV_EXT_ADR, 3); gm_phy_write(hw, port, PHY_MARV_PHY_CTRL, on ? (PHY_M_LEDC_LOS_CTRL(1) | PHY_M_LEDC_INIT_CTRL(7) | PHY_M_LEDC_STA1_CTRL(7) | PHY_M_LEDC_STA0_CTRL(7)) : 0); gm_phy_write(hw, port, PHY_MARV_EXT_ADR, pg); break; default: gm_phy_write(hw, port, PHY_MARV_LED_CTRL, 0); gm_phy_write(hw, port, PHY_MARV_LED_OVER, on ? PHY_M_LED_MO_DUP(MO_LED_ON) | PHY_M_LED_MO_10(MO_LED_ON) | PHY_M_LED_MO_100(MO_LED_ON) | PHY_M_LED_MO_1000(MO_LED_ON) | PHY_M_LED_MO_RX(MO_LED_ON) : PHY_M_LED_MO_DUP(MO_LED_OFF) | PHY_M_LED_MO_10(MO_LED_OFF) | PHY_M_LED_MO_100(MO_LED_OFF) | PHY_M_LED_MO_1000(MO_LED_OFF) | PHY_M_LED_MO_RX(MO_LED_OFF)); } spin_unlock_bh(&hw->phy_lock); } /* blink LED's for finding board */ static int sky2_phys_id(struct net_device *dev, u32 data) { struct sky2_port *sky2 = netdev_priv(dev); struct sky2_hw *hw = sky2->hw; unsigned port = sky2->port; u16 ledctrl, ledover = 0; long ms; int onoff = 1; if (!data || data > (u32) (MAX_SCHEDULE_TIMEOUT / HZ)) ms = jiffies_to_msecs(MAX_SCHEDULE_TIMEOUT); else ms = data * 1000; /* save initial values */ spin_lock_bh(&hw->phy_lock); if (hw->chip_id == CHIP_ID_YUKON_XL) { u16 pg = gm_phy_read(hw, port, PHY_MARV_EXT_ADR); gm_phy_write(hw, port, PHY_MARV_EXT_ADR, 3); ledctrl = gm_phy_read(hw, port, PHY_MARV_PHY_CTRL); gm_phy_write(hw, port, PHY_MARV_EXT_ADR, pg); } else { ledctrl = gm_phy_read(hw, port, PHY_MARV_LED_CTRL); ledover = gm_phy_read(hw, port, PHY_MARV_LED_OVER); } spin_unlock_bh(&hw->phy_lock); while (ms > 0) { sky2_led(hw, port, onoff); onoff = !onoff; if (msleep_interruptible(250)) break; /* interrupted */ ms -= 250; } /* resume regularly scheduled programming */ spin_lock_bh(&hw->phy_lock); if (hw->chip_id == CHIP_ID_YUKON_XL) { u16 pg = gm_phy_read(hw, port, PHY_MARV_EXT_ADR); gm_phy_write(hw, port, PHY_MARV_EXT_ADR, 3); gm_phy_write(hw, port, PHY_MARV_PHY_CTRL, ledctrl); gm_phy_write(hw, port, PHY_MARV_EXT_ADR, pg); } else { gm_phy_write(hw, port, PHY_MARV_LED_CTRL, ledctrl); gm_phy_write(hw, port, PHY_MARV_LED_OVER, ledover); } spin_unlock_bh(&hw->phy_lock); return 0; } static void sky2_get_pauseparam(struct net_device *dev, struct ethtool_pauseparam *ecmd) { struct sky2_port *sky2 = netdev_priv(dev); ecmd->tx_pause = sky2->tx_pause; ecmd->rx_pause = sky2->rx_pause; ecmd->autoneg = sky2->autoneg; } static int sky2_set_pauseparam(struct net_device *dev, struct ethtool_pauseparam *ecmd) { struct sky2_port *sky2 = netdev_priv(dev); int err = 0; sky2->autoneg = ecmd->autoneg; sky2->tx_pause = ecmd->tx_pause != 0; sky2->rx_pause = ecmd->rx_pause != 0; if (netif_running(dev)) { sky2_down(dev); err = sky2_up(dev); } return err; } #ifdef CONFIG_PM static void sky2_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol) { struct sky2_port *sky2 = netdev_priv(dev); wol->supported = WAKE_MAGIC; wol->wolopts = sky2->wol ? WAKE_MAGIC : 0; } static int sky2_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol) { struct sky2_port *sky2 = netdev_priv(dev); struct sky2_hw *hw = sky2->hw; if (wol->wolopts != WAKE_MAGIC && wol->wolopts != 0) return -EOPNOTSUPP; sky2->wol = wol->wolopts == WAKE_MAGIC; if (sky2->wol) { memcpy_toio(hw->regs + WOL_MAC_ADDR, dev->dev_addr, ETH_ALEN); sky2_write16(hw, WOL_CTRL_STAT, WOL_CTL_ENA_PME_ON_MAGIC_PKT | WOL_CTL_ENA_MAGIC_PKT_UNIT); } else sky2_write16(hw, WOL_CTRL_STAT, WOL_CTL_DEFAULT); return 0; } #endif static void sky2_get_ringparam(struct net_device *dev, struct ethtool_ringparam *ering) { struct sky2_port *sky2 = netdev_priv(dev); ering->rx_max_pending = RX_MAX_PENDING; ering->rx_mini_max_pending = 0; ering->rx_jumbo_max_pending = 0; ering->tx_max_pending = TX_RING_SIZE - 1; ering->rx_pending = sky2->rx_pending; ering->rx_mini_pending = 0; ering->rx_jumbo_pending = 0; ering->tx_pending = sky2->tx_pending; } static int sky2_set_ringparam(struct net_device *dev, struct ethtool_ringparam *ering) { struct sky2_port *sky2 = netdev_priv(dev); int err = 0; if (ering->rx_pending > RX_MAX_PENDING || ering->rx_pending < 8 || ering->tx_pending < MAX_SKB_TX_LE || ering->tx_pending > TX_RING_SIZE - 1) return -EINVAL; if (netif_running(dev)) sky2_down(dev); sky2->rx_pending = ering->rx_pending; sky2->tx_pending = ering->tx_pending; if (netif_running(dev)) err = sky2_up(dev); return err; } static int sky2_get_regs_len(struct net_device *dev) { return 0x4000; } /* * Returns copy of control register region * Note: access to the RAM address register set will cause timeouts. */ static void sky2_get_regs(struct net_device *dev, struct ethtool_regs *regs, void *p) { const struct sky2_port *sky2 = netdev_priv(dev); const void __iomem *io = sky2->hw->regs; BUG_ON(regs->len < B3_RI_WTO_R1); regs->version = 1; memset(p, 0, regs->len); memcpy_fromio(p, io, B3_RAM_ADDR); memcpy_fromio(p + B3_RI_WTO_R1, io + B3_RI_WTO_R1, regs->len - B3_RI_WTO_R1); } static struct ethtool_ops sky2_ethtool_ops = { .get_settings = sky2_get_settings, .set_settings = sky2_set_settings, .get_drvinfo = sky2_get_drvinfo, .get_msglevel = sky2_get_msglevel, .set_msglevel = sky2_set_msglevel, .nway_reset = sky2_nway_reset, .get_regs_len = sky2_get_regs_len, .get_regs = sky2_get_regs, .get_link = ethtool_op_get_link, .get_sg = ethtool_op_get_sg, .set_sg = ethtool_op_set_sg, .get_tx_csum = ethtool_op_get_tx_csum, .set_tx_csum = ethtool_op_set_tx_csum, .get_tso = ethtool_op_get_tso, .set_tso = ethtool_op_set_tso, .get_rx_csum = sky2_get_rx_csum, .set_rx_csum = sky2_set_rx_csum, .get_strings = sky2_get_strings, .get_ringparam = sky2_get_ringparam, .set_ringparam = sky2_set_ringparam, .get_pauseparam = sky2_get_pauseparam, .set_pauseparam = sky2_set_pauseparam, #ifdef CONFIG_PM .get_wol = sky2_get_wol, .set_wol = sky2_set_wol, #endif .phys_id = sky2_phys_id, .get_stats_count = sky2_get_stats_count, .get_ethtool_stats = sky2_get_ethtool_stats, .get_perm_addr = ethtool_op_get_perm_addr, }; /* Initialize network device */ static __devinit struct net_device *sky2_init_netdev(struct sky2_hw *hw, unsigned port, int highmem) { struct sky2_port *sky2; struct net_device *dev = alloc_etherdev(sizeof(*sky2)); if (!dev) { printk(KERN_ERR "sky2 etherdev alloc failed"); return NULL; } SET_MODULE_OWNER(dev); SET_NETDEV_DEV(dev, &hw->pdev->dev); dev->irq = hw->pdev->irq; dev->open = sky2_up; dev->stop = sky2_down; dev->do_ioctl = sky2_ioctl; dev->hard_start_xmit = sky2_xmit_frame; dev->get_stats = sky2_get_stats; dev->set_multicast_list = sky2_set_multicast; dev->set_mac_address = sky2_set_mac_address; dev->change_mtu = sky2_change_mtu; SET_ETHTOOL_OPS(dev, &sky2_ethtool_ops); dev->tx_timeout = sky2_tx_timeout; dev->watchdog_timeo = TX_WATCHDOG; if (port == 0) dev->poll = sky2_poll; dev->weight = NAPI_WEIGHT; #ifdef CONFIG_NET_POLL_CONTROLLER dev->poll_controller = sky2_netpoll; #endif sky2 = netdev_priv(dev); sky2->netdev = dev; sky2->hw = hw; sky2->msg_enable = netif_msg_init(debug, default_msg); spin_lock_init(&sky2->tx_lock); /* Auto speed and flow control */ sky2->autoneg = AUTONEG_ENABLE; sky2->tx_pause = 0; sky2->rx_pause = 1; sky2->duplex = -1; sky2->speed = -1; sky2->advertising = sky2_supported_modes(hw); sky2->rx_csum = 1; tasklet_init(&sky2->phy_task, sky2_phy_task, (unsigned long)sky2); sky2->tx_pending = TX_DEF_PENDING; sky2->rx_pending = is_ec_a1(hw) ? 8 : RX_DEF_PENDING; hw->dev[port] = dev; sky2->port = port; dev->features |= NETIF_F_LLTX; if (hw->chip_id != CHIP_ID_YUKON_EC_U) dev->features |= NETIF_F_TSO; if (highmem) dev->features |= NETIF_F_HIGHDMA; dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG; #ifdef SKY2_VLAN_TAG_USED dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX; dev->vlan_rx_register = sky2_vlan_rx_register; dev->vlan_rx_kill_vid = sky2_vlan_rx_kill_vid; #endif /* read the mac address */ memcpy_fromio(dev->dev_addr, hw->regs + B2_MAC_1 + port * 8, ETH_ALEN); memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len); /* device is off until link detection */ netif_carrier_off(dev); netif_stop_queue(dev); return dev; } static inline void sky2_show_addr(struct net_device *dev) { const struct sky2_port *sky2 = netdev_priv(dev); if (netif_msg_probe(sky2)) printk(KERN_INFO PFX "%s: addr %02x:%02x:%02x:%02x:%02x:%02x\n", dev->name, dev->dev_addr[0], dev->dev_addr[1], dev->dev_addr[2], dev->dev_addr[3], dev->dev_addr[4], dev->dev_addr[5]); } static int __devinit sky2_probe(struct pci_dev *pdev, const struct pci_device_id *ent) { struct net_device *dev, *dev1 = NULL; struct sky2_hw *hw; int err, pm_cap, using_dac = 0; err = pci_enable_device(pdev); if (err) { printk(KERN_ERR PFX "%s cannot enable PCI device\n", pci_name(pdev)); goto err_out; } err = pci_request_regions(pdev, DRV_NAME); if (err) { printk(KERN_ERR PFX "%s cannot obtain PCI resources\n", pci_name(pdev)); goto err_out; } pci_set_master(pdev); /* Find power-management capability. */ pm_cap = pci_find_capability(pdev, PCI_CAP_ID_PM); if (pm_cap == 0) { printk(KERN_ERR PFX "Cannot find PowerManagement capability, " "aborting.\n"); err = -EIO; goto err_out_free_regions; } if (sizeof(dma_addr_t) > sizeof(u32)) { err = pci_set_dma_mask(pdev, DMA_64BIT_MASK); if (!err) using_dac = 1; } if (!using_dac) { err = pci_set_dma_mask(pdev, DMA_32BIT_MASK); if (err) { printk(KERN_ERR PFX "%s no usable DMA configuration\n", pci_name(pdev)); goto err_out_free_regions; } } #ifdef __BIG_ENDIAN /* byte swap descriptors in hardware */ { u32 reg; pci_read_config_dword(pdev, PCI_DEV_REG2, ®); reg |= PCI_REV_DESC; pci_write_config_dword(pdev, PCI_DEV_REG2, reg); } #endif err = -ENOMEM; hw = kmalloc(sizeof(*hw), GFP_KERNEL); if (!hw) { printk(KERN_ERR PFX "%s: cannot allocate hardware struct\n", pci_name(pdev)); goto err_out_free_regions; } memset(hw, 0, sizeof(*hw)); hw->pdev = pdev; spin_lock_init(&hw->phy_lock); hw->regs = ioremap_nocache(pci_resource_start(pdev, 0), 0x4000); if (!hw->regs) { printk(KERN_ERR PFX "%s: cannot map device registers\n", pci_name(pdev)); goto err_out_free_hw; } hw->pm_cap = pm_cap; err = sky2_reset(hw); if (err) goto err_out_iounmap; printk(KERN_INFO PFX "addr 0x%lx irq %d Yukon-%s (0x%x) rev %d\n", pci_resource_start(pdev, 0), pdev->irq, yukon_name[hw->chip_id - CHIP_ID_YUKON], hw->chip_id, hw->chip_rev); dev = sky2_init_netdev(hw, 0, using_dac); if (!dev) goto err_out_free_pci; err = register_netdev(dev); if (err) { printk(KERN_ERR PFX "%s: cannot register net device\n", pci_name(pdev)); goto err_out_free_netdev; } sky2_show_addr(dev); if (hw->ports > 1 && (dev1 = sky2_init_netdev(hw, 1, using_dac))) { if (register_netdev(dev1) == 0) sky2_show_addr(dev1); else { /* Failure to register second port need not be fatal */ printk(KERN_WARNING PFX "register of second port failed\n"); hw->dev[1] = NULL; free_netdev(dev1); } } err = request_irq(pdev->irq, sky2_intr, SA_SHIRQ, DRV_NAME, hw); if (err) { printk(KERN_ERR PFX "%s: cannot assign irq %d\n", pci_name(pdev), pdev->irq); goto err_out_unregister; } hw->intr_mask = Y2_IS_BASE; sky2_write32(hw, B0_IMSK, hw->intr_mask); pci_set_drvdata(pdev, hw); return 0; err_out_unregister: if (dev1) { unregister_netdev(dev1); free_netdev(dev1); } unregister_netdev(dev); err_out_free_netdev: free_netdev(dev); err_out_free_pci: sky2_write8(hw, B0_CTST, CS_RST_SET); pci_free_consistent(hw->pdev, STATUS_LE_BYTES, hw->st_le, hw->st_dma); err_out_iounmap: iounmap(hw->regs); err_out_free_hw: kfree(hw); err_out_free_regions: pci_release_regions(pdev); pci_disable_device(pdev); err_out: return err; } static void __devexit sky2_remove(struct pci_dev *pdev) { struct sky2_hw *hw = pci_get_drvdata(pdev); struct net_device *dev0, *dev1; if (!hw) return; dev0 = hw->dev[0]; dev1 = hw->dev[1]; if (dev1) unregister_netdev(dev1); unregister_netdev(dev0); sky2_write32(hw, B0_IMSK, 0); sky2_set_power_state(hw, PCI_D3hot); sky2_write16(hw, B0_Y2LED, LED_STAT_OFF); sky2_write8(hw, B0_CTST, CS_RST_SET); sky2_read8(hw, B0_CTST); free_irq(pdev->irq, hw); pci_free_consistent(pdev, STATUS_LE_BYTES, hw->st_le, hw->st_dma); pci_release_regions(pdev); pci_disable_device(pdev); if (dev1) free_netdev(dev1); free_netdev(dev0); iounmap(hw->regs); kfree(hw); pci_set_drvdata(pdev, NULL); } #ifdef CONFIG_PM static int sky2_suspend(struct pci_dev *pdev, pm_message_t state) { struct sky2_hw *hw = pci_get_drvdata(pdev); int i; for (i = 0; i < 2; i++) { struct net_device *dev = hw->dev[i]; if (dev) { if (!netif_running(dev)) continue; sky2_down(dev); netif_device_detach(dev); } } return sky2_set_power_state(hw, pci_choose_state(pdev, state)); } static int sky2_resume(struct pci_dev *pdev) { struct sky2_hw *hw = pci_get_drvdata(pdev); int i; pci_restore_state(pdev); pci_enable_wake(pdev, PCI_D0, 0); sky2_set_power_state(hw, PCI_D0); sky2_reset(hw); for (i = 0; i < 2; i++) { struct net_device *dev = hw->dev[i]; if (dev) { if (netif_running(dev)) { netif_device_attach(dev); sky2_up(dev); } } } return 0; } #endif static struct pci_driver sky2_driver = { .name = DRV_NAME, .id_table = sky2_id_table, .probe = sky2_probe, .remove = __devexit_p(sky2_remove), #ifdef CONFIG_PM .suspend = sky2_suspend, .resume = sky2_resume, #endif }; static int __init sky2_init_module(void) { return pci_module_init(&sky2_driver); } static void __exit sky2_cleanup_module(void) { pci_unregister_driver(&sky2_driver); } module_init(sky2_init_module); module_exit(sky2_cleanup_module); MODULE_DESCRIPTION("Marvell Yukon 2 Gigabit Ethernet driver"); MODULE_AUTHOR("Stephen Hemminger "); MODULE_LICENSE("GPL");