// SPDX-License-Identifier: GPL-2.0 /* * Copyright (C) 2007 Oracle. All rights reserved. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include "ctree.h" #include "extent-tree.h" #include "tree-log.h" #include "disk-io.h" #include "print-tree.h" #include "volumes.h" #include "raid56.h" #include "locking.h" #include "free-space-cache.h" #include "free-space-tree.h" #include "sysfs.h" #include "qgroup.h" #include "ref-verify.h" #include "space-info.h" #include "block-rsv.h" #include "delalloc-space.h" #include "discard.h" #include "rcu-string.h" #include "zoned.h" #include "dev-replace.h" #include "fs.h" #include "accessors.h" #include "root-tree.h" #include "file-item.h" #include "orphan.h" #include "tree-checker.h" #undef SCRAMBLE_DELAYED_REFS static int __btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_delayed_ref_node *node, u64 parent, u64 root_objectid, u64 owner_objectid, u64 owner_offset, int refs_to_drop, struct btrfs_delayed_extent_op *extra_op); static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op, struct extent_buffer *leaf, struct btrfs_extent_item *ei); static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans, u64 parent, u64 root_objectid, u64 flags, u64 owner, u64 offset, struct btrfs_key *ins, int ref_mod); static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans, struct btrfs_delayed_ref_node *node, struct btrfs_delayed_extent_op *extent_op); static int find_next_key(struct btrfs_path *path, int level, struct btrfs_key *key); static int block_group_bits(struct btrfs_block_group *cache, u64 bits) { return (cache->flags & bits) == bits; } int btrfs_add_excluded_extent(struct btrfs_fs_info *fs_info, u64 start, u64 num_bytes) { u64 end = start + num_bytes - 1; set_extent_bits(&fs_info->excluded_extents, start, end, EXTENT_UPTODATE); return 0; } void btrfs_free_excluded_extents(struct btrfs_block_group *cache) { struct btrfs_fs_info *fs_info = cache->fs_info; u64 start, end; start = cache->start; end = start + cache->length - 1; clear_extent_bits(&fs_info->excluded_extents, start, end, EXTENT_UPTODATE); } /* simple helper to search for an existing data extent at a given offset */ int btrfs_lookup_data_extent(struct btrfs_fs_info *fs_info, u64 start, u64 len) { struct btrfs_root *root = btrfs_extent_root(fs_info, start); int ret; struct btrfs_key key; struct btrfs_path *path; path = btrfs_alloc_path(); if (!path) return -ENOMEM; key.objectid = start; key.offset = len; key.type = BTRFS_EXTENT_ITEM_KEY; ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); btrfs_free_path(path); return ret; } /* * helper function to lookup reference count and flags of a tree block. * * the head node for delayed ref is used to store the sum of all the * reference count modifications queued up in the rbtree. the head * node may also store the extent flags to set. This way you can check * to see what the reference count and extent flags would be if all of * the delayed refs are not processed. */ int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans, struct btrfs_fs_info *fs_info, u64 bytenr, u64 offset, int metadata, u64 *refs, u64 *flags) { struct btrfs_root *extent_root; struct btrfs_delayed_ref_head *head; struct btrfs_delayed_ref_root *delayed_refs; struct btrfs_path *path; struct btrfs_extent_item *ei; struct extent_buffer *leaf; struct btrfs_key key; u32 item_size; u64 num_refs; u64 extent_flags; int ret; /* * If we don't have skinny metadata, don't bother doing anything * different */ if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA)) { offset = fs_info->nodesize; metadata = 0; } path = btrfs_alloc_path(); if (!path) return -ENOMEM; if (!trans) { path->skip_locking = 1; path->search_commit_root = 1; } search_again: key.objectid = bytenr; key.offset = offset; if (metadata) key.type = BTRFS_METADATA_ITEM_KEY; else key.type = BTRFS_EXTENT_ITEM_KEY; extent_root = btrfs_extent_root(fs_info, bytenr); ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0); if (ret < 0) goto out_free; if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) { if (path->slots[0]) { path->slots[0]--; btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); if (key.objectid == bytenr && key.type == BTRFS_EXTENT_ITEM_KEY && key.offset == fs_info->nodesize) ret = 0; } } if (ret == 0) { leaf = path->nodes[0]; item_size = btrfs_item_size(leaf, path->slots[0]); if (item_size >= sizeof(*ei)) { ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); num_refs = btrfs_extent_refs(leaf, ei); extent_flags = btrfs_extent_flags(leaf, ei); } else { ret = -EINVAL; btrfs_print_v0_err(fs_info); if (trans) btrfs_abort_transaction(trans, ret); else btrfs_handle_fs_error(fs_info, ret, NULL); goto out_free; } BUG_ON(num_refs == 0); } else { num_refs = 0; extent_flags = 0; ret = 0; } if (!trans) goto out; delayed_refs = &trans->transaction->delayed_refs; spin_lock(&delayed_refs->lock); head = btrfs_find_delayed_ref_head(delayed_refs, bytenr); if (head) { if (!mutex_trylock(&head->mutex)) { refcount_inc(&head->refs); spin_unlock(&delayed_refs->lock); btrfs_release_path(path); /* * Mutex was contended, block until it's released and try * again */ mutex_lock(&head->mutex); mutex_unlock(&head->mutex); btrfs_put_delayed_ref_head(head); goto search_again; } spin_lock(&head->lock); if (head->extent_op && head->extent_op->update_flags) extent_flags |= head->extent_op->flags_to_set; else BUG_ON(num_refs == 0); num_refs += head->ref_mod; spin_unlock(&head->lock); mutex_unlock(&head->mutex); } spin_unlock(&delayed_refs->lock); out: WARN_ON(num_refs == 0); if (refs) *refs = num_refs; if (flags) *flags = extent_flags; out_free: btrfs_free_path(path); return ret; } /* * Back reference rules. Back refs have three main goals: * * 1) differentiate between all holders of references to an extent so that * when a reference is dropped we can make sure it was a valid reference * before freeing the extent. * * 2) Provide enough information to quickly find the holders of an extent * if we notice a given block is corrupted or bad. * * 3) Make it easy to migrate blocks for FS shrinking or storage pool * maintenance. This is actually the same as #2, but with a slightly * different use case. * * There are two kinds of back refs. The implicit back refs is optimized * for pointers in non-shared tree blocks. For a given pointer in a block, * back refs of this kind provide information about the block's owner tree * and the pointer's key. These information allow us to find the block by * b-tree searching. The full back refs is for pointers in tree blocks not * referenced by their owner trees. The location of tree block is recorded * in the back refs. Actually the full back refs is generic, and can be * used in all cases the implicit back refs is used. The major shortcoming * of the full back refs is its overhead. Every time a tree block gets * COWed, we have to update back refs entry for all pointers in it. * * For a newly allocated tree block, we use implicit back refs for * pointers in it. This means most tree related operations only involve * implicit back refs. For a tree block created in old transaction, the * only way to drop a reference to it is COW it. So we can detect the * event that tree block loses its owner tree's reference and do the * back refs conversion. * * When a tree block is COWed through a tree, there are four cases: * * The reference count of the block is one and the tree is the block's * owner tree. Nothing to do in this case. * * The reference count of the block is one and the tree is not the * block's owner tree. In this case, full back refs is used for pointers * in the block. Remove these full back refs, add implicit back refs for * every pointers in the new block. * * The reference count of the block is greater than one and the tree is * the block's owner tree. In this case, implicit back refs is used for * pointers in the block. Add full back refs for every pointers in the * block, increase lower level extents' reference counts. The original * implicit back refs are entailed to the new block. * * The reference count of the block is greater than one and the tree is * not the block's owner tree. Add implicit back refs for every pointer in * the new block, increase lower level extents' reference count. * * Back Reference Key composing: * * The key objectid corresponds to the first byte in the extent, * The key type is used to differentiate between types of back refs. * There are different meanings of the key offset for different types * of back refs. * * File extents can be referenced by: * * - multiple snapshots, subvolumes, or different generations in one subvol * - different files inside a single subvolume * - different offsets inside a file (bookend extents in file.c) * * The extent ref structure for the implicit back refs has fields for: * * - Objectid of the subvolume root * - objectid of the file holding the reference * - original offset in the file * - how many bookend extents * * The key offset for the implicit back refs is hash of the first * three fields. * * The extent ref structure for the full back refs has field for: * * - number of pointers in the tree leaf * * The key offset for the implicit back refs is the first byte of * the tree leaf * * When a file extent is allocated, The implicit back refs is used. * the fields are filled in: * * (root_key.objectid, inode objectid, offset in file, 1) * * When a file extent is removed file truncation, we find the * corresponding implicit back refs and check the following fields: * * (btrfs_header_owner(leaf), inode objectid, offset in file) * * Btree extents can be referenced by: * * - Different subvolumes * * Both the implicit back refs and the full back refs for tree blocks * only consist of key. The key offset for the implicit back refs is * objectid of block's owner tree. The key offset for the full back refs * is the first byte of parent block. * * When implicit back refs is used, information about the lowest key and * level of the tree block are required. These information are stored in * tree block info structure. */ /* * is_data == BTRFS_REF_TYPE_BLOCK, tree block type is required, * is_data == BTRFS_REF_TYPE_DATA, data type is requiried, * is_data == BTRFS_REF_TYPE_ANY, either type is OK. */ int btrfs_get_extent_inline_ref_type(const struct extent_buffer *eb, struct btrfs_extent_inline_ref *iref, enum btrfs_inline_ref_type is_data) { int type = btrfs_extent_inline_ref_type(eb, iref); u64 offset = btrfs_extent_inline_ref_offset(eb, iref); if (type == BTRFS_TREE_BLOCK_REF_KEY || type == BTRFS_SHARED_BLOCK_REF_KEY || type == BTRFS_SHARED_DATA_REF_KEY || type == BTRFS_EXTENT_DATA_REF_KEY) { if (is_data == BTRFS_REF_TYPE_BLOCK) { if (type == BTRFS_TREE_BLOCK_REF_KEY) return type; if (type == BTRFS_SHARED_BLOCK_REF_KEY) { ASSERT(eb->fs_info); /* * Every shared one has parent tree block, * which must be aligned to sector size. */ if (offset && IS_ALIGNED(offset, eb->fs_info->sectorsize)) return type; } } else if (is_data == BTRFS_REF_TYPE_DATA) { if (type == BTRFS_EXTENT_DATA_REF_KEY) return type; if (type == BTRFS_SHARED_DATA_REF_KEY) { ASSERT(eb->fs_info); /* * Every shared one has parent tree block, * which must be aligned to sector size. */ if (offset && IS_ALIGNED(offset, eb->fs_info->sectorsize)) return type; } } else { ASSERT(is_data == BTRFS_REF_TYPE_ANY); return type; } } btrfs_print_leaf(eb); btrfs_err(eb->fs_info, "eb %llu iref 0x%lx invalid extent inline ref type %d", eb->start, (unsigned long)iref, type); WARN_ON(1); return BTRFS_REF_TYPE_INVALID; } u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset) { u32 high_crc = ~(u32)0; u32 low_crc = ~(u32)0; __le64 lenum; lenum = cpu_to_le64(root_objectid); high_crc = btrfs_crc32c(high_crc, &lenum, sizeof(lenum)); lenum = cpu_to_le64(owner); low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum)); lenum = cpu_to_le64(offset); low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum)); return ((u64)high_crc << 31) ^ (u64)low_crc; } static u64 hash_extent_data_ref_item(struct extent_buffer *leaf, struct btrfs_extent_data_ref *ref) { return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref), btrfs_extent_data_ref_objectid(leaf, ref), btrfs_extent_data_ref_offset(leaf, ref)); } static int match_extent_data_ref(struct extent_buffer *leaf, struct btrfs_extent_data_ref *ref, u64 root_objectid, u64 owner, u64 offset) { if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid || btrfs_extent_data_ref_objectid(leaf, ref) != owner || btrfs_extent_data_ref_offset(leaf, ref) != offset) return 0; return 1; } static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans, struct btrfs_path *path, u64 bytenr, u64 parent, u64 root_objectid, u64 owner, u64 offset) { struct btrfs_root *root = btrfs_extent_root(trans->fs_info, bytenr); struct btrfs_key key; struct btrfs_extent_data_ref *ref; struct extent_buffer *leaf; u32 nritems; int ret; int recow; int err = -ENOENT; key.objectid = bytenr; if (parent) { key.type = BTRFS_SHARED_DATA_REF_KEY; key.offset = parent; } else { key.type = BTRFS_EXTENT_DATA_REF_KEY; key.offset = hash_extent_data_ref(root_objectid, owner, offset); } again: recow = 0; ret = btrfs_search_slot(trans, root, &key, path, -1, 1); if (ret < 0) { err = ret; goto fail; } if (parent) { if (!ret) return 0; goto fail; } leaf = path->nodes[0]; nritems = btrfs_header_nritems(leaf); while (1) { if (path->slots[0] >= nritems) { ret = btrfs_next_leaf(root, path); if (ret < 0) err = ret; if (ret) goto fail; leaf = path->nodes[0]; nritems = btrfs_header_nritems(leaf); recow = 1; } btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); if (key.objectid != bytenr || key.type != BTRFS_EXTENT_DATA_REF_KEY) goto fail; ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_data_ref); if (match_extent_data_ref(leaf, ref, root_objectid, owner, offset)) { if (recow) { btrfs_release_path(path); goto again; } err = 0; break; } path->slots[0]++; } fail: return err; } static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans, struct btrfs_path *path, u64 bytenr, u64 parent, u64 root_objectid, u64 owner, u64 offset, int refs_to_add) { struct btrfs_root *root = btrfs_extent_root(trans->fs_info, bytenr); struct btrfs_key key; struct extent_buffer *leaf; u32 size; u32 num_refs; int ret; key.objectid = bytenr; if (parent) { key.type = BTRFS_SHARED_DATA_REF_KEY; key.offset = parent; size = sizeof(struct btrfs_shared_data_ref); } else { key.type = BTRFS_EXTENT_DATA_REF_KEY; key.offset = hash_extent_data_ref(root_objectid, owner, offset); size = sizeof(struct btrfs_extent_data_ref); } ret = btrfs_insert_empty_item(trans, root, path, &key, size); if (ret && ret != -EEXIST) goto fail; leaf = path->nodes[0]; if (parent) { struct btrfs_shared_data_ref *ref; ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_shared_data_ref); if (ret == 0) { btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add); } else { num_refs = btrfs_shared_data_ref_count(leaf, ref); num_refs += refs_to_add; btrfs_set_shared_data_ref_count(leaf, ref, num_refs); } } else { struct btrfs_extent_data_ref *ref; while (ret == -EEXIST) { ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_data_ref); if (match_extent_data_ref(leaf, ref, root_objectid, owner, offset)) break; btrfs_release_path(path); key.offset++; ret = btrfs_insert_empty_item(trans, root, path, &key, size); if (ret && ret != -EEXIST) goto fail; leaf = path->nodes[0]; } ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_data_ref); if (ret == 0) { btrfs_set_extent_data_ref_root(leaf, ref, root_objectid); btrfs_set_extent_data_ref_objectid(leaf, ref, owner); btrfs_set_extent_data_ref_offset(leaf, ref, offset); btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add); } else { num_refs = btrfs_extent_data_ref_count(leaf, ref); num_refs += refs_to_add; btrfs_set_extent_data_ref_count(leaf, ref, num_refs); } } btrfs_mark_buffer_dirty(leaf); ret = 0; fail: btrfs_release_path(path); return ret; } static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct btrfs_path *path, int refs_to_drop) { struct btrfs_key key; struct btrfs_extent_data_ref *ref1 = NULL; struct btrfs_shared_data_ref *ref2 = NULL; struct extent_buffer *leaf; u32 num_refs = 0; int ret = 0; leaf = path->nodes[0]; btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); if (key.type == BTRFS_EXTENT_DATA_REF_KEY) { ref1 = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_data_ref); num_refs = btrfs_extent_data_ref_count(leaf, ref1); } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) { ref2 = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_shared_data_ref); num_refs = btrfs_shared_data_ref_count(leaf, ref2); } else if (unlikely(key.type == BTRFS_EXTENT_REF_V0_KEY)) { btrfs_print_v0_err(trans->fs_info); btrfs_abort_transaction(trans, -EINVAL); return -EINVAL; } else { BUG(); } BUG_ON(num_refs < refs_to_drop); num_refs -= refs_to_drop; if (num_refs == 0) { ret = btrfs_del_item(trans, root, path); } else { if (key.type == BTRFS_EXTENT_DATA_REF_KEY) btrfs_set_extent_data_ref_count(leaf, ref1, num_refs); else if (key.type == BTRFS_SHARED_DATA_REF_KEY) btrfs_set_shared_data_ref_count(leaf, ref2, num_refs); btrfs_mark_buffer_dirty(leaf); } return ret; } static noinline u32 extent_data_ref_count(struct btrfs_path *path, struct btrfs_extent_inline_ref *iref) { struct btrfs_key key; struct extent_buffer *leaf; struct btrfs_extent_data_ref *ref1; struct btrfs_shared_data_ref *ref2; u32 num_refs = 0; int type; leaf = path->nodes[0]; btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); BUG_ON(key.type == BTRFS_EXTENT_REF_V0_KEY); if (iref) { /* * If type is invalid, we should have bailed out earlier than * this call. */ type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA); ASSERT(type != BTRFS_REF_TYPE_INVALID); if (type == BTRFS_EXTENT_DATA_REF_KEY) { ref1 = (struct btrfs_extent_data_ref *)(&iref->offset); num_refs = btrfs_extent_data_ref_count(leaf, ref1); } else { ref2 = (struct btrfs_shared_data_ref *)(iref + 1); num_refs = btrfs_shared_data_ref_count(leaf, ref2); } } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) { ref1 = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_data_ref); num_refs = btrfs_extent_data_ref_count(leaf, ref1); } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) { ref2 = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_shared_data_ref); num_refs = btrfs_shared_data_ref_count(leaf, ref2); } else { WARN_ON(1); } return num_refs; } static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans, struct btrfs_path *path, u64 bytenr, u64 parent, u64 root_objectid) { struct btrfs_root *root = btrfs_extent_root(trans->fs_info, bytenr); struct btrfs_key key; int ret; key.objectid = bytenr; if (parent) { key.type = BTRFS_SHARED_BLOCK_REF_KEY; key.offset = parent; } else { key.type = BTRFS_TREE_BLOCK_REF_KEY; key.offset = root_objectid; } ret = btrfs_search_slot(trans, root, &key, path, -1, 1); if (ret > 0) ret = -ENOENT; return ret; } static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans, struct btrfs_path *path, u64 bytenr, u64 parent, u64 root_objectid) { struct btrfs_root *root = btrfs_extent_root(trans->fs_info, bytenr); struct btrfs_key key; int ret; key.objectid = bytenr; if (parent) { key.type = BTRFS_SHARED_BLOCK_REF_KEY; key.offset = parent; } else { key.type = BTRFS_TREE_BLOCK_REF_KEY; key.offset = root_objectid; } ret = btrfs_insert_empty_item(trans, root, path, &key, 0); btrfs_release_path(path); return ret; } static inline int extent_ref_type(u64 parent, u64 owner) { int type; if (owner < BTRFS_FIRST_FREE_OBJECTID) { if (parent > 0) type = BTRFS_SHARED_BLOCK_REF_KEY; else type = BTRFS_TREE_BLOCK_REF_KEY; } else { if (parent > 0) type = BTRFS_SHARED_DATA_REF_KEY; else type = BTRFS_EXTENT_DATA_REF_KEY; } return type; } static int find_next_key(struct btrfs_path *path, int level, struct btrfs_key *key) { for (; level < BTRFS_MAX_LEVEL; level++) { if (!path->nodes[level]) break; if (path->slots[level] + 1 >= btrfs_header_nritems(path->nodes[level])) continue; if (level == 0) btrfs_item_key_to_cpu(path->nodes[level], key, path->slots[level] + 1); else btrfs_node_key_to_cpu(path->nodes[level], key, path->slots[level] + 1); return 0; } return 1; } /* * look for inline back ref. if back ref is found, *ref_ret is set * to the address of inline back ref, and 0 is returned. * * if back ref isn't found, *ref_ret is set to the address where it * should be inserted, and -ENOENT is returned. * * if insert is true and there are too many inline back refs, the path * points to the extent item, and -EAGAIN is returned. * * NOTE: inline back refs are ordered in the same way that back ref * items in the tree are ordered. */ static noinline_for_stack int lookup_inline_extent_backref(struct btrfs_trans_handle *trans, struct btrfs_path *path, struct btrfs_extent_inline_ref **ref_ret, u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid, u64 owner, u64 offset, int insert) { struct btrfs_fs_info *fs_info = trans->fs_info; struct btrfs_root *root = btrfs_extent_root(fs_info, bytenr); struct btrfs_key key; struct extent_buffer *leaf; struct btrfs_extent_item *ei; struct btrfs_extent_inline_ref *iref; u64 flags; u64 item_size; unsigned long ptr; unsigned long end; int extra_size; int type; int want; int ret; int err = 0; bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA); int needed; key.objectid = bytenr; key.type = BTRFS_EXTENT_ITEM_KEY; key.offset = num_bytes; want = extent_ref_type(parent, owner); if (insert) { extra_size = btrfs_extent_inline_ref_size(want); path->search_for_extension = 1; path->keep_locks = 1; } else extra_size = -1; /* * Owner is our level, so we can just add one to get the level for the * block we are interested in. */ if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) { key.type = BTRFS_METADATA_ITEM_KEY; key.offset = owner; } again: ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1); if (ret < 0) { err = ret; goto out; } /* * We may be a newly converted file system which still has the old fat * extent entries for metadata, so try and see if we have one of those. */ if (ret > 0 && skinny_metadata) { skinny_metadata = false; if (path->slots[0]) { path->slots[0]--; btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); if (key.objectid == bytenr && key.type == BTRFS_EXTENT_ITEM_KEY && key.offset == num_bytes) ret = 0; } if (ret) { key.objectid = bytenr; key.type = BTRFS_EXTENT_ITEM_KEY; key.offset = num_bytes; btrfs_release_path(path); goto again; } } if (ret && !insert) { err = -ENOENT; goto out; } else if (WARN_ON(ret)) { err = -EIO; goto out; } leaf = path->nodes[0]; item_size = btrfs_item_size(leaf, path->slots[0]); if (unlikely(item_size < sizeof(*ei))) { err = -EINVAL; btrfs_print_v0_err(fs_info); btrfs_abort_transaction(trans, err); goto out; } ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); flags = btrfs_extent_flags(leaf, ei); ptr = (unsigned long)(ei + 1); end = (unsigned long)ei + item_size; if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) { ptr += sizeof(struct btrfs_tree_block_info); BUG_ON(ptr > end); } if (owner >= BTRFS_FIRST_FREE_OBJECTID) needed = BTRFS_REF_TYPE_DATA; else needed = BTRFS_REF_TYPE_BLOCK; err = -ENOENT; while (1) { if (ptr >= end) { if (ptr > end) { err = -EUCLEAN; btrfs_print_leaf(path->nodes[0]); btrfs_crit(fs_info, "overrun extent record at slot %d while looking for inline extent for root %llu owner %llu offset %llu parent %llu", path->slots[0], root_objectid, owner, offset, parent); } break; } iref = (struct btrfs_extent_inline_ref *)ptr; type = btrfs_get_extent_inline_ref_type(leaf, iref, needed); if (type == BTRFS_REF_TYPE_INVALID) { err = -EUCLEAN; goto out; } if (want < type) break; if (want > type) { ptr += btrfs_extent_inline_ref_size(type); continue; } if (type == BTRFS_EXTENT_DATA_REF_KEY) { struct btrfs_extent_data_ref *dref; dref = (struct btrfs_extent_data_ref *)(&iref->offset); if (match_extent_data_ref(leaf, dref, root_objectid, owner, offset)) { err = 0; break; } if (hash_extent_data_ref_item(leaf, dref) < hash_extent_data_ref(root_objectid, owner, offset)) break; } else { u64 ref_offset; ref_offset = btrfs_extent_inline_ref_offset(leaf, iref); if (parent > 0) { if (parent == ref_offset) { err = 0; break; } if (ref_offset < parent) break; } else { if (root_objectid == ref_offset) { err = 0; break; } if (ref_offset < root_objectid) break; } } ptr += btrfs_extent_inline_ref_size(type); } if (err == -ENOENT && insert) { if (item_size + extra_size >= BTRFS_MAX_EXTENT_ITEM_SIZE(root)) { err = -EAGAIN; goto out; } /* * To add new inline back ref, we have to make sure * there is no corresponding back ref item. * For simplicity, we just do not add new inline back * ref if there is any kind of item for this block */ if (find_next_key(path, 0, &key) == 0 && key.objectid == bytenr && key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) { err = -EAGAIN; goto out; } } *ref_ret = (struct btrfs_extent_inline_ref *)ptr; out: if (insert) { path->keep_locks = 0; path->search_for_extension = 0; btrfs_unlock_up_safe(path, 1); } return err; } /* * helper to add new inline back ref */ static noinline_for_stack void setup_inline_extent_backref(struct btrfs_fs_info *fs_info, struct btrfs_path *path, struct btrfs_extent_inline_ref *iref, u64 parent, u64 root_objectid, u64 owner, u64 offset, int refs_to_add, struct btrfs_delayed_extent_op *extent_op) { struct extent_buffer *leaf; struct btrfs_extent_item *ei; unsigned long ptr; unsigned long end; unsigned long item_offset; u64 refs; int size; int type; leaf = path->nodes[0]; ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); item_offset = (unsigned long)iref - (unsigned long)ei; type = extent_ref_type(parent, owner); size = btrfs_extent_inline_ref_size(type); btrfs_extend_item(path, size); ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); refs = btrfs_extent_refs(leaf, ei); refs += refs_to_add; btrfs_set_extent_refs(leaf, ei, refs); if (extent_op) __run_delayed_extent_op(extent_op, leaf, ei); ptr = (unsigned long)ei + item_offset; end = (unsigned long)ei + btrfs_item_size(leaf, path->slots[0]); if (ptr < end - size) memmove_extent_buffer(leaf, ptr + size, ptr, end - size - ptr); iref = (struct btrfs_extent_inline_ref *)ptr; btrfs_set_extent_inline_ref_type(leaf, iref, type); if (type == BTRFS_EXTENT_DATA_REF_KEY) { struct btrfs_extent_data_ref *dref; dref = (struct btrfs_extent_data_ref *)(&iref->offset); btrfs_set_extent_data_ref_root(leaf, dref, root_objectid); btrfs_set_extent_data_ref_objectid(leaf, dref, owner); btrfs_set_extent_data_ref_offset(leaf, dref, offset); btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add); } else if (type == BTRFS_SHARED_DATA_REF_KEY) { struct btrfs_shared_data_ref *sref; sref = (struct btrfs_shared_data_ref *)(iref + 1); btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add); btrfs_set_extent_inline_ref_offset(leaf, iref, parent); } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) { btrfs_set_extent_inline_ref_offset(leaf, iref, parent); } else { btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid); } btrfs_mark_buffer_dirty(leaf); } static int lookup_extent_backref(struct btrfs_trans_handle *trans, struct btrfs_path *path, struct btrfs_extent_inline_ref **ref_ret, u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid, u64 owner, u64 offset) { int ret; ret = lookup_inline_extent_backref(trans, path, ref_ret, bytenr, num_bytes, parent, root_objectid, owner, offset, 0); if (ret != -ENOENT) return ret; btrfs_release_path(path); *ref_ret = NULL; if (owner < BTRFS_FIRST_FREE_OBJECTID) { ret = lookup_tree_block_ref(trans, path, bytenr, parent, root_objectid); } else { ret = lookup_extent_data_ref(trans, path, bytenr, parent, root_objectid, owner, offset); } return ret; } /* * helper to update/remove inline back ref */ static noinline_for_stack void update_inline_extent_backref(struct btrfs_path *path, struct btrfs_extent_inline_ref *iref, int refs_to_mod, struct btrfs_delayed_extent_op *extent_op) { struct extent_buffer *leaf = path->nodes[0]; struct btrfs_extent_item *ei; struct btrfs_extent_data_ref *dref = NULL; struct btrfs_shared_data_ref *sref = NULL; unsigned long ptr; unsigned long end; u32 item_size; int size; int type; u64 refs; ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); refs = btrfs_extent_refs(leaf, ei); WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0); refs += refs_to_mod; btrfs_set_extent_refs(leaf, ei, refs); if (extent_op) __run_delayed_extent_op(extent_op, leaf, ei); /* * If type is invalid, we should have bailed out after * lookup_inline_extent_backref(). */ type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_ANY); ASSERT(type != BTRFS_REF_TYPE_INVALID); if (type == BTRFS_EXTENT_DATA_REF_KEY) { dref = (struct btrfs_extent_data_ref *)(&iref->offset); refs = btrfs_extent_data_ref_count(leaf, dref); } else if (type == BTRFS_SHARED_DATA_REF_KEY) { sref = (struct btrfs_shared_data_ref *)(iref + 1); refs = btrfs_shared_data_ref_count(leaf, sref); } else { refs = 1; BUG_ON(refs_to_mod != -1); } BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod); refs += refs_to_mod; if (refs > 0) { if (type == BTRFS_EXTENT_DATA_REF_KEY) btrfs_set_extent_data_ref_count(leaf, dref, refs); else btrfs_set_shared_data_ref_count(leaf, sref, refs); } else { size = btrfs_extent_inline_ref_size(type); item_size = btrfs_item_size(leaf, path->slots[0]); ptr = (unsigned long)iref; end = (unsigned long)ei + item_size; if (ptr + size < end) memmove_extent_buffer(leaf, ptr, ptr + size, end - ptr - size); item_size -= size; btrfs_truncate_item(path, item_size, 1); } btrfs_mark_buffer_dirty(leaf); } static noinline_for_stack int insert_inline_extent_backref(struct btrfs_trans_handle *trans, struct btrfs_path *path, u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid, u64 owner, u64 offset, int refs_to_add, struct btrfs_delayed_extent_op *extent_op) { struct btrfs_extent_inline_ref *iref; int ret; ret = lookup_inline_extent_backref(trans, path, &iref, bytenr, num_bytes, parent, root_objectid, owner, offset, 1); if (ret == 0) { /* * We're adding refs to a tree block we already own, this * should not happen at all. */ if (owner < BTRFS_FIRST_FREE_OBJECTID) { btrfs_print_leaf(path->nodes[0]); btrfs_crit(trans->fs_info, "adding refs to an existing tree ref, bytenr %llu num_bytes %llu root_objectid %llu slot %u", bytenr, num_bytes, root_objectid, path->slots[0]); return -EUCLEAN; } update_inline_extent_backref(path, iref, refs_to_add, extent_op); } else if (ret == -ENOENT) { setup_inline_extent_backref(trans->fs_info, path, iref, parent, root_objectid, owner, offset, refs_to_add, extent_op); ret = 0; } return ret; } static int remove_extent_backref(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct btrfs_path *path, struct btrfs_extent_inline_ref *iref, int refs_to_drop, int is_data) { int ret = 0; BUG_ON(!is_data && refs_to_drop != 1); if (iref) update_inline_extent_backref(path, iref, -refs_to_drop, NULL); else if (is_data) ret = remove_extent_data_ref(trans, root, path, refs_to_drop); else ret = btrfs_del_item(trans, root, path); return ret; } static int btrfs_issue_discard(struct block_device *bdev, u64 start, u64 len, u64 *discarded_bytes) { int j, ret = 0; u64 bytes_left, end; u64 aligned_start = ALIGN(start, 1 << SECTOR_SHIFT); if (WARN_ON(start != aligned_start)) { len -= aligned_start - start; len = round_down(len, 1 << SECTOR_SHIFT); start = aligned_start; } *discarded_bytes = 0; if (!len) return 0; end = start + len; bytes_left = len; /* Skip any superblocks on this device. */ for (j = 0; j < BTRFS_SUPER_MIRROR_MAX; j++) { u64 sb_start = btrfs_sb_offset(j); u64 sb_end = sb_start + BTRFS_SUPER_INFO_SIZE; u64 size = sb_start - start; if (!in_range(sb_start, start, bytes_left) && !in_range(sb_end, start, bytes_left) && !in_range(start, sb_start, BTRFS_SUPER_INFO_SIZE)) continue; /* * Superblock spans beginning of range. Adjust start and * try again. */ if (sb_start <= start) { start += sb_end - start; if (start > end) { bytes_left = 0; break; } bytes_left = end - start; continue; } if (size) { ret = blkdev_issue_discard(bdev, start >> SECTOR_SHIFT, size >> SECTOR_SHIFT, GFP_NOFS); if (!ret) *discarded_bytes += size; else if (ret != -EOPNOTSUPP) return ret; } start = sb_end; if (start > end) { bytes_left = 0; break; } bytes_left = end - start; } if (bytes_left) { ret = blkdev_issue_discard(bdev, start >> SECTOR_SHIFT, bytes_left >> SECTOR_SHIFT, GFP_NOFS); if (!ret) *discarded_bytes += bytes_left; } return ret; } static int do_discard_extent(struct btrfs_discard_stripe *stripe, u64 *bytes) { struct btrfs_device *dev = stripe->dev; struct btrfs_fs_info *fs_info = dev->fs_info; struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace; u64 phys = stripe->physical; u64 len = stripe->length; u64 discarded = 0; int ret = 0; /* Zone reset on a zoned filesystem */ if (btrfs_can_zone_reset(dev, phys, len)) { u64 src_disc; ret = btrfs_reset_device_zone(dev, phys, len, &discarded); if (ret) goto out; if (!btrfs_dev_replace_is_ongoing(dev_replace) || dev != dev_replace->srcdev) goto out; src_disc = discarded; /* Send to replace target as well */ ret = btrfs_reset_device_zone(dev_replace->tgtdev, phys, len, &discarded); discarded += src_disc; } else if (bdev_max_discard_sectors(stripe->dev->bdev)) { ret = btrfs_issue_discard(dev->bdev, phys, len, &discarded); } else { ret = 0; *bytes = 0; } out: *bytes = discarded; return ret; } int btrfs_discard_extent(struct btrfs_fs_info *fs_info, u64 bytenr, u64 num_bytes, u64 *actual_bytes) { int ret = 0; u64 discarded_bytes = 0; u64 end = bytenr + num_bytes; u64 cur = bytenr; /* * Avoid races with device replace and make sure the devices in the * stripes don't go away while we are discarding. */ btrfs_bio_counter_inc_blocked(fs_info); while (cur < end) { struct btrfs_discard_stripe *stripes; unsigned int num_stripes; int i; num_bytes = end - cur; stripes = btrfs_map_discard(fs_info, cur, &num_bytes, &num_stripes); if (IS_ERR(stripes)) { ret = PTR_ERR(stripes); if (ret == -EOPNOTSUPP) ret = 0; break; } for (i = 0; i < num_stripes; i++) { struct btrfs_discard_stripe *stripe = stripes + i; u64 bytes; if (!stripe->dev->bdev) { ASSERT(btrfs_test_opt(fs_info, DEGRADED)); continue; } if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &stripe->dev->dev_state)) continue; ret = do_discard_extent(stripe, &bytes); if (ret) { /* * Keep going if discard is not supported by the * device. */ if (ret != -EOPNOTSUPP) break; ret = 0; } else { discarded_bytes += bytes; } } kfree(stripes); if (ret) break; cur += num_bytes; } btrfs_bio_counter_dec(fs_info); if (actual_bytes) *actual_bytes = discarded_bytes; return ret; } /* Can return -ENOMEM */ int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans, struct btrfs_ref *generic_ref) { struct btrfs_fs_info *fs_info = trans->fs_info; int ret; ASSERT(generic_ref->type != BTRFS_REF_NOT_SET && generic_ref->action); BUG_ON(generic_ref->type == BTRFS_REF_METADATA && generic_ref->tree_ref.owning_root == BTRFS_TREE_LOG_OBJECTID); if (generic_ref->type == BTRFS_REF_METADATA) ret = btrfs_add_delayed_tree_ref(trans, generic_ref, NULL); else ret = btrfs_add_delayed_data_ref(trans, generic_ref, 0); btrfs_ref_tree_mod(fs_info, generic_ref); return ret; } /* * __btrfs_inc_extent_ref - insert backreference for a given extent * * The counterpart is in __btrfs_free_extent(), with examples and more details * how it works. * * @trans: Handle of transaction * * @node: The delayed ref node used to get the bytenr/length for * extent whose references are incremented. * * @parent: If this is a shared extent (BTRFS_SHARED_DATA_REF_KEY/ * BTRFS_SHARED_BLOCK_REF_KEY) then it holds the logical * bytenr of the parent block. Since new extents are always * created with indirect references, this will only be the case * when relocating a shared extent. In that case, root_objectid * will be BTRFS_TREE_RELOC_OBJECTID. Otherwise, parent must * be 0 * * @root_objectid: The id of the root where this modification has originated, * this can be either one of the well-known metadata trees or * the subvolume id which references this extent. * * @owner: For data extents it is the inode number of the owning file. * For metadata extents this parameter holds the level in the * tree of the extent. * * @offset: For metadata extents the offset is ignored and is currently * always passed as 0. For data extents it is the fileoffset * this extent belongs to. * * @refs_to_add Number of references to add * * @extent_op Pointer to a structure, holding information necessary when * updating a tree block's flags * */ static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans, struct btrfs_delayed_ref_node *node, u64 parent, u64 root_objectid, u64 owner, u64 offset, int refs_to_add, struct btrfs_delayed_extent_op *extent_op) { struct btrfs_path *path; struct extent_buffer *leaf; struct btrfs_extent_item *item; struct btrfs_key key; u64 bytenr = node->bytenr; u64 num_bytes = node->num_bytes; u64 refs; int ret; path = btrfs_alloc_path(); if (!path) return -ENOMEM; /* this will setup the path even if it fails to insert the back ref */ ret = insert_inline_extent_backref(trans, path, bytenr, num_bytes, parent, root_objectid, owner, offset, refs_to_add, extent_op); if ((ret < 0 && ret != -EAGAIN) || !ret) goto out; /* * Ok we had -EAGAIN which means we didn't have space to insert and * inline extent ref, so just update the reference count and add a * normal backref. */ leaf = path->nodes[0]; btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); refs = btrfs_extent_refs(leaf, item); btrfs_set_extent_refs(leaf, item, refs + refs_to_add); if (extent_op) __run_delayed_extent_op(extent_op, leaf, item); btrfs_mark_buffer_dirty(leaf); btrfs_release_path(path); /* now insert the actual backref */ if (owner < BTRFS_FIRST_FREE_OBJECTID) { BUG_ON(refs_to_add != 1); ret = insert_tree_block_ref(trans, path, bytenr, parent, root_objectid); } else { ret = insert_extent_data_ref(trans, path, bytenr, parent, root_objectid, owner, offset, refs_to_add); } if (ret) btrfs_abort_transaction(trans, ret); out: btrfs_free_path(path); return ret; } static int run_delayed_data_ref(struct btrfs_trans_handle *trans, struct btrfs_delayed_ref_node *node, struct btrfs_delayed_extent_op *extent_op, int insert_reserved) { int ret = 0; struct btrfs_delayed_data_ref *ref; struct btrfs_key ins; u64 parent = 0; u64 ref_root = 0; u64 flags = 0; ins.objectid = node->bytenr; ins.offset = node->num_bytes; ins.type = BTRFS_EXTENT_ITEM_KEY; ref = btrfs_delayed_node_to_data_ref(node); trace_run_delayed_data_ref(trans->fs_info, node, ref, node->action); if (node->type == BTRFS_SHARED_DATA_REF_KEY) parent = ref->parent; ref_root = ref->root; if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) { if (extent_op) flags |= extent_op->flags_to_set; ret = alloc_reserved_file_extent(trans, parent, ref_root, flags, ref->objectid, ref->offset, &ins, node->ref_mod); } else if (node->action == BTRFS_ADD_DELAYED_REF) { ret = __btrfs_inc_extent_ref(trans, node, parent, ref_root, ref->objectid, ref->offset, node->ref_mod, extent_op); } else if (node->action == BTRFS_DROP_DELAYED_REF) { ret = __btrfs_free_extent(trans, node, parent, ref_root, ref->objectid, ref->offset, node->ref_mod, extent_op); } else { BUG(); } return ret; } static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op, struct extent_buffer *leaf, struct btrfs_extent_item *ei) { u64 flags = btrfs_extent_flags(leaf, ei); if (extent_op->update_flags) { flags |= extent_op->flags_to_set; btrfs_set_extent_flags(leaf, ei, flags); } if (extent_op->update_key) { struct btrfs_tree_block_info *bi; BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)); bi = (struct btrfs_tree_block_info *)(ei + 1); btrfs_set_tree_block_key(leaf, bi, &extent_op->key); } } static int run_delayed_extent_op(struct btrfs_trans_handle *trans, struct btrfs_delayed_ref_head *head, struct btrfs_delayed_extent_op *extent_op) { struct btrfs_fs_info *fs_info = trans->fs_info; struct btrfs_root *root; struct btrfs_key key; struct btrfs_path *path; struct btrfs_extent_item *ei; struct extent_buffer *leaf; u32 item_size; int ret; int err = 0; int metadata = 1; if (TRANS_ABORTED(trans)) return 0; if (!btrfs_fs_incompat(fs_info, SKINNY_METADATA)) metadata = 0; path = btrfs_alloc_path(); if (!path) return -ENOMEM; key.objectid = head->bytenr; if (metadata) { key.type = BTRFS_METADATA_ITEM_KEY; key.offset = extent_op->level; } else { key.type = BTRFS_EXTENT_ITEM_KEY; key.offset = head->num_bytes; } root = btrfs_extent_root(fs_info, key.objectid); again: ret = btrfs_search_slot(trans, root, &key, path, 0, 1); if (ret < 0) { err = ret; goto out; } if (ret > 0) { if (metadata) { if (path->slots[0] > 0) { path->slots[0]--; btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); if (key.objectid == head->bytenr && key.type == BTRFS_EXTENT_ITEM_KEY && key.offset == head->num_bytes) ret = 0; } if (ret > 0) { btrfs_release_path(path); metadata = 0; key.objectid = head->bytenr; key.offset = head->num_bytes; key.type = BTRFS_EXTENT_ITEM_KEY; goto again; } } else { err = -EIO; goto out; } } leaf = path->nodes[0]; item_size = btrfs_item_size(leaf, path->slots[0]); if (unlikely(item_size < sizeof(*ei))) { err = -EINVAL; btrfs_print_v0_err(fs_info); btrfs_abort_transaction(trans, err); goto out; } ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); __run_delayed_extent_op(extent_op, leaf, ei); btrfs_mark_buffer_dirty(leaf); out: btrfs_free_path(path); return err; } static int run_delayed_tree_ref(struct btrfs_trans_handle *trans, struct btrfs_delayed_ref_node *node, struct btrfs_delayed_extent_op *extent_op, int insert_reserved) { int ret = 0; struct btrfs_delayed_tree_ref *ref; u64 parent = 0; u64 ref_root = 0; ref = btrfs_delayed_node_to_tree_ref(node); trace_run_delayed_tree_ref(trans->fs_info, node, ref, node->action); if (node->type == BTRFS_SHARED_BLOCK_REF_KEY) parent = ref->parent; ref_root = ref->root; if (node->ref_mod != 1) { btrfs_err(trans->fs_info, "btree block(%llu) has %d references rather than 1: action %d ref_root %llu parent %llu", node->bytenr, node->ref_mod, node->action, ref_root, parent); return -EIO; } if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) { BUG_ON(!extent_op || !extent_op->update_flags); ret = alloc_reserved_tree_block(trans, node, extent_op); } else if (node->action == BTRFS_ADD_DELAYED_REF) { ret = __btrfs_inc_extent_ref(trans, node, parent, ref_root, ref->level, 0, 1, extent_op); } else if (node->action == BTRFS_DROP_DELAYED_REF) { ret = __btrfs_free_extent(trans, node, parent, ref_root, ref->level, 0, 1, extent_op); } else { BUG(); } return ret; } /* helper function to actually process a single delayed ref entry */ static int run_one_delayed_ref(struct btrfs_trans_handle *trans, struct btrfs_delayed_ref_node *node, struct btrfs_delayed_extent_op *extent_op, int insert_reserved) { int ret = 0; if (TRANS_ABORTED(trans)) { if (insert_reserved) btrfs_pin_extent(trans, node->bytenr, node->num_bytes, 1); return 0; } if (node->type == BTRFS_TREE_BLOCK_REF_KEY || node->type == BTRFS_SHARED_BLOCK_REF_KEY) ret = run_delayed_tree_ref(trans, node, extent_op, insert_reserved); else if (node->type == BTRFS_EXTENT_DATA_REF_KEY || node->type == BTRFS_SHARED_DATA_REF_KEY) ret = run_delayed_data_ref(trans, node, extent_op, insert_reserved); else BUG(); if (ret && insert_reserved) btrfs_pin_extent(trans, node->bytenr, node->num_bytes, 1); if (ret < 0) btrfs_err(trans->fs_info, "failed to run delayed ref for logical %llu num_bytes %llu type %u action %u ref_mod %d: %d", node->bytenr, node->num_bytes, node->type, node->action, node->ref_mod, ret); return ret; } static inline struct btrfs_delayed_ref_node * select_delayed_ref(struct btrfs_delayed_ref_head *head) { struct btrfs_delayed_ref_node *ref; if (RB_EMPTY_ROOT(&head->ref_tree.rb_root)) return NULL; /* * Select a delayed ref of type BTRFS_ADD_DELAYED_REF first. * This is to prevent a ref count from going down to zero, which deletes * the extent item from the extent tree, when there still are references * to add, which would fail because they would not find the extent item. */ if (!list_empty(&head->ref_add_list)) return list_first_entry(&head->ref_add_list, struct btrfs_delayed_ref_node, add_list); ref = rb_entry(rb_first_cached(&head->ref_tree), struct btrfs_delayed_ref_node, ref_node); ASSERT(list_empty(&ref->add_list)); return ref; } static void unselect_delayed_ref_head(struct btrfs_delayed_ref_root *delayed_refs, struct btrfs_delayed_ref_head *head) { spin_lock(&delayed_refs->lock); head->processing = 0; delayed_refs->num_heads_ready++; spin_unlock(&delayed_refs->lock); btrfs_delayed_ref_unlock(head); } static struct btrfs_delayed_extent_op *cleanup_extent_op( struct btrfs_delayed_ref_head *head) { struct btrfs_delayed_extent_op *extent_op = head->extent_op; if (!extent_op) return NULL; if (head->must_insert_reserved) { head->extent_op = NULL; btrfs_free_delayed_extent_op(extent_op); return NULL; } return extent_op; } static int run_and_cleanup_extent_op(struct btrfs_trans_handle *trans, struct btrfs_delayed_ref_head *head) { struct btrfs_delayed_extent_op *extent_op; int ret; extent_op = cleanup_extent_op(head); if (!extent_op) return 0; head->extent_op = NULL; spin_unlock(&head->lock); ret = run_delayed_extent_op(trans, head, extent_op); btrfs_free_delayed_extent_op(extent_op); return ret ? ret : 1; } void btrfs_cleanup_ref_head_accounting(struct btrfs_fs_info *fs_info, struct btrfs_delayed_ref_root *delayed_refs, struct btrfs_delayed_ref_head *head) { int nr_items = 1; /* Dropping this ref head update. */ /* * We had csum deletions accounted for in our delayed refs rsv, we need * to drop the csum leaves for this update from our delayed_refs_rsv. */ if (head->total_ref_mod < 0 && head->is_data) { spin_lock(&delayed_refs->lock); delayed_refs->pending_csums -= head->num_bytes; spin_unlock(&delayed_refs->lock); nr_items += btrfs_csum_bytes_to_leaves(fs_info, head->num_bytes); } btrfs_delayed_refs_rsv_release(fs_info, nr_items); } static int cleanup_ref_head(struct btrfs_trans_handle *trans, struct btrfs_delayed_ref_head *head) { struct btrfs_fs_info *fs_info = trans->fs_info; struct btrfs_delayed_ref_root *delayed_refs; int ret; delayed_refs = &trans->transaction->delayed_refs; ret = run_and_cleanup_extent_op(trans, head); if (ret < 0) { unselect_delayed_ref_head(delayed_refs, head); btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret); return ret; } else if (ret) { return ret; } /* * Need to drop our head ref lock and re-acquire the delayed ref lock * and then re-check to make sure nobody got added. */ spin_unlock(&head->lock); spin_lock(&delayed_refs->lock); spin_lock(&head->lock); if (!RB_EMPTY_ROOT(&head->ref_tree.rb_root) || head->extent_op) { spin_unlock(&head->lock); spin_unlock(&delayed_refs->lock); return 1; } btrfs_delete_ref_head(delayed_refs, head); spin_unlock(&head->lock); spin_unlock(&delayed_refs->lock); if (head->must_insert_reserved) { btrfs_pin_extent(trans, head->bytenr, head->num_bytes, 1); if (head->is_data) { struct btrfs_root *csum_root; csum_root = btrfs_csum_root(fs_info, head->bytenr); ret = btrfs_del_csums(trans, csum_root, head->bytenr, head->num_bytes); } } btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head); trace_run_delayed_ref_head(fs_info, head, 0); btrfs_delayed_ref_unlock(head); btrfs_put_delayed_ref_head(head); return ret; } static struct btrfs_delayed_ref_head *btrfs_obtain_ref_head( struct btrfs_trans_handle *trans) { struct btrfs_delayed_ref_root *delayed_refs = &trans->transaction->delayed_refs; struct btrfs_delayed_ref_head *head = NULL; int ret; spin_lock(&delayed_refs->lock); head = btrfs_select_ref_head(delayed_refs); if (!head) { spin_unlock(&delayed_refs->lock); return head; } /* * Grab the lock that says we are going to process all the refs for * this head */ ret = btrfs_delayed_ref_lock(delayed_refs, head); spin_unlock(&delayed_refs->lock); /* * We may have dropped the spin lock to get the head mutex lock, and * that might have given someone else time to free the head. If that's * true, it has been removed from our list and we can move on. */ if (ret == -EAGAIN) head = ERR_PTR(-EAGAIN); return head; } static int btrfs_run_delayed_refs_for_head(struct btrfs_trans_handle *trans, struct btrfs_delayed_ref_head *locked_ref) { struct btrfs_fs_info *fs_info = trans->fs_info; struct btrfs_delayed_ref_root *delayed_refs; struct btrfs_delayed_extent_op *extent_op; struct btrfs_delayed_ref_node *ref; int must_insert_reserved = 0; int ret; delayed_refs = &trans->transaction->delayed_refs; lockdep_assert_held(&locked_ref->mutex); lockdep_assert_held(&locked_ref->lock); while ((ref = select_delayed_ref(locked_ref))) { if (ref->seq && btrfs_check_delayed_seq(fs_info, ref->seq)) { spin_unlock(&locked_ref->lock); unselect_delayed_ref_head(delayed_refs, locked_ref); return -EAGAIN; } ref->in_tree = 0; rb_erase_cached(&ref->ref_node, &locked_ref->ref_tree); RB_CLEAR_NODE(&ref->ref_node); if (!list_empty(&ref->add_list)) list_del(&ref->add_list); /* * When we play the delayed ref, also correct the ref_mod on * head */ switch (ref->action) { case BTRFS_ADD_DELAYED_REF: case BTRFS_ADD_DELAYED_EXTENT: locked_ref->ref_mod -= ref->ref_mod; break; case BTRFS_DROP_DELAYED_REF: locked_ref->ref_mod += ref->ref_mod; break; default: WARN_ON(1); } atomic_dec(&delayed_refs->num_entries); /* * Record the must_insert_reserved flag before we drop the * spin lock. */ must_insert_reserved = locked_ref->must_insert_reserved; locked_ref->must_insert_reserved = 0; extent_op = locked_ref->extent_op; locked_ref->extent_op = NULL; spin_unlock(&locked_ref->lock); ret = run_one_delayed_ref(trans, ref, extent_op, must_insert_reserved); btrfs_free_delayed_extent_op(extent_op); if (ret) { unselect_delayed_ref_head(delayed_refs, locked_ref); btrfs_put_delayed_ref(ref); return ret; } btrfs_put_delayed_ref(ref); cond_resched(); spin_lock(&locked_ref->lock); btrfs_merge_delayed_refs(fs_info, delayed_refs, locked_ref); } return 0; } /* * Returns 0 on success or if called with an already aborted transaction. * Returns -ENOMEM or -EIO on failure and will abort the transaction. */ static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans, unsigned long nr) { struct btrfs_fs_info *fs_info = trans->fs_info; struct btrfs_delayed_ref_root *delayed_refs; struct btrfs_delayed_ref_head *locked_ref = NULL; int ret; unsigned long count = 0; delayed_refs = &trans->transaction->delayed_refs; do { if (!locked_ref) { locked_ref = btrfs_obtain_ref_head(trans); if (IS_ERR_OR_NULL(locked_ref)) { if (PTR_ERR(locked_ref) == -EAGAIN) { continue; } else { break; } } count++; } /* * We need to try and merge add/drops of the same ref since we * can run into issues with relocate dropping the implicit ref * and then it being added back again before the drop can * finish. If we merged anything we need to re-loop so we can * get a good ref. * Or we can get node references of the same type that weren't * merged when created due to bumps in the tree mod seq, and * we need to merge them to prevent adding an inline extent * backref before dropping it (triggering a BUG_ON at * insert_inline_extent_backref()). */ spin_lock(&locked_ref->lock); btrfs_merge_delayed_refs(fs_info, delayed_refs, locked_ref); ret = btrfs_run_delayed_refs_for_head(trans, locked_ref); if (ret < 0 && ret != -EAGAIN) { /* * Error, btrfs_run_delayed_refs_for_head already * unlocked everything so just bail out */ return ret; } else if (!ret) { /* * Success, perform the usual cleanup of a processed * head */ ret = cleanup_ref_head(trans, locked_ref); if (ret > 0 ) { /* We dropped our lock, we need to loop. */ ret = 0; continue; } else if (ret) { return ret; } } /* * Either success case or btrfs_run_delayed_refs_for_head * returned -EAGAIN, meaning we need to select another head */ locked_ref = NULL; cond_resched(); } while ((nr != -1 && count < nr) || locked_ref); return 0; } #ifdef SCRAMBLE_DELAYED_REFS /* * Normally delayed refs get processed in ascending bytenr order. This * correlates in most cases to the order added. To expose dependencies on this * order, we start to process the tree in the middle instead of the beginning */ static u64 find_middle(struct rb_root *root) { struct rb_node *n = root->rb_node; struct btrfs_delayed_ref_node *entry; int alt = 1; u64 middle; u64 first = 0, last = 0; n = rb_first(root); if (n) { entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node); first = entry->bytenr; } n = rb_last(root); if (n) { entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node); last = entry->bytenr; } n = root->rb_node; while (n) { entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node); WARN_ON(!entry->in_tree); middle = entry->bytenr; if (alt) n = n->rb_left; else n = n->rb_right; alt = 1 - alt; } return middle; } #endif /* * this starts processing the delayed reference count updates and * extent insertions we have queued up so far. count can be * 0, which means to process everything in the tree at the start * of the run (but not newly added entries), or it can be some target * number you'd like to process. * * Returns 0 on success or if called with an aborted transaction * Returns <0 on error and aborts the transaction */ int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans, unsigned long count) { struct btrfs_fs_info *fs_info = trans->fs_info; struct rb_node *node; struct btrfs_delayed_ref_root *delayed_refs; struct btrfs_delayed_ref_head *head; int ret; int run_all = count == (unsigned long)-1; /* We'll clean this up in btrfs_cleanup_transaction */ if (TRANS_ABORTED(trans)) return 0; if (test_bit(BTRFS_FS_CREATING_FREE_SPACE_TREE, &fs_info->flags)) return 0; delayed_refs = &trans->transaction->delayed_refs; if (count == 0) count = delayed_refs->num_heads_ready; again: #ifdef SCRAMBLE_DELAYED_REFS delayed_refs->run_delayed_start = find_middle(&delayed_refs->root); #endif ret = __btrfs_run_delayed_refs(trans, count); if (ret < 0) { btrfs_abort_transaction(trans, ret); return ret; } if (run_all) { btrfs_create_pending_block_groups(trans); spin_lock(&delayed_refs->lock); node = rb_first_cached(&delayed_refs->href_root); if (!node) { spin_unlock(&delayed_refs->lock); goto out; } head = rb_entry(node, struct btrfs_delayed_ref_head, href_node); refcount_inc(&head->refs); spin_unlock(&delayed_refs->lock); /* Mutex was contended, block until it's released and retry. */ mutex_lock(&head->mutex); mutex_unlock(&head->mutex); btrfs_put_delayed_ref_head(head); cond_resched(); goto again; } out: return 0; } int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans, struct extent_buffer *eb, u64 flags) { struct btrfs_delayed_extent_op *extent_op; int level = btrfs_header_level(eb); int ret; extent_op = btrfs_alloc_delayed_extent_op(); if (!extent_op) return -ENOMEM; extent_op->flags_to_set = flags; extent_op->update_flags = true; extent_op->update_key = false; extent_op->level = level; ret = btrfs_add_delayed_extent_op(trans, eb->start, eb->len, extent_op); if (ret) btrfs_free_delayed_extent_op(extent_op); return ret; } static noinline int check_delayed_ref(struct btrfs_root *root, struct btrfs_path *path, u64 objectid, u64 offset, u64 bytenr) { struct btrfs_delayed_ref_head *head; struct btrfs_delayed_ref_node *ref; struct btrfs_delayed_data_ref *data_ref; struct btrfs_delayed_ref_root *delayed_refs; struct btrfs_transaction *cur_trans; struct rb_node *node; int ret = 0; spin_lock(&root->fs_info->trans_lock); cur_trans = root->fs_info->running_transaction; if (cur_trans) refcount_inc(&cur_trans->use_count); spin_unlock(&root->fs_info->trans_lock); if (!cur_trans) return 0; delayed_refs = &cur_trans->delayed_refs; spin_lock(&delayed_refs->lock); head = btrfs_find_delayed_ref_head(delayed_refs, bytenr); if (!head) { spin_unlock(&delayed_refs->lock); btrfs_put_transaction(cur_trans); return 0; } if (!mutex_trylock(&head->mutex)) { if (path->nowait) { spin_unlock(&delayed_refs->lock); btrfs_put_transaction(cur_trans); return -EAGAIN; } refcount_inc(&head->refs); spin_unlock(&delayed_refs->lock); btrfs_release_path(path); /* * Mutex was contended, block until it's released and let * caller try again */ mutex_lock(&head->mutex); mutex_unlock(&head->mutex); btrfs_put_delayed_ref_head(head); btrfs_put_transaction(cur_trans); return -EAGAIN; } spin_unlock(&delayed_refs->lock); spin_lock(&head->lock); /* * XXX: We should replace this with a proper search function in the * future. */ for (node = rb_first_cached(&head->ref_tree); node; node = rb_next(node)) { ref = rb_entry(node, struct btrfs_delayed_ref_node, ref_node); /* If it's a shared ref we know a cross reference exists */ if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) { ret = 1; break; } data_ref = btrfs_delayed_node_to_data_ref(ref); /* * If our ref doesn't match the one we're currently looking at * then we have a cross reference. */ if (data_ref->root != root->root_key.objectid || data_ref->objectid != objectid || data_ref->offset != offset) { ret = 1; break; } } spin_unlock(&head->lock); mutex_unlock(&head->mutex); btrfs_put_transaction(cur_trans); return ret; } static noinline int check_committed_ref(struct btrfs_root *root, struct btrfs_path *path, u64 objectid, u64 offset, u64 bytenr, bool strict) { struct btrfs_fs_info *fs_info = root->fs_info; struct btrfs_root *extent_root = btrfs_extent_root(fs_info, bytenr); struct extent_buffer *leaf; struct btrfs_extent_data_ref *ref; struct btrfs_extent_inline_ref *iref; struct btrfs_extent_item *ei; struct btrfs_key key; u32 item_size; int type; int ret; key.objectid = bytenr; key.offset = (u64)-1; key.type = BTRFS_EXTENT_ITEM_KEY; ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0); if (ret < 0) goto out; BUG_ON(ret == 0); /* Corruption */ ret = -ENOENT; if (path->slots[0] == 0) goto out; path->slots[0]--; leaf = path->nodes[0]; btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY) goto out; ret = 1; item_size = btrfs_item_size(leaf, path->slots[0]); ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); /* If extent item has more than 1 inline ref then it's shared */ if (item_size != sizeof(*ei) + btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY)) goto out; /* * If extent created before last snapshot => it's shared unless the * snapshot has been deleted. Use the heuristic if strict is false. */ if (!strict && (btrfs_extent_generation(leaf, ei) <= btrfs_root_last_snapshot(&root->root_item))) goto out; iref = (struct btrfs_extent_inline_ref *)(ei + 1); /* If this extent has SHARED_DATA_REF then it's shared */ type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA); if (type != BTRFS_EXTENT_DATA_REF_KEY) goto out; ref = (struct btrfs_extent_data_ref *)(&iref->offset); if (btrfs_extent_refs(leaf, ei) != btrfs_extent_data_ref_count(leaf, ref) || btrfs_extent_data_ref_root(leaf, ref) != root->root_key.objectid || btrfs_extent_data_ref_objectid(leaf, ref) != objectid || btrfs_extent_data_ref_offset(leaf, ref) != offset) goto out; ret = 0; out: return ret; } int btrfs_cross_ref_exist(struct btrfs_root *root, u64 objectid, u64 offset, u64 bytenr, bool strict, struct btrfs_path *path) { int ret; do { ret = check_committed_ref(root, path, objectid, offset, bytenr, strict); if (ret && ret != -ENOENT) goto out; ret = check_delayed_ref(root, path, objectid, offset, bytenr); } while (ret == -EAGAIN); out: btrfs_release_path(path); if (btrfs_is_data_reloc_root(root)) WARN_ON(ret > 0); return ret; } static int __btrfs_mod_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct extent_buffer *buf, int full_backref, int inc) { struct btrfs_fs_info *fs_info = root->fs_info; u64 bytenr; u64 num_bytes; u64 parent; u64 ref_root; u32 nritems; struct btrfs_key key; struct btrfs_file_extent_item *fi; struct btrfs_ref generic_ref = { 0 }; bool for_reloc = btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC); int i; int action; int level; int ret = 0; if (btrfs_is_testing(fs_info)) return 0; ref_root = btrfs_header_owner(buf); nritems = btrfs_header_nritems(buf); level = btrfs_header_level(buf); if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state) && level == 0) return 0; if (full_backref) parent = buf->start; else parent = 0; if (inc) action = BTRFS_ADD_DELAYED_REF; else action = BTRFS_DROP_DELAYED_REF; for (i = 0; i < nritems; i++) { if (level == 0) { btrfs_item_key_to_cpu(buf, &key, i); if (key.type != BTRFS_EXTENT_DATA_KEY) continue; fi = btrfs_item_ptr(buf, i, struct btrfs_file_extent_item); if (btrfs_file_extent_type(buf, fi) == BTRFS_FILE_EXTENT_INLINE) continue; bytenr = btrfs_file_extent_disk_bytenr(buf, fi); if (bytenr == 0) continue; num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi); key.offset -= btrfs_file_extent_offset(buf, fi); btrfs_init_generic_ref(&generic_ref, action, bytenr, num_bytes, parent); btrfs_init_data_ref(&generic_ref, ref_root, key.objectid, key.offset, root->root_key.objectid, for_reloc); if (inc) ret = btrfs_inc_extent_ref(trans, &generic_ref); else ret = btrfs_free_extent(trans, &generic_ref); if (ret) goto fail; } else { bytenr = btrfs_node_blockptr(buf, i); num_bytes = fs_info->nodesize; btrfs_init_generic_ref(&generic_ref, action, bytenr, num_bytes, parent); btrfs_init_tree_ref(&generic_ref, level - 1, ref_root, root->root_key.objectid, for_reloc); if (inc) ret = btrfs_inc_extent_ref(trans, &generic_ref); else ret = btrfs_free_extent(trans, &generic_ref); if (ret) goto fail; } } return 0; fail: return ret; } int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct extent_buffer *buf, int full_backref) { return __btrfs_mod_ref(trans, root, buf, full_backref, 1); } int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct extent_buffer *buf, int full_backref) { return __btrfs_mod_ref(trans, root, buf, full_backref, 0); } static u64 get_alloc_profile_by_root(struct btrfs_root *root, int data) { struct btrfs_fs_info *fs_info = root->fs_info; u64 flags; u64 ret; if (data) flags = BTRFS_BLOCK_GROUP_DATA; else if (root == fs_info->chunk_root) flags = BTRFS_BLOCK_GROUP_SYSTEM; else flags = BTRFS_BLOCK_GROUP_METADATA; ret = btrfs_get_alloc_profile(fs_info, flags); return ret; } static u64 first_logical_byte(struct btrfs_fs_info *fs_info) { struct rb_node *leftmost; u64 bytenr = 0; read_lock(&fs_info->block_group_cache_lock); /* Get the block group with the lowest logical start address. */ leftmost = rb_first_cached(&fs_info->block_group_cache_tree); if (leftmost) { struct btrfs_block_group *bg; bg = rb_entry(leftmost, struct btrfs_block_group, cache_node); bytenr = bg->start; } read_unlock(&fs_info->block_group_cache_lock); return bytenr; } static int pin_down_extent(struct btrfs_trans_handle *trans, struct btrfs_block_group *cache, u64 bytenr, u64 num_bytes, int reserved) { struct btrfs_fs_info *fs_info = cache->fs_info; spin_lock(&cache->space_info->lock); spin_lock(&cache->lock); cache->pinned += num_bytes; btrfs_space_info_update_bytes_pinned(fs_info, cache->space_info, num_bytes); if (reserved) { cache->reserved -= num_bytes; cache->space_info->bytes_reserved -= num_bytes; } spin_unlock(&cache->lock); spin_unlock(&cache->space_info->lock); set_extent_dirty(&trans->transaction->pinned_extents, bytenr, bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL); return 0; } int btrfs_pin_extent(struct btrfs_trans_handle *trans, u64 bytenr, u64 num_bytes, int reserved) { struct btrfs_block_group *cache; cache = btrfs_lookup_block_group(trans->fs_info, bytenr); BUG_ON(!cache); /* Logic error */ pin_down_extent(trans, cache, bytenr, num_bytes, reserved); btrfs_put_block_group(cache); return 0; } /* * this function must be called within transaction */ int btrfs_pin_extent_for_log_replay(struct btrfs_trans_handle *trans, u64 bytenr, u64 num_bytes) { struct btrfs_block_group *cache; int ret; cache = btrfs_lookup_block_group(trans->fs_info, bytenr); if (!cache) return -EINVAL; /* * Fully cache the free space first so that our pin removes the free space * from the cache. */ ret = btrfs_cache_block_group(cache, true); if (ret) goto out; pin_down_extent(trans, cache, bytenr, num_bytes, 0); /* remove us from the free space cache (if we're there at all) */ ret = btrfs_remove_free_space(cache, bytenr, num_bytes); out: btrfs_put_block_group(cache); return ret; } static int __exclude_logged_extent(struct btrfs_fs_info *fs_info, u64 start, u64 num_bytes) { int ret; struct btrfs_block_group *block_group; block_group = btrfs_lookup_block_group(fs_info, start); if (!block_group) return -EINVAL; ret = btrfs_cache_block_group(block_group, true); if (ret) goto out; ret = btrfs_remove_free_space(block_group, start, num_bytes); out: btrfs_put_block_group(block_group); return ret; } int btrfs_exclude_logged_extents(struct extent_buffer *eb) { struct btrfs_fs_info *fs_info = eb->fs_info; struct btrfs_file_extent_item *item; struct btrfs_key key; int found_type; int i; int ret = 0; if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS)) return 0; for (i = 0; i < btrfs_header_nritems(eb); i++) { btrfs_item_key_to_cpu(eb, &key, i); if (key.type != BTRFS_EXTENT_DATA_KEY) continue; item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item); found_type = btrfs_file_extent_type(eb, item); if (found_type == BTRFS_FILE_EXTENT_INLINE) continue; if (btrfs_file_extent_disk_bytenr(eb, item) == 0) continue; key.objectid = btrfs_file_extent_disk_bytenr(eb, item); key.offset = btrfs_file_extent_disk_num_bytes(eb, item); ret = __exclude_logged_extent(fs_info, key.objectid, key.offset); if (ret) break; } return ret; } static void btrfs_inc_block_group_reservations(struct btrfs_block_group *bg) { atomic_inc(&bg->reservations); } /* * Returns the free cluster for the given space info and sets empty_cluster to * what it should be based on the mount options. */ static struct btrfs_free_cluster * fetch_cluster_info(struct btrfs_fs_info *fs_info, struct btrfs_space_info *space_info, u64 *empty_cluster) { struct btrfs_free_cluster *ret = NULL; *empty_cluster = 0; if (btrfs_mixed_space_info(space_info)) return ret; if (space_info->flags & BTRFS_BLOCK_GROUP_METADATA) { ret = &fs_info->meta_alloc_cluster; if (btrfs_test_opt(fs_info, SSD)) *empty_cluster = SZ_2M; else *empty_cluster = SZ_64K; } else if ((space_info->flags & BTRFS_BLOCK_GROUP_DATA) && btrfs_test_opt(fs_info, SSD_SPREAD)) { *empty_cluster = SZ_2M; ret = &fs_info->data_alloc_cluster; } return ret; } static int unpin_extent_range(struct btrfs_fs_info *fs_info, u64 start, u64 end, const bool return_free_space) { struct btrfs_block_group *cache = NULL; struct btrfs_space_info *space_info; struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; struct btrfs_free_cluster *cluster = NULL; u64 len; u64 total_unpinned = 0; u64 empty_cluster = 0; bool readonly; while (start <= end) { readonly = false; if (!cache || start >= cache->start + cache->length) { if (cache) btrfs_put_block_group(cache); total_unpinned = 0; cache = btrfs_lookup_block_group(fs_info, start); BUG_ON(!cache); /* Logic error */ cluster = fetch_cluster_info(fs_info, cache->space_info, &empty_cluster); empty_cluster <<= 1; } len = cache->start + cache->length - start; len = min(len, end + 1 - start); if (return_free_space) btrfs_add_free_space(cache, start, len); start += len; total_unpinned += len; space_info = cache->space_info; /* * If this space cluster has been marked as fragmented and we've * unpinned enough in this block group to potentially allow a * cluster to be created inside of it go ahead and clear the * fragmented check. */ if (cluster && cluster->fragmented && total_unpinned > empty_cluster) { spin_lock(&cluster->lock); cluster->fragmented = 0; spin_unlock(&cluster->lock); } spin_lock(&space_info->lock); spin_lock(&cache->lock); cache->pinned -= len; btrfs_space_info_update_bytes_pinned(fs_info, space_info, -len); space_info->max_extent_size = 0; if (cache->ro) { space_info->bytes_readonly += len; readonly = true; } else if (btrfs_is_zoned(fs_info)) { /* Need reset before reusing in a zoned block group */ space_info->bytes_zone_unusable += len; readonly = true; } spin_unlock(&cache->lock); if (!readonly && return_free_space && global_rsv->space_info == space_info) { spin_lock(&global_rsv->lock); if (!global_rsv->full) { u64 to_add = min(len, global_rsv->size - global_rsv->reserved); global_rsv->reserved += to_add; btrfs_space_info_update_bytes_may_use(fs_info, space_info, to_add); if (global_rsv->reserved >= global_rsv->size) global_rsv->full = 1; len -= to_add; } spin_unlock(&global_rsv->lock); } /* Add to any tickets we may have */ if (!readonly && return_free_space && len) btrfs_try_granting_tickets(fs_info, space_info); spin_unlock(&space_info->lock); } if (cache) btrfs_put_block_group(cache); return 0; } int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans) { struct btrfs_fs_info *fs_info = trans->fs_info; struct btrfs_block_group *block_group, *tmp; struct list_head *deleted_bgs; struct extent_io_tree *unpin; u64 start; u64 end; int ret; unpin = &trans->transaction->pinned_extents; while (!TRANS_ABORTED(trans)) { struct extent_state *cached_state = NULL; mutex_lock(&fs_info->unused_bg_unpin_mutex); ret = find_first_extent_bit(unpin, 0, &start, &end, EXTENT_DIRTY, &cached_state); if (ret) { mutex_unlock(&fs_info->unused_bg_unpin_mutex); break; } if (btrfs_test_opt(fs_info, DISCARD_SYNC)) ret = btrfs_discard_extent(fs_info, start, end + 1 - start, NULL); clear_extent_dirty(unpin, start, end, &cached_state); unpin_extent_range(fs_info, start, end, true); mutex_unlock(&fs_info->unused_bg_unpin_mutex); free_extent_state(cached_state); cond_resched(); } if (btrfs_test_opt(fs_info, DISCARD_ASYNC)) { btrfs_discard_calc_delay(&fs_info->discard_ctl); btrfs_discard_schedule_work(&fs_info->discard_ctl, true); } /* * Transaction is finished. We don't need the lock anymore. We * do need to clean up the block groups in case of a transaction * abort. */ deleted_bgs = &trans->transaction->deleted_bgs; list_for_each_entry_safe(block_group, tmp, deleted_bgs, bg_list) { u64 trimmed = 0; ret = -EROFS; if (!TRANS_ABORTED(trans)) ret = btrfs_discard_extent(fs_info, block_group->start, block_group->length, &trimmed); list_del_init(&block_group->bg_list); btrfs_unfreeze_block_group(block_group); btrfs_put_block_group(block_group); if (ret) { const char *errstr = btrfs_decode_error(ret); btrfs_warn(fs_info, "discard failed while removing blockgroup: errno=%d %s", ret, errstr); } } return 0; } static int do_free_extent_accounting(struct btrfs_trans_handle *trans, u64 bytenr, u64 num_bytes, bool is_data) { int ret; if (is_data) { struct btrfs_root *csum_root; csum_root = btrfs_csum_root(trans->fs_info, bytenr); ret = btrfs_del_csums(trans, csum_root, bytenr, num_bytes); if (ret) { btrfs_abort_transaction(trans, ret); return ret; } } ret = add_to_free_space_tree(trans, bytenr, num_bytes); if (ret) { btrfs_abort_transaction(trans, ret); return ret; } ret = btrfs_update_block_group(trans, bytenr, num_bytes, false); if (ret) btrfs_abort_transaction(trans, ret); return ret; } #define abort_and_dump(trans, path, fmt, args...) \ ({ \ btrfs_abort_transaction(trans, -EUCLEAN); \ btrfs_print_leaf(path->nodes[0]); \ btrfs_crit(trans->fs_info, fmt, ##args); \ }) /* * Drop one or more refs of @node. * * 1. Locate the extent refs. * It's either inline in EXTENT/METADATA_ITEM or in keyed SHARED_* item. * Locate it, then reduce the refs number or remove the ref line completely. * * 2. Update the refs count in EXTENT/METADATA_ITEM * * Inline backref case: * * in extent tree we have: * * item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 16201 itemsize 82 * refs 2 gen 6 flags DATA * extent data backref root FS_TREE objectid 258 offset 0 count 1 * extent data backref root FS_TREE objectid 257 offset 0 count 1 * * This function gets called with: * * node->bytenr = 13631488 * node->num_bytes = 1048576 * root_objectid = FS_TREE * owner_objectid = 257 * owner_offset = 0 * refs_to_drop = 1 * * Then we should get some like: * * item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 16201 itemsize 82 * refs 1 gen 6 flags DATA * extent data backref root FS_TREE objectid 258 offset 0 count 1 * * Keyed backref case: * * in extent tree we have: * * item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 3971 itemsize 24 * refs 754 gen 6 flags DATA * [...] * item 2 key (13631488 EXTENT_DATA_REF ) itemoff 3915 itemsize 28 * extent data backref root FS_TREE objectid 866 offset 0 count 1 * * This function get called with: * * node->bytenr = 13631488 * node->num_bytes = 1048576 * root_objectid = FS_TREE * owner_objectid = 866 * owner_offset = 0 * refs_to_drop = 1 * * Then we should get some like: * * item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 3971 itemsize 24 * refs 753 gen 6 flags DATA * * And that (13631488 EXTENT_DATA_REF ) gets removed. */ static int __btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_delayed_ref_node *node, u64 parent, u64 root_objectid, u64 owner_objectid, u64 owner_offset, int refs_to_drop, struct btrfs_delayed_extent_op *extent_op) { struct btrfs_fs_info *info = trans->fs_info; struct btrfs_key key; struct btrfs_path *path; struct btrfs_root *extent_root; struct extent_buffer *leaf; struct btrfs_extent_item *ei; struct btrfs_extent_inline_ref *iref; int ret; int is_data; int extent_slot = 0; int found_extent = 0; int num_to_del = 1; u32 item_size; u64 refs; u64 bytenr = node->bytenr; u64 num_bytes = node->num_bytes; bool skinny_metadata = btrfs_fs_incompat(info, SKINNY_METADATA); extent_root = btrfs_extent_root(info, bytenr); ASSERT(extent_root); path = btrfs_alloc_path(); if (!path) return -ENOMEM; is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID; if (!is_data && refs_to_drop != 1) { btrfs_crit(info, "invalid refs_to_drop, dropping more than 1 refs for tree block %llu refs_to_drop %u", node->bytenr, refs_to_drop); ret = -EINVAL; btrfs_abort_transaction(trans, ret); goto out; } if (is_data) skinny_metadata = false; ret = lookup_extent_backref(trans, path, &iref, bytenr, num_bytes, parent, root_objectid, owner_objectid, owner_offset); if (ret == 0) { /* * Either the inline backref or the SHARED_DATA_REF/ * SHARED_BLOCK_REF is found * * Here is a quick path to locate EXTENT/METADATA_ITEM. * It's possible the EXTENT/METADATA_ITEM is near current slot. */ extent_slot = path->slots[0]; while (extent_slot >= 0) { btrfs_item_key_to_cpu(path->nodes[0], &key, extent_slot); if (key.objectid != bytenr) break; if (key.type == BTRFS_EXTENT_ITEM_KEY && key.offset == num_bytes) { found_extent = 1; break; } if (key.type == BTRFS_METADATA_ITEM_KEY && key.offset == owner_objectid) { found_extent = 1; break; } /* Quick path didn't find the EXTEMT/METADATA_ITEM */ if (path->slots[0] - extent_slot > 5) break; extent_slot--; } if (!found_extent) { if (iref) { abort_and_dump(trans, path, "invalid iref slot %u, no EXTENT/METADATA_ITEM found but has inline extent ref", path->slots[0]); ret = -EUCLEAN; goto out; } /* Must be SHARED_* item, remove the backref first */ ret = remove_extent_backref(trans, extent_root, path, NULL, refs_to_drop, is_data); if (ret) { btrfs_abort_transaction(trans, ret); goto out; } btrfs_release_path(path); /* Slow path to locate EXTENT/METADATA_ITEM */ key.objectid = bytenr; key.type = BTRFS_EXTENT_ITEM_KEY; key.offset = num_bytes; if (!is_data && skinny_metadata) { key.type = BTRFS_METADATA_ITEM_KEY; key.offset = owner_objectid; } ret = btrfs_search_slot(trans, extent_root, &key, path, -1, 1); if (ret > 0 && skinny_metadata && path->slots[0]) { /* * Couldn't find our skinny metadata item, * see if we have ye olde extent item. */ path->slots[0]--; btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); if (key.objectid == bytenr && key.type == BTRFS_EXTENT_ITEM_KEY && key.offset == num_bytes) ret = 0; } if (ret > 0 && skinny_metadata) { skinny_metadata = false; key.objectid = bytenr; key.type = BTRFS_EXTENT_ITEM_KEY; key.offset = num_bytes; btrfs_release_path(path); ret = btrfs_search_slot(trans, extent_root, &key, path, -1, 1); } if (ret) { if (ret > 0) btrfs_print_leaf(path->nodes[0]); btrfs_err(info, "umm, got %d back from search, was looking for %llu, slot %d", ret, bytenr, path->slots[0]); } if (ret < 0) { btrfs_abort_transaction(trans, ret); goto out; } extent_slot = path->slots[0]; } } else if (WARN_ON(ret == -ENOENT)) { abort_and_dump(trans, path, "unable to find ref byte nr %llu parent %llu root %llu owner %llu offset %llu slot %d", bytenr, parent, root_objectid, owner_objectid, owner_offset, path->slots[0]); goto out; } else { btrfs_abort_transaction(trans, ret); goto out; } leaf = path->nodes[0]; item_size = btrfs_item_size(leaf, extent_slot); if (unlikely(item_size < sizeof(*ei))) { ret = -EINVAL; btrfs_print_v0_err(info); btrfs_abort_transaction(trans, ret); goto out; } ei = btrfs_item_ptr(leaf, extent_slot, struct btrfs_extent_item); if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID && key.type == BTRFS_EXTENT_ITEM_KEY) { struct btrfs_tree_block_info *bi; if (item_size < sizeof(*ei) + sizeof(*bi)) { abort_and_dump(trans, path, "invalid extent item size for key (%llu, %u, %llu) slot %u owner %llu, has %u expect >= %zu", key.objectid, key.type, key.offset, path->slots[0], owner_objectid, item_size, sizeof(*ei) + sizeof(*bi)); ret = -EUCLEAN; goto out; } bi = (struct btrfs_tree_block_info *)(ei + 1); WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi)); } refs = btrfs_extent_refs(leaf, ei); if (refs < refs_to_drop) { abort_and_dump(trans, path, "trying to drop %d refs but we only have %llu for bytenr %llu slot %u", refs_to_drop, refs, bytenr, path->slots[0]); ret = -EUCLEAN; goto out; } refs -= refs_to_drop; if (refs > 0) { if (extent_op) __run_delayed_extent_op(extent_op, leaf, ei); /* * In the case of inline back ref, reference count will * be updated by remove_extent_backref */ if (iref) { if (!found_extent) { abort_and_dump(trans, path, "invalid iref, got inlined extent ref but no EXTENT/METADATA_ITEM found, slot %u", path->slots[0]); ret = -EUCLEAN; goto out; } } else { btrfs_set_extent_refs(leaf, ei, refs); btrfs_mark_buffer_dirty(leaf); } if (found_extent) { ret = remove_extent_backref(trans, extent_root, path, iref, refs_to_drop, is_data); if (ret) { btrfs_abort_transaction(trans, ret); goto out; } } } else { /* In this branch refs == 1 */ if (found_extent) { if (is_data && refs_to_drop != extent_data_ref_count(path, iref)) { abort_and_dump(trans, path, "invalid refs_to_drop, current refs %u refs_to_drop %u slot %u", extent_data_ref_count(path, iref), refs_to_drop, path->slots[0]); ret = -EUCLEAN; goto out; } if (iref) { if (path->slots[0] != extent_slot) { abort_and_dump(trans, path, "invalid iref, extent item key (%llu %u %llu) slot %u doesn't have wanted iref", key.objectid, key.type, key.offset, path->slots[0]); ret = -EUCLEAN; goto out; } } else { /* * No inline ref, we must be at SHARED_* item, * And it's single ref, it must be: * | extent_slot ||extent_slot + 1| * [ EXTENT/METADATA_ITEM ][ SHARED_* ITEM ] */ if (path->slots[0] != extent_slot + 1) { abort_and_dump(trans, path, "invalid SHARED_* item slot %u, previous item is not EXTENT/METADATA_ITEM", path->slots[0]); ret = -EUCLEAN; goto out; } path->slots[0] = extent_slot; num_to_del = 2; } } ret = btrfs_del_items(trans, extent_root, path, path->slots[0], num_to_del); if (ret) { btrfs_abort_transaction(trans, ret); goto out; } btrfs_release_path(path); ret = do_free_extent_accounting(trans, bytenr, num_bytes, is_data); } btrfs_release_path(path); out: btrfs_free_path(path); return ret; } /* * when we free an block, it is possible (and likely) that we free the last * delayed ref for that extent as well. This searches the delayed ref tree for * a given extent, and if there are no other delayed refs to be processed, it * removes it from the tree. */ static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans, u64 bytenr) { struct btrfs_delayed_ref_head *head; struct btrfs_delayed_ref_root *delayed_refs; int ret = 0; delayed_refs = &trans->transaction->delayed_refs; spin_lock(&delayed_refs->lock); head = btrfs_find_delayed_ref_head(delayed_refs, bytenr); if (!head) goto out_delayed_unlock; spin_lock(&head->lock); if (!RB_EMPTY_ROOT(&head->ref_tree.rb_root)) goto out; if (cleanup_extent_op(head) != NULL) goto out; /* * waiting for the lock here would deadlock. If someone else has it * locked they are already in the process of dropping it anyway */ if (!mutex_trylock(&head->mutex)) goto out; btrfs_delete_ref_head(delayed_refs, head); head->processing = 0; spin_unlock(&head->lock); spin_unlock(&delayed_refs->lock); BUG_ON(head->extent_op); if (head->must_insert_reserved) ret = 1; btrfs_cleanup_ref_head_accounting(trans->fs_info, delayed_refs, head); mutex_unlock(&head->mutex); btrfs_put_delayed_ref_head(head); return ret; out: spin_unlock(&head->lock); out_delayed_unlock: spin_unlock(&delayed_refs->lock); return 0; } void btrfs_free_tree_block(struct btrfs_trans_handle *trans, u64 root_id, struct extent_buffer *buf, u64 parent, int last_ref) { struct btrfs_fs_info *fs_info = trans->fs_info; struct btrfs_ref generic_ref = { 0 }; int ret; btrfs_init_generic_ref(&generic_ref, BTRFS_DROP_DELAYED_REF, buf->start, buf->len, parent); btrfs_init_tree_ref(&generic_ref, btrfs_header_level(buf), root_id, 0, false); if (root_id != BTRFS_TREE_LOG_OBJECTID) { btrfs_ref_tree_mod(fs_info, &generic_ref); ret = btrfs_add_delayed_tree_ref(trans, &generic_ref, NULL); BUG_ON(ret); /* -ENOMEM */ } if (last_ref && btrfs_header_generation(buf) == trans->transid) { struct btrfs_block_group *cache; bool must_pin = false; if (root_id != BTRFS_TREE_LOG_OBJECTID) { ret = check_ref_cleanup(trans, buf->start); if (!ret) { btrfs_redirty_list_add(trans->transaction, buf); goto out; } } cache = btrfs_lookup_block_group(fs_info, buf->start); if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) { pin_down_extent(trans, cache, buf->start, buf->len, 1); btrfs_put_block_group(cache); goto out; } /* * If there are tree mod log users we may have recorded mod log * operations for this node. If we re-allocate this node we * could replay operations on this node that happened when it * existed in a completely different root. For example if it * was part of root A, then was reallocated to root B, and we * are doing a btrfs_old_search_slot(root b), we could replay * operations that happened when the block was part of root A, * giving us an inconsistent view of the btree. * * We are safe from races here because at this point no other * node or root points to this extent buffer, so if after this * check a new tree mod log user joins we will not have an * existing log of operations on this node that we have to * contend with. */ if (test_bit(BTRFS_FS_TREE_MOD_LOG_USERS, &fs_info->flags)) must_pin = true; if (must_pin || btrfs_is_zoned(fs_info)) { btrfs_redirty_list_add(trans->transaction, buf); pin_down_extent(trans, cache, buf->start, buf->len, 1); btrfs_put_block_group(cache); goto out; } WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)); btrfs_add_free_space(cache, buf->start, buf->len); btrfs_free_reserved_bytes(cache, buf->len, 0); btrfs_put_block_group(cache); trace_btrfs_reserved_extent_free(fs_info, buf->start, buf->len); } out: if (last_ref) { /* * Deleting the buffer, clear the corrupt flag since it doesn't * matter anymore. */ clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags); } } /* Can return -ENOMEM */ int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_ref *ref) { struct btrfs_fs_info *fs_info = trans->fs_info; int ret; if (btrfs_is_testing(fs_info)) return 0; /* * tree log blocks never actually go into the extent allocation * tree, just update pinning info and exit early. */ if ((ref->type == BTRFS_REF_METADATA && ref->tree_ref.owning_root == BTRFS_TREE_LOG_OBJECTID) || (ref->type == BTRFS_REF_DATA && ref->data_ref.owning_root == BTRFS_TREE_LOG_OBJECTID)) { /* unlocks the pinned mutex */ btrfs_pin_extent(trans, ref->bytenr, ref->len, 1); ret = 0; } else if (ref->type == BTRFS_REF_METADATA) { ret = btrfs_add_delayed_tree_ref(trans, ref, NULL); } else { ret = btrfs_add_delayed_data_ref(trans, ref, 0); } if (!((ref->type == BTRFS_REF_METADATA && ref->tree_ref.owning_root == BTRFS_TREE_LOG_OBJECTID) || (ref->type == BTRFS_REF_DATA && ref->data_ref.owning_root == BTRFS_TREE_LOG_OBJECTID))) btrfs_ref_tree_mod(fs_info, ref); return ret; } enum btrfs_loop_type { LOOP_CACHING_NOWAIT, LOOP_CACHING_WAIT, LOOP_UNSET_SIZE_CLASS, LOOP_ALLOC_CHUNK, LOOP_WRONG_SIZE_CLASS, LOOP_NO_EMPTY_SIZE, }; static inline void btrfs_lock_block_group(struct btrfs_block_group *cache, int delalloc) { if (delalloc) down_read(&cache->data_rwsem); } static inline void btrfs_grab_block_group(struct btrfs_block_group *cache, int delalloc) { btrfs_get_block_group(cache); if (delalloc) down_read(&cache->data_rwsem); } static struct btrfs_block_group *btrfs_lock_cluster( struct btrfs_block_group *block_group, struct btrfs_free_cluster *cluster, int delalloc) __acquires(&cluster->refill_lock) { struct btrfs_block_group *used_bg = NULL; spin_lock(&cluster->refill_lock); while (1) { used_bg = cluster->block_group; if (!used_bg) return NULL; if (used_bg == block_group) return used_bg; btrfs_get_block_group(used_bg); if (!delalloc) return used_bg; if (down_read_trylock(&used_bg->data_rwsem)) return used_bg; spin_unlock(&cluster->refill_lock); /* We should only have one-level nested. */ down_read_nested(&used_bg->data_rwsem, SINGLE_DEPTH_NESTING); spin_lock(&cluster->refill_lock); if (used_bg == cluster->block_group) return used_bg; up_read(&used_bg->data_rwsem); btrfs_put_block_group(used_bg); } } static inline void btrfs_release_block_group(struct btrfs_block_group *cache, int delalloc) { if (delalloc) up_read(&cache->data_rwsem); btrfs_put_block_group(cache); } /* * Helper function for find_free_extent(). * * Return -ENOENT to inform caller that we need fallback to unclustered mode. * Return -EAGAIN to inform caller that we need to re-search this block group * Return >0 to inform caller that we find nothing * Return 0 means we have found a location and set ffe_ctl->found_offset. */ static int find_free_extent_clustered(struct btrfs_block_group *bg, struct find_free_extent_ctl *ffe_ctl, struct btrfs_block_group **cluster_bg_ret) { struct btrfs_block_group *cluster_bg; struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr; u64 aligned_cluster; u64 offset; int ret; cluster_bg = btrfs_lock_cluster(bg, last_ptr, ffe_ctl->delalloc); if (!cluster_bg) goto refill_cluster; if (cluster_bg != bg && (cluster_bg->ro || !block_group_bits(cluster_bg, ffe_ctl->flags))) goto release_cluster; offset = btrfs_alloc_from_cluster(cluster_bg, last_ptr, ffe_ctl->num_bytes, cluster_bg->start, &ffe_ctl->max_extent_size); if (offset) { /* We have a block, we're done */ spin_unlock(&last_ptr->refill_lock); trace_btrfs_reserve_extent_cluster(cluster_bg, ffe_ctl); *cluster_bg_ret = cluster_bg; ffe_ctl->found_offset = offset; return 0; } WARN_ON(last_ptr->block_group != cluster_bg); release_cluster: /* * If we are on LOOP_NO_EMPTY_SIZE, we can't set up a new clusters, so * lets just skip it and let the allocator find whatever block it can * find. If we reach this point, we will have tried the cluster * allocator plenty of times and not have found anything, so we are * likely way too fragmented for the clustering stuff to find anything. * * However, if the cluster is taken from the current block group, * release the cluster first, so that we stand a better chance of * succeeding in the unclustered allocation. */ if (ffe_ctl->loop >= LOOP_NO_EMPTY_SIZE && cluster_bg != bg) { spin_unlock(&last_ptr->refill_lock); btrfs_release_block_group(cluster_bg, ffe_ctl->delalloc); return -ENOENT; } /* This cluster didn't work out, free it and start over */ btrfs_return_cluster_to_free_space(NULL, last_ptr); if (cluster_bg != bg) btrfs_release_block_group(cluster_bg, ffe_ctl->delalloc); refill_cluster: if (ffe_ctl->loop >= LOOP_NO_EMPTY_SIZE) { spin_unlock(&last_ptr->refill_lock); return -ENOENT; } aligned_cluster = max_t(u64, ffe_ctl->empty_cluster + ffe_ctl->empty_size, bg->full_stripe_len); ret = btrfs_find_space_cluster(bg, last_ptr, ffe_ctl->search_start, ffe_ctl->num_bytes, aligned_cluster); if (ret == 0) { /* Now pull our allocation out of this cluster */ offset = btrfs_alloc_from_cluster(bg, last_ptr, ffe_ctl->num_bytes, ffe_ctl->search_start, &ffe_ctl->max_extent_size); if (offset) { /* We found one, proceed */ spin_unlock(&last_ptr->refill_lock); ffe_ctl->found_offset = offset; trace_btrfs_reserve_extent_cluster(bg, ffe_ctl); return 0; } } else if (!ffe_ctl->cached && ffe_ctl->loop > LOOP_CACHING_NOWAIT && !ffe_ctl->retry_clustered) { spin_unlock(&last_ptr->refill_lock); ffe_ctl->retry_clustered = true; btrfs_wait_block_group_cache_progress(bg, ffe_ctl->num_bytes + ffe_ctl->empty_cluster + ffe_ctl->empty_size); return -EAGAIN; } /* * At this point we either didn't find a cluster or we weren't able to * allocate a block from our cluster. Free the cluster we've been * trying to use, and go to the next block group. */ btrfs_return_cluster_to_free_space(NULL, last_ptr); spin_unlock(&last_ptr->refill_lock); return 1; } /* * Return >0 to inform caller that we find nothing * Return 0 when we found an free extent and set ffe_ctrl->found_offset * Return -EAGAIN to inform caller that we need to re-search this block group */ static int find_free_extent_unclustered(struct btrfs_block_group *bg, struct find_free_extent_ctl *ffe_ctl) { struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr; u64 offset; /* * We are doing an unclustered allocation, set the fragmented flag so * we don't bother trying to setup a cluster again until we get more * space. */ if (unlikely(last_ptr)) { spin_lock(&last_ptr->lock); last_ptr->fragmented = 1; spin_unlock(&last_ptr->lock); } if (ffe_ctl->cached) { struct btrfs_free_space_ctl *free_space_ctl; free_space_ctl = bg->free_space_ctl; spin_lock(&free_space_ctl->tree_lock); if (free_space_ctl->free_space < ffe_ctl->num_bytes + ffe_ctl->empty_cluster + ffe_ctl->empty_size) { ffe_ctl->total_free_space = max_t(u64, ffe_ctl->total_free_space, free_space_ctl->free_space); spin_unlock(&free_space_ctl->tree_lock); return 1; } spin_unlock(&free_space_ctl->tree_lock); } offset = btrfs_find_space_for_alloc(bg, ffe_ctl->search_start, ffe_ctl->num_bytes, ffe_ctl->empty_size, &ffe_ctl->max_extent_size); /* * If we didn't find a chunk, and we haven't failed on this block group * before, and this block group is in the middle of caching and we are * ok with waiting, then go ahead and wait for progress to be made, and * set @retry_unclustered to true. * * If @retry_unclustered is true then we've already waited on this * block group once and should move on to the next block group. */ if (!offset && !ffe_ctl->retry_unclustered && !ffe_ctl->cached && ffe_ctl->loop > LOOP_CACHING_NOWAIT) { btrfs_wait_block_group_cache_progress(bg, ffe_ctl->num_bytes + ffe_ctl->empty_size); ffe_ctl->retry_unclustered = true; return -EAGAIN; } else if (!offset) { return 1; } ffe_ctl->found_offset = offset; return 0; } static int do_allocation_clustered(struct btrfs_block_group *block_group, struct find_free_extent_ctl *ffe_ctl, struct btrfs_block_group **bg_ret) { int ret; /* We want to try and use the cluster allocator, so lets look there */ if (ffe_ctl->last_ptr && ffe_ctl->use_cluster) { ret = find_free_extent_clustered(block_group, ffe_ctl, bg_ret); if (ret >= 0 || ret == -EAGAIN) return ret; /* ret == -ENOENT case falls through */ } return find_free_extent_unclustered(block_group, ffe_ctl); } /* * Tree-log block group locking * ============================ * * fs_info::treelog_bg_lock protects the fs_info::treelog_bg which * indicates the starting address of a block group, which is reserved only * for tree-log metadata. * * Lock nesting * ============ * * space_info::lock * block_group::lock * fs_info::treelog_bg_lock */ /* * Simple allocator for sequential-only block group. It only allows sequential * allocation. No need to play with trees. This function also reserves the * bytes as in btrfs_add_reserved_bytes. */ static int do_allocation_zoned(struct btrfs_block_group *block_group, struct find_free_extent_ctl *ffe_ctl, struct btrfs_block_group **bg_ret) { struct btrfs_fs_info *fs_info = block_group->fs_info; struct btrfs_space_info *space_info = block_group->space_info; struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; u64 start = block_group->start; u64 num_bytes = ffe_ctl->num_bytes; u64 avail; u64 bytenr = block_group->start; u64 log_bytenr; u64 data_reloc_bytenr; int ret = 0; bool skip = false; ASSERT(btrfs_is_zoned(block_group->fs_info)); /* * Do not allow non-tree-log blocks in the dedicated tree-log block * group, and vice versa. */ spin_lock(&fs_info->treelog_bg_lock); log_bytenr = fs_info->treelog_bg; if (log_bytenr && ((ffe_ctl->for_treelog && bytenr != log_bytenr) || (!ffe_ctl->for_treelog && bytenr == log_bytenr))) skip = true; spin_unlock(&fs_info->treelog_bg_lock); if (skip) return 1; /* * Do not allow non-relocation blocks in the dedicated relocation block * group, and vice versa. */ spin_lock(&fs_info->relocation_bg_lock); data_reloc_bytenr = fs_info->data_reloc_bg; if (data_reloc_bytenr && ((ffe_ctl->for_data_reloc && bytenr != data_reloc_bytenr) || (!ffe_ctl->for_data_reloc && bytenr == data_reloc_bytenr))) skip = true; spin_unlock(&fs_info->relocation_bg_lock); if (skip) return 1; /* Check RO and no space case before trying to activate it */ spin_lock(&block_group->lock); if (block_group->ro || btrfs_zoned_bg_is_full(block_group)) { ret = 1; /* * May need to clear fs_info->{treelog,data_reloc}_bg. * Return the error after taking the locks. */ } spin_unlock(&block_group->lock); if (!ret && !btrfs_zone_activate(block_group)) { ret = 1; /* * May need to clear fs_info->{treelog,data_reloc}_bg. * Return the error after taking the locks. */ } spin_lock(&space_info->lock); spin_lock(&block_group->lock); spin_lock(&fs_info->treelog_bg_lock); spin_lock(&fs_info->relocation_bg_lock); if (ret) goto out; ASSERT(!ffe_ctl->for_treelog || block_group->start == fs_info->treelog_bg || fs_info->treelog_bg == 0); ASSERT(!ffe_ctl->for_data_reloc || block_group->start == fs_info->data_reloc_bg || fs_info->data_reloc_bg == 0); if (block_group->ro || test_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC, &block_group->runtime_flags)) { ret = 1; goto out; } /* * Do not allow currently using block group to be tree-log dedicated * block group. */ if (ffe_ctl->for_treelog && !fs_info->treelog_bg && (block_group->used || block_group->reserved)) { ret = 1; goto out; } /* * Do not allow currently used block group to be the data relocation * dedicated block group. */ if (ffe_ctl->for_data_reloc && !fs_info->data_reloc_bg && (block_group->used || block_group->reserved)) { ret = 1; goto out; } WARN_ON_ONCE(block_group->alloc_offset > block_group->zone_capacity); avail = block_group->zone_capacity - block_group->alloc_offset; if (avail < num_bytes) { if (ffe_ctl->max_extent_size < avail) { /* * With sequential allocator, free space is always * contiguous */ ffe_ctl->max_extent_size = avail; ffe_ctl->total_free_space = avail; } ret = 1; goto out; } if (ffe_ctl->for_treelog && !fs_info->treelog_bg) fs_info->treelog_bg = block_group->start; if (ffe_ctl->for_data_reloc && !fs_info->data_reloc_bg) fs_info->data_reloc_bg = block_group->start; ffe_ctl->found_offset = start + block_group->alloc_offset; block_group->alloc_offset += num_bytes; spin_lock(&ctl->tree_lock); ctl->free_space -= num_bytes; spin_unlock(&ctl->tree_lock); /* * We do not check if found_offset is aligned to stripesize. The * address is anyway rewritten when using zone append writing. */ ffe_ctl->search_start = ffe_ctl->found_offset; out: if (ret && ffe_ctl->for_treelog) fs_info->treelog_bg = 0; if (ret && ffe_ctl->for_data_reloc && fs_info->data_reloc_bg == block_group->start) { /* * Do not allow further allocations from this block group. * Compared to increasing the ->ro, setting the * ->zoned_data_reloc_ongoing flag still allows nocow * writers to come in. See btrfs_inc_nocow_writers(). * * We need to disable an allocation to avoid an allocation of * regular (non-relocation data) extent. With mix of relocation * extents and regular extents, we can dispatch WRITE commands * (for relocation extents) and ZONE APPEND commands (for * regular extents) at the same time to the same zone, which * easily break the write pointer. */ set_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC, &block_group->runtime_flags); fs_info->data_reloc_bg = 0; } spin_unlock(&fs_info->relocation_bg_lock); spin_unlock(&fs_info->treelog_bg_lock); spin_unlock(&block_group->lock); spin_unlock(&space_info->lock); return ret; } static int do_allocation(struct btrfs_block_group *block_group, struct find_free_extent_ctl *ffe_ctl, struct btrfs_block_group **bg_ret) { switch (ffe_ctl->policy) { case BTRFS_EXTENT_ALLOC_CLUSTERED: return do_allocation_clustered(block_group, ffe_ctl, bg_ret); case BTRFS_EXTENT_ALLOC_ZONED: return do_allocation_zoned(block_group, ffe_ctl, bg_ret); default: BUG(); } } static void release_block_group(struct btrfs_block_group *block_group, struct find_free_extent_ctl *ffe_ctl, int delalloc) { switch (ffe_ctl->policy) { case BTRFS_EXTENT_ALLOC_CLUSTERED: ffe_ctl->retry_clustered = false; ffe_ctl->retry_unclustered = false; break; case BTRFS_EXTENT_ALLOC_ZONED: /* Nothing to do */ break; default: BUG(); } BUG_ON(btrfs_bg_flags_to_raid_index(block_group->flags) != ffe_ctl->index); btrfs_release_block_group(block_group, delalloc); } static void found_extent_clustered(struct find_free_extent_ctl *ffe_ctl, struct btrfs_key *ins) { struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr; if (!ffe_ctl->use_cluster && last_ptr) { spin_lock(&last_ptr->lock); last_ptr->window_start = ins->objectid; spin_unlock(&last_ptr->lock); } } static void found_extent(struct find_free_extent_ctl *ffe_ctl, struct btrfs_key *ins) { switch (ffe_ctl->policy) { case BTRFS_EXTENT_ALLOC_CLUSTERED: found_extent_clustered(ffe_ctl, ins); break; case BTRFS_EXTENT_ALLOC_ZONED: /* Nothing to do */ break; default: BUG(); } } static int can_allocate_chunk_zoned(struct btrfs_fs_info *fs_info, struct find_free_extent_ctl *ffe_ctl) { /* If we can activate new zone, just allocate a chunk and use it */ if (btrfs_can_activate_zone(fs_info->fs_devices, ffe_ctl->flags)) return 0; /* * We already reached the max active zones. Try to finish one block * group to make a room for a new block group. This is only possible * for a data block group because btrfs_zone_finish() may need to wait * for a running transaction which can cause a deadlock for metadata * allocation. */ if (ffe_ctl->flags & BTRFS_BLOCK_GROUP_DATA) { int ret = btrfs_zone_finish_one_bg(fs_info); if (ret == 1) return 0; else if (ret < 0) return ret; } /* * If we have enough free space left in an already active block group * and we can't activate any other zone now, do not allow allocating a * new chunk and let find_free_extent() retry with a smaller size. */ if (ffe_ctl->max_extent_size >= ffe_ctl->min_alloc_size) return -ENOSPC; /* * Even min_alloc_size is not left in any block groups. Since we cannot * activate a new block group, allocating it may not help. Let's tell a * caller to try again and hope it progress something by writing some * parts of the region. That is only possible for data block groups, * where a part of the region can be written. */ if (ffe_ctl->flags & BTRFS_BLOCK_GROUP_DATA) return -EAGAIN; /* * We cannot activate a new block group and no enough space left in any * block groups. So, allocating a new block group may not help. But, * there is nothing to do anyway, so let's go with it. */ return 0; } static int can_allocate_chunk(struct btrfs_fs_info *fs_info, struct find_free_extent_ctl *ffe_ctl) { switch (ffe_ctl->policy) { case BTRFS_EXTENT_ALLOC_CLUSTERED: return 0; case BTRFS_EXTENT_ALLOC_ZONED: return can_allocate_chunk_zoned(fs_info, ffe_ctl); default: BUG(); } } /* * Return >0 means caller needs to re-search for free extent * Return 0 means we have the needed free extent. * Return <0 means we failed to locate any free extent. */ static int find_free_extent_update_loop(struct btrfs_fs_info *fs_info, struct btrfs_key *ins, struct find_free_extent_ctl *ffe_ctl, bool full_search) { struct btrfs_root *root = fs_info->chunk_root; int ret; if ((ffe_ctl->loop == LOOP_CACHING_NOWAIT) && ffe_ctl->have_caching_bg && !ffe_ctl->orig_have_caching_bg) ffe_ctl->orig_have_caching_bg = true; if (ins->objectid) { found_extent(ffe_ctl, ins); return 0; } if (ffe_ctl->loop >= LOOP_CACHING_WAIT && ffe_ctl->have_caching_bg) return 1; ffe_ctl->index++; if (ffe_ctl->index < BTRFS_NR_RAID_TYPES) return 1; /* * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking * caching kthreads as we move along * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching * LOOP_UNSET_SIZE_CLASS, allow unset size class * LOOP_ALLOC_CHUNK, force a chunk allocation and try again * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try * again */ if (ffe_ctl->loop < LOOP_NO_EMPTY_SIZE) { ffe_ctl->index = 0; /* * We want to skip the LOOP_CACHING_WAIT step if we don't have * any uncached bgs and we've already done a full search * through. */ if (ffe_ctl->loop == LOOP_CACHING_NOWAIT && (!ffe_ctl->orig_have_caching_bg && full_search)) ffe_ctl->loop++; ffe_ctl->loop++; if (ffe_ctl->loop == LOOP_ALLOC_CHUNK) { struct btrfs_trans_handle *trans; int exist = 0; /* Check if allocation policy allows to create a new chunk */ ret = can_allocate_chunk(fs_info, ffe_ctl); if (ret) return ret; trans = current->journal_info; if (trans) exist = 1; else trans = btrfs_join_transaction(root); if (IS_ERR(trans)) { ret = PTR_ERR(trans); return ret; } ret = btrfs_chunk_alloc(trans, ffe_ctl->flags, CHUNK_ALLOC_FORCE_FOR_EXTENT); /* Do not bail out on ENOSPC since we can do more. */ if (ret == -ENOSPC) { ret = 0; ffe_ctl->loop++; } else if (ret < 0) btrfs_abort_transaction(trans, ret); else ret = 0; if (!exist) btrfs_end_transaction(trans); if (ret) return ret; } if (ffe_ctl->loop == LOOP_NO_EMPTY_SIZE) { if (ffe_ctl->policy != BTRFS_EXTENT_ALLOC_CLUSTERED) return -ENOSPC; /* * Don't loop again if we already have no empty_size and * no empty_cluster. */ if (ffe_ctl->empty_size == 0 && ffe_ctl->empty_cluster == 0) return -ENOSPC; ffe_ctl->empty_size = 0; ffe_ctl->empty_cluster = 0; } return 1; } return -ENOSPC; } static bool find_free_extent_check_size_class(struct find_free_extent_ctl *ffe_ctl, struct btrfs_block_group *bg) { if (ffe_ctl->policy == BTRFS_EXTENT_ALLOC_ZONED) return true; if (!btrfs_block_group_should_use_size_class(bg)) return true; if (ffe_ctl->loop >= LOOP_WRONG_SIZE_CLASS) return true; if (ffe_ctl->loop >= LOOP_UNSET_SIZE_CLASS && bg->size_class == BTRFS_BG_SZ_NONE) return true; return ffe_ctl->size_class == bg->size_class; } static int prepare_allocation_clustered(struct btrfs_fs_info *fs_info, struct find_free_extent_ctl *ffe_ctl, struct btrfs_space_info *space_info, struct btrfs_key *ins) { /* * If our free space is heavily fragmented we may not be able to make * big contiguous allocations, so instead of doing the expensive search * for free space, simply return ENOSPC with our max_extent_size so we * can go ahead and search for a more manageable chunk. * * If our max_extent_size is large enough for our allocation simply * disable clustering since we will likely not be able to find enough * space to create a cluster and induce latency trying. */ if (space_info->max_extent_size) { spin_lock(&space_info->lock); if (space_info->max_extent_size && ffe_ctl->num_bytes > space_info->max_extent_size) { ins->offset = space_info->max_extent_size; spin_unlock(&space_info->lock); return -ENOSPC; } else if (space_info->max_extent_size) { ffe_ctl->use_cluster = false; } spin_unlock(&space_info->lock); } ffe_ctl->last_ptr = fetch_cluster_info(fs_info, space_info, &ffe_ctl->empty_cluster); if (ffe_ctl->last_ptr) { struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr; spin_lock(&last_ptr->lock); if (last_ptr->block_group) ffe_ctl->hint_byte = last_ptr->window_start; if (last_ptr->fragmented) { /* * We still set window_start so we can keep track of the * last place we found an allocation to try and save * some time. */ ffe_ctl->hint_byte = last_ptr->window_start; ffe_ctl->use_cluster = false; } spin_unlock(&last_ptr->lock); } return 0; } static int prepare_allocation(struct btrfs_fs_info *fs_info, struct find_free_extent_ctl *ffe_ctl, struct btrfs_space_info *space_info, struct btrfs_key *ins) { switch (ffe_ctl->policy) { case BTRFS_EXTENT_ALLOC_CLUSTERED: return prepare_allocation_clustered(fs_info, ffe_ctl, space_info, ins); case BTRFS_EXTENT_ALLOC_ZONED: if (ffe_ctl->for_treelog) { spin_lock(&fs_info->treelog_bg_lock); if (fs_info->treelog_bg) ffe_ctl->hint_byte = fs_info->treelog_bg; spin_unlock(&fs_info->treelog_bg_lock); } if (ffe_ctl->for_data_reloc) { spin_lock(&fs_info->relocation_bg_lock); if (fs_info->data_reloc_bg) ffe_ctl->hint_byte = fs_info->data_reloc_bg; spin_unlock(&fs_info->relocation_bg_lock); } return 0; default: BUG(); } } /* * walks the btree of allocated extents and find a hole of a given size. * The key ins is changed to record the hole: * ins->objectid == start position * ins->flags = BTRFS_EXTENT_ITEM_KEY * ins->offset == the size of the hole. * Any available blocks before search_start are skipped. * * If there is no suitable free space, we will record the max size of * the free space extent currently. * * The overall logic and call chain: * * find_free_extent() * |- Iterate through all block groups * | |- Get a valid block group * | |- Try to do clustered allocation in that block group * | |- Try to do unclustered allocation in that block group * | |- Check if the result is valid * | | |- If valid, then exit * | |- Jump to next block group * | * |- Push harder to find free extents * |- If not found, re-iterate all block groups */ static noinline int find_free_extent(struct btrfs_root *root, struct btrfs_key *ins, struct find_free_extent_ctl *ffe_ctl) { struct btrfs_fs_info *fs_info = root->fs_info; int ret = 0; int cache_block_group_error = 0; struct btrfs_block_group *block_group = NULL; struct btrfs_space_info *space_info; bool full_search = false; WARN_ON(ffe_ctl->num_bytes < fs_info->sectorsize); ffe_ctl->search_start = 0; /* For clustered allocation */ ffe_ctl->empty_cluster = 0; ffe_ctl->last_ptr = NULL; ffe_ctl->use_cluster = true; ffe_ctl->have_caching_bg = false; ffe_ctl->orig_have_caching_bg = false; ffe_ctl->index = btrfs_bg_flags_to_raid_index(ffe_ctl->flags); ffe_ctl->loop = 0; /* For clustered allocation */ ffe_ctl->retry_clustered = false; ffe_ctl->retry_unclustered = false; ffe_ctl->cached = 0; ffe_ctl->max_extent_size = 0; ffe_ctl->total_free_space = 0; ffe_ctl->found_offset = 0; ffe_ctl->policy = BTRFS_EXTENT_ALLOC_CLUSTERED; ffe_ctl->size_class = btrfs_calc_block_group_size_class(ffe_ctl->num_bytes); if (btrfs_is_zoned(fs_info)) ffe_ctl->policy = BTRFS_EXTENT_ALLOC_ZONED; ins->type = BTRFS_EXTENT_ITEM_KEY; ins->objectid = 0; ins->offset = 0; trace_find_free_extent(root, ffe_ctl); space_info = btrfs_find_space_info(fs_info, ffe_ctl->flags); if (!space_info) { btrfs_err(fs_info, "No space info for %llu", ffe_ctl->flags); return -ENOSPC; } ret = prepare_allocation(fs_info, ffe_ctl, space_info, ins); if (ret < 0) return ret; ffe_ctl->search_start = max(ffe_ctl->search_start, first_logical_byte(fs_info)); ffe_ctl->search_start = max(ffe_ctl->search_start, ffe_ctl->hint_byte); if (ffe_ctl->search_start == ffe_ctl->hint_byte) { block_group = btrfs_lookup_block_group(fs_info, ffe_ctl->search_start); /* * we don't want to use the block group if it doesn't match our * allocation bits, or if its not cached. * * However if we are re-searching with an ideal block group * picked out then we don't care that the block group is cached. */ if (block_group && block_group_bits(block_group, ffe_ctl->flags) && block_group->cached != BTRFS_CACHE_NO) { down_read(&space_info->groups_sem); if (list_empty(&block_group->list) || block_group->ro) { /* * someone is removing this block group, * we can't jump into the have_block_group * target because our list pointers are not * valid */ btrfs_put_block_group(block_group); up_read(&space_info->groups_sem); } else { ffe_ctl->index = btrfs_bg_flags_to_raid_index( block_group->flags); btrfs_lock_block_group(block_group, ffe_ctl->delalloc); ffe_ctl->hinted = true; goto have_block_group; } } else if (block_group) { btrfs_put_block_group(block_group); } } search: trace_find_free_extent_search_loop(root, ffe_ctl); ffe_ctl->have_caching_bg = false; if (ffe_ctl->index == btrfs_bg_flags_to_raid_index(ffe_ctl->flags) || ffe_ctl->index == 0) full_search = true; down_read(&space_info->groups_sem); list_for_each_entry(block_group, &space_info->block_groups[ffe_ctl->index], list) { struct btrfs_block_group *bg_ret; ffe_ctl->hinted = false; /* If the block group is read-only, we can skip it entirely. */ if (unlikely(block_group->ro)) { if (ffe_ctl->for_treelog) btrfs_clear_treelog_bg(block_group); if (ffe_ctl->for_data_reloc) btrfs_clear_data_reloc_bg(block_group); continue; } btrfs_grab_block_group(block_group, ffe_ctl->delalloc); ffe_ctl->search_start = block_group->start; /* * this can happen if we end up cycling through all the * raid types, but we want to make sure we only allocate * for the proper type. */ if (!block_group_bits(block_group, ffe_ctl->flags)) { u64 extra = BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1_MASK | BTRFS_BLOCK_GROUP_RAID56_MASK | BTRFS_BLOCK_GROUP_RAID10; /* * if they asked for extra copies and this block group * doesn't provide them, bail. This does allow us to * fill raid0 from raid1. */ if ((ffe_ctl->flags & extra) && !(block_group->flags & extra)) goto loop; /* * This block group has different flags than we want. * It's possible that we have MIXED_GROUP flag but no * block group is mixed. Just skip such block group. */ btrfs_release_block_group(block_group, ffe_ctl->delalloc); continue; } have_block_group: trace_find_free_extent_have_block_group(root, ffe_ctl, block_group); ffe_ctl->cached = btrfs_block_group_done(block_group); if (unlikely(!ffe_ctl->cached)) { ffe_ctl->have_caching_bg = true; ret = btrfs_cache_block_group(block_group, false); /* * If we get ENOMEM here or something else we want to * try other block groups, because it may not be fatal. * However if we can't find anything else we need to * save our return here so that we return the actual * error that caused problems, not ENOSPC. */ if (ret < 0) { if (!cache_block_group_error) cache_block_group_error = ret; ret = 0; goto loop; } ret = 0; } if (unlikely(block_group->cached == BTRFS_CACHE_ERROR)) goto loop; if (!find_free_extent_check_size_class(ffe_ctl, block_group)) goto loop; bg_ret = NULL; ret = do_allocation(block_group, ffe_ctl, &bg_ret); if (ret == 0) { if (bg_ret && bg_ret != block_group) { btrfs_release_block_group(block_group, ffe_ctl->delalloc); block_group = bg_ret; } } else if (ret == -EAGAIN) { goto have_block_group; } else if (ret > 0) { goto loop; } /* Checks */ ffe_ctl->search_start = round_up(ffe_ctl->found_offset, fs_info->stripesize); /* move on to the next group */ if (ffe_ctl->search_start + ffe_ctl->num_bytes > block_group->start + block_group->length) { btrfs_add_free_space_unused(block_group, ffe_ctl->found_offset, ffe_ctl->num_bytes); goto loop; } if (ffe_ctl->found_offset < ffe_ctl->search_start) btrfs_add_free_space_unused(block_group, ffe_ctl->found_offset, ffe_ctl->search_start - ffe_ctl->found_offset); ret = btrfs_add_reserved_bytes(block_group, ffe_ctl->ram_bytes, ffe_ctl->num_bytes, ffe_ctl->delalloc, ffe_ctl->loop >= LOOP_WRONG_SIZE_CLASS); if (ret == -EAGAIN) { btrfs_add_free_space_unused(block_group, ffe_ctl->found_offset, ffe_ctl->num_bytes); goto loop; } btrfs_inc_block_group_reservations(block_group); /* we are all good, lets return */ ins->objectid = ffe_ctl->search_start; ins->offset = ffe_ctl->num_bytes; trace_btrfs_reserve_extent(block_group, ffe_ctl); btrfs_release_block_group(block_group, ffe_ctl->delalloc); break; loop: release_block_group(block_group, ffe_ctl, ffe_ctl->delalloc); cond_resched(); } up_read(&space_info->groups_sem); ret = find_free_extent_update_loop(fs_info, ins, ffe_ctl, full_search); if (ret > 0) goto search; if (ret == -ENOSPC && !cache_block_group_error) { /* * Use ffe_ctl->total_free_space as fallback if we can't find * any contiguous hole. */ if (!ffe_ctl->max_extent_size) ffe_ctl->max_extent_size = ffe_ctl->total_free_space; spin_lock(&space_info->lock); space_info->max_extent_size = ffe_ctl->max_extent_size; spin_unlock(&space_info->lock); ins->offset = ffe_ctl->max_extent_size; } else if (ret == -ENOSPC) { ret = cache_block_group_error; } return ret; } /* * btrfs_reserve_extent - entry point to the extent allocator. Tries to find a * hole that is at least as big as @num_bytes. * * @root - The root that will contain this extent * * @ram_bytes - The amount of space in ram that @num_bytes take. This * is used for accounting purposes. This value differs * from @num_bytes only in the case of compressed extents. * * @num_bytes - Number of bytes to allocate on-disk. * * @min_alloc_size - Indicates the minimum amount of space that the * allocator should try to satisfy. In some cases * @num_bytes may be larger than what is required and if * the filesystem is fragmented then allocation fails. * However, the presence of @min_alloc_size gives a * chance to try and satisfy the smaller allocation. * * @empty_size - A hint that you plan on doing more COW. This is the * size in bytes the allocator should try to find free * next to the block it returns. This is just a hint and * may be ignored by the allocator. * * @hint_byte - Hint to the allocator to start searching above the byte * address passed. It might be ignored. * * @ins - This key is modified to record the found hole. It will * have the following values: * ins->objectid == start position * ins->flags = BTRFS_EXTENT_ITEM_KEY * ins->offset == the size of the hole. * * @is_data - Boolean flag indicating whether an extent is * allocated for data (true) or metadata (false) * * @delalloc - Boolean flag indicating whether this allocation is for * delalloc or not. If 'true' data_rwsem of block groups * is going to be acquired. * * * Returns 0 when an allocation succeeded or < 0 when an error occurred. In * case -ENOSPC is returned then @ins->offset will contain the size of the * largest available hole the allocator managed to find. */ int btrfs_reserve_extent(struct btrfs_root *root, u64 ram_bytes, u64 num_bytes, u64 min_alloc_size, u64 empty_size, u64 hint_byte, struct btrfs_key *ins, int is_data, int delalloc) { struct btrfs_fs_info *fs_info = root->fs_info; struct find_free_extent_ctl ffe_ctl = {}; bool final_tried = num_bytes == min_alloc_size; u64 flags; int ret; bool for_treelog = (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID); bool for_data_reloc = (btrfs_is_data_reloc_root(root) && is_data); flags = get_alloc_profile_by_root(root, is_data); again: WARN_ON(num_bytes < fs_info->sectorsize); ffe_ctl.ram_bytes = ram_bytes; ffe_ctl.num_bytes = num_bytes; ffe_ctl.min_alloc_size = min_alloc_size; ffe_ctl.empty_size = empty_size; ffe_ctl.flags = flags; ffe_ctl.delalloc = delalloc; ffe_ctl.hint_byte = hint_byte; ffe_ctl.for_treelog = for_treelog; ffe_ctl.for_data_reloc = for_data_reloc; ret = find_free_extent(root, ins, &ffe_ctl); if (!ret && !is_data) { btrfs_dec_block_group_reservations(fs_info, ins->objectid); } else if (ret == -ENOSPC) { if (!final_tried && ins->offset) { num_bytes = min(num_bytes >> 1, ins->offset); num_bytes = round_down(num_bytes, fs_info->sectorsize); num_bytes = max(num_bytes, min_alloc_size); ram_bytes = num_bytes; if (num_bytes == min_alloc_size) final_tried = true; goto again; } else if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) { struct btrfs_space_info *sinfo; sinfo = btrfs_find_space_info(fs_info, flags); btrfs_err(fs_info, "allocation failed flags %llu, wanted %llu tree-log %d, relocation: %d", flags, num_bytes, for_treelog, for_data_reloc); if (sinfo) btrfs_dump_space_info(fs_info, sinfo, num_bytes, 1); } } return ret; } int btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info, u64 start, u64 len, int delalloc) { struct btrfs_block_group *cache; cache = btrfs_lookup_block_group(fs_info, start); if (!cache) { btrfs_err(fs_info, "Unable to find block group for %llu", start); return -ENOSPC; } btrfs_add_free_space(cache, start, len); btrfs_free_reserved_bytes(cache, len, delalloc); trace_btrfs_reserved_extent_free(fs_info, start, len); btrfs_put_block_group(cache); return 0; } int btrfs_pin_reserved_extent(struct btrfs_trans_handle *trans, u64 start, u64 len) { struct btrfs_block_group *cache; int ret = 0; cache = btrfs_lookup_block_group(trans->fs_info, start); if (!cache) { btrfs_err(trans->fs_info, "unable to find block group for %llu", start); return -ENOSPC; } ret = pin_down_extent(trans, cache, start, len, 1); btrfs_put_block_group(cache); return ret; } static int alloc_reserved_extent(struct btrfs_trans_handle *trans, u64 bytenr, u64 num_bytes) { struct btrfs_fs_info *fs_info = trans->fs_info; int ret; ret = remove_from_free_space_tree(trans, bytenr, num_bytes); if (ret) return ret; ret = btrfs_update_block_group(trans, bytenr, num_bytes, true); if (ret) { ASSERT(!ret); btrfs_err(fs_info, "update block group failed for %llu %llu", bytenr, num_bytes); return ret; } trace_btrfs_reserved_extent_alloc(fs_info, bytenr, num_bytes); return 0; } static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans, u64 parent, u64 root_objectid, u64 flags, u64 owner, u64 offset, struct btrfs_key *ins, int ref_mod) { struct btrfs_fs_info *fs_info = trans->fs_info; struct btrfs_root *extent_root; int ret; struct btrfs_extent_item *extent_item; struct btrfs_extent_inline_ref *iref; struct btrfs_path *path; struct extent_buffer *leaf; int type; u32 size; if (parent > 0) type = BTRFS_SHARED_DATA_REF_KEY; else type = BTRFS_EXTENT_DATA_REF_KEY; size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type); path = btrfs_alloc_path(); if (!path) return -ENOMEM; extent_root = btrfs_extent_root(fs_info, ins->objectid); ret = btrfs_insert_empty_item(trans, extent_root, path, ins, size); if (ret) { btrfs_free_path(path); return ret; } leaf = path->nodes[0]; extent_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); btrfs_set_extent_refs(leaf, extent_item, ref_mod); btrfs_set_extent_generation(leaf, extent_item, trans->transid); btrfs_set_extent_flags(leaf, extent_item, flags | BTRFS_EXTENT_FLAG_DATA); iref = (struct btrfs_extent_inline_ref *)(extent_item + 1); btrfs_set_extent_inline_ref_type(leaf, iref, type); if (parent > 0) { struct btrfs_shared_data_ref *ref; ref = (struct btrfs_shared_data_ref *)(iref + 1); btrfs_set_extent_inline_ref_offset(leaf, iref, parent); btrfs_set_shared_data_ref_count(leaf, ref, ref_mod); } else { struct btrfs_extent_data_ref *ref; ref = (struct btrfs_extent_data_ref *)(&iref->offset); btrfs_set_extent_data_ref_root(leaf, ref, root_objectid); btrfs_set_extent_data_ref_objectid(leaf, ref, owner); btrfs_set_extent_data_ref_offset(leaf, ref, offset); btrfs_set_extent_data_ref_count(leaf, ref, ref_mod); } btrfs_mark_buffer_dirty(path->nodes[0]); btrfs_free_path(path); return alloc_reserved_extent(trans, ins->objectid, ins->offset); } static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans, struct btrfs_delayed_ref_node *node, struct btrfs_delayed_extent_op *extent_op) { struct btrfs_fs_info *fs_info = trans->fs_info; struct btrfs_root *extent_root; int ret; struct btrfs_extent_item *extent_item; struct btrfs_key extent_key; struct btrfs_tree_block_info *block_info; struct btrfs_extent_inline_ref *iref; struct btrfs_path *path; struct extent_buffer *leaf; struct btrfs_delayed_tree_ref *ref; u32 size = sizeof(*extent_item) + sizeof(*iref); u64 flags = extent_op->flags_to_set; bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA); ref = btrfs_delayed_node_to_tree_ref(node); extent_key.objectid = node->bytenr; if (skinny_metadata) { extent_key.offset = ref->level; extent_key.type = BTRFS_METADATA_ITEM_KEY; } else { extent_key.offset = node->num_bytes; extent_key.type = BTRFS_EXTENT_ITEM_KEY; size += sizeof(*block_info); } path = btrfs_alloc_path(); if (!path) return -ENOMEM; extent_root = btrfs_extent_root(fs_info, extent_key.objectid); ret = btrfs_insert_empty_item(trans, extent_root, path, &extent_key, size); if (ret) { btrfs_free_path(path); return ret; } leaf = path->nodes[0]; extent_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); btrfs_set_extent_refs(leaf, extent_item, 1); btrfs_set_extent_generation(leaf, extent_item, trans->transid); btrfs_set_extent_flags(leaf, extent_item, flags | BTRFS_EXTENT_FLAG_TREE_BLOCK); if (skinny_metadata) { iref = (struct btrfs_extent_inline_ref *)(extent_item + 1); } else { block_info = (struct btrfs_tree_block_info *)(extent_item + 1); btrfs_set_tree_block_key(leaf, block_info, &extent_op->key); btrfs_set_tree_block_level(leaf, block_info, ref->level); iref = (struct btrfs_extent_inline_ref *)(block_info + 1); } if (node->type == BTRFS_SHARED_BLOCK_REF_KEY) { btrfs_set_extent_inline_ref_type(leaf, iref, BTRFS_SHARED_BLOCK_REF_KEY); btrfs_set_extent_inline_ref_offset(leaf, iref, ref->parent); } else { btrfs_set_extent_inline_ref_type(leaf, iref, BTRFS_TREE_BLOCK_REF_KEY); btrfs_set_extent_inline_ref_offset(leaf, iref, ref->root); } btrfs_mark_buffer_dirty(leaf); btrfs_free_path(path); return alloc_reserved_extent(trans, node->bytenr, fs_info->nodesize); } int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans, struct btrfs_root *root, u64 owner, u64 offset, u64 ram_bytes, struct btrfs_key *ins) { struct btrfs_ref generic_ref = { 0 }; BUG_ON(root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID); btrfs_init_generic_ref(&generic_ref, BTRFS_ADD_DELAYED_EXTENT, ins->objectid, ins->offset, 0); btrfs_init_data_ref(&generic_ref, root->root_key.objectid, owner, offset, 0, false); btrfs_ref_tree_mod(root->fs_info, &generic_ref); return btrfs_add_delayed_data_ref(trans, &generic_ref, ram_bytes); } /* * this is used by the tree logging recovery code. It records that * an extent has been allocated and makes sure to clear the free * space cache bits as well */ int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans, u64 root_objectid, u64 owner, u64 offset, struct btrfs_key *ins) { struct btrfs_fs_info *fs_info = trans->fs_info; int ret; struct btrfs_block_group *block_group; struct btrfs_space_info *space_info; /* * Mixed block groups will exclude before processing the log so we only * need to do the exclude dance if this fs isn't mixed. */ if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS)) { ret = __exclude_logged_extent(fs_info, ins->objectid, ins->offset); if (ret) return ret; } block_group = btrfs_lookup_block_group(fs_info, ins->objectid); if (!block_group) return -EINVAL; space_info = block_group->space_info; spin_lock(&space_info->lock); spin_lock(&block_group->lock); space_info->bytes_reserved += ins->offset; block_group->reserved += ins->offset; spin_unlock(&block_group->lock); spin_unlock(&space_info->lock); ret = alloc_reserved_file_extent(trans, 0, root_objectid, 0, owner, offset, ins, 1); if (ret) btrfs_pin_extent(trans, ins->objectid, ins->offset, 1); btrfs_put_block_group(block_group); return ret; } static struct extent_buffer * btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root, u64 bytenr, int level, u64 owner, enum btrfs_lock_nesting nest) { struct btrfs_fs_info *fs_info = root->fs_info; struct extent_buffer *buf; u64 lockdep_owner = owner; buf = btrfs_find_create_tree_block(fs_info, bytenr, owner, level); if (IS_ERR(buf)) return buf; /* * Extra safety check in case the extent tree is corrupted and extent * allocator chooses to use a tree block which is already used and * locked. */ if (buf->lock_owner == current->pid) { btrfs_err_rl(fs_info, "tree block %llu owner %llu already locked by pid=%d, extent tree corruption detected", buf->start, btrfs_header_owner(buf), current->pid); free_extent_buffer(buf); return ERR_PTR(-EUCLEAN); } /* * The reloc trees are just snapshots, so we need them to appear to be * just like any other fs tree WRT lockdep. * * The exception however is in replace_path() in relocation, where we * hold the lock on the original fs root and then search for the reloc * root. At that point we need to make sure any reloc root buffers are * set to the BTRFS_TREE_RELOC_OBJECTID lockdep class in order to make * lockdep happy. */ if (lockdep_owner == BTRFS_TREE_RELOC_OBJECTID && !test_bit(BTRFS_ROOT_RESET_LOCKDEP_CLASS, &root->state)) lockdep_owner = BTRFS_FS_TREE_OBJECTID; /* btrfs_clear_buffer_dirty() accesses generation field. */ btrfs_set_header_generation(buf, trans->transid); /* * This needs to stay, because we could allocate a freed block from an * old tree into a new tree, so we need to make sure this new block is * set to the appropriate level and owner. */ btrfs_set_buffer_lockdep_class(lockdep_owner, buf, level); __btrfs_tree_lock(buf, nest); btrfs_clear_buffer_dirty(trans, buf); clear_bit(EXTENT_BUFFER_STALE, &buf->bflags); clear_bit(EXTENT_BUFFER_NO_CHECK, &buf->bflags); set_extent_buffer_uptodate(buf); memzero_extent_buffer(buf, 0, sizeof(struct btrfs_header)); btrfs_set_header_level(buf, level); btrfs_set_header_bytenr(buf, buf->start); btrfs_set_header_generation(buf, trans->transid); btrfs_set_header_backref_rev(buf, BTRFS_MIXED_BACKREF_REV); btrfs_set_header_owner(buf, owner); write_extent_buffer_fsid(buf, fs_info->fs_devices->metadata_uuid); write_extent_buffer_chunk_tree_uuid(buf, fs_info->chunk_tree_uuid); if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) { buf->log_index = root->log_transid % 2; /* * we allow two log transactions at a time, use different * EXTENT bit to differentiate dirty pages. */ if (buf->log_index == 0) set_extent_dirty(&root->dirty_log_pages, buf->start, buf->start + buf->len - 1, GFP_NOFS); else set_extent_new(&root->dirty_log_pages, buf->start, buf->start + buf->len - 1); } else { buf->log_index = -1; set_extent_dirty(&trans->transaction->dirty_pages, buf->start, buf->start + buf->len - 1, GFP_NOFS); } /* this returns a buffer locked for blocking */ return buf; } /* * finds a free extent and does all the dirty work required for allocation * returns the tree buffer or an ERR_PTR on error. */ struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root, u64 parent, u64 root_objectid, const struct btrfs_disk_key *key, int level, u64 hint, u64 empty_size, enum btrfs_lock_nesting nest) { struct btrfs_fs_info *fs_info = root->fs_info; struct btrfs_key ins; struct btrfs_block_rsv *block_rsv; struct extent_buffer *buf; struct btrfs_delayed_extent_op *extent_op; struct btrfs_ref generic_ref = { 0 }; u64 flags = 0; int ret; u32 blocksize = fs_info->nodesize; bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA); #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS if (btrfs_is_testing(fs_info)) { buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr, level, root_objectid, nest); if (!IS_ERR(buf)) root->alloc_bytenr += blocksize; return buf; } #endif block_rsv = btrfs_use_block_rsv(trans, root, blocksize); if (IS_ERR(block_rsv)) return ERR_CAST(block_rsv); ret = btrfs_reserve_extent(root, blocksize, blocksize, blocksize, empty_size, hint, &ins, 0, 0); if (ret) goto out_unuse; buf = btrfs_init_new_buffer(trans, root, ins.objectid, level, root_objectid, nest); if (IS_ERR(buf)) { ret = PTR_ERR(buf); goto out_free_reserved; } if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) { if (parent == 0) parent = ins.objectid; flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF; } else BUG_ON(parent > 0); if (root_objectid != BTRFS_TREE_LOG_OBJECTID) { extent_op = btrfs_alloc_delayed_extent_op(); if (!extent_op) { ret = -ENOMEM; goto out_free_buf; } if (key) memcpy(&extent_op->key, key, sizeof(extent_op->key)); else memset(&extent_op->key, 0, sizeof(extent_op->key)); extent_op->flags_to_set = flags; extent_op->update_key = skinny_metadata ? false : true; extent_op->update_flags = true; extent_op->level = level; btrfs_init_generic_ref(&generic_ref, BTRFS_ADD_DELAYED_EXTENT, ins.objectid, ins.offset, parent); btrfs_init_tree_ref(&generic_ref, level, root_objectid, root->root_key.objectid, false); btrfs_ref_tree_mod(fs_info, &generic_ref); ret = btrfs_add_delayed_tree_ref(trans, &generic_ref, extent_op); if (ret) goto out_free_delayed; } return buf; out_free_delayed: btrfs_free_delayed_extent_op(extent_op); out_free_buf: btrfs_tree_unlock(buf); free_extent_buffer(buf); out_free_reserved: btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 0); out_unuse: btrfs_unuse_block_rsv(fs_info, block_rsv, blocksize); return ERR_PTR(ret); } struct walk_control { u64 refs[BTRFS_MAX_LEVEL]; u64 flags[BTRFS_MAX_LEVEL]; struct btrfs_key update_progress; struct btrfs_key drop_progress; int drop_level; int stage; int level; int shared_level; int update_ref; int keep_locks; int reada_slot; int reada_count; int restarted; }; #define DROP_REFERENCE 1 #define UPDATE_BACKREF 2 static noinline void reada_walk_down(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct walk_control *wc, struct btrfs_path *path) { struct btrfs_fs_info *fs_info = root->fs_info; u64 bytenr; u64 generation; u64 refs; u64 flags; u32 nritems; struct btrfs_key key; struct extent_buffer *eb; int ret; int slot; int nread = 0; if (path->slots[wc->level] < wc->reada_slot) { wc->reada_count = wc->reada_count * 2 / 3; wc->reada_count = max(wc->reada_count, 2); } else { wc->reada_count = wc->reada_count * 3 / 2; wc->reada_count = min_t(int, wc->reada_count, BTRFS_NODEPTRS_PER_BLOCK(fs_info)); } eb = path->nodes[wc->level]; nritems = btrfs_header_nritems(eb); for (slot = path->slots[wc->level]; slot < nritems; slot++) { if (nread >= wc->reada_count) break; cond_resched(); bytenr = btrfs_node_blockptr(eb, slot); generation = btrfs_node_ptr_generation(eb, slot); if (slot == path->slots[wc->level]) goto reada; if (wc->stage == UPDATE_BACKREF && generation <= root->root_key.offset) continue; /* We don't lock the tree block, it's OK to be racy here */ ret = btrfs_lookup_extent_info(trans, fs_info, bytenr, wc->level - 1, 1, &refs, &flags); /* We don't care about errors in readahead. */ if (ret < 0) continue; BUG_ON(refs == 0); if (wc->stage == DROP_REFERENCE) { if (refs == 1) goto reada; if (wc->level == 1 && (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) continue; if (!wc->update_ref || generation <= root->root_key.offset) continue; btrfs_node_key_to_cpu(eb, &key, slot); ret = btrfs_comp_cpu_keys(&key, &wc->update_progress); if (ret < 0) continue; } else { if (wc->level == 1 && (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) continue; } reada: btrfs_readahead_node_child(eb, slot); nread++; } wc->reada_slot = slot; } /* * helper to process tree block while walking down the tree. * * when wc->stage == UPDATE_BACKREF, this function updates * back refs for pointers in the block. * * NOTE: return value 1 means we should stop walking down. */ static noinline int walk_down_proc(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct btrfs_path *path, struct walk_control *wc, int lookup_info) { struct btrfs_fs_info *fs_info = root->fs_info; int level = wc->level; struct extent_buffer *eb = path->nodes[level]; u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF; int ret; if (wc->stage == UPDATE_BACKREF && btrfs_header_owner(eb) != root->root_key.objectid) return 1; /* * when reference count of tree block is 1, it won't increase * again. once full backref flag is set, we never clear it. */ if (lookup_info && ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) || (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) { BUG_ON(!path->locks[level]); ret = btrfs_lookup_extent_info(trans, fs_info, eb->start, level, 1, &wc->refs[level], &wc->flags[level]); BUG_ON(ret == -ENOMEM); if (ret) return ret; BUG_ON(wc->refs[level] == 0); } if (wc->stage == DROP_REFERENCE) { if (wc->refs[level] > 1) return 1; if (path->locks[level] && !wc->keep_locks) { btrfs_tree_unlock_rw(eb, path->locks[level]); path->locks[level] = 0; } return 0; } /* wc->stage == UPDATE_BACKREF */ if (!(wc->flags[level] & flag)) { BUG_ON(!path->locks[level]); ret = btrfs_inc_ref(trans, root, eb, 1); BUG_ON(ret); /* -ENOMEM */ ret = btrfs_dec_ref(trans, root, eb, 0); BUG_ON(ret); /* -ENOMEM */ ret = btrfs_set_disk_extent_flags(trans, eb, flag); BUG_ON(ret); /* -ENOMEM */ wc->flags[level] |= flag; } /* * the block is shared by multiple trees, so it's not good to * keep the tree lock */ if (path->locks[level] && level > 0) { btrfs_tree_unlock_rw(eb, path->locks[level]); path->locks[level] = 0; } return 0; } /* * This is used to verify a ref exists for this root to deal with a bug where we * would have a drop_progress key that hadn't been updated properly. */ static int check_ref_exists(struct btrfs_trans_handle *trans, struct btrfs_root *root, u64 bytenr, u64 parent, int level) { struct btrfs_path *path; struct btrfs_extent_inline_ref *iref; int ret; path = btrfs_alloc_path(); if (!path) return -ENOMEM; ret = lookup_extent_backref(trans, path, &iref, bytenr, root->fs_info->nodesize, parent, root->root_key.objectid, level, 0); btrfs_free_path(path); if (ret == -ENOENT) return 0; if (ret < 0) return ret; return 1; } /* * helper to process tree block pointer. * * when wc->stage == DROP_REFERENCE, this function checks * reference count of the block pointed to. if the block * is shared and we need update back refs for the subtree * rooted at the block, this function changes wc->stage to * UPDATE_BACKREF. if the block is shared and there is no * need to update back, this function drops the reference * to the block. * * NOTE: return value 1 means we should stop walking down. */ static noinline int do_walk_down(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct btrfs_path *path, struct walk_control *wc, int *lookup_info) { struct btrfs_fs_info *fs_info = root->fs_info; u64 bytenr; u64 generation; u64 parent; struct btrfs_tree_parent_check check = { 0 }; struct btrfs_key key; struct btrfs_ref ref = { 0 }; struct extent_buffer *next; int level = wc->level; int reada = 0; int ret = 0; bool need_account = false; generation = btrfs_node_ptr_generation(path->nodes[level], path->slots[level]); /* * if the lower level block was created before the snapshot * was created, we know there is no need to update back refs * for the subtree */ if (wc->stage == UPDATE_BACKREF && generation <= root->root_key.offset) { *lookup_info = 1; return 1; } bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]); check.level = level - 1; check.transid = generation; check.owner_root = root->root_key.objectid; check.has_first_key = true; btrfs_node_key_to_cpu(path->nodes[level], &check.first_key, path->slots[level]); next = find_extent_buffer(fs_info, bytenr); if (!next) { next = btrfs_find_create_tree_block(fs_info, bytenr, root->root_key.objectid, level - 1); if (IS_ERR(next)) return PTR_ERR(next); reada = 1; } btrfs_tree_lock(next); ret = btrfs_lookup_extent_info(trans, fs_info, bytenr, level - 1, 1, &wc->refs[level - 1], &wc->flags[level - 1]); if (ret < 0) goto out_unlock; if (unlikely(wc->refs[level - 1] == 0)) { btrfs_err(fs_info, "Missing references."); ret = -EIO; goto out_unlock; } *lookup_info = 0; if (wc->stage == DROP_REFERENCE) { if (wc->refs[level - 1] > 1) { need_account = true; if (level == 1 && (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF)) goto skip; if (!wc->update_ref || generation <= root->root_key.offset) goto skip; btrfs_node_key_to_cpu(path->nodes[level], &key, path->slots[level]); ret = btrfs_comp_cpu_keys(&key, &wc->update_progress); if (ret < 0) goto skip; wc->stage = UPDATE_BACKREF; wc->shared_level = level - 1; } } else { if (level == 1 && (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF)) goto skip; } if (!btrfs_buffer_uptodate(next, generation, 0)) { btrfs_tree_unlock(next); free_extent_buffer(next); next = NULL; *lookup_info = 1; } if (!next) { if (reada && level == 1) reada_walk_down(trans, root, wc, path); next = read_tree_block(fs_info, bytenr, &check); if (IS_ERR(next)) { return PTR_ERR(next); } else if (!extent_buffer_uptodate(next)) { free_extent_buffer(next); return -EIO; } btrfs_tree_lock(next); } level--; ASSERT(level == btrfs_header_level(next)); if (level != btrfs_header_level(next)) { btrfs_err(root->fs_info, "mismatched level"); ret = -EIO; goto out_unlock; } path->nodes[level] = next; path->slots[level] = 0; path->locks[level] = BTRFS_WRITE_LOCK; wc->level = level; if (wc->level == 1) wc->reada_slot = 0; return 0; skip: wc->refs[level - 1] = 0; wc->flags[level - 1] = 0; if (wc->stage == DROP_REFERENCE) { if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) { parent = path->nodes[level]->start; } else { ASSERT(root->root_key.objectid == btrfs_header_owner(path->nodes[level])); if (root->root_key.objectid != btrfs_header_owner(path->nodes[level])) { btrfs_err(root->fs_info, "mismatched block owner"); ret = -EIO; goto out_unlock; } parent = 0; } /* * If we had a drop_progress we need to verify the refs are set * as expected. If we find our ref then we know that from here * on out everything should be correct, and we can clear the * ->restarted flag. */ if (wc->restarted) { ret = check_ref_exists(trans, root, bytenr, parent, level - 1); if (ret < 0) goto out_unlock; if (ret == 0) goto no_delete; ret = 0; wc->restarted = 0; } /* * Reloc tree doesn't contribute to qgroup numbers, and we have * already accounted them at merge time (replace_path), * thus we could skip expensive subtree trace here. */ if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID && need_account) { ret = btrfs_qgroup_trace_subtree(trans, next, generation, level - 1); if (ret) { btrfs_err_rl(fs_info, "Error %d accounting shared subtree. Quota is out of sync, rescan required.", ret); } } /* * We need to update the next key in our walk control so we can * update the drop_progress key accordingly. We don't care if * find_next_key doesn't find a key because that means we're at * the end and are going to clean up now. */ wc->drop_level = level; find_next_key(path, level, &wc->drop_progress); btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, bytenr, fs_info->nodesize, parent); btrfs_init_tree_ref(&ref, level - 1, root->root_key.objectid, 0, false); ret = btrfs_free_extent(trans, &ref); if (ret) goto out_unlock; } no_delete: *lookup_info = 1; ret = 1; out_unlock: btrfs_tree_unlock(next); free_extent_buffer(next); return ret; } /* * helper to process tree block while walking up the tree. * * when wc->stage == DROP_REFERENCE, this function drops * reference count on the block. * * when wc->stage == UPDATE_BACKREF, this function changes * wc->stage back to DROP_REFERENCE if we changed wc->stage * to UPDATE_BACKREF previously while processing the block. * * NOTE: return value 1 means we should stop walking up. */ static noinline int walk_up_proc(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct btrfs_path *path, struct walk_control *wc) { struct btrfs_fs_info *fs_info = root->fs_info; int ret; int level = wc->level; struct extent_buffer *eb = path->nodes[level]; u64 parent = 0; if (wc->stage == UPDATE_BACKREF) { BUG_ON(wc->shared_level < level); if (level < wc->shared_level) goto out; ret = find_next_key(path, level + 1, &wc->update_progress); if (ret > 0) wc->update_ref = 0; wc->stage = DROP_REFERENCE; wc->shared_level = -1; path->slots[level] = 0; /* * check reference count again if the block isn't locked. * we should start walking down the tree again if reference * count is one. */ if (!path->locks[level]) { BUG_ON(level == 0); btrfs_tree_lock(eb); path->locks[level] = BTRFS_WRITE_LOCK; ret = btrfs_lookup_extent_info(trans, fs_info, eb->start, level, 1, &wc->refs[level], &wc->flags[level]); if (ret < 0) { btrfs_tree_unlock_rw(eb, path->locks[level]); path->locks[level] = 0; return ret; } BUG_ON(wc->refs[level] == 0); if (wc->refs[level] == 1) { btrfs_tree_unlock_rw(eb, path->locks[level]); path->locks[level] = 0; return 1; } } } /* wc->stage == DROP_REFERENCE */ BUG_ON(wc->refs[level] > 1 && !path->locks[level]); if (wc->refs[level] == 1) { if (level == 0) { if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) ret = btrfs_dec_ref(trans, root, eb, 1); else ret = btrfs_dec_ref(trans, root, eb, 0); BUG_ON(ret); /* -ENOMEM */ if (is_fstree(root->root_key.objectid)) { ret = btrfs_qgroup_trace_leaf_items(trans, eb); if (ret) { btrfs_err_rl(fs_info, "error %d accounting leaf items, quota is out of sync, rescan required", ret); } } } /* Make block locked assertion in btrfs_clear_buffer_dirty happy. */ if (!path->locks[level]) { btrfs_tree_lock(eb); path->locks[level] = BTRFS_WRITE_LOCK; } btrfs_clear_buffer_dirty(trans, eb); } if (eb == root->node) { if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) parent = eb->start; else if (root->root_key.objectid != btrfs_header_owner(eb)) goto owner_mismatch; } else { if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF) parent = path->nodes[level + 1]->start; else if (root->root_key.objectid != btrfs_header_owner(path->nodes[level + 1])) goto owner_mismatch; } btrfs_free_tree_block(trans, btrfs_root_id(root), eb, parent, wc->refs[level] == 1); out: wc->refs[level] = 0; wc->flags[level] = 0; return 0; owner_mismatch: btrfs_err_rl(fs_info, "unexpected tree owner, have %llu expect %llu", btrfs_header_owner(eb), root->root_key.objectid); return -EUCLEAN; } static noinline int walk_down_tree(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct btrfs_path *path, struct walk_control *wc) { int level = wc->level; int lookup_info = 1; int ret = 0; while (level >= 0) { ret = walk_down_proc(trans, root, path, wc, lookup_info); if (ret) break; if (level == 0) break; if (path->slots[level] >= btrfs_header_nritems(path->nodes[level])) break; ret = do_walk_down(trans, root, path, wc, &lookup_info); if (ret > 0) { path->slots[level]++; continue; } else if (ret < 0) break; level = wc->level; } return (ret == 1) ? 0 : ret; } static noinline int walk_up_tree(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct btrfs_path *path, struct walk_control *wc, int max_level) { int level = wc->level; int ret; path->slots[level] = btrfs_header_nritems(path->nodes[level]); while (level < max_level && path->nodes[level]) { wc->level = level; if (path->slots[level] + 1 < btrfs_header_nritems(path->nodes[level])) { path->slots[level]++; return 0; } else { ret = walk_up_proc(trans, root, path, wc); if (ret > 0) return 0; if (ret < 0) return ret; if (path->locks[level]) { btrfs_tree_unlock_rw(path->nodes[level], path->locks[level]); path->locks[level] = 0; } free_extent_buffer(path->nodes[level]); path->nodes[level] = NULL; level++; } } return 1; } /* * drop a subvolume tree. * * this function traverses the tree freeing any blocks that only * referenced by the tree. * * when a shared tree block is found. this function decreases its * reference count by one. if update_ref is true, this function * also make sure backrefs for the shared block and all lower level * blocks are properly updated. * * If called with for_reloc == 0, may exit early with -EAGAIN */ int btrfs_drop_snapshot(struct btrfs_root *root, int update_ref, int for_reloc) { const bool is_reloc_root = (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID); struct btrfs_fs_info *fs_info = root->fs_info; struct btrfs_path *path; struct btrfs_trans_handle *trans; struct btrfs_root *tree_root = fs_info->tree_root; struct btrfs_root_item *root_item = &root->root_item; struct walk_control *wc; struct btrfs_key key; int err = 0; int ret; int level; bool root_dropped = false; bool unfinished_drop = false; btrfs_debug(fs_info, "Drop subvolume %llu", root->root_key.objectid); path = btrfs_alloc_path(); if (!path) { err = -ENOMEM; goto out; } wc = kzalloc(sizeof(*wc), GFP_NOFS); if (!wc) { btrfs_free_path(path); err = -ENOMEM; goto out; } /* * Use join to avoid potential EINTR from transaction start. See * wait_reserve_ticket and the whole reservation callchain. */ if (for_reloc) trans = btrfs_join_transaction(tree_root); else trans = btrfs_start_transaction(tree_root, 0); if (IS_ERR(trans)) { err = PTR_ERR(trans); goto out_free; } err = btrfs_run_delayed_items(trans); if (err) goto out_end_trans; /* * This will help us catch people modifying the fs tree while we're * dropping it. It is unsafe to mess with the fs tree while it's being * dropped as we unlock the root node and parent nodes as we walk down * the tree, assuming nothing will change. If something does change * then we'll have stale information and drop references to blocks we've * already dropped. */ set_bit(BTRFS_ROOT_DELETING, &root->state); unfinished_drop = test_bit(BTRFS_ROOT_UNFINISHED_DROP, &root->state); if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) { level = btrfs_header_level(root->node); path->nodes[level] = btrfs_lock_root_node(root); path->slots[level] = 0; path->locks[level] = BTRFS_WRITE_LOCK; memset(&wc->update_progress, 0, sizeof(wc->update_progress)); } else { btrfs_disk_key_to_cpu(&key, &root_item->drop_progress); memcpy(&wc->update_progress, &key, sizeof(wc->update_progress)); level = btrfs_root_drop_level(root_item); BUG_ON(level == 0); path->lowest_level = level; ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); path->lowest_level = 0; if (ret < 0) { err = ret; goto out_end_trans; } WARN_ON(ret > 0); /* * unlock our path, this is safe because only this * function is allowed to delete this snapshot */ btrfs_unlock_up_safe(path, 0); level = btrfs_header_level(root->node); while (1) { btrfs_tree_lock(path->nodes[level]); path->locks[level] = BTRFS_WRITE_LOCK; ret = btrfs_lookup_extent_info(trans, fs_info, path->nodes[level]->start, level, 1, &wc->refs[level], &wc->flags[level]); if (ret < 0) { err = ret; goto out_end_trans; } BUG_ON(wc->refs[level] == 0); if (level == btrfs_root_drop_level(root_item)) break; btrfs_tree_unlock(path->nodes[level]); path->locks[level] = 0; WARN_ON(wc->refs[level] != 1); level--; } } wc->restarted = test_bit(BTRFS_ROOT_DEAD_TREE, &root->state); wc->level = level; wc->shared_level = -1; wc->stage = DROP_REFERENCE; wc->update_ref = update_ref; wc->keep_locks = 0; wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info); while (1) { ret = walk_down_tree(trans, root, path, wc); if (ret < 0) { btrfs_abort_transaction(trans, ret); err = ret; break; } ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL); if (ret < 0) { btrfs_abort_transaction(trans, ret); err = ret; break; } if (ret > 0) { BUG_ON(wc->stage != DROP_REFERENCE); break; } if (wc->stage == DROP_REFERENCE) { wc->drop_level = wc->level; btrfs_node_key_to_cpu(path->nodes[wc->drop_level], &wc->drop_progress, path->slots[wc->drop_level]); } btrfs_cpu_key_to_disk(&root_item->drop_progress, &wc->drop_progress); btrfs_set_root_drop_level(root_item, wc->drop_level); BUG_ON(wc->level == 0); if (btrfs_should_end_transaction(trans) || (!for_reloc && btrfs_need_cleaner_sleep(fs_info))) { ret = btrfs_update_root(trans, tree_root, &root->root_key, root_item); if (ret) { btrfs_abort_transaction(trans, ret); err = ret; goto out_end_trans; } if (!is_reloc_root) btrfs_set_last_root_drop_gen(fs_info, trans->transid); btrfs_end_transaction_throttle(trans); if (!for_reloc && btrfs_need_cleaner_sleep(fs_info)) { btrfs_debug(fs_info, "drop snapshot early exit"); err = -EAGAIN; goto out_free; } /* * Use join to avoid potential EINTR from transaction * start. See wait_reserve_ticket and the whole * reservation callchain. */ if (for_reloc) trans = btrfs_join_transaction(tree_root); else trans = btrfs_start_transaction(tree_root, 0); if (IS_ERR(trans)) { err = PTR_ERR(trans); goto out_free; } } } btrfs_release_path(path); if (err) goto out_end_trans; ret = btrfs_del_root(trans, &root->root_key); if (ret) { btrfs_abort_transaction(trans, ret); err = ret; goto out_end_trans; } if (!is_reloc_root) { ret = btrfs_find_root(tree_root, &root->root_key, path, NULL, NULL); if (ret < 0) { btrfs_abort_transaction(trans, ret); err = ret; goto out_end_trans; } else if (ret > 0) { /* if we fail to delete the orphan item this time * around, it'll get picked up the next time. * * The most common failure here is just -ENOENT. */ btrfs_del_orphan_item(trans, tree_root, root->root_key.objectid); } } /* * This subvolume is going to be completely dropped, and won't be * recorded as dirty roots, thus pertrans meta rsv will not be freed at * commit transaction time. So free it here manually. */ btrfs_qgroup_convert_reserved_meta(root, INT_MAX); btrfs_qgroup_free_meta_all_pertrans(root); if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state)) btrfs_add_dropped_root(trans, root); else btrfs_put_root(root); root_dropped = true; out_end_trans: if (!is_reloc_root) btrfs_set_last_root_drop_gen(fs_info, trans->transid); btrfs_end_transaction_throttle(trans); out_free: kfree(wc); btrfs_free_path(path); out: /* * We were an unfinished drop root, check to see if there are any * pending, and if not clear and wake up any waiters. */ if (!err && unfinished_drop) btrfs_maybe_wake_unfinished_drop(fs_info); /* * So if we need to stop dropping the snapshot for whatever reason we * need to make sure to add it back to the dead root list so that we * keep trying to do the work later. This also cleans up roots if we * don't have it in the radix (like when we recover after a power fail * or unmount) so we don't leak memory. */ if (!for_reloc && !root_dropped) btrfs_add_dead_root(root); return err; } /* * drop subtree rooted at tree block 'node'. * * NOTE: this function will unlock and release tree block 'node' * only used by relocation code */ int btrfs_drop_subtree(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct extent_buffer *node, struct extent_buffer *parent) { struct btrfs_fs_info *fs_info = root->fs_info; struct btrfs_path *path; struct walk_control *wc; int level; int parent_level; int ret = 0; int wret; BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID); path = btrfs_alloc_path(); if (!path) return -ENOMEM; wc = kzalloc(sizeof(*wc), GFP_NOFS); if (!wc) { btrfs_free_path(path); return -ENOMEM; } btrfs_assert_tree_write_locked(parent); parent_level = btrfs_header_level(parent); atomic_inc(&parent->refs); path->nodes[parent_level] = parent; path->slots[parent_level] = btrfs_header_nritems(parent); btrfs_assert_tree_write_locked(node); level = btrfs_header_level(node); path->nodes[level] = node; path->slots[level] = 0; path->locks[level] = BTRFS_WRITE_LOCK; wc->refs[parent_level] = 1; wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF; wc->level = level; wc->shared_level = -1; wc->stage = DROP_REFERENCE; wc->update_ref = 0; wc->keep_locks = 1; wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info); while (1) { wret = walk_down_tree(trans, root, path, wc); if (wret < 0) { ret = wret; break; } wret = walk_up_tree(trans, root, path, wc, parent_level); if (wret < 0) ret = wret; if (wret != 0) break; } kfree(wc); btrfs_free_path(path); return ret; } int btrfs_error_unpin_extent_range(struct btrfs_fs_info *fs_info, u64 start, u64 end) { return unpin_extent_range(fs_info, start, end, false); } /* * It used to be that old block groups would be left around forever. * Iterating over them would be enough to trim unused space. Since we * now automatically remove them, we also need to iterate over unallocated * space. * * We don't want a transaction for this since the discard may take a * substantial amount of time. We don't require that a transaction be * running, but we do need to take a running transaction into account * to ensure that we're not discarding chunks that were released or * allocated in the current transaction. * * Holding the chunks lock will prevent other threads from allocating * or releasing chunks, but it won't prevent a running transaction * from committing and releasing the memory that the pending chunks * list head uses. For that, we need to take a reference to the * transaction and hold the commit root sem. We only need to hold * it while performing the free space search since we have already * held back allocations. */ static int btrfs_trim_free_extents(struct btrfs_device *device, u64 *trimmed) { u64 start = BTRFS_DEVICE_RANGE_RESERVED, len = 0, end = 0; int ret; *trimmed = 0; /* Discard not supported = nothing to do. */ if (!bdev_max_discard_sectors(device->bdev)) return 0; /* Not writable = nothing to do. */ if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) return 0; /* No free space = nothing to do. */ if (device->total_bytes <= device->bytes_used) return 0; ret = 0; while (1) { struct btrfs_fs_info *fs_info = device->fs_info; u64 bytes; ret = mutex_lock_interruptible(&fs_info->chunk_mutex); if (ret) break; find_first_clear_extent_bit(&device->alloc_state, start, &start, &end, CHUNK_TRIMMED | CHUNK_ALLOCATED); /* Check if there are any CHUNK_* bits left */ if (start > device->total_bytes) { WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG)); btrfs_warn_in_rcu(fs_info, "ignoring attempt to trim beyond device size: offset %llu length %llu device %s device size %llu", start, end - start + 1, btrfs_dev_name(device), device->total_bytes); mutex_unlock(&fs_info->chunk_mutex); ret = 0; break; } /* Ensure we skip the reserved space on each device. */ start = max_t(u64, start, BTRFS_DEVICE_RANGE_RESERVED); /* * If find_first_clear_extent_bit find a range that spans the * end of the device it will set end to -1, in this case it's up * to the caller to trim the value to the size of the device. */ end = min(end, device->total_bytes - 1); len = end - start + 1; /* We didn't find any extents */ if (!len) { mutex_unlock(&fs_info->chunk_mutex); ret = 0; break; } ret = btrfs_issue_discard(device->bdev, start, len, &bytes); if (!ret) set_extent_bits(&device->alloc_state, start, start + bytes - 1, CHUNK_TRIMMED); mutex_unlock(&fs_info->chunk_mutex); if (ret) break; start += len; *trimmed += bytes; if (fatal_signal_pending(current)) { ret = -ERESTARTSYS; break; } cond_resched(); } return ret; } /* * Trim the whole filesystem by: * 1) trimming the free space in each block group * 2) trimming the unallocated space on each device * * This will also continue trimming even if a block group or device encounters * an error. The return value will be the last error, or 0 if nothing bad * happens. */ int btrfs_trim_fs(struct btrfs_fs_info *fs_info, struct fstrim_range *range) { struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; struct btrfs_block_group *cache = NULL; struct btrfs_device *device; u64 group_trimmed; u64 range_end = U64_MAX; u64 start; u64 end; u64 trimmed = 0; u64 bg_failed = 0; u64 dev_failed = 0; int bg_ret = 0; int dev_ret = 0; int ret = 0; if (range->start == U64_MAX) return -EINVAL; /* * Check range overflow if range->len is set. * The default range->len is U64_MAX. */ if (range->len != U64_MAX && check_add_overflow(range->start, range->len, &range_end)) return -EINVAL; cache = btrfs_lookup_first_block_group(fs_info, range->start); for (; cache; cache = btrfs_next_block_group(cache)) { if (cache->start >= range_end) { btrfs_put_block_group(cache); break; } start = max(range->start, cache->start); end = min(range_end, cache->start + cache->length); if (end - start >= range->minlen) { if (!btrfs_block_group_done(cache)) { ret = btrfs_cache_block_group(cache, true); if (ret) { bg_failed++; bg_ret = ret; continue; } } ret = btrfs_trim_block_group(cache, &group_trimmed, start, end, range->minlen); trimmed += group_trimmed; if (ret) { bg_failed++; bg_ret = ret; continue; } } } if (bg_failed) btrfs_warn(fs_info, "failed to trim %llu block group(s), last error %d", bg_failed, bg_ret); mutex_lock(&fs_devices->device_list_mutex); list_for_each_entry(device, &fs_devices->devices, dev_list) { if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) continue; ret = btrfs_trim_free_extents(device, &group_trimmed); if (ret) { dev_failed++; dev_ret = ret; break; } trimmed += group_trimmed; } mutex_unlock(&fs_devices->device_list_mutex); if (dev_failed) btrfs_warn(fs_info, "failed to trim %llu device(s), last error %d", dev_failed, dev_ret); range->len = trimmed; if (bg_ret) return bg_ret; return dev_ret; }