// SPDX-License-Identifier: GPL-2.0-only /* * Memory merging support. * * This code enables dynamic sharing of identical pages found in different * memory areas, even if they are not shared by fork() * * Copyright (C) 2008-2009 Red Hat, Inc. * Authors: * Izik Eidus * Andrea Arcangeli * Chris Wright * Hugh Dickins */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "internal.h" #include "mm_slot.h" #define CREATE_TRACE_POINTS #include #ifdef CONFIG_NUMA #define NUMA(x) (x) #define DO_NUMA(x) do { (x); } while (0) #else #define NUMA(x) (0) #define DO_NUMA(x) do { } while (0) #endif typedef u8 rmap_age_t; /** * DOC: Overview * * A few notes about the KSM scanning process, * to make it easier to understand the data structures below: * * In order to reduce excessive scanning, KSM sorts the memory pages by their * contents into a data structure that holds pointers to the pages' locations. * * Since the contents of the pages may change at any moment, KSM cannot just * insert the pages into a normal sorted tree and expect it to find anything. * Therefore KSM uses two data structures - the stable and the unstable tree. * * The stable tree holds pointers to all the merged pages (ksm pages), sorted * by their contents. Because each such page is write-protected, searching on * this tree is fully assured to be working (except when pages are unmapped), * and therefore this tree is called the stable tree. * * The stable tree node includes information required for reverse * mapping from a KSM page to virtual addresses that map this page. * * In order to avoid large latencies of the rmap walks on KSM pages, * KSM maintains two types of nodes in the stable tree: * * * the regular nodes that keep the reverse mapping structures in a * linked list * * the "chains" that link nodes ("dups") that represent the same * write protected memory content, but each "dup" corresponds to a * different KSM page copy of that content * * Internally, the regular nodes, "dups" and "chains" are represented * using the same struct ksm_stable_node structure. * * In addition to the stable tree, KSM uses a second data structure called the * unstable tree: this tree holds pointers to pages which have been found to * be "unchanged for a period of time". The unstable tree sorts these pages * by their contents, but since they are not write-protected, KSM cannot rely * upon the unstable tree to work correctly - the unstable tree is liable to * be corrupted as its contents are modified, and so it is called unstable. * * KSM solves this problem by several techniques: * * 1) The unstable tree is flushed every time KSM completes scanning all * memory areas, and then the tree is rebuilt again from the beginning. * 2) KSM will only insert into the unstable tree, pages whose hash value * has not changed since the previous scan of all memory areas. * 3) The unstable tree is a RedBlack Tree - so its balancing is based on the * colors of the nodes and not on their contents, assuring that even when * the tree gets "corrupted" it won't get out of balance, so scanning time * remains the same (also, searching and inserting nodes in an rbtree uses * the same algorithm, so we have no overhead when we flush and rebuild). * 4) KSM never flushes the stable tree, which means that even if it were to * take 10 attempts to find a page in the unstable tree, once it is found, * it is secured in the stable tree. (When we scan a new page, we first * compare it against the stable tree, and then against the unstable tree.) * * If the merge_across_nodes tunable is unset, then KSM maintains multiple * stable trees and multiple unstable trees: one of each for each NUMA node. */ /** * struct ksm_mm_slot - ksm information per mm that is being scanned * @slot: hash lookup from mm to mm_slot * @rmap_list: head for this mm_slot's singly-linked list of rmap_items */ struct ksm_mm_slot { struct mm_slot slot; struct ksm_rmap_item *rmap_list; }; /** * struct ksm_scan - cursor for scanning * @mm_slot: the current mm_slot we are scanning * @address: the next address inside that to be scanned * @rmap_list: link to the next rmap to be scanned in the rmap_list * @seqnr: count of completed full scans (needed when removing unstable node) * * There is only the one ksm_scan instance of this cursor structure. */ struct ksm_scan { struct ksm_mm_slot *mm_slot; unsigned long address; struct ksm_rmap_item **rmap_list; unsigned long seqnr; }; /** * struct ksm_stable_node - node of the stable rbtree * @node: rb node of this ksm page in the stable tree * @head: (overlaying parent) &migrate_nodes indicates temporarily on that list * @hlist_dup: linked into the stable_node->hlist with a stable_node chain * @list: linked into migrate_nodes, pending placement in the proper node tree * @hlist: hlist head of rmap_items using this ksm page * @kpfn: page frame number of this ksm page (perhaps temporarily on wrong nid) * @chain_prune_time: time of the last full garbage collection * @rmap_hlist_len: number of rmap_item entries in hlist or STABLE_NODE_CHAIN * @nid: NUMA node id of stable tree in which linked (may not match kpfn) */ struct ksm_stable_node { union { struct rb_node node; /* when node of stable tree */ struct { /* when listed for migration */ struct list_head *head; struct { struct hlist_node hlist_dup; struct list_head list; }; }; }; struct hlist_head hlist; union { unsigned long kpfn; unsigned long chain_prune_time; }; /* * STABLE_NODE_CHAIN can be any negative number in * rmap_hlist_len negative range, but better not -1 to be able * to reliably detect underflows. */ #define STABLE_NODE_CHAIN -1024 int rmap_hlist_len; #ifdef CONFIG_NUMA int nid; #endif }; /** * struct ksm_rmap_item - reverse mapping item for virtual addresses * @rmap_list: next rmap_item in mm_slot's singly-linked rmap_list * @anon_vma: pointer to anon_vma for this mm,address, when in stable tree * @nid: NUMA node id of unstable tree in which linked (may not match page) * @mm: the memory structure this rmap_item is pointing into * @address: the virtual address this rmap_item tracks (+ flags in low bits) * @oldchecksum: previous checksum of the page at that virtual address * @node: rb node of this rmap_item in the unstable tree * @head: pointer to stable_node heading this list in the stable tree * @hlist: link into hlist of rmap_items hanging off that stable_node * @age: number of scan iterations since creation * @remaining_skips: how many scans to skip */ struct ksm_rmap_item { struct ksm_rmap_item *rmap_list; union { struct anon_vma *anon_vma; /* when stable */ #ifdef CONFIG_NUMA int nid; /* when node of unstable tree */ #endif }; struct mm_struct *mm; unsigned long address; /* + low bits used for flags below */ unsigned int oldchecksum; /* when unstable */ rmap_age_t age; rmap_age_t remaining_skips; union { struct rb_node node; /* when node of unstable tree */ struct { /* when listed from stable tree */ struct ksm_stable_node *head; struct hlist_node hlist; }; }; }; #define SEQNR_MASK 0x0ff /* low bits of unstable tree seqnr */ #define UNSTABLE_FLAG 0x100 /* is a node of the unstable tree */ #define STABLE_FLAG 0x200 /* is listed from the stable tree */ /* The stable and unstable tree heads */ static struct rb_root one_stable_tree[1] = { RB_ROOT }; static struct rb_root one_unstable_tree[1] = { RB_ROOT }; static struct rb_root *root_stable_tree = one_stable_tree; static struct rb_root *root_unstable_tree = one_unstable_tree; /* Recently migrated nodes of stable tree, pending proper placement */ static LIST_HEAD(migrate_nodes); #define STABLE_NODE_DUP_HEAD ((struct list_head *)&migrate_nodes.prev) #define MM_SLOTS_HASH_BITS 10 static DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS); static struct ksm_mm_slot ksm_mm_head = { .slot.mm_node = LIST_HEAD_INIT(ksm_mm_head.slot.mm_node), }; static struct ksm_scan ksm_scan = { .mm_slot = &ksm_mm_head, }; static struct kmem_cache *rmap_item_cache; static struct kmem_cache *stable_node_cache; static struct kmem_cache *mm_slot_cache; /* The number of pages scanned */ static unsigned long ksm_pages_scanned; /* The number of nodes in the stable tree */ static unsigned long ksm_pages_shared; /* The number of page slots additionally sharing those nodes */ static unsigned long ksm_pages_sharing; /* The number of nodes in the unstable tree */ static unsigned long ksm_pages_unshared; /* The number of rmap_items in use: to calculate pages_volatile */ static unsigned long ksm_rmap_items; /* The number of stable_node chains */ static unsigned long ksm_stable_node_chains; /* The number of stable_node dups linked to the stable_node chains */ static unsigned long ksm_stable_node_dups; /* Delay in pruning stale stable_node_dups in the stable_node_chains */ static unsigned int ksm_stable_node_chains_prune_millisecs = 2000; /* Maximum number of page slots sharing a stable node */ static int ksm_max_page_sharing = 256; /* Number of pages ksmd should scan in one batch */ static unsigned int ksm_thread_pages_to_scan = 100; /* Milliseconds ksmd should sleep between batches */ static unsigned int ksm_thread_sleep_millisecs = 20; /* Checksum of an empty (zeroed) page */ static unsigned int zero_checksum __read_mostly; /* Whether to merge empty (zeroed) pages with actual zero pages */ static bool ksm_use_zero_pages __read_mostly; /* Skip pages that couldn't be de-duplicated previously */ /* Default to true at least temporarily, for testing */ static bool ksm_smart_scan = true; /* The number of zero pages which is placed by KSM */ unsigned long ksm_zero_pages; #ifdef CONFIG_NUMA /* Zeroed when merging across nodes is not allowed */ static unsigned int ksm_merge_across_nodes = 1; static int ksm_nr_node_ids = 1; #else #define ksm_merge_across_nodes 1U #define ksm_nr_node_ids 1 #endif #define KSM_RUN_STOP 0 #define KSM_RUN_MERGE 1 #define KSM_RUN_UNMERGE 2 #define KSM_RUN_OFFLINE 4 static unsigned long ksm_run = KSM_RUN_STOP; static void wait_while_offlining(void); static DECLARE_WAIT_QUEUE_HEAD(ksm_thread_wait); static DECLARE_WAIT_QUEUE_HEAD(ksm_iter_wait); static DEFINE_MUTEX(ksm_thread_mutex); static DEFINE_SPINLOCK(ksm_mmlist_lock); #define KSM_KMEM_CACHE(__struct, __flags) kmem_cache_create(#__struct,\ sizeof(struct __struct), __alignof__(struct __struct),\ (__flags), NULL) static int __init ksm_slab_init(void) { rmap_item_cache = KSM_KMEM_CACHE(ksm_rmap_item, 0); if (!rmap_item_cache) goto out; stable_node_cache = KSM_KMEM_CACHE(ksm_stable_node, 0); if (!stable_node_cache) goto out_free1; mm_slot_cache = KSM_KMEM_CACHE(ksm_mm_slot, 0); if (!mm_slot_cache) goto out_free2; return 0; out_free2: kmem_cache_destroy(stable_node_cache); out_free1: kmem_cache_destroy(rmap_item_cache); out: return -ENOMEM; } static void __init ksm_slab_free(void) { kmem_cache_destroy(mm_slot_cache); kmem_cache_destroy(stable_node_cache); kmem_cache_destroy(rmap_item_cache); mm_slot_cache = NULL; } static __always_inline bool is_stable_node_chain(struct ksm_stable_node *chain) { return chain->rmap_hlist_len == STABLE_NODE_CHAIN; } static __always_inline bool is_stable_node_dup(struct ksm_stable_node *dup) { return dup->head == STABLE_NODE_DUP_HEAD; } static inline void stable_node_chain_add_dup(struct ksm_stable_node *dup, struct ksm_stable_node *chain) { VM_BUG_ON(is_stable_node_dup(dup)); dup->head = STABLE_NODE_DUP_HEAD; VM_BUG_ON(!is_stable_node_chain(chain)); hlist_add_head(&dup->hlist_dup, &chain->hlist); ksm_stable_node_dups++; } static inline void __stable_node_dup_del(struct ksm_stable_node *dup) { VM_BUG_ON(!is_stable_node_dup(dup)); hlist_del(&dup->hlist_dup); ksm_stable_node_dups--; } static inline void stable_node_dup_del(struct ksm_stable_node *dup) { VM_BUG_ON(is_stable_node_chain(dup)); if (is_stable_node_dup(dup)) __stable_node_dup_del(dup); else rb_erase(&dup->node, root_stable_tree + NUMA(dup->nid)); #ifdef CONFIG_DEBUG_VM dup->head = NULL; #endif } static inline struct ksm_rmap_item *alloc_rmap_item(void) { struct ksm_rmap_item *rmap_item; rmap_item = kmem_cache_zalloc(rmap_item_cache, GFP_KERNEL | __GFP_NORETRY | __GFP_NOWARN); if (rmap_item) ksm_rmap_items++; return rmap_item; } static inline void free_rmap_item(struct ksm_rmap_item *rmap_item) { ksm_rmap_items--; rmap_item->mm->ksm_rmap_items--; rmap_item->mm = NULL; /* debug safety */ kmem_cache_free(rmap_item_cache, rmap_item); } static inline struct ksm_stable_node *alloc_stable_node(void) { /* * The allocation can take too long with GFP_KERNEL when memory is under * pressure, which may lead to hung task warnings. Adding __GFP_HIGH * grants access to memory reserves, helping to avoid this problem. */ return kmem_cache_alloc(stable_node_cache, GFP_KERNEL | __GFP_HIGH); } static inline void free_stable_node(struct ksm_stable_node *stable_node) { VM_BUG_ON(stable_node->rmap_hlist_len && !is_stable_node_chain(stable_node)); kmem_cache_free(stable_node_cache, stable_node); } /* * ksmd, and unmerge_and_remove_all_rmap_items(), must not touch an mm's * page tables after it has passed through ksm_exit() - which, if necessary, * takes mmap_lock briefly to serialize against them. ksm_exit() does not set * a special flag: they can just back out as soon as mm_users goes to zero. * ksm_test_exit() is used throughout to make this test for exit: in some * places for correctness, in some places just to avoid unnecessary work. */ static inline bool ksm_test_exit(struct mm_struct *mm) { return atomic_read(&mm->mm_users) == 0; } static int break_ksm_pmd_entry(pmd_t *pmd, unsigned long addr, unsigned long next, struct mm_walk *walk) { struct page *page = NULL; spinlock_t *ptl; pte_t *pte; pte_t ptent; int ret; pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl); if (!pte) return 0; ptent = ptep_get(pte); if (pte_present(ptent)) { page = vm_normal_page(walk->vma, addr, ptent); } else if (!pte_none(ptent)) { swp_entry_t entry = pte_to_swp_entry(ptent); /* * As KSM pages remain KSM pages until freed, no need to wait * here for migration to end. */ if (is_migration_entry(entry)) page = pfn_swap_entry_to_page(entry); } /* return 1 if the page is an normal ksm page or KSM-placed zero page */ ret = (page && PageKsm(page)) || is_ksm_zero_pte(*pte); pte_unmap_unlock(pte, ptl); return ret; } static const struct mm_walk_ops break_ksm_ops = { .pmd_entry = break_ksm_pmd_entry, .walk_lock = PGWALK_RDLOCK, }; static const struct mm_walk_ops break_ksm_lock_vma_ops = { .pmd_entry = break_ksm_pmd_entry, .walk_lock = PGWALK_WRLOCK, }; /* * We use break_ksm to break COW on a ksm page by triggering unsharing, * such that the ksm page will get replaced by an exclusive anonymous page. * * We take great care only to touch a ksm page, in a VM_MERGEABLE vma, * in case the application has unmapped and remapped mm,addr meanwhile. * Could a ksm page appear anywhere else? Actually yes, in a VM_PFNMAP * mmap of /dev/mem, where we would not want to touch it. * * FAULT_FLAG_REMOTE/FOLL_REMOTE are because we do this outside the context * of the process that owns 'vma'. We also do not want to enforce * protection keys here anyway. */ static int break_ksm(struct vm_area_struct *vma, unsigned long addr, bool lock_vma) { vm_fault_t ret = 0; const struct mm_walk_ops *ops = lock_vma ? &break_ksm_lock_vma_ops : &break_ksm_ops; do { int ksm_page; cond_resched(); ksm_page = walk_page_range_vma(vma, addr, addr + 1, ops, NULL); if (WARN_ON_ONCE(ksm_page < 0)) return ksm_page; if (!ksm_page) return 0; ret = handle_mm_fault(vma, addr, FAULT_FLAG_UNSHARE | FAULT_FLAG_REMOTE, NULL); } while (!(ret & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | VM_FAULT_OOM))); /* * We must loop until we no longer find a KSM page because * handle_mm_fault() may back out if there's any difficulty e.g. if * pte accessed bit gets updated concurrently. * * VM_FAULT_SIGBUS could occur if we race with truncation of the * backing file, which also invalidates anonymous pages: that's * okay, that truncation will have unmapped the PageKsm for us. * * VM_FAULT_OOM: at the time of writing (late July 2009), setting * aside mem_cgroup limits, VM_FAULT_OOM would only be set if the * current task has TIF_MEMDIE set, and will be OOM killed on return * to user; and ksmd, having no mm, would never be chosen for that. * * But if the mm is in a limited mem_cgroup, then the fault may fail * with VM_FAULT_OOM even if the current task is not TIF_MEMDIE; and * even ksmd can fail in this way - though it's usually breaking ksm * just to undo a merge it made a moment before, so unlikely to oom. * * That's a pity: we might therefore have more kernel pages allocated * than we're counting as nodes in the stable tree; but ksm_do_scan * will retry to break_cow on each pass, so should recover the page * in due course. The important thing is to not let VM_MERGEABLE * be cleared while any such pages might remain in the area. */ return (ret & VM_FAULT_OOM) ? -ENOMEM : 0; } static bool vma_ksm_compatible(struct vm_area_struct *vma) { if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE | VM_PFNMAP | VM_IO | VM_DONTEXPAND | VM_HUGETLB | VM_MIXEDMAP)) return false; /* just ignore the advice */ if (vma_is_dax(vma)) return false; #ifdef VM_SAO if (vma->vm_flags & VM_SAO) return false; #endif #ifdef VM_SPARC_ADI if (vma->vm_flags & VM_SPARC_ADI) return false; #endif return true; } static struct vm_area_struct *find_mergeable_vma(struct mm_struct *mm, unsigned long addr) { struct vm_area_struct *vma; if (ksm_test_exit(mm)) return NULL; vma = vma_lookup(mm, addr); if (!vma || !(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma) return NULL; return vma; } static void break_cow(struct ksm_rmap_item *rmap_item) { struct mm_struct *mm = rmap_item->mm; unsigned long addr = rmap_item->address; struct vm_area_struct *vma; /* * It is not an accident that whenever we want to break COW * to undo, we also need to drop a reference to the anon_vma. */ put_anon_vma(rmap_item->anon_vma); mmap_read_lock(mm); vma = find_mergeable_vma(mm, addr); if (vma) break_ksm(vma, addr, false); mmap_read_unlock(mm); } static struct page *get_mergeable_page(struct ksm_rmap_item *rmap_item) { struct mm_struct *mm = rmap_item->mm; unsigned long addr = rmap_item->address; struct vm_area_struct *vma; struct page *page; mmap_read_lock(mm); vma = find_mergeable_vma(mm, addr); if (!vma) goto out; page = follow_page(vma, addr, FOLL_GET); if (IS_ERR_OR_NULL(page)) goto out; if (is_zone_device_page(page)) goto out_putpage; if (PageAnon(page)) { flush_anon_page(vma, page, addr); flush_dcache_page(page); } else { out_putpage: put_page(page); out: page = NULL; } mmap_read_unlock(mm); return page; } /* * This helper is used for getting right index into array of tree roots. * When merge_across_nodes knob is set to 1, there are only two rb-trees for * stable and unstable pages from all nodes with roots in index 0. Otherwise, * every node has its own stable and unstable tree. */ static inline int get_kpfn_nid(unsigned long kpfn) { return ksm_merge_across_nodes ? 0 : NUMA(pfn_to_nid(kpfn)); } static struct ksm_stable_node *alloc_stable_node_chain(struct ksm_stable_node *dup, struct rb_root *root) { struct ksm_stable_node *chain = alloc_stable_node(); VM_BUG_ON(is_stable_node_chain(dup)); if (likely(chain)) { INIT_HLIST_HEAD(&chain->hlist); chain->chain_prune_time = jiffies; chain->rmap_hlist_len = STABLE_NODE_CHAIN; #if defined (CONFIG_DEBUG_VM) && defined(CONFIG_NUMA) chain->nid = NUMA_NO_NODE; /* debug */ #endif ksm_stable_node_chains++; /* * Put the stable node chain in the first dimension of * the stable tree and at the same time remove the old * stable node. */ rb_replace_node(&dup->node, &chain->node, root); /* * Move the old stable node to the second dimension * queued in the hlist_dup. The invariant is that all * dup stable_nodes in the chain->hlist point to pages * that are write protected and have the exact same * content. */ stable_node_chain_add_dup(dup, chain); } return chain; } static inline void free_stable_node_chain(struct ksm_stable_node *chain, struct rb_root *root) { rb_erase(&chain->node, root); free_stable_node(chain); ksm_stable_node_chains--; } static void remove_node_from_stable_tree(struct ksm_stable_node *stable_node) { struct ksm_rmap_item *rmap_item; /* check it's not STABLE_NODE_CHAIN or negative */ BUG_ON(stable_node->rmap_hlist_len < 0); hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) { if (rmap_item->hlist.next) { ksm_pages_sharing--; trace_ksm_remove_rmap_item(stable_node->kpfn, rmap_item, rmap_item->mm); } else { ksm_pages_shared--; } rmap_item->mm->ksm_merging_pages--; VM_BUG_ON(stable_node->rmap_hlist_len <= 0); stable_node->rmap_hlist_len--; put_anon_vma(rmap_item->anon_vma); rmap_item->address &= PAGE_MASK; cond_resched(); } /* * We need the second aligned pointer of the migrate_nodes * list_head to stay clear from the rb_parent_color union * (aligned and different than any node) and also different * from &migrate_nodes. This will verify that future list.h changes * don't break STABLE_NODE_DUP_HEAD. Only recent gcc can handle it. */ BUILD_BUG_ON(STABLE_NODE_DUP_HEAD <= &migrate_nodes); BUILD_BUG_ON(STABLE_NODE_DUP_HEAD >= &migrate_nodes + 1); trace_ksm_remove_ksm_page(stable_node->kpfn); if (stable_node->head == &migrate_nodes) list_del(&stable_node->list); else stable_node_dup_del(stable_node); free_stable_node(stable_node); } enum get_ksm_page_flags { GET_KSM_PAGE_NOLOCK, GET_KSM_PAGE_LOCK, GET_KSM_PAGE_TRYLOCK }; /* * get_ksm_page: checks if the page indicated by the stable node * is still its ksm page, despite having held no reference to it. * In which case we can trust the content of the page, and it * returns the gotten page; but if the page has now been zapped, * remove the stale node from the stable tree and return NULL. * But beware, the stable node's page might be being migrated. * * You would expect the stable_node to hold a reference to the ksm page. * But if it increments the page's count, swapping out has to wait for * ksmd to come around again before it can free the page, which may take * seconds or even minutes: much too unresponsive. So instead we use a * "keyhole reference": access to the ksm page from the stable node peeps * out through its keyhole to see if that page still holds the right key, * pointing back to this stable node. This relies on freeing a PageAnon * page to reset its page->mapping to NULL, and relies on no other use of * a page to put something that might look like our key in page->mapping. * is on its way to being freed; but it is an anomaly to bear in mind. */ static struct page *get_ksm_page(struct ksm_stable_node *stable_node, enum get_ksm_page_flags flags) { struct page *page; void *expected_mapping; unsigned long kpfn; expected_mapping = (void *)((unsigned long)stable_node | PAGE_MAPPING_KSM); again: kpfn = READ_ONCE(stable_node->kpfn); /* Address dependency. */ page = pfn_to_page(kpfn); if (READ_ONCE(page->mapping) != expected_mapping) goto stale; /* * We cannot do anything with the page while its refcount is 0. * Usually 0 means free, or tail of a higher-order page: in which * case this node is no longer referenced, and should be freed; * however, it might mean that the page is under page_ref_freeze(). * The __remove_mapping() case is easy, again the node is now stale; * the same is in reuse_ksm_page() case; but if page is swapcache * in folio_migrate_mapping(), it might still be our page, * in which case it's essential to keep the node. */ while (!get_page_unless_zero(page)) { /* * Another check for page->mapping != expected_mapping would * work here too. We have chosen the !PageSwapCache test to * optimize the common case, when the page is or is about to * be freed: PageSwapCache is cleared (under spin_lock_irq) * in the ref_freeze section of __remove_mapping(); but Anon * page->mapping reset to NULL later, in free_pages_prepare(). */ if (!PageSwapCache(page)) goto stale; cpu_relax(); } if (READ_ONCE(page->mapping) != expected_mapping) { put_page(page); goto stale; } if (flags == GET_KSM_PAGE_TRYLOCK) { if (!trylock_page(page)) { put_page(page); return ERR_PTR(-EBUSY); } } else if (flags == GET_KSM_PAGE_LOCK) lock_page(page); if (flags != GET_KSM_PAGE_NOLOCK) { if (READ_ONCE(page->mapping) != expected_mapping) { unlock_page(page); put_page(page); goto stale; } } return page; stale: /* * We come here from above when page->mapping or !PageSwapCache * suggests that the node is stale; but it might be under migration. * We need smp_rmb(), matching the smp_wmb() in folio_migrate_ksm(), * before checking whether node->kpfn has been changed. */ smp_rmb(); if (READ_ONCE(stable_node->kpfn) != kpfn) goto again; remove_node_from_stable_tree(stable_node); return NULL; } /* * Removing rmap_item from stable or unstable tree. * This function will clean the information from the stable/unstable tree. */ static void remove_rmap_item_from_tree(struct ksm_rmap_item *rmap_item) { if (rmap_item->address & STABLE_FLAG) { struct ksm_stable_node *stable_node; struct page *page; stable_node = rmap_item->head; page = get_ksm_page(stable_node, GET_KSM_PAGE_LOCK); if (!page) goto out; hlist_del(&rmap_item->hlist); unlock_page(page); put_page(page); if (!hlist_empty(&stable_node->hlist)) ksm_pages_sharing--; else ksm_pages_shared--; rmap_item->mm->ksm_merging_pages--; VM_BUG_ON(stable_node->rmap_hlist_len <= 0); stable_node->rmap_hlist_len--; put_anon_vma(rmap_item->anon_vma); rmap_item->head = NULL; rmap_item->address &= PAGE_MASK; } else if (rmap_item->address & UNSTABLE_FLAG) { unsigned char age; /* * Usually ksmd can and must skip the rb_erase, because * root_unstable_tree was already reset to RB_ROOT. * But be careful when an mm is exiting: do the rb_erase * if this rmap_item was inserted by this scan, rather * than left over from before. */ age = (unsigned char)(ksm_scan.seqnr - rmap_item->address); BUG_ON(age > 1); if (!age) rb_erase(&rmap_item->node, root_unstable_tree + NUMA(rmap_item->nid)); ksm_pages_unshared--; rmap_item->address &= PAGE_MASK; } out: cond_resched(); /* we're called from many long loops */ } static void remove_trailing_rmap_items(struct ksm_rmap_item **rmap_list) { while (*rmap_list) { struct ksm_rmap_item *rmap_item = *rmap_list; *rmap_list = rmap_item->rmap_list; remove_rmap_item_from_tree(rmap_item); free_rmap_item(rmap_item); } } /* * Though it's very tempting to unmerge rmap_items from stable tree rather * than check every pte of a given vma, the locking doesn't quite work for * that - an rmap_item is assigned to the stable tree after inserting ksm * page and upping mmap_lock. Nor does it fit with the way we skip dup'ing * rmap_items from parent to child at fork time (so as not to waste time * if exit comes before the next scan reaches it). * * Similarly, although we'd like to remove rmap_items (so updating counts * and freeing memory) when unmerging an area, it's easier to leave that * to the next pass of ksmd - consider, for example, how ksmd might be * in cmp_and_merge_page on one of the rmap_items we would be removing. */ static int unmerge_ksm_pages(struct vm_area_struct *vma, unsigned long start, unsigned long end, bool lock_vma) { unsigned long addr; int err = 0; for (addr = start; addr < end && !err; addr += PAGE_SIZE) { if (ksm_test_exit(vma->vm_mm)) break; if (signal_pending(current)) err = -ERESTARTSYS; else err = break_ksm(vma, addr, lock_vma); } return err; } static inline struct ksm_stable_node *folio_stable_node(struct folio *folio) { return folio_test_ksm(folio) ? folio_raw_mapping(folio) : NULL; } static inline struct ksm_stable_node *page_stable_node(struct page *page) { return folio_stable_node(page_folio(page)); } static inline void set_page_stable_node(struct page *page, struct ksm_stable_node *stable_node) { VM_BUG_ON_PAGE(PageAnon(page) && PageAnonExclusive(page), page); page->mapping = (void *)((unsigned long)stable_node | PAGE_MAPPING_KSM); } #ifdef CONFIG_SYSFS /* * Only called through the sysfs control interface: */ static int remove_stable_node(struct ksm_stable_node *stable_node) { struct page *page; int err; page = get_ksm_page(stable_node, GET_KSM_PAGE_LOCK); if (!page) { /* * get_ksm_page did remove_node_from_stable_tree itself. */ return 0; } /* * Page could be still mapped if this races with __mmput() running in * between ksm_exit() and exit_mmap(). Just refuse to let * merge_across_nodes/max_page_sharing be switched. */ err = -EBUSY; if (!page_mapped(page)) { /* * The stable node did not yet appear stale to get_ksm_page(), * since that allows for an unmapped ksm page to be recognized * right up until it is freed; but the node is safe to remove. * This page might be in an LRU cache waiting to be freed, * or it might be PageSwapCache (perhaps under writeback), * or it might have been removed from swapcache a moment ago. */ set_page_stable_node(page, NULL); remove_node_from_stable_tree(stable_node); err = 0; } unlock_page(page); put_page(page); return err; } static int remove_stable_node_chain(struct ksm_stable_node *stable_node, struct rb_root *root) { struct ksm_stable_node *dup; struct hlist_node *hlist_safe; if (!is_stable_node_chain(stable_node)) { VM_BUG_ON(is_stable_node_dup(stable_node)); if (remove_stable_node(stable_node)) return true; else return false; } hlist_for_each_entry_safe(dup, hlist_safe, &stable_node->hlist, hlist_dup) { VM_BUG_ON(!is_stable_node_dup(dup)); if (remove_stable_node(dup)) return true; } BUG_ON(!hlist_empty(&stable_node->hlist)); free_stable_node_chain(stable_node, root); return false; } static int remove_all_stable_nodes(void) { struct ksm_stable_node *stable_node, *next; int nid; int err = 0; for (nid = 0; nid < ksm_nr_node_ids; nid++) { while (root_stable_tree[nid].rb_node) { stable_node = rb_entry(root_stable_tree[nid].rb_node, struct ksm_stable_node, node); if (remove_stable_node_chain(stable_node, root_stable_tree + nid)) { err = -EBUSY; break; /* proceed to next nid */ } cond_resched(); } } list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) { if (remove_stable_node(stable_node)) err = -EBUSY; cond_resched(); } return err; } static int unmerge_and_remove_all_rmap_items(void) { struct ksm_mm_slot *mm_slot; struct mm_slot *slot; struct mm_struct *mm; struct vm_area_struct *vma; int err = 0; spin_lock(&ksm_mmlist_lock); slot = list_entry(ksm_mm_head.slot.mm_node.next, struct mm_slot, mm_node); ksm_scan.mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot); spin_unlock(&ksm_mmlist_lock); for (mm_slot = ksm_scan.mm_slot; mm_slot != &ksm_mm_head; mm_slot = ksm_scan.mm_slot) { VMA_ITERATOR(vmi, mm_slot->slot.mm, 0); mm = mm_slot->slot.mm; mmap_read_lock(mm); /* * Exit right away if mm is exiting to avoid lockdep issue in * the maple tree */ if (ksm_test_exit(mm)) goto mm_exiting; for_each_vma(vmi, vma) { if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma) continue; err = unmerge_ksm_pages(vma, vma->vm_start, vma->vm_end, false); if (err) goto error; } mm_exiting: remove_trailing_rmap_items(&mm_slot->rmap_list); mmap_read_unlock(mm); spin_lock(&ksm_mmlist_lock); slot = list_entry(mm_slot->slot.mm_node.next, struct mm_slot, mm_node); ksm_scan.mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot); if (ksm_test_exit(mm)) { hash_del(&mm_slot->slot.hash); list_del(&mm_slot->slot.mm_node); spin_unlock(&ksm_mmlist_lock); mm_slot_free(mm_slot_cache, mm_slot); clear_bit(MMF_VM_MERGEABLE, &mm->flags); clear_bit(MMF_VM_MERGE_ANY, &mm->flags); mmdrop(mm); } else spin_unlock(&ksm_mmlist_lock); } /* Clean up stable nodes, but don't worry if some are still busy */ remove_all_stable_nodes(); ksm_scan.seqnr = 0; return 0; error: mmap_read_unlock(mm); spin_lock(&ksm_mmlist_lock); ksm_scan.mm_slot = &ksm_mm_head; spin_unlock(&ksm_mmlist_lock); return err; } #endif /* CONFIG_SYSFS */ static u32 calc_checksum(struct page *page) { u32 checksum; void *addr = kmap_atomic(page); checksum = xxhash(addr, PAGE_SIZE, 0); kunmap_atomic(addr); return checksum; } static int write_protect_page(struct vm_area_struct *vma, struct page *page, pte_t *orig_pte) { struct mm_struct *mm = vma->vm_mm; DEFINE_PAGE_VMA_WALK(pvmw, page, vma, 0, 0); int swapped; int err = -EFAULT; struct mmu_notifier_range range; bool anon_exclusive; pte_t entry; pvmw.address = page_address_in_vma(page, vma); if (pvmw.address == -EFAULT) goto out; BUG_ON(PageTransCompound(page)); mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, pvmw.address, pvmw.address + PAGE_SIZE); mmu_notifier_invalidate_range_start(&range); if (!page_vma_mapped_walk(&pvmw)) goto out_mn; if (WARN_ONCE(!pvmw.pte, "Unexpected PMD mapping?")) goto out_unlock; anon_exclusive = PageAnonExclusive(page); entry = ptep_get(pvmw.pte); if (pte_write(entry) || pte_dirty(entry) || anon_exclusive || mm_tlb_flush_pending(mm)) { swapped = PageSwapCache(page); flush_cache_page(vma, pvmw.address, page_to_pfn(page)); /* * Ok this is tricky, when get_user_pages_fast() run it doesn't * take any lock, therefore the check that we are going to make * with the pagecount against the mapcount is racy and * O_DIRECT can happen right after the check. * So we clear the pte and flush the tlb before the check * this assure us that no O_DIRECT can happen after the check * or in the middle of the check. * * No need to notify as we are downgrading page table to read * only not changing it to point to a new page. * * See Documentation/mm/mmu_notifier.rst */ entry = ptep_clear_flush(vma, pvmw.address, pvmw.pte); /* * Check that no O_DIRECT or similar I/O is in progress on the * page */ if (page_mapcount(page) + 1 + swapped != page_count(page)) { set_pte_at(mm, pvmw.address, pvmw.pte, entry); goto out_unlock; } /* See page_try_share_anon_rmap(): clear PTE first. */ if (anon_exclusive && page_try_share_anon_rmap(page)) { set_pte_at(mm, pvmw.address, pvmw.pte, entry); goto out_unlock; } if (pte_dirty(entry)) set_page_dirty(page); entry = pte_mkclean(entry); if (pte_write(entry)) entry = pte_wrprotect(entry); set_pte_at_notify(mm, pvmw.address, pvmw.pte, entry); } *orig_pte = entry; err = 0; out_unlock: page_vma_mapped_walk_done(&pvmw); out_mn: mmu_notifier_invalidate_range_end(&range); out: return err; } /** * replace_page - replace page in vma by new ksm page * @vma: vma that holds the pte pointing to page * @page: the page we are replacing by kpage * @kpage: the ksm page we replace page by * @orig_pte: the original value of the pte * * Returns 0 on success, -EFAULT on failure. */ static int replace_page(struct vm_area_struct *vma, struct page *page, struct page *kpage, pte_t orig_pte) { struct mm_struct *mm = vma->vm_mm; struct folio *folio; pmd_t *pmd; pmd_t pmde; pte_t *ptep; pte_t newpte; spinlock_t *ptl; unsigned long addr; int err = -EFAULT; struct mmu_notifier_range range; addr = page_address_in_vma(page, vma); if (addr == -EFAULT) goto out; pmd = mm_find_pmd(mm, addr); if (!pmd) goto out; /* * Some THP functions use the sequence pmdp_huge_clear_flush(), set_pmd_at() * without holding anon_vma lock for write. So when looking for a * genuine pmde (in which to find pte), test present and !THP together. */ pmde = pmdp_get_lockless(pmd); if (!pmd_present(pmde) || pmd_trans_huge(pmde)) goto out; mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, addr, addr + PAGE_SIZE); mmu_notifier_invalidate_range_start(&range); ptep = pte_offset_map_lock(mm, pmd, addr, &ptl); if (!ptep) goto out_mn; if (!pte_same(ptep_get(ptep), orig_pte)) { pte_unmap_unlock(ptep, ptl); goto out_mn; } VM_BUG_ON_PAGE(PageAnonExclusive(page), page); VM_BUG_ON_PAGE(PageAnon(kpage) && PageAnonExclusive(kpage), kpage); /* * No need to check ksm_use_zero_pages here: we can only have a * zero_page here if ksm_use_zero_pages was enabled already. */ if (!is_zero_pfn(page_to_pfn(kpage))) { get_page(kpage); page_add_anon_rmap(kpage, vma, addr, RMAP_NONE); newpte = mk_pte(kpage, vma->vm_page_prot); } else { /* * Use pte_mkdirty to mark the zero page mapped by KSM, and then * we can easily track all KSM-placed zero pages by checking if * the dirty bit in zero page's PTE is set. */ newpte = pte_mkdirty(pte_mkspecial(pfn_pte(page_to_pfn(kpage), vma->vm_page_prot))); ksm_zero_pages++; mm->ksm_zero_pages++; /* * We're replacing an anonymous page with a zero page, which is * not anonymous. We need to do proper accounting otherwise we * will get wrong values in /proc, and a BUG message in dmesg * when tearing down the mm. */ dec_mm_counter(mm, MM_ANONPAGES); } flush_cache_page(vma, addr, pte_pfn(ptep_get(ptep))); /* * No need to notify as we are replacing a read only page with another * read only page with the same content. * * See Documentation/mm/mmu_notifier.rst */ ptep_clear_flush(vma, addr, ptep); set_pte_at_notify(mm, addr, ptep, newpte); folio = page_folio(page); page_remove_rmap(page, vma, false); if (!folio_mapped(folio)) folio_free_swap(folio); folio_put(folio); pte_unmap_unlock(ptep, ptl); err = 0; out_mn: mmu_notifier_invalidate_range_end(&range); out: return err; } /* * try_to_merge_one_page - take two pages and merge them into one * @vma: the vma that holds the pte pointing to page * @page: the PageAnon page that we want to replace with kpage * @kpage: the PageKsm page that we want to map instead of page, * or NULL the first time when we want to use page as kpage. * * This function returns 0 if the pages were merged, -EFAULT otherwise. */ static int try_to_merge_one_page(struct vm_area_struct *vma, struct page *page, struct page *kpage) { pte_t orig_pte = __pte(0); int err = -EFAULT; if (page == kpage) /* ksm page forked */ return 0; if (!PageAnon(page)) goto out; /* * We need the page lock to read a stable PageSwapCache in * write_protect_page(). We use trylock_page() instead of * lock_page() because we don't want to wait here - we * prefer to continue scanning and merging different pages, * then come back to this page when it is unlocked. */ if (!trylock_page(page)) goto out; if (PageTransCompound(page)) { if (split_huge_page(page)) goto out_unlock; } /* * If this anonymous page is mapped only here, its pte may need * to be write-protected. If it's mapped elsewhere, all of its * ptes are necessarily already write-protected. But in either * case, we need to lock and check page_count is not raised. */ if (write_protect_page(vma, page, &orig_pte) == 0) { if (!kpage) { /* * While we hold page lock, upgrade page from * PageAnon+anon_vma to PageKsm+NULL stable_node: * stable_tree_insert() will update stable_node. */ set_page_stable_node(page, NULL); mark_page_accessed(page); /* * Page reclaim just frees a clean page with no dirty * ptes: make sure that the ksm page would be swapped. */ if (!PageDirty(page)) SetPageDirty(page); err = 0; } else if (pages_identical(page, kpage)) err = replace_page(vma, page, kpage, orig_pte); } out_unlock: unlock_page(page); out: return err; } /* * try_to_merge_with_ksm_page - like try_to_merge_two_pages, * but no new kernel page is allocated: kpage must already be a ksm page. * * This function returns 0 if the pages were merged, -EFAULT otherwise. */ static int try_to_merge_with_ksm_page(struct ksm_rmap_item *rmap_item, struct page *page, struct page *kpage) { struct mm_struct *mm = rmap_item->mm; struct vm_area_struct *vma; int err = -EFAULT; mmap_read_lock(mm); vma = find_mergeable_vma(mm, rmap_item->address); if (!vma) goto out; err = try_to_merge_one_page(vma, page, kpage); if (err) goto out; /* Unstable nid is in union with stable anon_vma: remove first */ remove_rmap_item_from_tree(rmap_item); /* Must get reference to anon_vma while still holding mmap_lock */ rmap_item->anon_vma = vma->anon_vma; get_anon_vma(vma->anon_vma); out: mmap_read_unlock(mm); trace_ksm_merge_with_ksm_page(kpage, page_to_pfn(kpage ? kpage : page), rmap_item, mm, err); return err; } /* * try_to_merge_two_pages - take two identical pages and prepare them * to be merged into one page. * * This function returns the kpage if we successfully merged two identical * pages into one ksm page, NULL otherwise. * * Note that this function upgrades page to ksm page: if one of the pages * is already a ksm page, try_to_merge_with_ksm_page should be used. */ static struct page *try_to_merge_two_pages(struct ksm_rmap_item *rmap_item, struct page *page, struct ksm_rmap_item *tree_rmap_item, struct page *tree_page) { int err; err = try_to_merge_with_ksm_page(rmap_item, page, NULL); if (!err) { err = try_to_merge_with_ksm_page(tree_rmap_item, tree_page, page); /* * If that fails, we have a ksm page with only one pte * pointing to it: so break it. */ if (err) break_cow(rmap_item); } return err ? NULL : page; } static __always_inline bool __is_page_sharing_candidate(struct ksm_stable_node *stable_node, int offset) { VM_BUG_ON(stable_node->rmap_hlist_len < 0); /* * Check that at least one mapping still exists, otherwise * there's no much point to merge and share with this * stable_node, as the underlying tree_page of the other * sharer is going to be freed soon. */ return stable_node->rmap_hlist_len && stable_node->rmap_hlist_len + offset < ksm_max_page_sharing; } static __always_inline bool is_page_sharing_candidate(struct ksm_stable_node *stable_node) { return __is_page_sharing_candidate(stable_node, 0); } static struct page *stable_node_dup(struct ksm_stable_node **_stable_node_dup, struct ksm_stable_node **_stable_node, struct rb_root *root, bool prune_stale_stable_nodes) { struct ksm_stable_node *dup, *found = NULL, *stable_node = *_stable_node; struct hlist_node *hlist_safe; struct page *_tree_page, *tree_page = NULL; int nr = 0; int found_rmap_hlist_len; if (!prune_stale_stable_nodes || time_before(jiffies, stable_node->chain_prune_time + msecs_to_jiffies( ksm_stable_node_chains_prune_millisecs))) prune_stale_stable_nodes = false; else stable_node->chain_prune_time = jiffies; hlist_for_each_entry_safe(dup, hlist_safe, &stable_node->hlist, hlist_dup) { cond_resched(); /* * We must walk all stable_node_dup to prune the stale * stable nodes during lookup. * * get_ksm_page can drop the nodes from the * stable_node->hlist if they point to freed pages * (that's why we do a _safe walk). The "dup" * stable_node parameter itself will be freed from * under us if it returns NULL. */ _tree_page = get_ksm_page(dup, GET_KSM_PAGE_NOLOCK); if (!_tree_page) continue; nr += 1; if (is_page_sharing_candidate(dup)) { if (!found || dup->rmap_hlist_len > found_rmap_hlist_len) { if (found) put_page(tree_page); found = dup; found_rmap_hlist_len = found->rmap_hlist_len; tree_page = _tree_page; /* skip put_page for found dup */ if (!prune_stale_stable_nodes) break; continue; } } put_page(_tree_page); } if (found) { /* * nr is counting all dups in the chain only if * prune_stale_stable_nodes is true, otherwise we may * break the loop at nr == 1 even if there are * multiple entries. */ if (prune_stale_stable_nodes && nr == 1) { /* * If there's not just one entry it would * corrupt memory, better BUG_ON. In KSM * context with no lock held it's not even * fatal. */ BUG_ON(stable_node->hlist.first->next); /* * There's just one entry and it is below the * deduplication limit so drop the chain. */ rb_replace_node(&stable_node->node, &found->node, root); free_stable_node(stable_node); ksm_stable_node_chains--; ksm_stable_node_dups--; /* * NOTE: the caller depends on the stable_node * to be equal to stable_node_dup if the chain * was collapsed. */ *_stable_node = found; /* * Just for robustness, as stable_node is * otherwise left as a stable pointer, the * compiler shall optimize it away at build * time. */ stable_node = NULL; } else if (stable_node->hlist.first != &found->hlist_dup && __is_page_sharing_candidate(found, 1)) { /* * If the found stable_node dup can accept one * more future merge (in addition to the one * that is underway) and is not at the head of * the chain, put it there so next search will * be quicker in the !prune_stale_stable_nodes * case. * * NOTE: it would be inaccurate to use nr > 1 * instead of checking the hlist.first pointer * directly, because in the * prune_stale_stable_nodes case "nr" isn't * the position of the found dup in the chain, * but the total number of dups in the chain. */ hlist_del(&found->hlist_dup); hlist_add_head(&found->hlist_dup, &stable_node->hlist); } } *_stable_node_dup = found; return tree_page; } static struct ksm_stable_node *stable_node_dup_any(struct ksm_stable_node *stable_node, struct rb_root *root) { if (!is_stable_node_chain(stable_node)) return stable_node; if (hlist_empty(&stable_node->hlist)) { free_stable_node_chain(stable_node, root); return NULL; } return hlist_entry(stable_node->hlist.first, typeof(*stable_node), hlist_dup); } /* * Like for get_ksm_page, this function can free the *_stable_node and * *_stable_node_dup if the returned tree_page is NULL. * * It can also free and overwrite *_stable_node with the found * stable_node_dup if the chain is collapsed (in which case * *_stable_node will be equal to *_stable_node_dup like if the chain * never existed). It's up to the caller to verify tree_page is not * NULL before dereferencing *_stable_node or *_stable_node_dup. * * *_stable_node_dup is really a second output parameter of this * function and will be overwritten in all cases, the caller doesn't * need to initialize it. */ static struct page *__stable_node_chain(struct ksm_stable_node **_stable_node_dup, struct ksm_stable_node **_stable_node, struct rb_root *root, bool prune_stale_stable_nodes) { struct ksm_stable_node *stable_node = *_stable_node; if (!is_stable_node_chain(stable_node)) { if (is_page_sharing_candidate(stable_node)) { *_stable_node_dup = stable_node; return get_ksm_page(stable_node, GET_KSM_PAGE_NOLOCK); } /* * _stable_node_dup set to NULL means the stable_node * reached the ksm_max_page_sharing limit. */ *_stable_node_dup = NULL; return NULL; } return stable_node_dup(_stable_node_dup, _stable_node, root, prune_stale_stable_nodes); } static __always_inline struct page *chain_prune(struct ksm_stable_node **s_n_d, struct ksm_stable_node **s_n, struct rb_root *root) { return __stable_node_chain(s_n_d, s_n, root, true); } static __always_inline struct page *chain(struct ksm_stable_node **s_n_d, struct ksm_stable_node *s_n, struct rb_root *root) { struct ksm_stable_node *old_stable_node = s_n; struct page *tree_page; tree_page = __stable_node_chain(s_n_d, &s_n, root, false); /* not pruning dups so s_n cannot have changed */ VM_BUG_ON(s_n != old_stable_node); return tree_page; } /* * stable_tree_search - search for page inside the stable tree * * This function checks if there is a page inside the stable tree * with identical content to the page that we are scanning right now. * * This function returns the stable tree node of identical content if found, * NULL otherwise. */ static struct page *stable_tree_search(struct page *page) { int nid; struct rb_root *root; struct rb_node **new; struct rb_node *parent; struct ksm_stable_node *stable_node, *stable_node_dup, *stable_node_any; struct ksm_stable_node *page_node; page_node = page_stable_node(page); if (page_node && page_node->head != &migrate_nodes) { /* ksm page forked */ get_page(page); return page; } nid = get_kpfn_nid(page_to_pfn(page)); root = root_stable_tree + nid; again: new = &root->rb_node; parent = NULL; while (*new) { struct page *tree_page; int ret; cond_resched(); stable_node = rb_entry(*new, struct ksm_stable_node, node); stable_node_any = NULL; tree_page = chain_prune(&stable_node_dup, &stable_node, root); /* * NOTE: stable_node may have been freed by * chain_prune() if the returned stable_node_dup is * not NULL. stable_node_dup may have been inserted in * the rbtree instead as a regular stable_node (in * order to collapse the stable_node chain if a single * stable_node dup was found in it). In such case the * stable_node is overwritten by the callee to point * to the stable_node_dup that was collapsed in the * stable rbtree and stable_node will be equal to * stable_node_dup like if the chain never existed. */ if (!stable_node_dup) { /* * Either all stable_node dups were full in * this stable_node chain, or this chain was * empty and should be rb_erased. */ stable_node_any = stable_node_dup_any(stable_node, root); if (!stable_node_any) { /* rb_erase just run */ goto again; } /* * Take any of the stable_node dups page of * this stable_node chain to let the tree walk * continue. All KSM pages belonging to the * stable_node dups in a stable_node chain * have the same content and they're * write protected at all times. Any will work * fine to continue the walk. */ tree_page = get_ksm_page(stable_node_any, GET_KSM_PAGE_NOLOCK); } VM_BUG_ON(!stable_node_dup ^ !!stable_node_any); if (!tree_page) { /* * If we walked over a stale stable_node, * get_ksm_page() will call rb_erase() and it * may rebalance the tree from under us. So * restart the search from scratch. Returning * NULL would be safe too, but we'd generate * false negative insertions just because some * stable_node was stale. */ goto again; } ret = memcmp_pages(page, tree_page); put_page(tree_page); parent = *new; if (ret < 0) new = &parent->rb_left; else if (ret > 0) new = &parent->rb_right; else { if (page_node) { VM_BUG_ON(page_node->head != &migrate_nodes); /* * Test if the migrated page should be merged * into a stable node dup. If the mapcount is * 1 we can migrate it with another KSM page * without adding it to the chain. */ if (page_mapcount(page) > 1) goto chain_append; } if (!stable_node_dup) { /* * If the stable_node is a chain and * we got a payload match in memcmp * but we cannot merge the scanned * page in any of the existing * stable_node dups because they're * all full, we need to wait the * scanned page to find itself a match * in the unstable tree to create a * brand new KSM page to add later to * the dups of this stable_node. */ return NULL; } /* * Lock and unlock the stable_node's page (which * might already have been migrated) so that page * migration is sure to notice its raised count. * It would be more elegant to return stable_node * than kpage, but that involves more changes. */ tree_page = get_ksm_page(stable_node_dup, GET_KSM_PAGE_TRYLOCK); if (PTR_ERR(tree_page) == -EBUSY) return ERR_PTR(-EBUSY); if (unlikely(!tree_page)) /* * The tree may have been rebalanced, * so re-evaluate parent and new. */ goto again; unlock_page(tree_page); if (get_kpfn_nid(stable_node_dup->kpfn) != NUMA(stable_node_dup->nid)) { put_page(tree_page); goto replace; } return tree_page; } } if (!page_node) return NULL; list_del(&page_node->list); DO_NUMA(page_node->nid = nid); rb_link_node(&page_node->node, parent, new); rb_insert_color(&page_node->node, root); out: if (is_page_sharing_candidate(page_node)) { get_page(page); return page; } else return NULL; replace: /* * If stable_node was a chain and chain_prune collapsed it, * stable_node has been updated to be the new regular * stable_node. A collapse of the chain is indistinguishable * from the case there was no chain in the stable * rbtree. Otherwise stable_node is the chain and * stable_node_dup is the dup to replace. */ if (stable_node_dup == stable_node) { VM_BUG_ON(is_stable_node_chain(stable_node_dup)); VM_BUG_ON(is_stable_node_dup(stable_node_dup)); /* there is no chain */ if (page_node) { VM_BUG_ON(page_node->head != &migrate_nodes); list_del(&page_node->list); DO_NUMA(page_node->nid = nid); rb_replace_node(&stable_node_dup->node, &page_node->node, root); if (is_page_sharing_candidate(page_node)) get_page(page); else page = NULL; } else { rb_erase(&stable_node_dup->node, root); page = NULL; } } else { VM_BUG_ON(!is_stable_node_chain(stable_node)); __stable_node_dup_del(stable_node_dup); if (page_node) { VM_BUG_ON(page_node->head != &migrate_nodes); list_del(&page_node->list); DO_NUMA(page_node->nid = nid); stable_node_chain_add_dup(page_node, stable_node); if (is_page_sharing_candidate(page_node)) get_page(page); else page = NULL; } else { page = NULL; } } stable_node_dup->head = &migrate_nodes; list_add(&stable_node_dup->list, stable_node_dup->head); return page; chain_append: /* stable_node_dup could be null if it reached the limit */ if (!stable_node_dup) stable_node_dup = stable_node_any; /* * If stable_node was a chain and chain_prune collapsed it, * stable_node has been updated to be the new regular * stable_node. A collapse of the chain is indistinguishable * from the case there was no chain in the stable * rbtree. Otherwise stable_node is the chain and * stable_node_dup is the dup to replace. */ if (stable_node_dup == stable_node) { VM_BUG_ON(is_stable_node_dup(stable_node_dup)); /* chain is missing so create it */ stable_node = alloc_stable_node_chain(stable_node_dup, root); if (!stable_node) return NULL; } /* * Add this stable_node dup that was * migrated to the stable_node chain * of the current nid for this page * content. */ VM_BUG_ON(!is_stable_node_dup(stable_node_dup)); VM_BUG_ON(page_node->head != &migrate_nodes); list_del(&page_node->list); DO_NUMA(page_node->nid = nid); stable_node_chain_add_dup(page_node, stable_node); goto out; } /* * stable_tree_insert - insert stable tree node pointing to new ksm page * into the stable tree. * * This function returns the stable tree node just allocated on success, * NULL otherwise. */ static struct ksm_stable_node *stable_tree_insert(struct page *kpage) { int nid; unsigned long kpfn; struct rb_root *root; struct rb_node **new; struct rb_node *parent; struct ksm_stable_node *stable_node, *stable_node_dup, *stable_node_any; bool need_chain = false; kpfn = page_to_pfn(kpage); nid = get_kpfn_nid(kpfn); root = root_stable_tree + nid; again: parent = NULL; new = &root->rb_node; while (*new) { struct page *tree_page; int ret; cond_resched(); stable_node = rb_entry(*new, struct ksm_stable_node, node); stable_node_any = NULL; tree_page = chain(&stable_node_dup, stable_node, root); if (!stable_node_dup) { /* * Either all stable_node dups were full in * this stable_node chain, or this chain was * empty and should be rb_erased. */ stable_node_any = stable_node_dup_any(stable_node, root); if (!stable_node_any) { /* rb_erase just run */ goto again; } /* * Take any of the stable_node dups page of * this stable_node chain to let the tree walk * continue. All KSM pages belonging to the * stable_node dups in a stable_node chain * have the same content and they're * write protected at all times. Any will work * fine to continue the walk. */ tree_page = get_ksm_page(stable_node_any, GET_KSM_PAGE_NOLOCK); } VM_BUG_ON(!stable_node_dup ^ !!stable_node_any); if (!tree_page) { /* * If we walked over a stale stable_node, * get_ksm_page() will call rb_erase() and it * may rebalance the tree from under us. So * restart the search from scratch. Returning * NULL would be safe too, but we'd generate * false negative insertions just because some * stable_node was stale. */ goto again; } ret = memcmp_pages(kpage, tree_page); put_page(tree_page); parent = *new; if (ret < 0) new = &parent->rb_left; else if (ret > 0) new = &parent->rb_right; else { need_chain = true; break; } } stable_node_dup = alloc_stable_node(); if (!stable_node_dup) return NULL; INIT_HLIST_HEAD(&stable_node_dup->hlist); stable_node_dup->kpfn = kpfn; set_page_stable_node(kpage, stable_node_dup); stable_node_dup->rmap_hlist_len = 0; DO_NUMA(stable_node_dup->nid = nid); if (!need_chain) { rb_link_node(&stable_node_dup->node, parent, new); rb_insert_color(&stable_node_dup->node, root); } else { if (!is_stable_node_chain(stable_node)) { struct ksm_stable_node *orig = stable_node; /* chain is missing so create it */ stable_node = alloc_stable_node_chain(orig, root); if (!stable_node) { free_stable_node(stable_node_dup); return NULL; } } stable_node_chain_add_dup(stable_node_dup, stable_node); } return stable_node_dup; } /* * unstable_tree_search_insert - search for identical page, * else insert rmap_item into the unstable tree. * * This function searches for a page in the unstable tree identical to the * page currently being scanned; and if no identical page is found in the * tree, we insert rmap_item as a new object into the unstable tree. * * This function returns pointer to rmap_item found to be identical * to the currently scanned page, NULL otherwise. * * This function does both searching and inserting, because they share * the same walking algorithm in an rbtree. */ static struct ksm_rmap_item *unstable_tree_search_insert(struct ksm_rmap_item *rmap_item, struct page *page, struct page **tree_pagep) { struct rb_node **new; struct rb_root *root; struct rb_node *parent = NULL; int nid; nid = get_kpfn_nid(page_to_pfn(page)); root = root_unstable_tree + nid; new = &root->rb_node; while (*new) { struct ksm_rmap_item *tree_rmap_item; struct page *tree_page; int ret; cond_resched(); tree_rmap_item = rb_entry(*new, struct ksm_rmap_item, node); tree_page = get_mergeable_page(tree_rmap_item); if (!tree_page) return NULL; /* * Don't substitute a ksm page for a forked page. */ if (page == tree_page) { put_page(tree_page); return NULL; } ret = memcmp_pages(page, tree_page); parent = *new; if (ret < 0) { put_page(tree_page); new = &parent->rb_left; } else if (ret > 0) { put_page(tree_page); new = &parent->rb_right; } else if (!ksm_merge_across_nodes && page_to_nid(tree_page) != nid) { /* * If tree_page has been migrated to another NUMA node, * it will be flushed out and put in the right unstable * tree next time: only merge with it when across_nodes. */ put_page(tree_page); return NULL; } else { *tree_pagep = tree_page; return tree_rmap_item; } } rmap_item->address |= UNSTABLE_FLAG; rmap_item->address |= (ksm_scan.seqnr & SEQNR_MASK); DO_NUMA(rmap_item->nid = nid); rb_link_node(&rmap_item->node, parent, new); rb_insert_color(&rmap_item->node, root); ksm_pages_unshared++; return NULL; } /* * stable_tree_append - add another rmap_item to the linked list of * rmap_items hanging off a given node of the stable tree, all sharing * the same ksm page. */ static void stable_tree_append(struct ksm_rmap_item *rmap_item, struct ksm_stable_node *stable_node, bool max_page_sharing_bypass) { /* * rmap won't find this mapping if we don't insert the * rmap_item in the right stable_node * duplicate. page_migration could break later if rmap breaks, * so we can as well crash here. We really need to check for * rmap_hlist_len == STABLE_NODE_CHAIN, but we can as well check * for other negative values as an underflow if detected here * for the first time (and not when decreasing rmap_hlist_len) * would be sign of memory corruption in the stable_node. */ BUG_ON(stable_node->rmap_hlist_len < 0); stable_node->rmap_hlist_len++; if (!max_page_sharing_bypass) /* possibly non fatal but unexpected overflow, only warn */ WARN_ON_ONCE(stable_node->rmap_hlist_len > ksm_max_page_sharing); rmap_item->head = stable_node; rmap_item->address |= STABLE_FLAG; hlist_add_head(&rmap_item->hlist, &stable_node->hlist); if (rmap_item->hlist.next) ksm_pages_sharing++; else ksm_pages_shared++; rmap_item->mm->ksm_merging_pages++; } /* * cmp_and_merge_page - first see if page can be merged into the stable tree; * if not, compare checksum to previous and if it's the same, see if page can * be inserted into the unstable tree, or merged with a page already there and * both transferred to the stable tree. * * @page: the page that we are searching identical page to. * @rmap_item: the reverse mapping into the virtual address of this page */ static void cmp_and_merge_page(struct page *page, struct ksm_rmap_item *rmap_item) { struct mm_struct *mm = rmap_item->mm; struct ksm_rmap_item *tree_rmap_item; struct page *tree_page = NULL; struct ksm_stable_node *stable_node; struct page *kpage; unsigned int checksum; int err; bool max_page_sharing_bypass = false; stable_node = page_stable_node(page); if (stable_node) { if (stable_node->head != &migrate_nodes && get_kpfn_nid(READ_ONCE(stable_node->kpfn)) != NUMA(stable_node->nid)) { stable_node_dup_del(stable_node); stable_node->head = &migrate_nodes; list_add(&stable_node->list, stable_node->head); } if (stable_node->head != &migrate_nodes && rmap_item->head == stable_node) return; /* * If it's a KSM fork, allow it to go over the sharing limit * without warnings. */ if (!is_page_sharing_candidate(stable_node)) max_page_sharing_bypass = true; } /* We first start with searching the page inside the stable tree */ kpage = stable_tree_search(page); if (kpage == page && rmap_item->head == stable_node) { put_page(kpage); return; } remove_rmap_item_from_tree(rmap_item); if (kpage) { if (PTR_ERR(kpage) == -EBUSY) return; err = try_to_merge_with_ksm_page(rmap_item, page, kpage); if (!err) { /* * The page was successfully merged: * add its rmap_item to the stable tree. */ lock_page(kpage); stable_tree_append(rmap_item, page_stable_node(kpage), max_page_sharing_bypass); unlock_page(kpage); } put_page(kpage); return; } /* * If the hash value of the page has changed from the last time * we calculated it, this page is changing frequently: therefore we * don't want to insert it in the unstable tree, and we don't want * to waste our time searching for something identical to it there. */ checksum = calc_checksum(page); if (rmap_item->oldchecksum != checksum) { rmap_item->oldchecksum = checksum; return; } /* * Same checksum as an empty page. We attempt to merge it with the * appropriate zero page if the user enabled this via sysfs. */ if (ksm_use_zero_pages && (checksum == zero_checksum)) { struct vm_area_struct *vma; mmap_read_lock(mm); vma = find_mergeable_vma(mm, rmap_item->address); if (vma) { err = try_to_merge_one_page(vma, page, ZERO_PAGE(rmap_item->address)); trace_ksm_merge_one_page( page_to_pfn(ZERO_PAGE(rmap_item->address)), rmap_item, mm, err); } else { /* * If the vma is out of date, we do not need to * continue. */ err = 0; } mmap_read_unlock(mm); /* * In case of failure, the page was not really empty, so we * need to continue. Otherwise we're done. */ if (!err) return; } tree_rmap_item = unstable_tree_search_insert(rmap_item, page, &tree_page); if (tree_rmap_item) { bool split; kpage = try_to_merge_two_pages(rmap_item, page, tree_rmap_item, tree_page); /* * If both pages we tried to merge belong to the same compound * page, then we actually ended up increasing the reference * count of the same compound page twice, and split_huge_page * failed. * Here we set a flag if that happened, and we use it later to * try split_huge_page again. Since we call put_page right * afterwards, the reference count will be correct and * split_huge_page should succeed. */ split = PageTransCompound(page) && compound_head(page) == compound_head(tree_page); put_page(tree_page); if (kpage) { /* * The pages were successfully merged: insert new * node in the stable tree and add both rmap_items. */ lock_page(kpage); stable_node = stable_tree_insert(kpage); if (stable_node) { stable_tree_append(tree_rmap_item, stable_node, false); stable_tree_append(rmap_item, stable_node, false); } unlock_page(kpage); /* * If we fail to insert the page into the stable tree, * we will have 2 virtual addresses that are pointing * to a ksm page left outside the stable tree, * in which case we need to break_cow on both. */ if (!stable_node) { break_cow(tree_rmap_item); break_cow(rmap_item); } } else if (split) { /* * We are here if we tried to merge two pages and * failed because they both belonged to the same * compound page. We will split the page now, but no * merging will take place. * We do not want to add the cost of a full lock; if * the page is locked, it is better to skip it and * perhaps try again later. */ if (!trylock_page(page)) return; split_huge_page(page); unlock_page(page); } } } static struct ksm_rmap_item *get_next_rmap_item(struct ksm_mm_slot *mm_slot, struct ksm_rmap_item **rmap_list, unsigned long addr) { struct ksm_rmap_item *rmap_item; while (*rmap_list) { rmap_item = *rmap_list; if ((rmap_item->address & PAGE_MASK) == addr) return rmap_item; if (rmap_item->address > addr) break; *rmap_list = rmap_item->rmap_list; remove_rmap_item_from_tree(rmap_item); free_rmap_item(rmap_item); } rmap_item = alloc_rmap_item(); if (rmap_item) { /* It has already been zeroed */ rmap_item->mm = mm_slot->slot.mm; rmap_item->mm->ksm_rmap_items++; rmap_item->address = addr; rmap_item->rmap_list = *rmap_list; *rmap_list = rmap_item; } return rmap_item; } /* * Calculate skip age for the ksm page age. The age determines how often * de-duplicating has already been tried unsuccessfully. If the age is * smaller, the scanning of this page is skipped for less scans. * * @age: rmap_item age of page */ static unsigned int skip_age(rmap_age_t age) { if (age <= 3) return 1; if (age <= 5) return 2; if (age <= 8) return 4; return 8; } /* * Determines if a page should be skipped for the current scan. * * @page: page to check * @rmap_item: associated rmap_item of page */ static bool should_skip_rmap_item(struct page *page, struct ksm_rmap_item *rmap_item) { rmap_age_t age; if (!ksm_smart_scan) return false; /* * Never skip pages that are already KSM; pages cmp_and_merge_page() * will essentially ignore them, but we still have to process them * properly. */ if (PageKsm(page)) return false; age = rmap_item->age; if (age != U8_MAX) rmap_item->age++; /* * Smaller ages are not skipped, they need to get a chance to go * through the different phases of the KSM merging. */ if (age < 3) return false; /* * Are we still allowed to skip? If not, then don't skip it * and determine how much more often we are allowed to skip next. */ if (!rmap_item->remaining_skips) { rmap_item->remaining_skips = skip_age(age); return false; } /* Skip this page */ rmap_item->remaining_skips--; remove_rmap_item_from_tree(rmap_item); return true; } static struct ksm_rmap_item *scan_get_next_rmap_item(struct page **page) { struct mm_struct *mm; struct ksm_mm_slot *mm_slot; struct mm_slot *slot; struct vm_area_struct *vma; struct ksm_rmap_item *rmap_item; struct vma_iterator vmi; int nid; if (list_empty(&ksm_mm_head.slot.mm_node)) return NULL; mm_slot = ksm_scan.mm_slot; if (mm_slot == &ksm_mm_head) { trace_ksm_start_scan(ksm_scan.seqnr, ksm_rmap_items); /* * A number of pages can hang around indefinitely in per-cpu * LRU cache, raised page count preventing write_protect_page * from merging them. Though it doesn't really matter much, * it is puzzling to see some stuck in pages_volatile until * other activity jostles them out, and they also prevented * LTP's KSM test from succeeding deterministically; so drain * them here (here rather than on entry to ksm_do_scan(), * so we don't IPI too often when pages_to_scan is set low). */ lru_add_drain_all(); /* * Whereas stale stable_nodes on the stable_tree itself * get pruned in the regular course of stable_tree_search(), * those moved out to the migrate_nodes list can accumulate: * so prune them once before each full scan. */ if (!ksm_merge_across_nodes) { struct ksm_stable_node *stable_node, *next; struct page *page; list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) { page = get_ksm_page(stable_node, GET_KSM_PAGE_NOLOCK); if (page) put_page(page); cond_resched(); } } for (nid = 0; nid < ksm_nr_node_ids; nid++) root_unstable_tree[nid] = RB_ROOT; spin_lock(&ksm_mmlist_lock); slot = list_entry(mm_slot->slot.mm_node.next, struct mm_slot, mm_node); mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot); ksm_scan.mm_slot = mm_slot; spin_unlock(&ksm_mmlist_lock); /* * Although we tested list_empty() above, a racing __ksm_exit * of the last mm on the list may have removed it since then. */ if (mm_slot == &ksm_mm_head) return NULL; next_mm: ksm_scan.address = 0; ksm_scan.rmap_list = &mm_slot->rmap_list; } slot = &mm_slot->slot; mm = slot->mm; vma_iter_init(&vmi, mm, ksm_scan.address); mmap_read_lock(mm); if (ksm_test_exit(mm)) goto no_vmas; for_each_vma(vmi, vma) { if (!(vma->vm_flags & VM_MERGEABLE)) continue; if (ksm_scan.address < vma->vm_start) ksm_scan.address = vma->vm_start; if (!vma->anon_vma) ksm_scan.address = vma->vm_end; while (ksm_scan.address < vma->vm_end) { if (ksm_test_exit(mm)) break; *page = follow_page(vma, ksm_scan.address, FOLL_GET); if (IS_ERR_OR_NULL(*page)) { ksm_scan.address += PAGE_SIZE; cond_resched(); continue; } if (is_zone_device_page(*page)) goto next_page; if (PageAnon(*page)) { flush_anon_page(vma, *page, ksm_scan.address); flush_dcache_page(*page); rmap_item = get_next_rmap_item(mm_slot, ksm_scan.rmap_list, ksm_scan.address); if (rmap_item) { ksm_scan.rmap_list = &rmap_item->rmap_list; if (should_skip_rmap_item(*page, rmap_item)) goto next_page; ksm_scan.address += PAGE_SIZE; } else put_page(*page); mmap_read_unlock(mm); return rmap_item; } next_page: put_page(*page); ksm_scan.address += PAGE_SIZE; cond_resched(); } } if (ksm_test_exit(mm)) { no_vmas: ksm_scan.address = 0; ksm_scan.rmap_list = &mm_slot->rmap_list; } /* * Nuke all the rmap_items that are above this current rmap: * because there were no VM_MERGEABLE vmas with such addresses. */ remove_trailing_rmap_items(ksm_scan.rmap_list); spin_lock(&ksm_mmlist_lock); slot = list_entry(mm_slot->slot.mm_node.next, struct mm_slot, mm_node); ksm_scan.mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot); if (ksm_scan.address == 0) { /* * We've completed a full scan of all vmas, holding mmap_lock * throughout, and found no VM_MERGEABLE: so do the same as * __ksm_exit does to remove this mm from all our lists now. * This applies either when cleaning up after __ksm_exit * (but beware: we can reach here even before __ksm_exit), * or when all VM_MERGEABLE areas have been unmapped (and * mmap_lock then protects against race with MADV_MERGEABLE). */ hash_del(&mm_slot->slot.hash); list_del(&mm_slot->slot.mm_node); spin_unlock(&ksm_mmlist_lock); mm_slot_free(mm_slot_cache, mm_slot); clear_bit(MMF_VM_MERGEABLE, &mm->flags); clear_bit(MMF_VM_MERGE_ANY, &mm->flags); mmap_read_unlock(mm); mmdrop(mm); } else { mmap_read_unlock(mm); /* * mmap_read_unlock(mm) first because after * spin_unlock(&ksm_mmlist_lock) run, the "mm" may * already have been freed under us by __ksm_exit() * because the "mm_slot" is still hashed and * ksm_scan.mm_slot doesn't point to it anymore. */ spin_unlock(&ksm_mmlist_lock); } /* Repeat until we've completed scanning the whole list */ mm_slot = ksm_scan.mm_slot; if (mm_slot != &ksm_mm_head) goto next_mm; trace_ksm_stop_scan(ksm_scan.seqnr, ksm_rmap_items); ksm_scan.seqnr++; return NULL; } /** * ksm_do_scan - the ksm scanner main worker function. * @scan_npages: number of pages we want to scan before we return. */ static void ksm_do_scan(unsigned int scan_npages) { struct ksm_rmap_item *rmap_item; struct page *page; unsigned int npages = scan_npages; while (npages-- && likely(!freezing(current))) { cond_resched(); rmap_item = scan_get_next_rmap_item(&page); if (!rmap_item) return; cmp_and_merge_page(page, rmap_item); put_page(page); } ksm_pages_scanned += scan_npages - npages; } static int ksmd_should_run(void) { return (ksm_run & KSM_RUN_MERGE) && !list_empty(&ksm_mm_head.slot.mm_node); } static int ksm_scan_thread(void *nothing) { unsigned int sleep_ms; set_freezable(); set_user_nice(current, 5); while (!kthread_should_stop()) { mutex_lock(&ksm_thread_mutex); wait_while_offlining(); if (ksmd_should_run()) ksm_do_scan(ksm_thread_pages_to_scan); mutex_unlock(&ksm_thread_mutex); try_to_freeze(); if (ksmd_should_run()) { sleep_ms = READ_ONCE(ksm_thread_sleep_millisecs); wait_event_interruptible_timeout(ksm_iter_wait, sleep_ms != READ_ONCE(ksm_thread_sleep_millisecs), msecs_to_jiffies(sleep_ms)); } else { wait_event_freezable(ksm_thread_wait, ksmd_should_run() || kthread_should_stop()); } } return 0; } static void __ksm_add_vma(struct vm_area_struct *vma) { unsigned long vm_flags = vma->vm_flags; if (vm_flags & VM_MERGEABLE) return; if (vma_ksm_compatible(vma)) vm_flags_set(vma, VM_MERGEABLE); } static int __ksm_del_vma(struct vm_area_struct *vma) { int err; if (!(vma->vm_flags & VM_MERGEABLE)) return 0; if (vma->anon_vma) { err = unmerge_ksm_pages(vma, vma->vm_start, vma->vm_end, true); if (err) return err; } vm_flags_clear(vma, VM_MERGEABLE); return 0; } /** * ksm_add_vma - Mark vma as mergeable if compatible * * @vma: Pointer to vma */ void ksm_add_vma(struct vm_area_struct *vma) { struct mm_struct *mm = vma->vm_mm; if (test_bit(MMF_VM_MERGE_ANY, &mm->flags)) __ksm_add_vma(vma); } static void ksm_add_vmas(struct mm_struct *mm) { struct vm_area_struct *vma; VMA_ITERATOR(vmi, mm, 0); for_each_vma(vmi, vma) __ksm_add_vma(vma); } static int ksm_del_vmas(struct mm_struct *mm) { struct vm_area_struct *vma; int err; VMA_ITERATOR(vmi, mm, 0); for_each_vma(vmi, vma) { err = __ksm_del_vma(vma); if (err) return err; } return 0; } /** * ksm_enable_merge_any - Add mm to mm ksm list and enable merging on all * compatible VMA's * * @mm: Pointer to mm * * Returns 0 on success, otherwise error code */ int ksm_enable_merge_any(struct mm_struct *mm) { int err; if (test_bit(MMF_VM_MERGE_ANY, &mm->flags)) return 0; if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) { err = __ksm_enter(mm); if (err) return err; } set_bit(MMF_VM_MERGE_ANY, &mm->flags); ksm_add_vmas(mm); return 0; } /** * ksm_disable_merge_any - Disable merging on all compatible VMA's of the mm, * previously enabled via ksm_enable_merge_any(). * * Disabling merging implies unmerging any merged pages, like setting * MADV_UNMERGEABLE would. If unmerging fails, the whole operation fails and * merging on all compatible VMA's remains enabled. * * @mm: Pointer to mm * * Returns 0 on success, otherwise error code */ int ksm_disable_merge_any(struct mm_struct *mm) { int err; if (!test_bit(MMF_VM_MERGE_ANY, &mm->flags)) return 0; err = ksm_del_vmas(mm); if (err) { ksm_add_vmas(mm); return err; } clear_bit(MMF_VM_MERGE_ANY, &mm->flags); return 0; } int ksm_disable(struct mm_struct *mm) { mmap_assert_write_locked(mm); if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) return 0; if (test_bit(MMF_VM_MERGE_ANY, &mm->flags)) return ksm_disable_merge_any(mm); return ksm_del_vmas(mm); } int ksm_madvise(struct vm_area_struct *vma, unsigned long start, unsigned long end, int advice, unsigned long *vm_flags) { struct mm_struct *mm = vma->vm_mm; int err; switch (advice) { case MADV_MERGEABLE: if (vma->vm_flags & VM_MERGEABLE) return 0; if (!vma_ksm_compatible(vma)) return 0; if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) { err = __ksm_enter(mm); if (err) return err; } *vm_flags |= VM_MERGEABLE; break; case MADV_UNMERGEABLE: if (!(*vm_flags & VM_MERGEABLE)) return 0; /* just ignore the advice */ if (vma->anon_vma) { err = unmerge_ksm_pages(vma, start, end, true); if (err) return err; } *vm_flags &= ~VM_MERGEABLE; break; } return 0; } EXPORT_SYMBOL_GPL(ksm_madvise); int __ksm_enter(struct mm_struct *mm) { struct ksm_mm_slot *mm_slot; struct mm_slot *slot; int needs_wakeup; mm_slot = mm_slot_alloc(mm_slot_cache); if (!mm_slot) return -ENOMEM; slot = &mm_slot->slot; /* Check ksm_run too? Would need tighter locking */ needs_wakeup = list_empty(&ksm_mm_head.slot.mm_node); spin_lock(&ksm_mmlist_lock); mm_slot_insert(mm_slots_hash, mm, slot); /* * When KSM_RUN_MERGE (or KSM_RUN_STOP), * insert just behind the scanning cursor, to let the area settle * down a little; when fork is followed by immediate exec, we don't * want ksmd to waste time setting up and tearing down an rmap_list. * * But when KSM_RUN_UNMERGE, it's important to insert ahead of its * scanning cursor, otherwise KSM pages in newly forked mms will be * missed: then we might as well insert at the end of the list. */ if (ksm_run & KSM_RUN_UNMERGE) list_add_tail(&slot->mm_node, &ksm_mm_head.slot.mm_node); else list_add_tail(&slot->mm_node, &ksm_scan.mm_slot->slot.mm_node); spin_unlock(&ksm_mmlist_lock); set_bit(MMF_VM_MERGEABLE, &mm->flags); mmgrab(mm); if (needs_wakeup) wake_up_interruptible(&ksm_thread_wait); trace_ksm_enter(mm); return 0; } void __ksm_exit(struct mm_struct *mm) { struct ksm_mm_slot *mm_slot; struct mm_slot *slot; int easy_to_free = 0; /* * This process is exiting: if it's straightforward (as is the * case when ksmd was never running), free mm_slot immediately. * But if it's at the cursor or has rmap_items linked to it, use * mmap_lock to synchronize with any break_cows before pagetables * are freed, and leave the mm_slot on the list for ksmd to free. * Beware: ksm may already have noticed it exiting and freed the slot. */ spin_lock(&ksm_mmlist_lock); slot = mm_slot_lookup(mm_slots_hash, mm); mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot); if (mm_slot && ksm_scan.mm_slot != mm_slot) { if (!mm_slot->rmap_list) { hash_del(&slot->hash); list_del(&slot->mm_node); easy_to_free = 1; } else { list_move(&slot->mm_node, &ksm_scan.mm_slot->slot.mm_node); } } spin_unlock(&ksm_mmlist_lock); if (easy_to_free) { mm_slot_free(mm_slot_cache, mm_slot); clear_bit(MMF_VM_MERGE_ANY, &mm->flags); clear_bit(MMF_VM_MERGEABLE, &mm->flags); mmdrop(mm); } else if (mm_slot) { mmap_write_lock(mm); mmap_write_unlock(mm); } trace_ksm_exit(mm); } struct page *ksm_might_need_to_copy(struct page *page, struct vm_area_struct *vma, unsigned long address) { struct folio *folio = page_folio(page); struct anon_vma *anon_vma = folio_anon_vma(folio); struct page *new_page; if (PageKsm(page)) { if (page_stable_node(page) && !(ksm_run & KSM_RUN_UNMERGE)) return page; /* no need to copy it */ } else if (!anon_vma) { return page; /* no need to copy it */ } else if (page->index == linear_page_index(vma, address) && anon_vma->root == vma->anon_vma->root) { return page; /* still no need to copy it */ } if (PageHWPoison(page)) return ERR_PTR(-EHWPOISON); if (!PageUptodate(page)) return page; /* let do_swap_page report the error */ new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address); if (new_page && mem_cgroup_charge(page_folio(new_page), vma->vm_mm, GFP_KERNEL)) { put_page(new_page); new_page = NULL; } if (new_page) { if (copy_mc_user_highpage(new_page, page, address, vma)) { put_page(new_page); memory_failure_queue(page_to_pfn(page), 0); return ERR_PTR(-EHWPOISON); } SetPageDirty(new_page); __SetPageUptodate(new_page); __SetPageLocked(new_page); #ifdef CONFIG_SWAP count_vm_event(KSM_SWPIN_COPY); #endif } return new_page; } void rmap_walk_ksm(struct folio *folio, struct rmap_walk_control *rwc) { struct ksm_stable_node *stable_node; struct ksm_rmap_item *rmap_item; int search_new_forks = 0; VM_BUG_ON_FOLIO(!folio_test_ksm(folio), folio); /* * Rely on the page lock to protect against concurrent modifications * to that page's node of the stable tree. */ VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); stable_node = folio_stable_node(folio); if (!stable_node) return; again: hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) { struct anon_vma *anon_vma = rmap_item->anon_vma; struct anon_vma_chain *vmac; struct vm_area_struct *vma; cond_resched(); if (!anon_vma_trylock_read(anon_vma)) { if (rwc->try_lock) { rwc->contended = true; return; } anon_vma_lock_read(anon_vma); } anon_vma_interval_tree_foreach(vmac, &anon_vma->rb_root, 0, ULONG_MAX) { unsigned long addr; cond_resched(); vma = vmac->vma; /* Ignore the stable/unstable/sqnr flags */ addr = rmap_item->address & PAGE_MASK; if (addr < vma->vm_start || addr >= vma->vm_end) continue; /* * Initially we examine only the vma which covers this * rmap_item; but later, if there is still work to do, * we examine covering vmas in other mms: in case they * were forked from the original since ksmd passed. */ if ((rmap_item->mm == vma->vm_mm) == search_new_forks) continue; if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg)) continue; if (!rwc->rmap_one(folio, vma, addr, rwc->arg)) { anon_vma_unlock_read(anon_vma); return; } if (rwc->done && rwc->done(folio)) { anon_vma_unlock_read(anon_vma); return; } } anon_vma_unlock_read(anon_vma); } if (!search_new_forks++) goto again; } #ifdef CONFIG_MEMORY_FAILURE /* * Collect processes when the error hit an ksm page. */ void collect_procs_ksm(struct page *page, struct list_head *to_kill, int force_early) { struct ksm_stable_node *stable_node; struct ksm_rmap_item *rmap_item; struct folio *folio = page_folio(page); struct vm_area_struct *vma; struct task_struct *tsk; stable_node = folio_stable_node(folio); if (!stable_node) return; hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) { struct anon_vma *av = rmap_item->anon_vma; anon_vma_lock_read(av); rcu_read_lock(); for_each_process(tsk) { struct anon_vma_chain *vmac; unsigned long addr; struct task_struct *t = task_early_kill(tsk, force_early); if (!t) continue; anon_vma_interval_tree_foreach(vmac, &av->rb_root, 0, ULONG_MAX) { vma = vmac->vma; if (vma->vm_mm == t->mm) { addr = rmap_item->address & PAGE_MASK; add_to_kill_ksm(t, page, vma, to_kill, addr); } } } rcu_read_unlock(); anon_vma_unlock_read(av); } } #endif #ifdef CONFIG_MIGRATION void folio_migrate_ksm(struct folio *newfolio, struct folio *folio) { struct ksm_stable_node *stable_node; VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); VM_BUG_ON_FOLIO(!folio_test_locked(newfolio), newfolio); VM_BUG_ON_FOLIO(newfolio->mapping != folio->mapping, newfolio); stable_node = folio_stable_node(folio); if (stable_node) { VM_BUG_ON_FOLIO(stable_node->kpfn != folio_pfn(folio), folio); stable_node->kpfn = folio_pfn(newfolio); /* * newfolio->mapping was set in advance; now we need smp_wmb() * to make sure that the new stable_node->kpfn is visible * to get_ksm_page() before it can see that folio->mapping * has gone stale (or that folio_test_swapcache has been cleared). */ smp_wmb(); set_page_stable_node(&folio->page, NULL); } } #endif /* CONFIG_MIGRATION */ #ifdef CONFIG_MEMORY_HOTREMOVE static void wait_while_offlining(void) { while (ksm_run & KSM_RUN_OFFLINE) { mutex_unlock(&ksm_thread_mutex); wait_on_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE), TASK_UNINTERRUPTIBLE); mutex_lock(&ksm_thread_mutex); } } static bool stable_node_dup_remove_range(struct ksm_stable_node *stable_node, unsigned long start_pfn, unsigned long end_pfn) { if (stable_node->kpfn >= start_pfn && stable_node->kpfn < end_pfn) { /* * Don't get_ksm_page, page has already gone: * which is why we keep kpfn instead of page* */ remove_node_from_stable_tree(stable_node); return true; } return false; } static bool stable_node_chain_remove_range(struct ksm_stable_node *stable_node, unsigned long start_pfn, unsigned long end_pfn, struct rb_root *root) { struct ksm_stable_node *dup; struct hlist_node *hlist_safe; if (!is_stable_node_chain(stable_node)) { VM_BUG_ON(is_stable_node_dup(stable_node)); return stable_node_dup_remove_range(stable_node, start_pfn, end_pfn); } hlist_for_each_entry_safe(dup, hlist_safe, &stable_node->hlist, hlist_dup) { VM_BUG_ON(!is_stable_node_dup(dup)); stable_node_dup_remove_range(dup, start_pfn, end_pfn); } if (hlist_empty(&stable_node->hlist)) { free_stable_node_chain(stable_node, root); return true; /* notify caller that tree was rebalanced */ } else return false; } static void ksm_check_stable_tree(unsigned long start_pfn, unsigned long end_pfn) { struct ksm_stable_node *stable_node, *next; struct rb_node *node; int nid; for (nid = 0; nid < ksm_nr_node_ids; nid++) { node = rb_first(root_stable_tree + nid); while (node) { stable_node = rb_entry(node, struct ksm_stable_node, node); if (stable_node_chain_remove_range(stable_node, start_pfn, end_pfn, root_stable_tree + nid)) node = rb_first(root_stable_tree + nid); else node = rb_next(node); cond_resched(); } } list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) { if (stable_node->kpfn >= start_pfn && stable_node->kpfn < end_pfn) remove_node_from_stable_tree(stable_node); cond_resched(); } } static int ksm_memory_callback(struct notifier_block *self, unsigned long action, void *arg) { struct memory_notify *mn = arg; switch (action) { case MEM_GOING_OFFLINE: /* * Prevent ksm_do_scan(), unmerge_and_remove_all_rmap_items() * and remove_all_stable_nodes() while memory is going offline: * it is unsafe for them to touch the stable tree at this time. * But unmerge_ksm_pages(), rmap lookups and other entry points * which do not need the ksm_thread_mutex are all safe. */ mutex_lock(&ksm_thread_mutex); ksm_run |= KSM_RUN_OFFLINE; mutex_unlock(&ksm_thread_mutex); break; case MEM_OFFLINE: /* * Most of the work is done by page migration; but there might * be a few stable_nodes left over, still pointing to struct * pages which have been offlined: prune those from the tree, * otherwise get_ksm_page() might later try to access a * non-existent struct page. */ ksm_check_stable_tree(mn->start_pfn, mn->start_pfn + mn->nr_pages); fallthrough; case MEM_CANCEL_OFFLINE: mutex_lock(&ksm_thread_mutex); ksm_run &= ~KSM_RUN_OFFLINE; mutex_unlock(&ksm_thread_mutex); smp_mb(); /* wake_up_bit advises this */ wake_up_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE)); break; } return NOTIFY_OK; } #else static void wait_while_offlining(void) { } #endif /* CONFIG_MEMORY_HOTREMOVE */ #ifdef CONFIG_PROC_FS long ksm_process_profit(struct mm_struct *mm) { return (long)(mm->ksm_merging_pages + mm->ksm_zero_pages) * PAGE_SIZE - mm->ksm_rmap_items * sizeof(struct ksm_rmap_item); } #endif /* CONFIG_PROC_FS */ #ifdef CONFIG_SYSFS /* * This all compiles without CONFIG_SYSFS, but is a waste of space. */ #define KSM_ATTR_RO(_name) \ static struct kobj_attribute _name##_attr = __ATTR_RO(_name) #define KSM_ATTR(_name) \ static struct kobj_attribute _name##_attr = __ATTR_RW(_name) static ssize_t sleep_millisecs_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf) { return sysfs_emit(buf, "%u\n", ksm_thread_sleep_millisecs); } static ssize_t sleep_millisecs_store(struct kobject *kobj, struct kobj_attribute *attr, const char *buf, size_t count) { unsigned int msecs; int err; err = kstrtouint(buf, 10, &msecs); if (err) return -EINVAL; ksm_thread_sleep_millisecs = msecs; wake_up_interruptible(&ksm_iter_wait); return count; } KSM_ATTR(sleep_millisecs); static ssize_t pages_to_scan_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf) { return sysfs_emit(buf, "%u\n", ksm_thread_pages_to_scan); } static ssize_t pages_to_scan_store(struct kobject *kobj, struct kobj_attribute *attr, const char *buf, size_t count) { unsigned int nr_pages; int err; err = kstrtouint(buf, 10, &nr_pages); if (err) return -EINVAL; ksm_thread_pages_to_scan = nr_pages; return count; } KSM_ATTR(pages_to_scan); static ssize_t run_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf) { return sysfs_emit(buf, "%lu\n", ksm_run); } static ssize_t run_store(struct kobject *kobj, struct kobj_attribute *attr, const char *buf, size_t count) { unsigned int flags; int err; err = kstrtouint(buf, 10, &flags); if (err) return -EINVAL; if (flags > KSM_RUN_UNMERGE) return -EINVAL; /* * KSM_RUN_MERGE sets ksmd running, and 0 stops it running. * KSM_RUN_UNMERGE stops it running and unmerges all rmap_items, * breaking COW to free the pages_shared (but leaves mm_slots * on the list for when ksmd may be set running again). */ mutex_lock(&ksm_thread_mutex); wait_while_offlining(); if (ksm_run != flags) { ksm_run = flags; if (flags & KSM_RUN_UNMERGE) { set_current_oom_origin(); err = unmerge_and_remove_all_rmap_items(); clear_current_oom_origin(); if (err) { ksm_run = KSM_RUN_STOP; count = err; } } } mutex_unlock(&ksm_thread_mutex); if (flags & KSM_RUN_MERGE) wake_up_interruptible(&ksm_thread_wait); return count; } KSM_ATTR(run); #ifdef CONFIG_NUMA static ssize_t merge_across_nodes_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf) { return sysfs_emit(buf, "%u\n", ksm_merge_across_nodes); } static ssize_t merge_across_nodes_store(struct kobject *kobj, struct kobj_attribute *attr, const char *buf, size_t count) { int err; unsigned long knob; err = kstrtoul(buf, 10, &knob); if (err) return err; if (knob > 1) return -EINVAL; mutex_lock(&ksm_thread_mutex); wait_while_offlining(); if (ksm_merge_across_nodes != knob) { if (ksm_pages_shared || remove_all_stable_nodes()) err = -EBUSY; else if (root_stable_tree == one_stable_tree) { struct rb_root *buf; /* * This is the first time that we switch away from the * default of merging across nodes: must now allocate * a buffer to hold as many roots as may be needed. * Allocate stable and unstable together: * MAXSMP NODES_SHIFT 10 will use 16kB. */ buf = kcalloc(nr_node_ids + nr_node_ids, sizeof(*buf), GFP_KERNEL); /* Let us assume that RB_ROOT is NULL is zero */ if (!buf) err = -ENOMEM; else { root_stable_tree = buf; root_unstable_tree = buf + nr_node_ids; /* Stable tree is empty but not the unstable */ root_unstable_tree[0] = one_unstable_tree[0]; } } if (!err) { ksm_merge_across_nodes = knob; ksm_nr_node_ids = knob ? 1 : nr_node_ids; } } mutex_unlock(&ksm_thread_mutex); return err ? err : count; } KSM_ATTR(merge_across_nodes); #endif static ssize_t use_zero_pages_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf) { return sysfs_emit(buf, "%u\n", ksm_use_zero_pages); } static ssize_t use_zero_pages_store(struct kobject *kobj, struct kobj_attribute *attr, const char *buf, size_t count) { int err; bool value; err = kstrtobool(buf, &value); if (err) return -EINVAL; ksm_use_zero_pages = value; return count; } KSM_ATTR(use_zero_pages); static ssize_t max_page_sharing_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf) { return sysfs_emit(buf, "%u\n", ksm_max_page_sharing); } static ssize_t max_page_sharing_store(struct kobject *kobj, struct kobj_attribute *attr, const char *buf, size_t count) { int err; int knob; err = kstrtoint(buf, 10, &knob); if (err) return err; /* * When a KSM page is created it is shared by 2 mappings. This * being a signed comparison, it implicitly verifies it's not * negative. */ if (knob < 2) return -EINVAL; if (READ_ONCE(ksm_max_page_sharing) == knob) return count; mutex_lock(&ksm_thread_mutex); wait_while_offlining(); if (ksm_max_page_sharing != knob) { if (ksm_pages_shared || remove_all_stable_nodes()) err = -EBUSY; else ksm_max_page_sharing = knob; } mutex_unlock(&ksm_thread_mutex); return err ? err : count; } KSM_ATTR(max_page_sharing); static ssize_t pages_scanned_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf) { return sysfs_emit(buf, "%lu\n", ksm_pages_scanned); } KSM_ATTR_RO(pages_scanned); static ssize_t pages_shared_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf) { return sysfs_emit(buf, "%lu\n", ksm_pages_shared); } KSM_ATTR_RO(pages_shared); static ssize_t pages_sharing_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf) { return sysfs_emit(buf, "%lu\n", ksm_pages_sharing); } KSM_ATTR_RO(pages_sharing); static ssize_t pages_unshared_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf) { return sysfs_emit(buf, "%lu\n", ksm_pages_unshared); } KSM_ATTR_RO(pages_unshared); static ssize_t pages_volatile_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf) { long ksm_pages_volatile; ksm_pages_volatile = ksm_rmap_items - ksm_pages_shared - ksm_pages_sharing - ksm_pages_unshared; /* * It was not worth any locking to calculate that statistic, * but it might therefore sometimes be negative: conceal that. */ if (ksm_pages_volatile < 0) ksm_pages_volatile = 0; return sysfs_emit(buf, "%ld\n", ksm_pages_volatile); } KSM_ATTR_RO(pages_volatile); static ssize_t ksm_zero_pages_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf) { return sysfs_emit(buf, "%ld\n", ksm_zero_pages); } KSM_ATTR_RO(ksm_zero_pages); static ssize_t general_profit_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf) { long general_profit; general_profit = (ksm_pages_sharing + ksm_zero_pages) * PAGE_SIZE - ksm_rmap_items * sizeof(struct ksm_rmap_item); return sysfs_emit(buf, "%ld\n", general_profit); } KSM_ATTR_RO(general_profit); static ssize_t stable_node_dups_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf) { return sysfs_emit(buf, "%lu\n", ksm_stable_node_dups); } KSM_ATTR_RO(stable_node_dups); static ssize_t stable_node_chains_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf) { return sysfs_emit(buf, "%lu\n", ksm_stable_node_chains); } KSM_ATTR_RO(stable_node_chains); static ssize_t stable_node_chains_prune_millisecs_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf) { return sysfs_emit(buf, "%u\n", ksm_stable_node_chains_prune_millisecs); } static ssize_t stable_node_chains_prune_millisecs_store(struct kobject *kobj, struct kobj_attribute *attr, const char *buf, size_t count) { unsigned int msecs; int err; err = kstrtouint(buf, 10, &msecs); if (err) return -EINVAL; ksm_stable_node_chains_prune_millisecs = msecs; return count; } KSM_ATTR(stable_node_chains_prune_millisecs); static ssize_t full_scans_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf) { return sysfs_emit(buf, "%lu\n", ksm_scan.seqnr); } KSM_ATTR_RO(full_scans); static ssize_t smart_scan_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf) { return sysfs_emit(buf, "%u\n", ksm_smart_scan); } static ssize_t smart_scan_store(struct kobject *kobj, struct kobj_attribute *attr, const char *buf, size_t count) { int err; bool value; err = kstrtobool(buf, &value); if (err) return -EINVAL; ksm_smart_scan = value; return count; } KSM_ATTR(smart_scan); static struct attribute *ksm_attrs[] = { &sleep_millisecs_attr.attr, &pages_to_scan_attr.attr, &run_attr.attr, &pages_scanned_attr.attr, &pages_shared_attr.attr, &pages_sharing_attr.attr, &pages_unshared_attr.attr, &pages_volatile_attr.attr, &ksm_zero_pages_attr.attr, &full_scans_attr.attr, #ifdef CONFIG_NUMA &merge_across_nodes_attr.attr, #endif &max_page_sharing_attr.attr, &stable_node_chains_attr.attr, &stable_node_dups_attr.attr, &stable_node_chains_prune_millisecs_attr.attr, &use_zero_pages_attr.attr, &general_profit_attr.attr, &smart_scan_attr.attr, NULL, }; static const struct attribute_group ksm_attr_group = { .attrs = ksm_attrs, .name = "ksm", }; #endif /* CONFIG_SYSFS */ static int __init ksm_init(void) { struct task_struct *ksm_thread; int err; /* The correct value depends on page size and endianness */ zero_checksum = calc_checksum(ZERO_PAGE(0)); /* Default to false for backwards compatibility */ ksm_use_zero_pages = false; err = ksm_slab_init(); if (err) goto out; ksm_thread = kthread_run(ksm_scan_thread, NULL, "ksmd"); if (IS_ERR(ksm_thread)) { pr_err("ksm: creating kthread failed\n"); err = PTR_ERR(ksm_thread); goto out_free; } #ifdef CONFIG_SYSFS err = sysfs_create_group(mm_kobj, &ksm_attr_group); if (err) { pr_err("ksm: register sysfs failed\n"); kthread_stop(ksm_thread); goto out_free; } #else ksm_run = KSM_RUN_MERGE; /* no way for user to start it */ #endif /* CONFIG_SYSFS */ #ifdef CONFIG_MEMORY_HOTREMOVE /* There is no significance to this priority 100 */ hotplug_memory_notifier(ksm_memory_callback, KSM_CALLBACK_PRI); #endif return 0; out_free: ksm_slab_free(); out: return err; } subsys_initcall(ksm_init);