/* * Linux INET6 implementation * Forwarding Information Database * * Authors: * Pedro Roque * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version * 2 of the License, or (at your option) any later version. * * Changes: * Yuji SEKIYA @USAGI: Support default route on router node; * remove ip6_null_entry from the top of * routing table. * Ville Nuorvala: Fixed routing subtrees. */ #define pr_fmt(fmt) "IPv6: " fmt #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include static struct kmem_cache *fib6_node_kmem __read_mostly; struct fib6_cleaner { struct fib6_walker w; struct net *net; int (*func)(struct fib6_info *, void *arg); int sernum; void *arg; }; #ifdef CONFIG_IPV6_SUBTREES #define FWS_INIT FWS_S #else #define FWS_INIT FWS_L #endif static struct fib6_info *fib6_find_prefix(struct net *net, struct fib6_table *table, struct fib6_node *fn); static struct fib6_node *fib6_repair_tree(struct net *net, struct fib6_table *table, struct fib6_node *fn); static int fib6_walk(struct net *net, struct fib6_walker *w); static int fib6_walk_continue(struct fib6_walker *w); /* * A routing update causes an increase of the serial number on the * affected subtree. This allows for cached routes to be asynchronously * tested when modifications are made to the destination cache as a * result of redirects, path MTU changes, etc. */ static void fib6_gc_timer_cb(struct timer_list *t); #define FOR_WALKERS(net, w) \ list_for_each_entry(w, &(net)->ipv6.fib6_walkers, lh) static void fib6_walker_link(struct net *net, struct fib6_walker *w) { write_lock_bh(&net->ipv6.fib6_walker_lock); list_add(&w->lh, &net->ipv6.fib6_walkers); write_unlock_bh(&net->ipv6.fib6_walker_lock); } static void fib6_walker_unlink(struct net *net, struct fib6_walker *w) { write_lock_bh(&net->ipv6.fib6_walker_lock); list_del(&w->lh); write_unlock_bh(&net->ipv6.fib6_walker_lock); } static int fib6_new_sernum(struct net *net) { int new, old; do { old = atomic_read(&net->ipv6.fib6_sernum); new = old < INT_MAX ? old + 1 : 1; } while (atomic_cmpxchg(&net->ipv6.fib6_sernum, old, new) != old); return new; } enum { FIB6_NO_SERNUM_CHANGE = 0, }; void fib6_update_sernum(struct net *net, struct fib6_info *f6i) { struct fib6_node *fn; fn = rcu_dereference_protected(f6i->fib6_node, lockdep_is_held(&f6i->fib6_table->tb6_lock)); if (fn) fn->fn_sernum = fib6_new_sernum(net); } /* * Auxiliary address test functions for the radix tree. * * These assume a 32bit processor (although it will work on * 64bit processors) */ /* * test bit */ #if defined(__LITTLE_ENDIAN) # define BITOP_BE32_SWIZZLE (0x1F & ~7) #else # define BITOP_BE32_SWIZZLE 0 #endif static __be32 addr_bit_set(const void *token, int fn_bit) { const __be32 *addr = token; /* * Here, * 1 << ((~fn_bit ^ BITOP_BE32_SWIZZLE) & 0x1f) * is optimized version of * htonl(1 << ((~fn_bit)&0x1F)) * See include/asm-generic/bitops/le.h. */ return (__force __be32)(1 << ((~fn_bit ^ BITOP_BE32_SWIZZLE) & 0x1f)) & addr[fn_bit >> 5]; } struct fib6_info *fib6_info_alloc(gfp_t gfp_flags) { struct fib6_info *f6i; f6i = kzalloc(sizeof(*f6i), gfp_flags); if (!f6i) return NULL; f6i->rt6i_pcpu = alloc_percpu_gfp(struct rt6_info *, gfp_flags); if (!f6i->rt6i_pcpu) { kfree(f6i); return NULL; } INIT_LIST_HEAD(&f6i->fib6_siblings); f6i->fib6_metrics = (struct dst_metrics *)&dst_default_metrics; atomic_inc(&f6i->fib6_ref); return f6i; } void fib6_info_destroy(struct fib6_info *f6i) { struct rt6_exception_bucket *bucket; struct dst_metrics *m; WARN_ON(f6i->fib6_node); bucket = rcu_dereference_protected(f6i->rt6i_exception_bucket, 1); if (bucket) { f6i->rt6i_exception_bucket = NULL; kfree(bucket); } if (f6i->rt6i_pcpu) { int cpu; for_each_possible_cpu(cpu) { struct rt6_info **ppcpu_rt; struct rt6_info *pcpu_rt; ppcpu_rt = per_cpu_ptr(f6i->rt6i_pcpu, cpu); pcpu_rt = *ppcpu_rt; if (pcpu_rt) { dst_dev_put(&pcpu_rt->dst); dst_release(&pcpu_rt->dst); *ppcpu_rt = NULL; } } } if (f6i->fib6_nh.nh_dev) dev_put(f6i->fib6_nh.nh_dev); m = f6i->fib6_metrics; if (m != &dst_default_metrics && refcount_dec_and_test(&m->refcnt)) kfree(m); kfree(f6i); } EXPORT_SYMBOL_GPL(fib6_info_destroy); static struct fib6_node *node_alloc(struct net *net) { struct fib6_node *fn; fn = kmem_cache_zalloc(fib6_node_kmem, GFP_ATOMIC); if (fn) net->ipv6.rt6_stats->fib_nodes++; return fn; } static void node_free_immediate(struct net *net, struct fib6_node *fn) { kmem_cache_free(fib6_node_kmem, fn); net->ipv6.rt6_stats->fib_nodes--; } static void node_free_rcu(struct rcu_head *head) { struct fib6_node *fn = container_of(head, struct fib6_node, rcu); kmem_cache_free(fib6_node_kmem, fn); } static void node_free(struct net *net, struct fib6_node *fn) { call_rcu(&fn->rcu, node_free_rcu); net->ipv6.rt6_stats->fib_nodes--; } static void fib6_free_table(struct fib6_table *table) { inetpeer_invalidate_tree(&table->tb6_peers); kfree(table); } static void fib6_link_table(struct net *net, struct fib6_table *tb) { unsigned int h; /* * Initialize table lock at a single place to give lockdep a key, * tables aren't visible prior to being linked to the list. */ spin_lock_init(&tb->tb6_lock); h = tb->tb6_id & (FIB6_TABLE_HASHSZ - 1); /* * No protection necessary, this is the only list mutatation * operation, tables never disappear once they exist. */ hlist_add_head_rcu(&tb->tb6_hlist, &net->ipv6.fib_table_hash[h]); } #ifdef CONFIG_IPV6_MULTIPLE_TABLES static struct fib6_table *fib6_alloc_table(struct net *net, u32 id) { struct fib6_table *table; table = kzalloc(sizeof(*table), GFP_ATOMIC); if (table) { table->tb6_id = id; rcu_assign_pointer(table->tb6_root.leaf, net->ipv6.fib6_null_entry); table->tb6_root.fn_flags = RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO; inet_peer_base_init(&table->tb6_peers); } return table; } struct fib6_table *fib6_new_table(struct net *net, u32 id) { struct fib6_table *tb; if (id == 0) id = RT6_TABLE_MAIN; tb = fib6_get_table(net, id); if (tb) return tb; tb = fib6_alloc_table(net, id); if (tb) fib6_link_table(net, tb); return tb; } EXPORT_SYMBOL_GPL(fib6_new_table); struct fib6_table *fib6_get_table(struct net *net, u32 id) { struct fib6_table *tb; struct hlist_head *head; unsigned int h; if (id == 0) id = RT6_TABLE_MAIN; h = id & (FIB6_TABLE_HASHSZ - 1); rcu_read_lock(); head = &net->ipv6.fib_table_hash[h]; hlist_for_each_entry_rcu(tb, head, tb6_hlist) { if (tb->tb6_id == id) { rcu_read_unlock(); return tb; } } rcu_read_unlock(); return NULL; } EXPORT_SYMBOL_GPL(fib6_get_table); static void __net_init fib6_tables_init(struct net *net) { fib6_link_table(net, net->ipv6.fib6_main_tbl); fib6_link_table(net, net->ipv6.fib6_local_tbl); } #else struct fib6_table *fib6_new_table(struct net *net, u32 id) { return fib6_get_table(net, id); } struct fib6_table *fib6_get_table(struct net *net, u32 id) { return net->ipv6.fib6_main_tbl; } struct dst_entry *fib6_rule_lookup(struct net *net, struct flowi6 *fl6, const struct sk_buff *skb, int flags, pol_lookup_t lookup) { struct rt6_info *rt; rt = lookup(net, net->ipv6.fib6_main_tbl, fl6, skb, flags); if (rt->dst.error == -EAGAIN) { ip6_rt_put(rt); rt = net->ipv6.ip6_null_entry; dst_hold(&rt->dst); } return &rt->dst; } static void __net_init fib6_tables_init(struct net *net) { fib6_link_table(net, net->ipv6.fib6_main_tbl); } #endif unsigned int fib6_tables_seq_read(struct net *net) { unsigned int h, fib_seq = 0; rcu_read_lock(); for (h = 0; h < FIB6_TABLE_HASHSZ; h++) { struct hlist_head *head = &net->ipv6.fib_table_hash[h]; struct fib6_table *tb; hlist_for_each_entry_rcu(tb, head, tb6_hlist) fib_seq += tb->fib_seq; } rcu_read_unlock(); return fib_seq; } static int call_fib6_entry_notifier(struct notifier_block *nb, struct net *net, enum fib_event_type event_type, struct fib6_info *rt) { struct fib6_entry_notifier_info info = { .rt = rt, }; return call_fib6_notifier(nb, net, event_type, &info.info); } static int call_fib6_entry_notifiers(struct net *net, enum fib_event_type event_type, struct fib6_info *rt, struct netlink_ext_ack *extack) { struct fib6_entry_notifier_info info = { .info.extack = extack, .rt = rt, }; rt->fib6_table->fib_seq++; return call_fib6_notifiers(net, event_type, &info.info); } struct fib6_dump_arg { struct net *net; struct notifier_block *nb; }; static void fib6_rt_dump(struct fib6_info *rt, struct fib6_dump_arg *arg) { if (rt == arg->net->ipv6.fib6_null_entry) return; call_fib6_entry_notifier(arg->nb, arg->net, FIB_EVENT_ENTRY_ADD, rt); } static int fib6_node_dump(struct fib6_walker *w) { struct fib6_info *rt; for_each_fib6_walker_rt(w) fib6_rt_dump(rt, w->args); w->leaf = NULL; return 0; } static void fib6_table_dump(struct net *net, struct fib6_table *tb, struct fib6_walker *w) { w->root = &tb->tb6_root; spin_lock_bh(&tb->tb6_lock); fib6_walk(net, w); spin_unlock_bh(&tb->tb6_lock); } /* Called with rcu_read_lock() */ int fib6_tables_dump(struct net *net, struct notifier_block *nb) { struct fib6_dump_arg arg; struct fib6_walker *w; unsigned int h; w = kzalloc(sizeof(*w), GFP_ATOMIC); if (!w) return -ENOMEM; w->func = fib6_node_dump; arg.net = net; arg.nb = nb; w->args = &arg; for (h = 0; h < FIB6_TABLE_HASHSZ; h++) { struct hlist_head *head = &net->ipv6.fib_table_hash[h]; struct fib6_table *tb; hlist_for_each_entry_rcu(tb, head, tb6_hlist) fib6_table_dump(net, tb, w); } kfree(w); return 0; } static int fib6_dump_node(struct fib6_walker *w) { int res; struct fib6_info *rt; for_each_fib6_walker_rt(w) { res = rt6_dump_route(rt, w->args); if (res < 0) { /* Frame is full, suspend walking */ w->leaf = rt; return 1; } /* Multipath routes are dumped in one route with the * RTA_MULTIPATH attribute. Jump 'rt' to point to the * last sibling of this route (no need to dump the * sibling routes again) */ if (rt->fib6_nsiblings) rt = list_last_entry(&rt->fib6_siblings, struct fib6_info, fib6_siblings); } w->leaf = NULL; return 0; } static void fib6_dump_end(struct netlink_callback *cb) { struct net *net = sock_net(cb->skb->sk); struct fib6_walker *w = (void *)cb->args[2]; if (w) { if (cb->args[4]) { cb->args[4] = 0; fib6_walker_unlink(net, w); } cb->args[2] = 0; kfree(w); } cb->done = (void *)cb->args[3]; cb->args[1] = 3; } static int fib6_dump_done(struct netlink_callback *cb) { fib6_dump_end(cb); return cb->done ? cb->done(cb) : 0; } static int fib6_dump_table(struct fib6_table *table, struct sk_buff *skb, struct netlink_callback *cb) { struct net *net = sock_net(skb->sk); struct fib6_walker *w; int res; w = (void *)cb->args[2]; w->root = &table->tb6_root; if (cb->args[4] == 0) { w->count = 0; w->skip = 0; spin_lock_bh(&table->tb6_lock); res = fib6_walk(net, w); spin_unlock_bh(&table->tb6_lock); if (res > 0) { cb->args[4] = 1; cb->args[5] = w->root->fn_sernum; } } else { if (cb->args[5] != w->root->fn_sernum) { /* Begin at the root if the tree changed */ cb->args[5] = w->root->fn_sernum; w->state = FWS_INIT; w->node = w->root; w->skip = w->count; } else w->skip = 0; spin_lock_bh(&table->tb6_lock); res = fib6_walk_continue(w); spin_unlock_bh(&table->tb6_lock); if (res <= 0) { fib6_walker_unlink(net, w); cb->args[4] = 0; } } return res; } static int inet6_dump_fib(struct sk_buff *skb, struct netlink_callback *cb) { struct net *net = sock_net(skb->sk); unsigned int h, s_h; unsigned int e = 0, s_e; struct rt6_rtnl_dump_arg arg; struct fib6_walker *w; struct fib6_table *tb; struct hlist_head *head; int res = 0; s_h = cb->args[0]; s_e = cb->args[1]; w = (void *)cb->args[2]; if (!w) { /* New dump: * * 1. hook callback destructor. */ cb->args[3] = (long)cb->done; cb->done = fib6_dump_done; /* * 2. allocate and initialize walker. */ w = kzalloc(sizeof(*w), GFP_ATOMIC); if (!w) return -ENOMEM; w->func = fib6_dump_node; cb->args[2] = (long)w; } arg.skb = skb; arg.cb = cb; arg.net = net; w->args = &arg; rcu_read_lock(); for (h = s_h; h < FIB6_TABLE_HASHSZ; h++, s_e = 0) { e = 0; head = &net->ipv6.fib_table_hash[h]; hlist_for_each_entry_rcu(tb, head, tb6_hlist) { if (e < s_e) goto next; res = fib6_dump_table(tb, skb, cb); if (res != 0) goto out; next: e++; } } out: rcu_read_unlock(); cb->args[1] = e; cb->args[0] = h; res = res < 0 ? res : skb->len; if (res <= 0) fib6_dump_end(cb); return res; } void fib6_metric_set(struct fib6_info *f6i, int metric, u32 val) { if (!f6i) return; if (f6i->fib6_metrics == &dst_default_metrics) { struct dst_metrics *p = kzalloc(sizeof(*p), GFP_ATOMIC); if (!p) return; refcount_set(&p->refcnt, 1); f6i->fib6_metrics = p; } f6i->fib6_metrics->metrics[metric - 1] = val; } /* * Routing Table * * return the appropriate node for a routing tree "add" operation * by either creating and inserting or by returning an existing * node. */ static struct fib6_node *fib6_add_1(struct net *net, struct fib6_table *table, struct fib6_node *root, struct in6_addr *addr, int plen, int offset, int allow_create, int replace_required, struct netlink_ext_ack *extack) { struct fib6_node *fn, *in, *ln; struct fib6_node *pn = NULL; struct rt6key *key; int bit; __be32 dir = 0; RT6_TRACE("fib6_add_1\n"); /* insert node in tree */ fn = root; do { struct fib6_info *leaf = rcu_dereference_protected(fn->leaf, lockdep_is_held(&table->tb6_lock)); key = (struct rt6key *)((u8 *)leaf + offset); /* * Prefix match */ if (plen < fn->fn_bit || !ipv6_prefix_equal(&key->addr, addr, fn->fn_bit)) { if (!allow_create) { if (replace_required) { NL_SET_ERR_MSG(extack, "Can not replace route - no match found"); pr_warn("Can't replace route, no match found\n"); return ERR_PTR(-ENOENT); } pr_warn("NLM_F_CREATE should be set when creating new route\n"); } goto insert_above; } /* * Exact match ? */ if (plen == fn->fn_bit) { /* clean up an intermediate node */ if (!(fn->fn_flags & RTN_RTINFO)) { RCU_INIT_POINTER(fn->leaf, NULL); fib6_info_release(leaf); /* remove null_entry in the root node */ } else if (fn->fn_flags & RTN_TL_ROOT && rcu_access_pointer(fn->leaf) == net->ipv6.fib6_null_entry) { RCU_INIT_POINTER(fn->leaf, NULL); } return fn; } /* * We have more bits to go */ /* Try to walk down on tree. */ dir = addr_bit_set(addr, fn->fn_bit); pn = fn; fn = dir ? rcu_dereference_protected(fn->right, lockdep_is_held(&table->tb6_lock)) : rcu_dereference_protected(fn->left, lockdep_is_held(&table->tb6_lock)); } while (fn); if (!allow_create) { /* We should not create new node because * NLM_F_REPLACE was specified without NLM_F_CREATE * I assume it is safe to require NLM_F_CREATE when * REPLACE flag is used! Later we may want to remove the * check for replace_required, because according * to netlink specification, NLM_F_CREATE * MUST be specified if new route is created. * That would keep IPv6 consistent with IPv4 */ if (replace_required) { NL_SET_ERR_MSG(extack, "Can not replace route - no match found"); pr_warn("Can't replace route, no match found\n"); return ERR_PTR(-ENOENT); } pr_warn("NLM_F_CREATE should be set when creating new route\n"); } /* * We walked to the bottom of tree. * Create new leaf node without children. */ ln = node_alloc(net); if (!ln) return ERR_PTR(-ENOMEM); ln->fn_bit = plen; RCU_INIT_POINTER(ln->parent, pn); if (dir) rcu_assign_pointer(pn->right, ln); else rcu_assign_pointer(pn->left, ln); return ln; insert_above: /* * split since we don't have a common prefix anymore or * we have a less significant route. * we've to insert an intermediate node on the list * this new node will point to the one we need to create * and the current */ pn = rcu_dereference_protected(fn->parent, lockdep_is_held(&table->tb6_lock)); /* find 1st bit in difference between the 2 addrs. See comment in __ipv6_addr_diff: bit may be an invalid value, but if it is >= plen, the value is ignored in any case. */ bit = __ipv6_addr_diff(addr, &key->addr, sizeof(*addr)); /* * (intermediate)[in] * / \ * (new leaf node)[ln] (old node)[fn] */ if (plen > bit) { in = node_alloc(net); ln = node_alloc(net); if (!in || !ln) { if (in) node_free_immediate(net, in); if (ln) node_free_immediate(net, ln); return ERR_PTR(-ENOMEM); } /* * new intermediate node. * RTN_RTINFO will * be off since that an address that chooses one of * the branches would not match less specific routes * in the other branch */ in->fn_bit = bit; RCU_INIT_POINTER(in->parent, pn); in->leaf = fn->leaf; atomic_inc(&rcu_dereference_protected(in->leaf, lockdep_is_held(&table->tb6_lock))->fib6_ref); /* update parent pointer */ if (dir) rcu_assign_pointer(pn->right, in); else rcu_assign_pointer(pn->left, in); ln->fn_bit = plen; RCU_INIT_POINTER(ln->parent, in); rcu_assign_pointer(fn->parent, in); if (addr_bit_set(addr, bit)) { rcu_assign_pointer(in->right, ln); rcu_assign_pointer(in->left, fn); } else { rcu_assign_pointer(in->left, ln); rcu_assign_pointer(in->right, fn); } } else { /* plen <= bit */ /* * (new leaf node)[ln] * / \ * (old node)[fn] NULL */ ln = node_alloc(net); if (!ln) return ERR_PTR(-ENOMEM); ln->fn_bit = plen; RCU_INIT_POINTER(ln->parent, pn); if (addr_bit_set(&key->addr, plen)) RCU_INIT_POINTER(ln->right, fn); else RCU_INIT_POINTER(ln->left, fn); rcu_assign_pointer(fn->parent, ln); if (dir) rcu_assign_pointer(pn->right, ln); else rcu_assign_pointer(pn->left, ln); } return ln; } static void fib6_drop_pcpu_from(struct fib6_info *f6i, const struct fib6_table *table) { int cpu; /* release the reference to this fib entry from * all of its cached pcpu routes */ for_each_possible_cpu(cpu) { struct rt6_info **ppcpu_rt; struct rt6_info *pcpu_rt; ppcpu_rt = per_cpu_ptr(f6i->rt6i_pcpu, cpu); pcpu_rt = *ppcpu_rt; if (pcpu_rt) { fib6_info_release(pcpu_rt->from); pcpu_rt->from = NULL; } } } static void fib6_purge_rt(struct fib6_info *rt, struct fib6_node *fn, struct net *net) { struct fib6_table *table = rt->fib6_table; if (atomic_read(&rt->fib6_ref) != 1) { /* This route is used as dummy address holder in some split * nodes. It is not leaked, but it still holds other resources, * which must be released in time. So, scan ascendant nodes * and replace dummy references to this route with references * to still alive ones. */ while (fn) { struct fib6_info *leaf = rcu_dereference_protected(fn->leaf, lockdep_is_held(&table->tb6_lock)); struct fib6_info *new_leaf; if (!(fn->fn_flags & RTN_RTINFO) && leaf == rt) { new_leaf = fib6_find_prefix(net, table, fn); atomic_inc(&new_leaf->fib6_ref); rcu_assign_pointer(fn->leaf, new_leaf); fib6_info_release(rt); } fn = rcu_dereference_protected(fn->parent, lockdep_is_held(&table->tb6_lock)); } if (rt->rt6i_pcpu) fib6_drop_pcpu_from(rt, table); } } /* * Insert routing information in a node. */ static int fib6_add_rt2node(struct fib6_node *fn, struct fib6_info *rt, struct nl_info *info, struct netlink_ext_ack *extack) { struct fib6_info *leaf = rcu_dereference_protected(fn->leaf, lockdep_is_held(&rt->fib6_table->tb6_lock)); struct fib6_info *iter = NULL; struct fib6_info __rcu **ins; struct fib6_info __rcu **fallback_ins = NULL; int replace = (info->nlh && (info->nlh->nlmsg_flags & NLM_F_REPLACE)); int add = (!info->nlh || (info->nlh->nlmsg_flags & NLM_F_CREATE)); int found = 0; bool rt_can_ecmp = rt6_qualify_for_ecmp(rt); u16 nlflags = NLM_F_EXCL; int err; if (info->nlh && (info->nlh->nlmsg_flags & NLM_F_APPEND)) nlflags |= NLM_F_APPEND; ins = &fn->leaf; for (iter = leaf; iter; iter = rcu_dereference_protected(iter->rt6_next, lockdep_is_held(&rt->fib6_table->tb6_lock))) { /* * Search for duplicates */ if (iter->fib6_metric == rt->fib6_metric) { /* * Same priority level */ if (info->nlh && (info->nlh->nlmsg_flags & NLM_F_EXCL)) return -EEXIST; nlflags &= ~NLM_F_EXCL; if (replace) { if (rt_can_ecmp == rt6_qualify_for_ecmp(iter)) { found++; break; } if (rt_can_ecmp) fallback_ins = fallback_ins ?: ins; goto next_iter; } if (rt6_duplicate_nexthop(iter, rt)) { if (rt->fib6_nsiblings) rt->fib6_nsiblings = 0; if (!(iter->fib6_flags & RTF_EXPIRES)) return -EEXIST; if (!(rt->fib6_flags & RTF_EXPIRES)) fib6_clean_expires(iter); else fib6_set_expires(iter, rt->expires); fib6_metric_set(iter, RTAX_MTU, rt->fib6_pmtu); return -EEXIST; } /* If we have the same destination and the same metric, * but not the same gateway, then the route we try to * add is sibling to this route, increment our counter * of siblings, and later we will add our route to the * list. * Only static routes (which don't have flag * RTF_EXPIRES) are used for ECMPv6. * * To avoid long list, we only had siblings if the * route have a gateway. */ if (rt_can_ecmp && rt6_qualify_for_ecmp(iter)) rt->fib6_nsiblings++; } if (iter->fib6_metric > rt->fib6_metric) break; next_iter: ins = &iter->rt6_next; } if (fallback_ins && !found) { /* No ECMP-able route found, replace first non-ECMP one */ ins = fallback_ins; iter = rcu_dereference_protected(*ins, lockdep_is_held(&rt->fib6_table->tb6_lock)); found++; } /* Reset round-robin state, if necessary */ if (ins == &fn->leaf) fn->rr_ptr = NULL; /* Link this route to others same route. */ if (rt->fib6_nsiblings) { unsigned int fib6_nsiblings; struct fib6_info *sibling, *temp_sibling; /* Find the first route that have the same metric */ sibling = leaf; while (sibling) { if (sibling->fib6_metric == rt->fib6_metric && rt6_qualify_for_ecmp(sibling)) { list_add_tail(&rt->fib6_siblings, &sibling->fib6_siblings); break; } sibling = rcu_dereference_protected(sibling->rt6_next, lockdep_is_held(&rt->fib6_table->tb6_lock)); } /* For each sibling in the list, increment the counter of * siblings. BUG() if counters does not match, list of siblings * is broken! */ fib6_nsiblings = 0; list_for_each_entry_safe(sibling, temp_sibling, &rt->fib6_siblings, fib6_siblings) { sibling->fib6_nsiblings++; BUG_ON(sibling->fib6_nsiblings != rt->fib6_nsiblings); fib6_nsiblings++; } BUG_ON(fib6_nsiblings != rt->fib6_nsiblings); rt6_multipath_rebalance(temp_sibling); } /* * insert node */ if (!replace) { if (!add) pr_warn("NLM_F_CREATE should be set when creating new route\n"); add: nlflags |= NLM_F_CREATE; err = call_fib6_entry_notifiers(info->nl_net, FIB_EVENT_ENTRY_ADD, rt, extack); if (err) return err; rcu_assign_pointer(rt->rt6_next, iter); atomic_inc(&rt->fib6_ref); rcu_assign_pointer(rt->fib6_node, fn); rcu_assign_pointer(*ins, rt); if (!info->skip_notify) inet6_rt_notify(RTM_NEWROUTE, rt, info, nlflags); info->nl_net->ipv6.rt6_stats->fib_rt_entries++; if (!(fn->fn_flags & RTN_RTINFO)) { info->nl_net->ipv6.rt6_stats->fib_route_nodes++; fn->fn_flags |= RTN_RTINFO; } } else { int nsiblings; if (!found) { if (add) goto add; pr_warn("NLM_F_REPLACE set, but no existing node found!\n"); return -ENOENT; } err = call_fib6_entry_notifiers(info->nl_net, FIB_EVENT_ENTRY_REPLACE, rt, extack); if (err) return err; atomic_inc(&rt->fib6_ref); rcu_assign_pointer(rt->fib6_node, fn); rt->rt6_next = iter->rt6_next; rcu_assign_pointer(*ins, rt); if (!info->skip_notify) inet6_rt_notify(RTM_NEWROUTE, rt, info, NLM_F_REPLACE); if (!(fn->fn_flags & RTN_RTINFO)) { info->nl_net->ipv6.rt6_stats->fib_route_nodes++; fn->fn_flags |= RTN_RTINFO; } nsiblings = iter->fib6_nsiblings; iter->fib6_node = NULL; fib6_purge_rt(iter, fn, info->nl_net); if (rcu_access_pointer(fn->rr_ptr) == iter) fn->rr_ptr = NULL; fib6_info_release(iter); if (nsiblings) { /* Replacing an ECMP route, remove all siblings */ ins = &rt->rt6_next; iter = rcu_dereference_protected(*ins, lockdep_is_held(&rt->fib6_table->tb6_lock)); while (iter) { if (iter->fib6_metric > rt->fib6_metric) break; if (rt6_qualify_for_ecmp(iter)) { *ins = iter->rt6_next; iter->fib6_node = NULL; fib6_purge_rt(iter, fn, info->nl_net); if (rcu_access_pointer(fn->rr_ptr) == iter) fn->rr_ptr = NULL; fib6_info_release(iter); nsiblings--; info->nl_net->ipv6.rt6_stats->fib_rt_entries--; } else { ins = &iter->rt6_next; } iter = rcu_dereference_protected(*ins, lockdep_is_held(&rt->fib6_table->tb6_lock)); } WARN_ON(nsiblings != 0); } } return 0; } static void fib6_start_gc(struct net *net, struct fib6_info *rt) { if (!timer_pending(&net->ipv6.ip6_fib_timer) && (rt->fib6_flags & RTF_EXPIRES)) mod_timer(&net->ipv6.ip6_fib_timer, jiffies + net->ipv6.sysctl.ip6_rt_gc_interval); } void fib6_force_start_gc(struct net *net) { if (!timer_pending(&net->ipv6.ip6_fib_timer)) mod_timer(&net->ipv6.ip6_fib_timer, jiffies + net->ipv6.sysctl.ip6_rt_gc_interval); } static void __fib6_update_sernum_upto_root(struct fib6_info *rt, int sernum) { struct fib6_node *fn = rcu_dereference_protected(rt->fib6_node, lockdep_is_held(&rt->fib6_table->tb6_lock)); /* paired with smp_rmb() in rt6_get_cookie_safe() */ smp_wmb(); while (fn) { fn->fn_sernum = sernum; fn = rcu_dereference_protected(fn->parent, lockdep_is_held(&rt->fib6_table->tb6_lock)); } } void fib6_update_sernum_upto_root(struct net *net, struct fib6_info *rt) { __fib6_update_sernum_upto_root(rt, fib6_new_sernum(net)); } /* * Add routing information to the routing tree. * / * with source addr info in sub-trees * Need to own table->tb6_lock */ int fib6_add(struct fib6_node *root, struct fib6_info *rt, struct nl_info *info, struct netlink_ext_ack *extack) { struct fib6_table *table = rt->fib6_table; struct fib6_node *fn, *pn = NULL; int err = -ENOMEM; int allow_create = 1; int replace_required = 0; int sernum = fib6_new_sernum(info->nl_net); if (info->nlh) { if (!(info->nlh->nlmsg_flags & NLM_F_CREATE)) allow_create = 0; if (info->nlh->nlmsg_flags & NLM_F_REPLACE) replace_required = 1; } if (!allow_create && !replace_required) pr_warn("RTM_NEWROUTE with no NLM_F_CREATE or NLM_F_REPLACE\n"); fn = fib6_add_1(info->nl_net, table, root, &rt->fib6_dst.addr, rt->fib6_dst.plen, offsetof(struct fib6_info, fib6_dst), allow_create, replace_required, extack); if (IS_ERR(fn)) { err = PTR_ERR(fn); fn = NULL; goto out; } pn = fn; #ifdef CONFIG_IPV6_SUBTREES if (rt->fib6_src.plen) { struct fib6_node *sn; if (!rcu_access_pointer(fn->subtree)) { struct fib6_node *sfn; /* * Create subtree. * * fn[main tree] * | * sfn[subtree root] * \ * sn[new leaf node] */ /* Create subtree root node */ sfn = node_alloc(info->nl_net); if (!sfn) goto failure; atomic_inc(&info->nl_net->ipv6.fib6_null_entry->fib6_ref); rcu_assign_pointer(sfn->leaf, info->nl_net->ipv6.fib6_null_entry); sfn->fn_flags = RTN_ROOT; /* Now add the first leaf node to new subtree */ sn = fib6_add_1(info->nl_net, table, sfn, &rt->fib6_src.addr, rt->fib6_src.plen, offsetof(struct fib6_info, fib6_src), allow_create, replace_required, extack); if (IS_ERR(sn)) { /* If it is failed, discard just allocated root, and then (in failure) stale node in main tree. */ node_free_immediate(info->nl_net, sfn); err = PTR_ERR(sn); goto failure; } /* Now link new subtree to main tree */ rcu_assign_pointer(sfn->parent, fn); rcu_assign_pointer(fn->subtree, sfn); } else { sn = fib6_add_1(info->nl_net, table, FIB6_SUBTREE(fn), &rt->fib6_src.addr, rt->fib6_src.plen, offsetof(struct fib6_info, fib6_src), allow_create, replace_required, extack); if (IS_ERR(sn)) { err = PTR_ERR(sn); goto failure; } } if (!rcu_access_pointer(fn->leaf)) { if (fn->fn_flags & RTN_TL_ROOT) { /* put back null_entry for root node */ rcu_assign_pointer(fn->leaf, info->nl_net->ipv6.fib6_null_entry); } else { atomic_inc(&rt->fib6_ref); rcu_assign_pointer(fn->leaf, rt); } } fn = sn; } #endif err = fib6_add_rt2node(fn, rt, info, extack); if (!err) { __fib6_update_sernum_upto_root(rt, sernum); fib6_start_gc(info->nl_net, rt); } out: if (err) { #ifdef CONFIG_IPV6_SUBTREES /* * If fib6_add_1 has cleared the old leaf pointer in the * super-tree leaf node we have to find a new one for it. */ if (pn != fn) { struct fib6_info *pn_leaf = rcu_dereference_protected(pn->leaf, lockdep_is_held(&table->tb6_lock)); if (pn_leaf == rt) { pn_leaf = NULL; RCU_INIT_POINTER(pn->leaf, NULL); fib6_info_release(rt); } if (!pn_leaf && !(pn->fn_flags & RTN_RTINFO)) { pn_leaf = fib6_find_prefix(info->nl_net, table, pn); #if RT6_DEBUG >= 2 if (!pn_leaf) { WARN_ON(!pn_leaf); pn_leaf = info->nl_net->ipv6.fib6_null_entry; } #endif fib6_info_hold(pn_leaf); rcu_assign_pointer(pn->leaf, pn_leaf); } } #endif goto failure; } return err; failure: /* fn->leaf could be NULL and fib6_repair_tree() needs to be called if: * 1. fn is an intermediate node and we failed to add the new * route to it in both subtree creation failure and fib6_add_rt2node() * failure case. * 2. fn is the root node in the table and we fail to add the first * default route to it. */ if (fn && (!(fn->fn_flags & (RTN_RTINFO|RTN_ROOT)) || (fn->fn_flags & RTN_TL_ROOT && !rcu_access_pointer(fn->leaf)))) fib6_repair_tree(info->nl_net, table, fn); return err; } /* * Routing tree lookup * */ struct lookup_args { int offset; /* key offset on fib6_info */ const struct in6_addr *addr; /* search key */ }; static struct fib6_node *fib6_lookup_1(struct fib6_node *root, struct lookup_args *args) { struct fib6_node *fn; __be32 dir; if (unlikely(args->offset == 0)) return NULL; /* * Descend on a tree */ fn = root; for (;;) { struct fib6_node *next; dir = addr_bit_set(args->addr, fn->fn_bit); next = dir ? rcu_dereference(fn->right) : rcu_dereference(fn->left); if (next) { fn = next; continue; } break; } while (fn) { struct fib6_node *subtree = FIB6_SUBTREE(fn); if (subtree || fn->fn_flags & RTN_RTINFO) { struct fib6_info *leaf = rcu_dereference(fn->leaf); struct rt6key *key; if (!leaf) goto backtrack; key = (struct rt6key *) ((u8 *)leaf + args->offset); if (ipv6_prefix_equal(&key->addr, args->addr, key->plen)) { #ifdef CONFIG_IPV6_SUBTREES if (subtree) { struct fib6_node *sfn; sfn = fib6_lookup_1(subtree, args + 1); if (!sfn) goto backtrack; fn = sfn; } #endif if (fn->fn_flags & RTN_RTINFO) return fn; } } backtrack: if (fn->fn_flags & RTN_ROOT) break; fn = rcu_dereference(fn->parent); } return NULL; } /* called with rcu_read_lock() held */ struct fib6_node *fib6_lookup(struct fib6_node *root, const struct in6_addr *daddr, const struct in6_addr *saddr) { struct fib6_node *fn; struct lookup_args args[] = { { .offset = offsetof(struct fib6_info, fib6_dst), .addr = daddr, }, #ifdef CONFIG_IPV6_SUBTREES { .offset = offsetof(struct fib6_info, fib6_src), .addr = saddr, }, #endif { .offset = 0, /* sentinel */ } }; fn = fib6_lookup_1(root, daddr ? args : args + 1); if (!fn || fn->fn_flags & RTN_TL_ROOT) fn = root; return fn; } /* * Get node with specified destination prefix (and source prefix, * if subtrees are used) * exact_match == true means we try to find fn with exact match of * the passed in prefix addr * exact_match == false means we try to find fn with longest prefix * match of the passed in prefix addr. This is useful for finding fn * for cached route as it will be stored in the exception table under * the node with longest prefix length. */ static struct fib6_node *fib6_locate_1(struct fib6_node *root, const struct in6_addr *addr, int plen, int offset, bool exact_match) { struct fib6_node *fn, *prev = NULL; for (fn = root; fn ; ) { struct fib6_info *leaf = rcu_dereference(fn->leaf); struct rt6key *key; /* This node is being deleted */ if (!leaf) { if (plen <= fn->fn_bit) goto out; else goto next; } key = (struct rt6key *)((u8 *)leaf + offset); /* * Prefix match */ if (plen < fn->fn_bit || !ipv6_prefix_equal(&key->addr, addr, fn->fn_bit)) goto out; if (plen == fn->fn_bit) return fn; prev = fn; next: /* * We have more bits to go */ if (addr_bit_set(addr, fn->fn_bit)) fn = rcu_dereference(fn->right); else fn = rcu_dereference(fn->left); } out: if (exact_match) return NULL; else return prev; } struct fib6_node *fib6_locate(struct fib6_node *root, const struct in6_addr *daddr, int dst_len, const struct in6_addr *saddr, int src_len, bool exact_match) { struct fib6_node *fn; fn = fib6_locate_1(root, daddr, dst_len, offsetof(struct fib6_info, fib6_dst), exact_match); #ifdef CONFIG_IPV6_SUBTREES if (src_len) { WARN_ON(saddr == NULL); if (fn) { struct fib6_node *subtree = FIB6_SUBTREE(fn); if (subtree) { fn = fib6_locate_1(subtree, saddr, src_len, offsetof(struct fib6_info, fib6_src), exact_match); } } } #endif if (fn && fn->fn_flags & RTN_RTINFO) return fn; return NULL; } /* * Deletion * */ static struct fib6_info *fib6_find_prefix(struct net *net, struct fib6_table *table, struct fib6_node *fn) { struct fib6_node *child_left, *child_right; if (fn->fn_flags & RTN_ROOT) return net->ipv6.fib6_null_entry; while (fn) { child_left = rcu_dereference_protected(fn->left, lockdep_is_held(&table->tb6_lock)); child_right = rcu_dereference_protected(fn->right, lockdep_is_held(&table->tb6_lock)); if (child_left) return rcu_dereference_protected(child_left->leaf, lockdep_is_held(&table->tb6_lock)); if (child_right) return rcu_dereference_protected(child_right->leaf, lockdep_is_held(&table->tb6_lock)); fn = FIB6_SUBTREE(fn); } return NULL; } /* * Called to trim the tree of intermediate nodes when possible. "fn" * is the node we want to try and remove. * Need to own table->tb6_lock */ static struct fib6_node *fib6_repair_tree(struct net *net, struct fib6_table *table, struct fib6_node *fn) { int children; int nstate; struct fib6_node *child; struct fib6_walker *w; int iter = 0; /* Set fn->leaf to null_entry for root node. */ if (fn->fn_flags & RTN_TL_ROOT) { rcu_assign_pointer(fn->leaf, net->ipv6.fib6_null_entry); return fn; } for (;;) { struct fib6_node *fn_r = rcu_dereference_protected(fn->right, lockdep_is_held(&table->tb6_lock)); struct fib6_node *fn_l = rcu_dereference_protected(fn->left, lockdep_is_held(&table->tb6_lock)); struct fib6_node *pn = rcu_dereference_protected(fn->parent, lockdep_is_held(&table->tb6_lock)); struct fib6_node *pn_r = rcu_dereference_protected(pn->right, lockdep_is_held(&table->tb6_lock)); struct fib6_node *pn_l = rcu_dereference_protected(pn->left, lockdep_is_held(&table->tb6_lock)); struct fib6_info *fn_leaf = rcu_dereference_protected(fn->leaf, lockdep_is_held(&table->tb6_lock)); struct fib6_info *pn_leaf = rcu_dereference_protected(pn->leaf, lockdep_is_held(&table->tb6_lock)); struct fib6_info *new_fn_leaf; RT6_TRACE("fixing tree: plen=%d iter=%d\n", fn->fn_bit, iter); iter++; WARN_ON(fn->fn_flags & RTN_RTINFO); WARN_ON(fn->fn_flags & RTN_TL_ROOT); WARN_ON(fn_leaf); children = 0; child = NULL; if (fn_r) child = fn_r, children |= 1; if (fn_l) child = fn_l, children |= 2; if (children == 3 || FIB6_SUBTREE(fn) #ifdef CONFIG_IPV6_SUBTREES /* Subtree root (i.e. fn) may have one child */ || (children && fn->fn_flags & RTN_ROOT) #endif ) { new_fn_leaf = fib6_find_prefix(net, table, fn); #if RT6_DEBUG >= 2 if (!new_fn_leaf) { WARN_ON(!new_fn_leaf); new_fn_leaf = net->ipv6.fib6_null_entry; } #endif fib6_info_hold(new_fn_leaf); rcu_assign_pointer(fn->leaf, new_fn_leaf); return pn; } #ifdef CONFIG_IPV6_SUBTREES if (FIB6_SUBTREE(pn) == fn) { WARN_ON(!(fn->fn_flags & RTN_ROOT)); RCU_INIT_POINTER(pn->subtree, NULL); nstate = FWS_L; } else { WARN_ON(fn->fn_flags & RTN_ROOT); #endif if (pn_r == fn) rcu_assign_pointer(pn->right, child); else if (pn_l == fn) rcu_assign_pointer(pn->left, child); #if RT6_DEBUG >= 2 else WARN_ON(1); #endif if (child) rcu_assign_pointer(child->parent, pn); nstate = FWS_R; #ifdef CONFIG_IPV6_SUBTREES } #endif read_lock(&net->ipv6.fib6_walker_lock); FOR_WALKERS(net, w) { if (!child) { if (w->node == fn) { RT6_TRACE("W %p adjusted by delnode 1, s=%d/%d\n", w, w->state, nstate); w->node = pn; w->state = nstate; } } else { if (w->node == fn) { w->node = child; if (children&2) { RT6_TRACE("W %p adjusted by delnode 2, s=%d\n", w, w->state); w->state = w->state >= FWS_R ? FWS_U : FWS_INIT; } else { RT6_TRACE("W %p adjusted by delnode 2, s=%d\n", w, w->state); w->state = w->state >= FWS_C ? FWS_U : FWS_INIT; } } } } read_unlock(&net->ipv6.fib6_walker_lock); node_free(net, fn); if (pn->fn_flags & RTN_RTINFO || FIB6_SUBTREE(pn)) return pn; RCU_INIT_POINTER(pn->leaf, NULL); fib6_info_release(pn_leaf); fn = pn; } } static void fib6_del_route(struct fib6_table *table, struct fib6_node *fn, struct fib6_info __rcu **rtp, struct nl_info *info) { struct fib6_walker *w; struct fib6_info *rt = rcu_dereference_protected(*rtp, lockdep_is_held(&table->tb6_lock)); struct net *net = info->nl_net; RT6_TRACE("fib6_del_route\n"); /* Unlink it */ *rtp = rt->rt6_next; rt->fib6_node = NULL; net->ipv6.rt6_stats->fib_rt_entries--; net->ipv6.rt6_stats->fib_discarded_routes++; /* Flush all cached dst in exception table */ rt6_flush_exceptions(rt); /* Reset round-robin state, if necessary */ if (rcu_access_pointer(fn->rr_ptr) == rt) fn->rr_ptr = NULL; /* Remove this entry from other siblings */ if (rt->fib6_nsiblings) { struct fib6_info *sibling, *next_sibling; list_for_each_entry_safe(sibling, next_sibling, &rt->fib6_siblings, fib6_siblings) sibling->fib6_nsiblings--; rt->fib6_nsiblings = 0; list_del_init(&rt->fib6_siblings); rt6_multipath_rebalance(next_sibling); } /* Adjust walkers */ read_lock(&net->ipv6.fib6_walker_lock); FOR_WALKERS(net, w) { if (w->state == FWS_C && w->leaf == rt) { RT6_TRACE("walker %p adjusted by delroute\n", w); w->leaf = rcu_dereference_protected(rt->rt6_next, lockdep_is_held(&table->tb6_lock)); if (!w->leaf) w->state = FWS_U; } } read_unlock(&net->ipv6.fib6_walker_lock); /* If it was last route, call fib6_repair_tree() to: * 1. For root node, put back null_entry as how the table was created. * 2. For other nodes, expunge its radix tree node. */ if (!rcu_access_pointer(fn->leaf)) { if (!(fn->fn_flags & RTN_TL_ROOT)) { fn->fn_flags &= ~RTN_RTINFO; net->ipv6.rt6_stats->fib_route_nodes--; } fn = fib6_repair_tree(net, table, fn); } fib6_purge_rt(rt, fn, net); call_fib6_entry_notifiers(net, FIB_EVENT_ENTRY_DEL, rt, NULL); if (!info->skip_notify) inet6_rt_notify(RTM_DELROUTE, rt, info, 0); fib6_info_release(rt); } /* Need to own table->tb6_lock */ int fib6_del(struct fib6_info *rt, struct nl_info *info) { struct fib6_node *fn = rcu_dereference_protected(rt->fib6_node, lockdep_is_held(&rt->fib6_table->tb6_lock)); struct fib6_table *table = rt->fib6_table; struct net *net = info->nl_net; struct fib6_info __rcu **rtp; struct fib6_info __rcu **rtp_next; if (!fn || rt == net->ipv6.fib6_null_entry) return -ENOENT; WARN_ON(!(fn->fn_flags & RTN_RTINFO)); /* * Walk the leaf entries looking for ourself */ for (rtp = &fn->leaf; *rtp; rtp = rtp_next) { struct fib6_info *cur = rcu_dereference_protected(*rtp, lockdep_is_held(&table->tb6_lock)); if (rt == cur) { fib6_del_route(table, fn, rtp, info); return 0; } rtp_next = &cur->rt6_next; } return -ENOENT; } /* * Tree traversal function. * * Certainly, it is not interrupt safe. * However, it is internally reenterable wrt itself and fib6_add/fib6_del. * It means, that we can modify tree during walking * and use this function for garbage collection, clone pruning, * cleaning tree when a device goes down etc. etc. * * It guarantees that every node will be traversed, * and that it will be traversed only once. * * Callback function w->func may return: * 0 -> continue walking. * positive value -> walking is suspended (used by tree dumps, * and probably by gc, if it will be split to several slices) * negative value -> terminate walking. * * The function itself returns: * 0 -> walk is complete. * >0 -> walk is incomplete (i.e. suspended) * <0 -> walk is terminated by an error. * * This function is called with tb6_lock held. */ static int fib6_walk_continue(struct fib6_walker *w) { struct fib6_node *fn, *pn, *left, *right; /* w->root should always be table->tb6_root */ WARN_ON_ONCE(!(w->root->fn_flags & RTN_TL_ROOT)); for (;;) { fn = w->node; if (!fn) return 0; switch (w->state) { #ifdef CONFIG_IPV6_SUBTREES case FWS_S: if (FIB6_SUBTREE(fn)) { w->node = FIB6_SUBTREE(fn); continue; } w->state = FWS_L; #endif /* fall through */ case FWS_L: left = rcu_dereference_protected(fn->left, 1); if (left) { w->node = left; w->state = FWS_INIT; continue; } w->state = FWS_R; /* fall through */ case FWS_R: right = rcu_dereference_protected(fn->right, 1); if (right) { w->node = right; w->state = FWS_INIT; continue; } w->state = FWS_C; w->leaf = rcu_dereference_protected(fn->leaf, 1); /* fall through */ case FWS_C: if (w->leaf && fn->fn_flags & RTN_RTINFO) { int err; if (w->skip) { w->skip--; goto skip; } err = w->func(w); if (err) return err; w->count++; continue; } skip: w->state = FWS_U; /* fall through */ case FWS_U: if (fn == w->root) return 0; pn = rcu_dereference_protected(fn->parent, 1); left = rcu_dereference_protected(pn->left, 1); right = rcu_dereference_protected(pn->right, 1); w->node = pn; #ifdef CONFIG_IPV6_SUBTREES if (FIB6_SUBTREE(pn) == fn) { WARN_ON(!(fn->fn_flags & RTN_ROOT)); w->state = FWS_L; continue; } #endif if (left == fn) { w->state = FWS_R; continue; } if (right == fn) { w->state = FWS_C; w->leaf = rcu_dereference_protected(w->node->leaf, 1); continue; } #if RT6_DEBUG >= 2 WARN_ON(1); #endif } } } static int fib6_walk(struct net *net, struct fib6_walker *w) { int res; w->state = FWS_INIT; w->node = w->root; fib6_walker_link(net, w); res = fib6_walk_continue(w); if (res <= 0) fib6_walker_unlink(net, w); return res; } static int fib6_clean_node(struct fib6_walker *w) { int res; struct fib6_info *rt; struct fib6_cleaner *c = container_of(w, struct fib6_cleaner, w); struct nl_info info = { .nl_net = c->net, }; if (c->sernum != FIB6_NO_SERNUM_CHANGE && w->node->fn_sernum != c->sernum) w->node->fn_sernum = c->sernum; if (!c->func) { WARN_ON_ONCE(c->sernum == FIB6_NO_SERNUM_CHANGE); w->leaf = NULL; return 0; } for_each_fib6_walker_rt(w) { res = c->func(rt, c->arg); if (res == -1) { w->leaf = rt; res = fib6_del(rt, &info); if (res) { #if RT6_DEBUG >= 2 pr_debug("%s: del failed: rt=%p@%p err=%d\n", __func__, rt, rcu_access_pointer(rt->fib6_node), res); #endif continue; } return 0; } else if (res == -2) { if (WARN_ON(!rt->fib6_nsiblings)) continue; rt = list_last_entry(&rt->fib6_siblings, struct fib6_info, fib6_siblings); continue; } WARN_ON(res != 0); } w->leaf = rt; return 0; } /* * Convenient frontend to tree walker. * * func is called on each route. * It may return -2 -> skip multipath route. * -1 -> delete this route. * 0 -> continue walking */ static void fib6_clean_tree(struct net *net, struct fib6_node *root, int (*func)(struct fib6_info *, void *arg), int sernum, void *arg) { struct fib6_cleaner c; c.w.root = root; c.w.func = fib6_clean_node; c.w.count = 0; c.w.skip = 0; c.func = func; c.sernum = sernum; c.arg = arg; c.net = net; fib6_walk(net, &c.w); } static void __fib6_clean_all(struct net *net, int (*func)(struct fib6_info *, void *), int sernum, void *arg) { struct fib6_table *table; struct hlist_head *head; unsigned int h; rcu_read_lock(); for (h = 0; h < FIB6_TABLE_HASHSZ; h++) { head = &net->ipv6.fib_table_hash[h]; hlist_for_each_entry_rcu(table, head, tb6_hlist) { spin_lock_bh(&table->tb6_lock); fib6_clean_tree(net, &table->tb6_root, func, sernum, arg); spin_unlock_bh(&table->tb6_lock); } } rcu_read_unlock(); } void fib6_clean_all(struct net *net, int (*func)(struct fib6_info *, void *), void *arg) { __fib6_clean_all(net, func, FIB6_NO_SERNUM_CHANGE, arg); } static void fib6_flush_trees(struct net *net) { int new_sernum = fib6_new_sernum(net); __fib6_clean_all(net, NULL, new_sernum, NULL); } /* * Garbage collection */ static int fib6_age(struct fib6_info *rt, void *arg) { struct fib6_gc_args *gc_args = arg; unsigned long now = jiffies; /* * check addrconf expiration here. * Routes are expired even if they are in use. */ if (rt->fib6_flags & RTF_EXPIRES && rt->expires) { if (time_after(now, rt->expires)) { RT6_TRACE("expiring %p\n", rt); return -1; } gc_args->more++; } /* Also age clones in the exception table. * Note, that clones are aged out * only if they are not in use now. */ rt6_age_exceptions(rt, gc_args, now); return 0; } void fib6_run_gc(unsigned long expires, struct net *net, bool force) { struct fib6_gc_args gc_args; unsigned long now; if (force) { spin_lock_bh(&net->ipv6.fib6_gc_lock); } else if (!spin_trylock_bh(&net->ipv6.fib6_gc_lock)) { mod_timer(&net->ipv6.ip6_fib_timer, jiffies + HZ); return; } gc_args.timeout = expires ? (int)expires : net->ipv6.sysctl.ip6_rt_gc_interval; gc_args.more = 0; fib6_clean_all(net, fib6_age, &gc_args); now = jiffies; net->ipv6.ip6_rt_last_gc = now; if (gc_args.more) mod_timer(&net->ipv6.ip6_fib_timer, round_jiffies(now + net->ipv6.sysctl.ip6_rt_gc_interval)); else del_timer(&net->ipv6.ip6_fib_timer); spin_unlock_bh(&net->ipv6.fib6_gc_lock); } static void fib6_gc_timer_cb(struct timer_list *t) { struct net *arg = from_timer(arg, t, ipv6.ip6_fib_timer); fib6_run_gc(0, arg, true); } static int __net_init fib6_net_init(struct net *net) { size_t size = sizeof(struct hlist_head) * FIB6_TABLE_HASHSZ; int err; err = fib6_notifier_init(net); if (err) return err; spin_lock_init(&net->ipv6.fib6_gc_lock); rwlock_init(&net->ipv6.fib6_walker_lock); INIT_LIST_HEAD(&net->ipv6.fib6_walkers); timer_setup(&net->ipv6.ip6_fib_timer, fib6_gc_timer_cb, 0); net->ipv6.rt6_stats = kzalloc(sizeof(*net->ipv6.rt6_stats), GFP_KERNEL); if (!net->ipv6.rt6_stats) goto out_timer; /* Avoid false sharing : Use at least a full cache line */ size = max_t(size_t, size, L1_CACHE_BYTES); net->ipv6.fib_table_hash = kzalloc(size, GFP_KERNEL); if (!net->ipv6.fib_table_hash) goto out_rt6_stats; net->ipv6.fib6_main_tbl = kzalloc(sizeof(*net->ipv6.fib6_main_tbl), GFP_KERNEL); if (!net->ipv6.fib6_main_tbl) goto out_fib_table_hash; net->ipv6.fib6_main_tbl->tb6_id = RT6_TABLE_MAIN; rcu_assign_pointer(net->ipv6.fib6_main_tbl->tb6_root.leaf, net->ipv6.fib6_null_entry); net->ipv6.fib6_main_tbl->tb6_root.fn_flags = RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO; inet_peer_base_init(&net->ipv6.fib6_main_tbl->tb6_peers); #ifdef CONFIG_IPV6_MULTIPLE_TABLES net->ipv6.fib6_local_tbl = kzalloc(sizeof(*net->ipv6.fib6_local_tbl), GFP_KERNEL); if (!net->ipv6.fib6_local_tbl) goto out_fib6_main_tbl; net->ipv6.fib6_local_tbl->tb6_id = RT6_TABLE_LOCAL; rcu_assign_pointer(net->ipv6.fib6_local_tbl->tb6_root.leaf, net->ipv6.fib6_null_entry); net->ipv6.fib6_local_tbl->tb6_root.fn_flags = RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO; inet_peer_base_init(&net->ipv6.fib6_local_tbl->tb6_peers); #endif fib6_tables_init(net); return 0; #ifdef CONFIG_IPV6_MULTIPLE_TABLES out_fib6_main_tbl: kfree(net->ipv6.fib6_main_tbl); #endif out_fib_table_hash: kfree(net->ipv6.fib_table_hash); out_rt6_stats: kfree(net->ipv6.rt6_stats); out_timer: fib6_notifier_exit(net); return -ENOMEM; } static void fib6_net_exit(struct net *net) { unsigned int i; del_timer_sync(&net->ipv6.ip6_fib_timer); for (i = 0; i < FIB6_TABLE_HASHSZ; i++) { struct hlist_head *head = &net->ipv6.fib_table_hash[i]; struct hlist_node *tmp; struct fib6_table *tb; hlist_for_each_entry_safe(tb, tmp, head, tb6_hlist) { hlist_del(&tb->tb6_hlist); fib6_free_table(tb); } } kfree(net->ipv6.fib_table_hash); kfree(net->ipv6.rt6_stats); fib6_notifier_exit(net); } static struct pernet_operations fib6_net_ops = { .init = fib6_net_init, .exit = fib6_net_exit, }; int __init fib6_init(void) { int ret = -ENOMEM; fib6_node_kmem = kmem_cache_create("fib6_nodes", sizeof(struct fib6_node), 0, SLAB_HWCACHE_ALIGN, NULL); if (!fib6_node_kmem) goto out; ret = register_pernet_subsys(&fib6_net_ops); if (ret) goto out_kmem_cache_create; ret = rtnl_register_module(THIS_MODULE, PF_INET6, RTM_GETROUTE, NULL, inet6_dump_fib, 0); if (ret) goto out_unregister_subsys; __fib6_flush_trees = fib6_flush_trees; out: return ret; out_unregister_subsys: unregister_pernet_subsys(&fib6_net_ops); out_kmem_cache_create: kmem_cache_destroy(fib6_node_kmem); goto out; } void fib6_gc_cleanup(void) { unregister_pernet_subsys(&fib6_net_ops); kmem_cache_destroy(fib6_node_kmem); } #ifdef CONFIG_PROC_FS struct ipv6_route_iter { struct seq_net_private p; struct fib6_walker w; loff_t skip; struct fib6_table *tbl; int sernum; }; static int ipv6_route_seq_show(struct seq_file *seq, void *v) { struct fib6_info *rt = v; struct ipv6_route_iter *iter = seq->private; const struct net_device *dev; seq_printf(seq, "%pi6 %02x ", &rt->fib6_dst.addr, rt->fib6_dst.plen); #ifdef CONFIG_IPV6_SUBTREES seq_printf(seq, "%pi6 %02x ", &rt->fib6_src.addr, rt->fib6_src.plen); #else seq_puts(seq, "00000000000000000000000000000000 00 "); #endif if (rt->fib6_flags & RTF_GATEWAY) seq_printf(seq, "%pi6", &rt->fib6_nh.nh_gw); else seq_puts(seq, "00000000000000000000000000000000"); dev = rt->fib6_nh.nh_dev; seq_printf(seq, " %08x %08x %08x %08x %8s\n", rt->fib6_metric, atomic_read(&rt->fib6_ref), 0, rt->fib6_flags, dev ? dev->name : ""); iter->w.leaf = NULL; return 0; } static int ipv6_route_yield(struct fib6_walker *w) { struct ipv6_route_iter *iter = w->args; if (!iter->skip) return 1; do { iter->w.leaf = rcu_dereference_protected( iter->w.leaf->rt6_next, lockdep_is_held(&iter->tbl->tb6_lock)); iter->skip--; if (!iter->skip && iter->w.leaf) return 1; } while (iter->w.leaf); return 0; } static void ipv6_route_seq_setup_walk(struct ipv6_route_iter *iter, struct net *net) { memset(&iter->w, 0, sizeof(iter->w)); iter->w.func = ipv6_route_yield; iter->w.root = &iter->tbl->tb6_root; iter->w.state = FWS_INIT; iter->w.node = iter->w.root; iter->w.args = iter; iter->sernum = iter->w.root->fn_sernum; INIT_LIST_HEAD(&iter->w.lh); fib6_walker_link(net, &iter->w); } static struct fib6_table *ipv6_route_seq_next_table(struct fib6_table *tbl, struct net *net) { unsigned int h; struct hlist_node *node; if (tbl) { h = (tbl->tb6_id & (FIB6_TABLE_HASHSZ - 1)) + 1; node = rcu_dereference_bh(hlist_next_rcu(&tbl->tb6_hlist)); } else { h = 0; node = NULL; } while (!node && h < FIB6_TABLE_HASHSZ) { node = rcu_dereference_bh( hlist_first_rcu(&net->ipv6.fib_table_hash[h++])); } return hlist_entry_safe(node, struct fib6_table, tb6_hlist); } static void ipv6_route_check_sernum(struct ipv6_route_iter *iter) { if (iter->sernum != iter->w.root->fn_sernum) { iter->sernum = iter->w.root->fn_sernum; iter->w.state = FWS_INIT; iter->w.node = iter->w.root; WARN_ON(iter->w.skip); iter->w.skip = iter->w.count; } } static void *ipv6_route_seq_next(struct seq_file *seq, void *v, loff_t *pos) { int r; struct fib6_info *n; struct net *net = seq_file_net(seq); struct ipv6_route_iter *iter = seq->private; if (!v) goto iter_table; n = rcu_dereference_bh(((struct fib6_info *)v)->rt6_next); if (n) { ++*pos; return n; } iter_table: ipv6_route_check_sernum(iter); spin_lock_bh(&iter->tbl->tb6_lock); r = fib6_walk_continue(&iter->w); spin_unlock_bh(&iter->tbl->tb6_lock); if (r > 0) { if (v) ++*pos; return iter->w.leaf; } else if (r < 0) { fib6_walker_unlink(net, &iter->w); return NULL; } fib6_walker_unlink(net, &iter->w); iter->tbl = ipv6_route_seq_next_table(iter->tbl, net); if (!iter->tbl) return NULL; ipv6_route_seq_setup_walk(iter, net); goto iter_table; } static void *ipv6_route_seq_start(struct seq_file *seq, loff_t *pos) __acquires(RCU_BH) { struct net *net = seq_file_net(seq); struct ipv6_route_iter *iter = seq->private; rcu_read_lock_bh(); iter->tbl = ipv6_route_seq_next_table(NULL, net); iter->skip = *pos; if (iter->tbl) { ipv6_route_seq_setup_walk(iter, net); return ipv6_route_seq_next(seq, NULL, pos); } else { return NULL; } } static bool ipv6_route_iter_active(struct ipv6_route_iter *iter) { struct fib6_walker *w = &iter->w; return w->node && !(w->state == FWS_U && w->node == w->root); } static void ipv6_route_seq_stop(struct seq_file *seq, void *v) __releases(RCU_BH) { struct net *net = seq_file_net(seq); struct ipv6_route_iter *iter = seq->private; if (ipv6_route_iter_active(iter)) fib6_walker_unlink(net, &iter->w); rcu_read_unlock_bh(); } static const struct seq_operations ipv6_route_seq_ops = { .start = ipv6_route_seq_start, .next = ipv6_route_seq_next, .stop = ipv6_route_seq_stop, .show = ipv6_route_seq_show }; int ipv6_route_open(struct inode *inode, struct file *file) { return seq_open_net(inode, file, &ipv6_route_seq_ops, sizeof(struct ipv6_route_iter)); } #endif /* CONFIG_PROC_FS */