// SPDX-License-Identifier: GPL-2.0 // // Renesas RZ/G2L ASoC Serial Sound Interface (SSIF-2) Driver // // Copyright (C) 2021 Renesas Electronics Corp. // Copyright (C) 2019 Chris Brandt. // #include #include #include #include #include #include #include /* REGISTER OFFSET */ #define SSICR 0x000 #define SSISR 0x004 #define SSIFCR 0x010 #define SSIFSR 0x014 #define SSIFTDR 0x018 #define SSIFRDR 0x01c #define SSIOFR 0x020 #define SSISCR 0x024 /* SSI REGISTER BITS */ #define SSICR_DWL(x) (((x) & 0x7) << 19) #define SSICR_SWL(x) (((x) & 0x7) << 16) #define SSICR_CKS BIT(30) #define SSICR_TUIEN BIT(29) #define SSICR_TOIEN BIT(28) #define SSICR_RUIEN BIT(27) #define SSICR_ROIEN BIT(26) #define SSICR_MST BIT(14) #define SSICR_BCKP BIT(13) #define SSICR_LRCKP BIT(12) #define SSICR_CKDV(x) (((x) & 0xf) << 4) #define SSICR_TEN BIT(1) #define SSICR_REN BIT(0) #define SSISR_TUIRQ BIT(29) #define SSISR_TOIRQ BIT(28) #define SSISR_RUIRQ BIT(27) #define SSISR_ROIRQ BIT(26) #define SSISR_IIRQ BIT(25) #define SSIFCR_AUCKE BIT(31) #define SSIFCR_SSIRST BIT(16) #define SSIFCR_TIE BIT(3) #define SSIFCR_RIE BIT(2) #define SSIFCR_TFRST BIT(1) #define SSIFCR_RFRST BIT(0) #define SSIFCR_FIFO_RST (SSIFCR_TFRST | SSIFCR_RFRST) #define SSIFSR_TDC_MASK 0x3f #define SSIFSR_TDC_SHIFT 24 #define SSIFSR_RDC_MASK 0x3f #define SSIFSR_RDC_SHIFT 8 #define SSIFSR_TDE BIT(16) #define SSIFSR_RDF BIT(0) #define SSIOFR_LRCONT BIT(8) #define SSISCR_TDES(x) (((x) & 0x1f) << 8) #define SSISCR_RDFS(x) (((x) & 0x1f) << 0) /* Pre allocated buffers sizes */ #define PREALLOC_BUFFER (SZ_32K) #define PREALLOC_BUFFER_MAX (SZ_32K) #define SSI_RATES SNDRV_PCM_RATE_8000_48000 /* 8k-44.1kHz */ #define SSI_FMTS SNDRV_PCM_FMTBIT_S16_LE #define SSI_CHAN_MIN 2 #define SSI_CHAN_MAX 2 #define SSI_FIFO_DEPTH 32 struct rz_ssi_priv; struct rz_ssi_stream { struct rz_ssi_priv *priv; struct snd_pcm_substream *substream; int fifo_sample_size; /* sample capacity of SSI FIFO */ int dma_buffer_pos; /* The address for the next DMA descriptor */ int period_counter; /* for keeping track of periods transferred */ int sample_width; int buffer_pos; /* current frame position in the buffer */ int running; /* 0=stopped, 1=running */ int uerr_num; int oerr_num; struct dma_chan *dma_ch; int (*transfer)(struct rz_ssi_priv *ssi, struct rz_ssi_stream *strm); }; struct rz_ssi_priv { void __iomem *base; struct platform_device *pdev; struct reset_control *rstc; struct device *dev; struct clk *sfr_clk; struct clk *clk; phys_addr_t phys; int irq_int; int irq_tx; int irq_rx; int irq_rt; spinlock_t lock; /* * The SSI supports full-duplex transmission and reception. * However, if an error occurs, channel reset (both transmission * and reception reset) is required. * So it is better to use as half-duplex (playing and recording * should be done on separate channels). */ struct rz_ssi_stream playback; struct rz_ssi_stream capture; /* clock */ unsigned long audio_mck; unsigned long audio_clk_1; unsigned long audio_clk_2; bool lrckp_fsync_fall; /* LR clock polarity (SSICR.LRCKP) */ bool bckp_rise; /* Bit clock polarity (SSICR.BCKP) */ bool dma_rt; /* Full duplex communication support */ struct { unsigned int rate; unsigned int channels; unsigned int sample_width; unsigned int sample_bits; } hw_params_cache; }; static void rz_ssi_dma_complete(void *data); static void rz_ssi_reg_writel(struct rz_ssi_priv *priv, uint reg, u32 data) { writel(data, (priv->base + reg)); } static u32 rz_ssi_reg_readl(struct rz_ssi_priv *priv, uint reg) { return readl(priv->base + reg); } static void rz_ssi_reg_mask_setl(struct rz_ssi_priv *priv, uint reg, u32 bclr, u32 bset) { u32 val; val = readl(priv->base + reg); val = (val & ~bclr) | bset; writel(val, (priv->base + reg)); } static inline struct snd_soc_dai * rz_ssi_get_dai(struct snd_pcm_substream *substream) { struct snd_soc_pcm_runtime *rtd = snd_soc_substream_to_rtd(substream); return snd_soc_rtd_to_cpu(rtd, 0); } static inline bool rz_ssi_stream_is_play(struct rz_ssi_priv *ssi, struct snd_pcm_substream *substream) { return substream->stream == SNDRV_PCM_STREAM_PLAYBACK; } static inline struct rz_ssi_stream * rz_ssi_stream_get(struct rz_ssi_priv *ssi, struct snd_pcm_substream *substream) { struct rz_ssi_stream *stream = &ssi->playback; if (substream->stream != SNDRV_PCM_STREAM_PLAYBACK) stream = &ssi->capture; return stream; } static inline bool rz_ssi_is_dma_enabled(struct rz_ssi_priv *ssi) { return (ssi->playback.dma_ch && (ssi->dma_rt || ssi->capture.dma_ch)); } static void rz_ssi_set_substream(struct rz_ssi_stream *strm, struct snd_pcm_substream *substream) { struct rz_ssi_priv *ssi = strm->priv; unsigned long flags; spin_lock_irqsave(&ssi->lock, flags); strm->substream = substream; spin_unlock_irqrestore(&ssi->lock, flags); } static bool rz_ssi_stream_is_valid(struct rz_ssi_priv *ssi, struct rz_ssi_stream *strm) { unsigned long flags; bool ret; spin_lock_irqsave(&ssi->lock, flags); ret = strm->substream && strm->substream->runtime; spin_unlock_irqrestore(&ssi->lock, flags); return ret; } static inline bool rz_ssi_is_stream_running(struct rz_ssi_stream *strm) { return strm->substream && strm->running; } static void rz_ssi_stream_init(struct rz_ssi_stream *strm, struct snd_pcm_substream *substream) { struct snd_pcm_runtime *runtime = substream->runtime; rz_ssi_set_substream(strm, substream); strm->sample_width = samples_to_bytes(runtime, 1); strm->dma_buffer_pos = 0; strm->period_counter = 0; strm->buffer_pos = 0; strm->oerr_num = 0; strm->uerr_num = 0; strm->running = 0; /* fifo init */ strm->fifo_sample_size = SSI_FIFO_DEPTH; } static void rz_ssi_stream_quit(struct rz_ssi_priv *ssi, struct rz_ssi_stream *strm) { struct snd_soc_dai *dai = rz_ssi_get_dai(strm->substream); rz_ssi_set_substream(strm, NULL); if (strm->oerr_num > 0) dev_info(dai->dev, "overrun = %d\n", strm->oerr_num); if (strm->uerr_num > 0) dev_info(dai->dev, "underrun = %d\n", strm->uerr_num); } static int rz_ssi_clk_setup(struct rz_ssi_priv *ssi, unsigned int rate, unsigned int channels) { static s8 ckdv[16] = { 1, 2, 4, 8, 16, 32, 64, 128, 6, 12, 24, 48, 96, -1, -1, -1 }; unsigned int channel_bits = 32; /* System Word Length */ unsigned long bclk_rate = rate * channels * channel_bits; unsigned int div; unsigned int i; u32 ssicr = 0; u32 clk_ckdv; /* Clear AUCKE so we can set MST */ rz_ssi_reg_writel(ssi, SSIFCR, 0); /* Continue to output LRCK pin even when idle */ rz_ssi_reg_writel(ssi, SSIOFR, SSIOFR_LRCONT); if (ssi->audio_clk_1 && ssi->audio_clk_2) { if (ssi->audio_clk_1 % bclk_rate) ssi->audio_mck = ssi->audio_clk_2; else ssi->audio_mck = ssi->audio_clk_1; } /* Clock setting */ ssicr |= SSICR_MST; if (ssi->audio_mck == ssi->audio_clk_1) ssicr |= SSICR_CKS; if (ssi->bckp_rise) ssicr |= SSICR_BCKP; if (ssi->lrckp_fsync_fall) ssicr |= SSICR_LRCKP; /* Determine the clock divider */ clk_ckdv = 0; div = ssi->audio_mck / bclk_rate; /* try to find an match */ for (i = 0; i < ARRAY_SIZE(ckdv); i++) { if (ckdv[i] == div) { clk_ckdv = i; break; } } if (i == ARRAY_SIZE(ckdv)) { dev_err(ssi->dev, "Rate not divisible by audio clock source\n"); return -EINVAL; } /* * DWL: Data Word Length = 16 bits * SWL: System Word Length = 32 bits */ ssicr |= SSICR_CKDV(clk_ckdv); ssicr |= SSICR_DWL(1) | SSICR_SWL(3); rz_ssi_reg_writel(ssi, SSICR, ssicr); rz_ssi_reg_writel(ssi, SSIFCR, (SSIFCR_AUCKE | SSIFCR_TFRST | SSIFCR_RFRST)); return 0; } static void rz_ssi_set_idle(struct rz_ssi_priv *ssi) { int timeout; /* Disable irqs */ rz_ssi_reg_mask_setl(ssi, SSICR, SSICR_TUIEN | SSICR_TOIEN | SSICR_RUIEN | SSICR_ROIEN, 0); rz_ssi_reg_mask_setl(ssi, SSIFCR, SSIFCR_TIE | SSIFCR_RIE, 0); /* Clear all error flags */ rz_ssi_reg_mask_setl(ssi, SSISR, (SSISR_TOIRQ | SSISR_TUIRQ | SSISR_ROIRQ | SSISR_RUIRQ), 0); /* Wait for idle */ timeout = 100; while (--timeout) { if (rz_ssi_reg_readl(ssi, SSISR) & SSISR_IIRQ) break; udelay(1); } if (!timeout) dev_info(ssi->dev, "timeout waiting for SSI idle\n"); /* Hold FIFOs in reset */ rz_ssi_reg_mask_setl(ssi, SSIFCR, 0, SSIFCR_TFRST | SSIFCR_RFRST); } static int rz_ssi_start(struct rz_ssi_priv *ssi, struct rz_ssi_stream *strm) { bool is_play = rz_ssi_stream_is_play(ssi, strm->substream); bool is_full_duplex; u32 ssicr, ssifcr; is_full_duplex = rz_ssi_is_stream_running(&ssi->playback) || rz_ssi_is_stream_running(&ssi->capture); ssicr = rz_ssi_reg_readl(ssi, SSICR); ssifcr = rz_ssi_reg_readl(ssi, SSIFCR); if (!is_full_duplex) { ssifcr &= ~0xF; } else { rz_ssi_reg_mask_setl(ssi, SSICR, SSICR_TEN | SSICR_REN, 0); rz_ssi_set_idle(ssi); ssifcr &= ~SSIFCR_FIFO_RST; } /* FIFO interrupt thresholds */ if (rz_ssi_is_dma_enabled(ssi)) rz_ssi_reg_writel(ssi, SSISCR, 0); else rz_ssi_reg_writel(ssi, SSISCR, SSISCR_TDES(strm->fifo_sample_size / 2 - 1) | SSISCR_RDFS(0)); /* enable IRQ */ if (is_play) { ssicr |= SSICR_TUIEN | SSICR_TOIEN; ssifcr |= SSIFCR_TIE; if (!is_full_duplex) ssifcr |= SSIFCR_RFRST; } else { ssicr |= SSICR_RUIEN | SSICR_ROIEN; ssifcr |= SSIFCR_RIE; if (!is_full_duplex) ssifcr |= SSIFCR_TFRST; } rz_ssi_reg_writel(ssi, SSICR, ssicr); rz_ssi_reg_writel(ssi, SSIFCR, ssifcr); /* Clear all error flags */ rz_ssi_reg_mask_setl(ssi, SSISR, (SSISR_TOIRQ | SSISR_TUIRQ | SSISR_ROIRQ | SSISR_RUIRQ), 0); strm->running = 1; if (is_full_duplex) ssicr |= SSICR_TEN | SSICR_REN; else ssicr |= is_play ? SSICR_TEN : SSICR_REN; rz_ssi_reg_writel(ssi, SSICR, ssicr); return 0; } static int rz_ssi_stop(struct rz_ssi_priv *ssi, struct rz_ssi_stream *strm) { strm->running = 0; if (rz_ssi_is_stream_running(&ssi->playback) || rz_ssi_is_stream_running(&ssi->capture)) return 0; /* Disable TX/RX */ rz_ssi_reg_mask_setl(ssi, SSICR, SSICR_TEN | SSICR_REN, 0); /* Cancel all remaining DMA transactions */ if (rz_ssi_is_dma_enabled(ssi)) dmaengine_terminate_async(strm->dma_ch); rz_ssi_set_idle(ssi); return 0; } static void rz_ssi_pointer_update(struct rz_ssi_stream *strm, int frames) { struct snd_pcm_substream *substream = strm->substream; struct snd_pcm_runtime *runtime; int current_period; if (!strm->running || !substream || !substream->runtime) return; runtime = substream->runtime; strm->buffer_pos += frames; WARN_ON(strm->buffer_pos > runtime->buffer_size); /* ring buffer */ if (strm->buffer_pos == runtime->buffer_size) strm->buffer_pos = 0; current_period = strm->buffer_pos / runtime->period_size; if (strm->period_counter != current_period) { snd_pcm_period_elapsed(strm->substream); strm->period_counter = current_period; } } static int rz_ssi_pio_recv(struct rz_ssi_priv *ssi, struct rz_ssi_stream *strm) { struct snd_pcm_substream *substream = strm->substream; struct snd_pcm_runtime *runtime; u16 *buf; int fifo_samples; int frames_left; int samples; int i; if (!rz_ssi_stream_is_valid(ssi, strm)) return -EINVAL; runtime = substream->runtime; do { /* frames left in this period */ frames_left = runtime->period_size - (strm->buffer_pos % runtime->period_size); if (!frames_left) frames_left = runtime->period_size; /* Samples in RX FIFO */ fifo_samples = (rz_ssi_reg_readl(ssi, SSIFSR) >> SSIFSR_RDC_SHIFT) & SSIFSR_RDC_MASK; /* Only read full frames at a time */ samples = 0; while (frames_left && (fifo_samples >= runtime->channels)) { samples += runtime->channels; fifo_samples -= runtime->channels; frames_left--; } /* not enough samples yet */ if (!samples) break; /* calculate new buffer index */ buf = (u16 *)runtime->dma_area; buf += strm->buffer_pos * runtime->channels; /* Note, only supports 16-bit samples */ for (i = 0; i < samples; i++) *buf++ = (u16)(rz_ssi_reg_readl(ssi, SSIFRDR) >> 16); rz_ssi_reg_mask_setl(ssi, SSIFSR, SSIFSR_RDF, 0); rz_ssi_pointer_update(strm, samples / runtime->channels); } while (!frames_left && fifo_samples >= runtime->channels); return 0; } static int rz_ssi_pio_send(struct rz_ssi_priv *ssi, struct rz_ssi_stream *strm) { struct snd_pcm_substream *substream = strm->substream; struct snd_pcm_runtime *runtime = substream->runtime; int sample_space; int samples = 0; int frames_left; int i; u32 ssifsr; u16 *buf; if (!rz_ssi_stream_is_valid(ssi, strm)) return -EINVAL; /* frames left in this period */ frames_left = runtime->period_size - (strm->buffer_pos % runtime->period_size); if (frames_left == 0) frames_left = runtime->period_size; sample_space = strm->fifo_sample_size; ssifsr = rz_ssi_reg_readl(ssi, SSIFSR); sample_space -= (ssifsr >> SSIFSR_TDC_SHIFT) & SSIFSR_TDC_MASK; /* Only add full frames at a time */ while (frames_left && (sample_space >= runtime->channels)) { samples += runtime->channels; sample_space -= runtime->channels; frames_left--; } /* no space to send anything right now */ if (samples == 0) return 0; /* calculate new buffer index */ buf = (u16 *)(runtime->dma_area); buf += strm->buffer_pos * runtime->channels; /* Note, only supports 16-bit samples */ for (i = 0; i < samples; i++) rz_ssi_reg_writel(ssi, SSIFTDR, ((u32)(*buf++) << 16)); rz_ssi_reg_mask_setl(ssi, SSIFSR, SSIFSR_TDE, 0); rz_ssi_pointer_update(strm, samples / runtime->channels); return 0; } static irqreturn_t rz_ssi_interrupt(int irq, void *data) { struct rz_ssi_stream *strm_playback = NULL; struct rz_ssi_stream *strm_capture = NULL; struct rz_ssi_priv *ssi = data; u32 ssisr = rz_ssi_reg_readl(ssi, SSISR); if (ssi->playback.substream) strm_playback = &ssi->playback; if (ssi->capture.substream) strm_capture = &ssi->capture; if (!strm_playback && !strm_capture) return IRQ_HANDLED; /* Left over TX/RX interrupt */ if (irq == ssi->irq_int) { /* error or idle */ bool is_stopped = false; int i, count; if (rz_ssi_is_dma_enabled(ssi)) count = 4; else count = 1; if (ssisr & (SSISR_RUIRQ | SSISR_ROIRQ | SSISR_TUIRQ | SSISR_TOIRQ)) is_stopped = true; if (ssi->capture.substream && is_stopped) { if (ssisr & SSISR_RUIRQ) strm_capture->uerr_num++; if (ssisr & SSISR_ROIRQ) strm_capture->oerr_num++; rz_ssi_stop(ssi, strm_capture); } if (ssi->playback.substream && is_stopped) { if (ssisr & SSISR_TUIRQ) strm_playback->uerr_num++; if (ssisr & SSISR_TOIRQ) strm_playback->oerr_num++; rz_ssi_stop(ssi, strm_playback); } /* Clear all flags */ rz_ssi_reg_mask_setl(ssi, SSISR, SSISR_TOIRQ | SSISR_TUIRQ | SSISR_ROIRQ | SSISR_RUIRQ, 0); /* Add/remove more data */ if (ssi->capture.substream && is_stopped) { for (i = 0; i < count; i++) strm_capture->transfer(ssi, strm_capture); } if (ssi->playback.substream && is_stopped) { for (i = 0; i < count; i++) strm_playback->transfer(ssi, strm_playback); } /* Resume */ if (ssi->playback.substream && is_stopped) rz_ssi_start(ssi, &ssi->playback); if (ssi->capture.substream && is_stopped) rz_ssi_start(ssi, &ssi->capture); } if (!rz_ssi_is_stream_running(&ssi->playback) && !rz_ssi_is_stream_running(&ssi->capture)) return IRQ_HANDLED; /* tx data empty */ if (irq == ssi->irq_tx && rz_ssi_is_stream_running(&ssi->playback)) strm_playback->transfer(ssi, &ssi->playback); /* rx data full */ if (irq == ssi->irq_rx && rz_ssi_is_stream_running(&ssi->capture)) { strm_capture->transfer(ssi, &ssi->capture); rz_ssi_reg_mask_setl(ssi, SSIFSR, SSIFSR_RDF, 0); } if (irq == ssi->irq_rt) { if (ssi->playback.substream) { strm_playback->transfer(ssi, &ssi->playback); } else { strm_capture->transfer(ssi, &ssi->capture); rz_ssi_reg_mask_setl(ssi, SSIFSR, SSIFSR_RDF, 0); } } return IRQ_HANDLED; } static int rz_ssi_dma_slave_config(struct rz_ssi_priv *ssi, struct dma_chan *dma_ch, bool is_play) { struct dma_slave_config cfg; memset(&cfg, 0, sizeof(cfg)); cfg.direction = is_play ? DMA_MEM_TO_DEV : DMA_DEV_TO_MEM; cfg.dst_addr = ssi->phys + SSIFTDR; cfg.src_addr = ssi->phys + SSIFRDR; cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES; cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES; return dmaengine_slave_config(dma_ch, &cfg); } static int rz_ssi_dma_transfer(struct rz_ssi_priv *ssi, struct rz_ssi_stream *strm) { struct snd_pcm_substream *substream = strm->substream; struct dma_async_tx_descriptor *desc; struct snd_pcm_runtime *runtime; enum dma_transfer_direction dir; u32 dma_paddr, dma_size; int amount; if (!rz_ssi_stream_is_valid(ssi, strm)) return -EINVAL; runtime = substream->runtime; if (runtime->state == SNDRV_PCM_STATE_DRAINING) /* * Stream is ending, so do not queue up any more DMA * transfers otherwise we play partial sound clips * because we can't shut off the DMA quick enough. */ return 0; dir = rz_ssi_stream_is_play(ssi, substream) ? DMA_MEM_TO_DEV : DMA_DEV_TO_MEM; /* Always transfer 1 period */ amount = runtime->period_size; /* DMA physical address and size */ dma_paddr = runtime->dma_addr + frames_to_bytes(runtime, strm->dma_buffer_pos); dma_size = frames_to_bytes(runtime, amount); desc = dmaengine_prep_slave_single(strm->dma_ch, dma_paddr, dma_size, dir, DMA_PREP_INTERRUPT | DMA_CTRL_ACK); if (!desc) { dev_err(ssi->dev, "dmaengine_prep_slave_single() fail\n"); return -ENOMEM; } desc->callback = rz_ssi_dma_complete; desc->callback_param = strm; if (dmaengine_submit(desc) < 0) { dev_err(ssi->dev, "dmaengine_submit() fail\n"); return -EIO; } /* Update DMA pointer */ strm->dma_buffer_pos += amount; if (strm->dma_buffer_pos >= runtime->buffer_size) strm->dma_buffer_pos = 0; /* Start DMA */ dma_async_issue_pending(strm->dma_ch); return 0; } static void rz_ssi_dma_complete(void *data) { struct rz_ssi_stream *strm = (struct rz_ssi_stream *)data; if (!strm->running || !strm->substream || !strm->substream->runtime) return; /* Note that next DMA transaction has probably already started */ rz_ssi_pointer_update(strm, strm->substream->runtime->period_size); /* Queue up another DMA transaction */ rz_ssi_dma_transfer(strm->priv, strm); } static void rz_ssi_release_dma_channels(struct rz_ssi_priv *ssi) { if (ssi->playback.dma_ch) { dma_release_channel(ssi->playback.dma_ch); ssi->playback.dma_ch = NULL; if (ssi->dma_rt) ssi->dma_rt = false; } if (ssi->capture.dma_ch) { dma_release_channel(ssi->capture.dma_ch); ssi->capture.dma_ch = NULL; } } static int rz_ssi_dma_request(struct rz_ssi_priv *ssi, struct device *dev) { ssi->playback.dma_ch = dma_request_chan(dev, "tx"); if (IS_ERR(ssi->playback.dma_ch)) ssi->playback.dma_ch = NULL; ssi->capture.dma_ch = dma_request_chan(dev, "rx"); if (IS_ERR(ssi->capture.dma_ch)) ssi->capture.dma_ch = NULL; if (!ssi->playback.dma_ch && !ssi->capture.dma_ch) { ssi->playback.dma_ch = dma_request_chan(dev, "rt"); if (IS_ERR(ssi->playback.dma_ch)) { ssi->playback.dma_ch = NULL; goto no_dma; } ssi->dma_rt = true; } if (!rz_ssi_is_dma_enabled(ssi)) goto no_dma; if (ssi->playback.dma_ch && (rz_ssi_dma_slave_config(ssi, ssi->playback.dma_ch, true) < 0)) goto no_dma; if (ssi->capture.dma_ch && (rz_ssi_dma_slave_config(ssi, ssi->capture.dma_ch, false) < 0)) goto no_dma; return 0; no_dma: rz_ssi_release_dma_channels(ssi); return -ENODEV; } static int rz_ssi_dai_trigger(struct snd_pcm_substream *substream, int cmd, struct snd_soc_dai *dai) { struct rz_ssi_priv *ssi = snd_soc_dai_get_drvdata(dai); struct rz_ssi_stream *strm = rz_ssi_stream_get(ssi, substream); int ret = 0, i, num_transfer = 1; switch (cmd) { case SNDRV_PCM_TRIGGER_START: /* Soft Reset */ if (!rz_ssi_is_stream_running(&ssi->playback) && !rz_ssi_is_stream_running(&ssi->capture)) { rz_ssi_reg_mask_setl(ssi, SSIFCR, 0, SSIFCR_SSIRST); rz_ssi_reg_mask_setl(ssi, SSIFCR, SSIFCR_SSIRST, 0); udelay(5); } rz_ssi_stream_init(strm, substream); if (ssi->dma_rt) { bool is_playback; is_playback = rz_ssi_stream_is_play(ssi, substream); ret = rz_ssi_dma_slave_config(ssi, ssi->playback.dma_ch, is_playback); /* Fallback to pio */ if (ret < 0) { ssi->playback.transfer = rz_ssi_pio_send; ssi->capture.transfer = rz_ssi_pio_recv; rz_ssi_release_dma_channels(ssi); } } /* For DMA, queue up multiple DMA descriptors */ if (rz_ssi_is_dma_enabled(ssi)) num_transfer = 4; for (i = 0; i < num_transfer; i++) { ret = strm->transfer(ssi, strm); if (ret) goto done; } ret = rz_ssi_start(ssi, strm); break; case SNDRV_PCM_TRIGGER_STOP: rz_ssi_stop(ssi, strm); rz_ssi_stream_quit(ssi, strm); break; } done: return ret; } static int rz_ssi_dai_set_fmt(struct snd_soc_dai *dai, unsigned int fmt) { struct rz_ssi_priv *ssi = snd_soc_dai_get_drvdata(dai); switch (fmt & SND_SOC_DAIFMT_CLOCK_PROVIDER_MASK) { case SND_SOC_DAIFMT_BP_FP: break; default: dev_err(ssi->dev, "Codec should be clk and frame consumer\n"); return -EINVAL; } /* * set clock polarity * * "normal" BCLK = Signal is available at rising edge of BCLK * "normal" FSYNC = (I2S) Left ch starts with falling FSYNC edge */ switch (fmt & SND_SOC_DAIFMT_INV_MASK) { case SND_SOC_DAIFMT_NB_NF: ssi->bckp_rise = false; ssi->lrckp_fsync_fall = false; break; case SND_SOC_DAIFMT_NB_IF: ssi->bckp_rise = false; ssi->lrckp_fsync_fall = true; break; case SND_SOC_DAIFMT_IB_NF: ssi->bckp_rise = true; ssi->lrckp_fsync_fall = false; break; case SND_SOC_DAIFMT_IB_IF: ssi->bckp_rise = true; ssi->lrckp_fsync_fall = true; break; default: return -EINVAL; } /* only i2s support */ switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) { case SND_SOC_DAIFMT_I2S: break; default: dev_err(ssi->dev, "Only I2S mode is supported.\n"); return -EINVAL; } return 0; } static bool rz_ssi_is_valid_hw_params(struct rz_ssi_priv *ssi, unsigned int rate, unsigned int channels, unsigned int sample_width, unsigned int sample_bits) { if (ssi->hw_params_cache.rate != rate || ssi->hw_params_cache.channels != channels || ssi->hw_params_cache.sample_width != sample_width || ssi->hw_params_cache.sample_bits != sample_bits) return false; return true; } static void rz_ssi_cache_hw_params(struct rz_ssi_priv *ssi, unsigned int rate, unsigned int channels, unsigned int sample_width, unsigned int sample_bits) { ssi->hw_params_cache.rate = rate; ssi->hw_params_cache.channels = channels; ssi->hw_params_cache.sample_width = sample_width; ssi->hw_params_cache.sample_bits = sample_bits; } static int rz_ssi_dai_hw_params(struct snd_pcm_substream *substream, struct snd_pcm_hw_params *params, struct snd_soc_dai *dai) { struct rz_ssi_priv *ssi = snd_soc_dai_get_drvdata(dai); struct rz_ssi_stream *strm = rz_ssi_stream_get(ssi, substream); unsigned int sample_bits = hw_param_interval(params, SNDRV_PCM_HW_PARAM_SAMPLE_BITS)->min; unsigned int channels = params_channels(params); unsigned int rate = params_rate(params); if (sample_bits != 16) { dev_err(ssi->dev, "Unsupported sample width: %d\n", sample_bits); return -EINVAL; } if (channels != 2) { dev_err(ssi->dev, "Number of channels not matched: %d\n", channels); return -EINVAL; } if (rz_ssi_is_stream_running(&ssi->playback) || rz_ssi_is_stream_running(&ssi->capture)) { if (rz_ssi_is_valid_hw_params(ssi, rate, channels, strm->sample_width, sample_bits)) return 0; dev_err(ssi->dev, "Full duplex needs same HW params\n"); return -EINVAL; } rz_ssi_cache_hw_params(ssi, rate, channels, strm->sample_width, sample_bits); return rz_ssi_clk_setup(ssi, rate, channels); } static const struct snd_soc_dai_ops rz_ssi_dai_ops = { .trigger = rz_ssi_dai_trigger, .set_fmt = rz_ssi_dai_set_fmt, .hw_params = rz_ssi_dai_hw_params, }; static const struct snd_pcm_hardware rz_ssi_pcm_hardware = { .info = SNDRV_PCM_INFO_INTERLEAVED | SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_MMAP_VALID, .buffer_bytes_max = PREALLOC_BUFFER, .period_bytes_min = 32, .period_bytes_max = 8192, .channels_min = SSI_CHAN_MIN, .channels_max = SSI_CHAN_MAX, .periods_min = 1, .periods_max = 32, .fifo_size = 32 * 2, }; static int rz_ssi_pcm_open(struct snd_soc_component *component, struct snd_pcm_substream *substream) { snd_soc_set_runtime_hwparams(substream, &rz_ssi_pcm_hardware); return snd_pcm_hw_constraint_integer(substream->runtime, SNDRV_PCM_HW_PARAM_PERIODS); } static snd_pcm_uframes_t rz_ssi_pcm_pointer(struct snd_soc_component *component, struct snd_pcm_substream *substream) { struct snd_soc_dai *dai = rz_ssi_get_dai(substream); struct rz_ssi_priv *ssi = snd_soc_dai_get_drvdata(dai); struct rz_ssi_stream *strm = rz_ssi_stream_get(ssi, substream); return strm->buffer_pos; } static int rz_ssi_pcm_new(struct snd_soc_component *component, struct snd_soc_pcm_runtime *rtd) { snd_pcm_set_managed_buffer_all(rtd->pcm, SNDRV_DMA_TYPE_DEV, rtd->card->snd_card->dev, PREALLOC_BUFFER, PREALLOC_BUFFER_MAX); return 0; } static struct snd_soc_dai_driver rz_ssi_soc_dai[] = { { .name = "rz-ssi-dai", .playback = { .rates = SSI_RATES, .formats = SSI_FMTS, .channels_min = SSI_CHAN_MIN, .channels_max = SSI_CHAN_MAX, }, .capture = { .rates = SSI_RATES, .formats = SSI_FMTS, .channels_min = SSI_CHAN_MIN, .channels_max = SSI_CHAN_MAX, }, .ops = &rz_ssi_dai_ops, }, }; static const struct snd_soc_component_driver rz_ssi_soc_component = { .name = "rz-ssi", .open = rz_ssi_pcm_open, .pointer = rz_ssi_pcm_pointer, .pcm_construct = rz_ssi_pcm_new, .legacy_dai_naming = 1, }; static int rz_ssi_probe(struct platform_device *pdev) { struct rz_ssi_priv *ssi; struct clk *audio_clk; struct resource *res; int ret; ssi = devm_kzalloc(&pdev->dev, sizeof(*ssi), GFP_KERNEL); if (!ssi) return -ENOMEM; ssi->pdev = pdev; ssi->dev = &pdev->dev; ssi->base = devm_platform_get_and_ioremap_resource(pdev, 0, &res); if (IS_ERR(ssi->base)) return PTR_ERR(ssi->base); ssi->phys = res->start; ssi->clk = devm_clk_get(&pdev->dev, "ssi"); if (IS_ERR(ssi->clk)) return PTR_ERR(ssi->clk); ssi->sfr_clk = devm_clk_get(&pdev->dev, "ssi_sfr"); if (IS_ERR(ssi->sfr_clk)) return PTR_ERR(ssi->sfr_clk); audio_clk = devm_clk_get(&pdev->dev, "audio_clk1"); if (IS_ERR(audio_clk)) return dev_err_probe(&pdev->dev, PTR_ERR(audio_clk), "no audio clk1"); ssi->audio_clk_1 = clk_get_rate(audio_clk); audio_clk = devm_clk_get(&pdev->dev, "audio_clk2"); if (IS_ERR(audio_clk)) return dev_err_probe(&pdev->dev, PTR_ERR(audio_clk), "no audio clk2"); ssi->audio_clk_2 = clk_get_rate(audio_clk); if (!(ssi->audio_clk_1 || ssi->audio_clk_2)) return dev_err_probe(&pdev->dev, -EINVAL, "no audio clk1 or audio clk2"); ssi->audio_mck = ssi->audio_clk_1 ? ssi->audio_clk_1 : ssi->audio_clk_2; /* Detect DMA support */ ret = rz_ssi_dma_request(ssi, &pdev->dev); if (ret < 0) { dev_warn(&pdev->dev, "DMA not available, using PIO\n"); ssi->playback.transfer = rz_ssi_pio_send; ssi->capture.transfer = rz_ssi_pio_recv; } else { dev_info(&pdev->dev, "DMA enabled"); ssi->playback.transfer = rz_ssi_dma_transfer; ssi->capture.transfer = rz_ssi_dma_transfer; } ssi->playback.priv = ssi; ssi->capture.priv = ssi; spin_lock_init(&ssi->lock); dev_set_drvdata(&pdev->dev, ssi); /* Error Interrupt */ ssi->irq_int = platform_get_irq_byname(pdev, "int_req"); if (ssi->irq_int < 0) { rz_ssi_release_dma_channels(ssi); return ssi->irq_int; } ret = devm_request_irq(&pdev->dev, ssi->irq_int, &rz_ssi_interrupt, 0, dev_name(&pdev->dev), ssi); if (ret < 0) { rz_ssi_release_dma_channels(ssi); return dev_err_probe(&pdev->dev, ret, "irq request error (int_req)\n"); } if (!rz_ssi_is_dma_enabled(ssi)) { /* Tx and Rx interrupts (pio only) */ ssi->irq_tx = platform_get_irq_byname(pdev, "dma_tx"); ssi->irq_rx = platform_get_irq_byname(pdev, "dma_rx"); if (ssi->irq_tx == -ENXIO && ssi->irq_rx == -ENXIO) { ssi->irq_rt = platform_get_irq_byname(pdev, "dma_rt"); if (ssi->irq_rt < 0) return ssi->irq_rt; ret = devm_request_irq(&pdev->dev, ssi->irq_rt, &rz_ssi_interrupt, 0, dev_name(&pdev->dev), ssi); if (ret < 0) return dev_err_probe(&pdev->dev, ret, "irq request error (dma_rt)\n"); } else { if (ssi->irq_tx < 0) return ssi->irq_tx; if (ssi->irq_rx < 0) return ssi->irq_rx; ret = devm_request_irq(&pdev->dev, ssi->irq_tx, &rz_ssi_interrupt, 0, dev_name(&pdev->dev), ssi); if (ret < 0) return dev_err_probe(&pdev->dev, ret, "irq request error (dma_tx)\n"); ret = devm_request_irq(&pdev->dev, ssi->irq_rx, &rz_ssi_interrupt, 0, dev_name(&pdev->dev), ssi); if (ret < 0) return dev_err_probe(&pdev->dev, ret, "irq request error (dma_rx)\n"); } } ssi->rstc = devm_reset_control_get_exclusive(&pdev->dev, NULL); if (IS_ERR(ssi->rstc)) { ret = PTR_ERR(ssi->rstc); goto err_reset; } reset_control_deassert(ssi->rstc); pm_runtime_enable(&pdev->dev); ret = pm_runtime_resume_and_get(&pdev->dev); if (ret < 0) { dev_err(&pdev->dev, "pm_runtime_resume_and_get failed\n"); goto err_pm; } ret = devm_snd_soc_register_component(&pdev->dev, &rz_ssi_soc_component, rz_ssi_soc_dai, ARRAY_SIZE(rz_ssi_soc_dai)); if (ret < 0) { dev_err(&pdev->dev, "failed to register snd component\n"); goto err_snd_soc; } return 0; err_snd_soc: pm_runtime_put(ssi->dev); err_pm: pm_runtime_disable(ssi->dev); reset_control_assert(ssi->rstc); err_reset: rz_ssi_release_dma_channels(ssi); return ret; } static void rz_ssi_remove(struct platform_device *pdev) { struct rz_ssi_priv *ssi = dev_get_drvdata(&pdev->dev); rz_ssi_release_dma_channels(ssi); pm_runtime_put(ssi->dev); pm_runtime_disable(ssi->dev); reset_control_assert(ssi->rstc); } static const struct of_device_id rz_ssi_of_match[] = { { .compatible = "renesas,rz-ssi", }, {/* Sentinel */}, }; MODULE_DEVICE_TABLE(of, rz_ssi_of_match); static struct platform_driver rz_ssi_driver = { .driver = { .name = "rz-ssi-pcm-audio", .of_match_table = rz_ssi_of_match, }, .probe = rz_ssi_probe, .remove_new = rz_ssi_remove, }; module_platform_driver(rz_ssi_driver); MODULE_LICENSE("GPL v2"); MODULE_DESCRIPTION("Renesas RZ/G2L ASoC Serial Sound Interface Driver"); MODULE_AUTHOR("Biju Das ");