/* * Copyright (C) 2007 Oracle. All rights reserved. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public * License v2 as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public * License along with this program; if not, write to the * Free Software Foundation, Inc., 59 Temple Place - Suite 330, * Boston, MA 021110-1307, USA. */ #ifndef __BTRFS_VOLUMES_ #define __BTRFS_VOLUMES_ #include #include #include #include "async-thread.h" extern struct mutex uuid_mutex; #define BTRFS_STRIPE_LEN SZ_64K struct buffer_head; struct btrfs_pending_bios { struct bio *head; struct bio *tail; }; /* * Use sequence counter to get consistent device stat data on * 32-bit processors. */ #if BITS_PER_LONG==32 && defined(CONFIG_SMP) #include #define __BTRFS_NEED_DEVICE_DATA_ORDERED #define btrfs_device_data_ordered_init(device) \ seqcount_init(&device->data_seqcount) #else #define btrfs_device_data_ordered_init(device) do { } while (0) #endif struct btrfs_device { struct list_head dev_list; struct list_head dev_alloc_list; struct btrfs_fs_devices *fs_devices; struct btrfs_fs_info *fs_info; struct rcu_string *name; u64 generation; spinlock_t io_lock ____cacheline_aligned; int running_pending; /* regular prio bios */ struct btrfs_pending_bios pending_bios; /* sync bios */ struct btrfs_pending_bios pending_sync_bios; struct block_device *bdev; /* the mode sent to blkdev_get */ fmode_t mode; int writeable; int in_fs_metadata; int missing; int is_tgtdev_for_dev_replace; blk_status_t last_flush_error; int flush_bio_sent; #ifdef __BTRFS_NEED_DEVICE_DATA_ORDERED seqcount_t data_seqcount; #endif /* the internal btrfs device id */ u64 devid; /* size of the device in memory */ u64 total_bytes; /* size of the device on disk */ u64 disk_total_bytes; /* bytes used */ u64 bytes_used; /* optimal io alignment for this device */ u32 io_align; /* optimal io width for this device */ u32 io_width; /* type and info about this device */ u64 type; /* minimal io size for this device */ u32 sector_size; /* physical drive uuid (or lvm uuid) */ u8 uuid[BTRFS_UUID_SIZE]; /* * size of the device on the current transaction * * This variant is update when committing the transaction, * and protected by device_list_mutex */ u64 commit_total_bytes; /* bytes used on the current transaction */ u64 commit_bytes_used; /* * used to manage the device which is resized * * It is protected by chunk_lock. */ struct list_head resized_list; /* for sending down flush barriers */ struct bio *flush_bio; struct completion flush_wait; /* per-device scrub information */ struct scrub_ctx *scrub_device; struct btrfs_work work; struct rcu_head rcu; /* readahead state */ spinlock_t reada_lock; atomic_t reada_in_flight; u64 reada_next; struct reada_zone *reada_curr_zone; struct radix_tree_root reada_zones; struct radix_tree_root reada_extents; /* disk I/O failure stats. For detailed description refer to * enum btrfs_dev_stat_values in ioctl.h */ int dev_stats_valid; /* Counter to record the change of device stats */ atomic_t dev_stats_ccnt; atomic_t dev_stat_values[BTRFS_DEV_STAT_VALUES_MAX]; }; /* * If we read those variants at the context of their own lock, we needn't * use the following helpers, reading them directly is safe. */ #if BITS_PER_LONG==32 && defined(CONFIG_SMP) #define BTRFS_DEVICE_GETSET_FUNCS(name) \ static inline u64 \ btrfs_device_get_##name(const struct btrfs_device *dev) \ { \ u64 size; \ unsigned int seq; \ \ do { \ seq = read_seqcount_begin(&dev->data_seqcount); \ size = dev->name; \ } while (read_seqcount_retry(&dev->data_seqcount, seq)); \ return size; \ } \ \ static inline void \ btrfs_device_set_##name(struct btrfs_device *dev, u64 size) \ { \ preempt_disable(); \ write_seqcount_begin(&dev->data_seqcount); \ dev->name = size; \ write_seqcount_end(&dev->data_seqcount); \ preempt_enable(); \ } #elif BITS_PER_LONG==32 && defined(CONFIG_PREEMPT) #define BTRFS_DEVICE_GETSET_FUNCS(name) \ static inline u64 \ btrfs_device_get_##name(const struct btrfs_device *dev) \ { \ u64 size; \ \ preempt_disable(); \ size = dev->name; \ preempt_enable(); \ return size; \ } \ \ static inline void \ btrfs_device_set_##name(struct btrfs_device *dev, u64 size) \ { \ preempt_disable(); \ dev->name = size; \ preempt_enable(); \ } #else #define BTRFS_DEVICE_GETSET_FUNCS(name) \ static inline u64 \ btrfs_device_get_##name(const struct btrfs_device *dev) \ { \ return dev->name; \ } \ \ static inline void \ btrfs_device_set_##name(struct btrfs_device *dev, u64 size) \ { \ dev->name = size; \ } #endif BTRFS_DEVICE_GETSET_FUNCS(total_bytes); BTRFS_DEVICE_GETSET_FUNCS(disk_total_bytes); BTRFS_DEVICE_GETSET_FUNCS(bytes_used); struct btrfs_fs_devices { u8 fsid[BTRFS_FSID_SIZE]; /* FS specific uuid */ u64 num_devices; u64 open_devices; u64 rw_devices; u64 missing_devices; u64 total_rw_bytes; u64 total_devices; struct block_device *latest_bdev; /* all of the devices in the FS, protected by a mutex * so we can safely walk it to write out the supers without * worrying about add/remove by the multi-device code. * Scrubbing super can kick off supers writing by holding * this mutex lock. */ struct mutex device_list_mutex; struct list_head devices; struct list_head resized_devices; /* devices not currently being allocated */ struct list_head alloc_list; struct list_head list; struct btrfs_fs_devices *seed; int seeding; int opened; /* set when we find or add a device that doesn't have the * nonrot flag set */ int rotating; struct btrfs_fs_info *fs_info; /* sysfs kobjects */ struct kobject fsid_kobj; struct kobject *device_dir_kobj; struct completion kobj_unregister; }; #define BTRFS_BIO_INLINE_CSUM_SIZE 64 /* * we need the mirror number and stripe index to be passed around * the call chain while we are processing end_io (especially errors). * Really, what we need is a btrfs_bio structure that has this info * and is properly sized with its stripe array, but we're not there * quite yet. We have our own btrfs bioset, and all of the bios * we allocate are actually btrfs_io_bios. We'll cram as much of * struct btrfs_bio as we can into this over time. */ typedef void (btrfs_io_bio_end_io_t) (struct btrfs_io_bio *bio, int err); struct btrfs_io_bio { unsigned int mirror_num; unsigned int stripe_index; u64 logical; u8 *csum; u8 csum_inline[BTRFS_BIO_INLINE_CSUM_SIZE]; u8 *csum_allocated; btrfs_io_bio_end_io_t *end_io; struct bvec_iter iter; /* * This member must come last, bio_alloc_bioset will allocate enough * bytes for entire btrfs_io_bio but relies on bio being last. */ struct bio bio; }; static inline struct btrfs_io_bio *btrfs_io_bio(struct bio *bio) { return container_of(bio, struct btrfs_io_bio, bio); } struct btrfs_bio_stripe { struct btrfs_device *dev; u64 physical; u64 length; /* only used for discard mappings */ }; struct btrfs_bio; typedef void (btrfs_bio_end_io_t) (struct btrfs_bio *bio, int err); struct btrfs_bio { refcount_t refs; atomic_t stripes_pending; struct btrfs_fs_info *fs_info; u64 map_type; /* get from map_lookup->type */ bio_end_io_t *end_io; struct bio *orig_bio; unsigned long flags; void *private; atomic_t error; int max_errors; int num_stripes; int mirror_num; int num_tgtdevs; int *tgtdev_map; /* * logical block numbers for the start of each stripe * The last one or two are p/q. These are sorted, * so raid_map[0] is the start of our full stripe */ u64 *raid_map; struct btrfs_bio_stripe stripes[]; }; struct btrfs_device_info { struct btrfs_device *dev; u64 dev_offset; u64 max_avail; u64 total_avail; }; struct btrfs_raid_attr { int sub_stripes; /* sub_stripes info for map */ int dev_stripes; /* stripes per dev */ int devs_max; /* max devs to use */ int devs_min; /* min devs needed */ int tolerated_failures; /* max tolerated fail devs */ int devs_increment; /* ndevs has to be a multiple of this */ int ncopies; /* how many copies to data has */ }; extern const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES]; extern const int btrfs_raid_mindev_error[BTRFS_NR_RAID_TYPES]; extern const u64 btrfs_raid_group[BTRFS_NR_RAID_TYPES]; struct map_lookup { u64 type; int io_align; int io_width; u64 stripe_len; int num_stripes; int sub_stripes; struct btrfs_bio_stripe stripes[]; }; #define map_lookup_size(n) (sizeof(struct map_lookup) + \ (sizeof(struct btrfs_bio_stripe) * (n))) struct btrfs_balance_args; struct btrfs_balance_progress; struct btrfs_balance_control { struct btrfs_fs_info *fs_info; struct btrfs_balance_args data; struct btrfs_balance_args meta; struct btrfs_balance_args sys; u64 flags; struct btrfs_balance_progress stat; }; enum btrfs_map_op { BTRFS_MAP_READ, BTRFS_MAP_WRITE, BTRFS_MAP_DISCARD, BTRFS_MAP_GET_READ_MIRRORS, }; static inline enum btrfs_map_op btrfs_op(struct bio *bio) { switch (bio_op(bio)) { case REQ_OP_DISCARD: return BTRFS_MAP_DISCARD; case REQ_OP_WRITE: return BTRFS_MAP_WRITE; default: WARN_ON_ONCE(1); case REQ_OP_READ: return BTRFS_MAP_READ; } } int btrfs_account_dev_extents_size(struct btrfs_device *device, u64 start, u64 end, u64 *length); void btrfs_get_bbio(struct btrfs_bio *bbio); void btrfs_put_bbio(struct btrfs_bio *bbio); int btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op, u64 logical, u64 *length, struct btrfs_bio **bbio_ret, int mirror_num); int btrfs_map_sblock(struct btrfs_fs_info *fs_info, enum btrfs_map_op op, u64 logical, u64 *length, struct btrfs_bio **bbio_ret); int btrfs_rmap_block(struct btrfs_fs_info *fs_info, u64 chunk_start, u64 physical, u64 devid, u64 **logical, int *naddrs, int *stripe_len); int btrfs_read_sys_array(struct btrfs_fs_info *fs_info); int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info); int btrfs_alloc_chunk(struct btrfs_trans_handle *trans, struct btrfs_fs_info *fs_info, u64 type); void btrfs_mapping_init(struct btrfs_mapping_tree *tree); void btrfs_mapping_tree_free(struct btrfs_mapping_tree *tree); blk_status_t btrfs_map_bio(struct btrfs_fs_info *fs_info, struct bio *bio, int mirror_num, int async_submit); int btrfs_open_devices(struct btrfs_fs_devices *fs_devices, fmode_t flags, void *holder); int btrfs_scan_one_device(const char *path, fmode_t flags, void *holder, struct btrfs_fs_devices **fs_devices_ret); int btrfs_close_devices(struct btrfs_fs_devices *fs_devices); void btrfs_close_extra_devices(struct btrfs_fs_devices *fs_devices, int step); void btrfs_assign_next_active_device(struct btrfs_fs_info *fs_info, struct btrfs_device *device, struct btrfs_device *this_dev); int btrfs_find_device_missing_or_by_path(struct btrfs_fs_info *fs_info, const char *device_path, struct btrfs_device **device); int btrfs_find_device_by_devspec(struct btrfs_fs_info *fs_info, u64 devid, const char *devpath, struct btrfs_device **device); struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info, const u64 *devid, const u8 *uuid); int btrfs_rm_device(struct btrfs_fs_info *fs_info, const char *device_path, u64 devid); void btrfs_cleanup_fs_uuids(void); int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len); int btrfs_grow_device(struct btrfs_trans_handle *trans, struct btrfs_device *device, u64 new_size); struct btrfs_device *btrfs_find_device(struct btrfs_fs_info *fs_info, u64 devid, u8 *uuid, u8 *fsid); int btrfs_shrink_device(struct btrfs_device *device, u64 new_size); int btrfs_init_new_device(struct btrfs_fs_info *fs_info, const char *path); int btrfs_init_dev_replace_tgtdev(struct btrfs_fs_info *fs_info, const char *device_path, struct btrfs_device *srcdev, struct btrfs_device **device_out); int btrfs_balance(struct btrfs_balance_control *bctl, struct btrfs_ioctl_balance_args *bargs); int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info); int btrfs_recover_balance(struct btrfs_fs_info *fs_info); int btrfs_pause_balance(struct btrfs_fs_info *fs_info); int btrfs_cancel_balance(struct btrfs_fs_info *fs_info); int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info); int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info); int btrfs_chunk_readonly(struct btrfs_fs_info *fs_info, u64 chunk_offset); int find_free_dev_extent_start(struct btrfs_transaction *transaction, struct btrfs_device *device, u64 num_bytes, u64 search_start, u64 *start, u64 *max_avail); int find_free_dev_extent(struct btrfs_trans_handle *trans, struct btrfs_device *device, u64 num_bytes, u64 *start, u64 *max_avail); void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index); int btrfs_get_dev_stats(struct btrfs_fs_info *fs_info, struct btrfs_ioctl_get_dev_stats *stats); void btrfs_init_devices_late(struct btrfs_fs_info *fs_info); int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info); int btrfs_run_dev_stats(struct btrfs_trans_handle *trans, struct btrfs_fs_info *fs_info); void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_fs_info *fs_info, struct btrfs_device *srcdev); void btrfs_rm_dev_replace_free_srcdev(struct btrfs_fs_info *fs_info, struct btrfs_device *srcdev); void btrfs_destroy_dev_replace_tgtdev(struct btrfs_fs_info *fs_info, struct btrfs_device *tgtdev); void btrfs_init_dev_replace_tgtdev_for_resume(struct btrfs_fs_info *fs_info, struct btrfs_device *tgtdev); void btrfs_scratch_superblocks(struct block_device *bdev, const char *device_path); int btrfs_is_parity_mirror(struct btrfs_fs_info *fs_info, u64 logical, u64 len); unsigned long btrfs_full_stripe_len(struct btrfs_fs_info *fs_info, u64 logical); int btrfs_finish_chunk_alloc(struct btrfs_trans_handle *trans, struct btrfs_fs_info *fs_info, u64 chunk_offset, u64 chunk_size); int btrfs_remove_chunk(struct btrfs_trans_handle *trans, struct btrfs_fs_info *fs_info, u64 chunk_offset); static inline void btrfs_dev_stat_inc(struct btrfs_device *dev, int index) { atomic_inc(dev->dev_stat_values + index); /* * This memory barrier orders stores updating statistics before stores * updating dev_stats_ccnt. * * It pairs with smp_rmb() in btrfs_run_dev_stats(). */ smp_mb__before_atomic(); atomic_inc(&dev->dev_stats_ccnt); } static inline int btrfs_dev_stat_read(struct btrfs_device *dev, int index) { return atomic_read(dev->dev_stat_values + index); } static inline int btrfs_dev_stat_read_and_reset(struct btrfs_device *dev, int index) { int ret; ret = atomic_xchg(dev->dev_stat_values + index, 0); /* * atomic_xchg implies a full memory barriers as per atomic_t.txt: * - RMW operations that have a return value are fully ordered; * * This implicit memory barriers is paired with the smp_rmb in * btrfs_run_dev_stats */ atomic_inc(&dev->dev_stats_ccnt); return ret; } static inline void btrfs_dev_stat_set(struct btrfs_device *dev, int index, unsigned long val) { atomic_set(dev->dev_stat_values + index, val); /* * This memory barrier orders stores updating statistics before stores * updating dev_stats_ccnt. * * It pairs with smp_rmb() in btrfs_run_dev_stats(). */ smp_mb__before_atomic(); atomic_inc(&dev->dev_stats_ccnt); } static inline void btrfs_dev_stat_reset(struct btrfs_device *dev, int index) { btrfs_dev_stat_set(dev, index, 0); } void btrfs_update_commit_device_size(struct btrfs_fs_info *fs_info); void btrfs_update_commit_device_bytes_used(struct btrfs_fs_info *fs_info, struct btrfs_transaction *transaction); struct list_head *btrfs_get_fs_uuids(void); void btrfs_set_fs_info_ptr(struct btrfs_fs_info *fs_info); void btrfs_reset_fs_info_ptr(struct btrfs_fs_info *fs_info); bool btrfs_check_rw_degradable(struct btrfs_fs_info *fs_info); #endif