// SPDX-License-Identifier: GPL-2.0 /* * fs/f2fs/data.c * * Copyright (c) 2012 Samsung Electronics Co., Ltd. * http://www.samsung.com/ */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "f2fs.h" #include "node.h" #include "segment.h" #include #define NUM_PREALLOC_POST_READ_CTXS 128 static struct kmem_cache *bio_post_read_ctx_cache; static struct kmem_cache *bio_entry_slab; static mempool_t *bio_post_read_ctx_pool; static struct bio_set f2fs_bioset; #define F2FS_BIO_POOL_SIZE NR_CURSEG_TYPE int __init f2fs_init_bioset(void) { if (bioset_init(&f2fs_bioset, F2FS_BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS)) return -ENOMEM; return 0; } void f2fs_destroy_bioset(void) { bioset_exit(&f2fs_bioset); } static bool __is_cp_guaranteed(struct page *page) { struct address_space *mapping = page->mapping; struct inode *inode; struct f2fs_sb_info *sbi; if (!mapping) return false; inode = mapping->host; sbi = F2FS_I_SB(inode); if (inode->i_ino == F2FS_META_INO(sbi) || inode->i_ino == F2FS_NODE_INO(sbi) || S_ISDIR(inode->i_mode)) return true; if (f2fs_is_compressed_page(page)) return false; if ((S_ISREG(inode->i_mode) && (f2fs_is_atomic_file(inode) || IS_NOQUOTA(inode))) || page_private_gcing(page)) return true; return false; } static enum count_type __read_io_type(struct page *page) { struct address_space *mapping = page_file_mapping(page); if (mapping) { struct inode *inode = mapping->host; struct f2fs_sb_info *sbi = F2FS_I_SB(inode); if (inode->i_ino == F2FS_META_INO(sbi)) return F2FS_RD_META; if (inode->i_ino == F2FS_NODE_INO(sbi)) return F2FS_RD_NODE; } return F2FS_RD_DATA; } /* postprocessing steps for read bios */ enum bio_post_read_step { #ifdef CONFIG_FS_ENCRYPTION STEP_DECRYPT = 1 << 0, #else STEP_DECRYPT = 0, /* compile out the decryption-related code */ #endif #ifdef CONFIG_F2FS_FS_COMPRESSION STEP_DECOMPRESS = 1 << 1, #else STEP_DECOMPRESS = 0, /* compile out the decompression-related code */ #endif #ifdef CONFIG_FS_VERITY STEP_VERITY = 1 << 2, #else STEP_VERITY = 0, /* compile out the verity-related code */ #endif }; struct bio_post_read_ctx { struct bio *bio; struct f2fs_sb_info *sbi; struct work_struct work; unsigned int enabled_steps; }; static void f2fs_finish_read_bio(struct bio *bio) { struct bio_vec *bv; struct bvec_iter_all iter_all; /* * Update and unlock the bio's pagecache pages, and put the * decompression context for any compressed pages. */ bio_for_each_segment_all(bv, bio, iter_all) { struct page *page = bv->bv_page; if (f2fs_is_compressed_page(page)) { if (bio->bi_status) f2fs_end_read_compressed_page(page, true, 0); f2fs_put_page_dic(page); continue; } /* PG_error was set if decryption or verity failed. */ if (bio->bi_status || PageError(page)) { ClearPageUptodate(page); /* will re-read again later */ ClearPageError(page); } else { SetPageUptodate(page); } dec_page_count(F2FS_P_SB(page), __read_io_type(page)); unlock_page(page); } if (bio->bi_private) mempool_free(bio->bi_private, bio_post_read_ctx_pool); bio_put(bio); } static void f2fs_verify_bio(struct work_struct *work) { struct bio_post_read_ctx *ctx = container_of(work, struct bio_post_read_ctx, work); struct bio *bio = ctx->bio; bool may_have_compressed_pages = (ctx->enabled_steps & STEP_DECOMPRESS); /* * fsverity_verify_bio() may call readpages() again, and while verity * will be disabled for this, decryption and/or decompression may still * be needed, resulting in another bio_post_read_ctx being allocated. * So to prevent deadlocks we need to release the current ctx to the * mempool first. This assumes that verity is the last post-read step. */ mempool_free(ctx, bio_post_read_ctx_pool); bio->bi_private = NULL; /* * Verify the bio's pages with fs-verity. Exclude compressed pages, * as those were handled separately by f2fs_end_read_compressed_page(). */ if (may_have_compressed_pages) { struct bio_vec *bv; struct bvec_iter_all iter_all; bio_for_each_segment_all(bv, bio, iter_all) { struct page *page = bv->bv_page; if (!f2fs_is_compressed_page(page) && !PageError(page) && !fsverity_verify_page(page)) SetPageError(page); } } else { fsverity_verify_bio(bio); } f2fs_finish_read_bio(bio); } /* * If the bio's data needs to be verified with fs-verity, then enqueue the * verity work for the bio. Otherwise finish the bio now. * * Note that to avoid deadlocks, the verity work can't be done on the * decryption/decompression workqueue. This is because verifying the data pages * can involve reading verity metadata pages from the file, and these verity * metadata pages may be encrypted and/or compressed. */ static void f2fs_verify_and_finish_bio(struct bio *bio) { struct bio_post_read_ctx *ctx = bio->bi_private; if (ctx && (ctx->enabled_steps & STEP_VERITY)) { INIT_WORK(&ctx->work, f2fs_verify_bio); fsverity_enqueue_verify_work(&ctx->work); } else { f2fs_finish_read_bio(bio); } } /* * Handle STEP_DECOMPRESS by decompressing any compressed clusters whose last * remaining page was read by @ctx->bio. * * Note that a bio may span clusters (even a mix of compressed and uncompressed * clusters) or be for just part of a cluster. STEP_DECOMPRESS just indicates * that the bio includes at least one compressed page. The actual decompression * is done on a per-cluster basis, not a per-bio basis. */ static void f2fs_handle_step_decompress(struct bio_post_read_ctx *ctx) { struct bio_vec *bv; struct bvec_iter_all iter_all; bool all_compressed = true; block_t blkaddr = SECTOR_TO_BLOCK(ctx->bio->bi_iter.bi_sector); bio_for_each_segment_all(bv, ctx->bio, iter_all) { struct page *page = bv->bv_page; /* PG_error was set if decryption failed. */ if (f2fs_is_compressed_page(page)) f2fs_end_read_compressed_page(page, PageError(page), blkaddr); else all_compressed = false; blkaddr++; } /* * Optimization: if all the bio's pages are compressed, then scheduling * the per-bio verity work is unnecessary, as verity will be fully * handled at the compression cluster level. */ if (all_compressed) ctx->enabled_steps &= ~STEP_VERITY; } static void f2fs_post_read_work(struct work_struct *work) { struct bio_post_read_ctx *ctx = container_of(work, struct bio_post_read_ctx, work); if (ctx->enabled_steps & STEP_DECRYPT) fscrypt_decrypt_bio(ctx->bio); if (ctx->enabled_steps & STEP_DECOMPRESS) f2fs_handle_step_decompress(ctx); f2fs_verify_and_finish_bio(ctx->bio); } static void f2fs_read_end_io(struct bio *bio) { struct f2fs_sb_info *sbi = F2FS_P_SB(bio_first_page_all(bio)); struct bio_post_read_ctx *ctx = bio->bi_private; if (time_to_inject(sbi, FAULT_READ_IO)) { f2fs_show_injection_info(sbi, FAULT_READ_IO); bio->bi_status = BLK_STS_IOERR; } if (bio->bi_status) { f2fs_finish_read_bio(bio); return; } if (ctx && (ctx->enabled_steps & (STEP_DECRYPT | STEP_DECOMPRESS))) { INIT_WORK(&ctx->work, f2fs_post_read_work); queue_work(ctx->sbi->post_read_wq, &ctx->work); } else { f2fs_verify_and_finish_bio(bio); } } static void f2fs_write_end_io(struct bio *bio) { struct f2fs_sb_info *sbi = bio->bi_private; struct bio_vec *bvec; struct bvec_iter_all iter_all; if (time_to_inject(sbi, FAULT_WRITE_IO)) { f2fs_show_injection_info(sbi, FAULT_WRITE_IO); bio->bi_status = BLK_STS_IOERR; } bio_for_each_segment_all(bvec, bio, iter_all) { struct page *page = bvec->bv_page; enum count_type type = WB_DATA_TYPE(page); if (page_private_dummy(page)) { clear_page_private_dummy(page); unlock_page(page); mempool_free(page, sbi->write_io_dummy); if (unlikely(bio->bi_status)) f2fs_stop_checkpoint(sbi, true); continue; } fscrypt_finalize_bounce_page(&page); #ifdef CONFIG_F2FS_FS_COMPRESSION if (f2fs_is_compressed_page(page)) { f2fs_compress_write_end_io(bio, page); continue; } #endif if (unlikely(bio->bi_status)) { mapping_set_error(page->mapping, -EIO); if (type == F2FS_WB_CP_DATA) f2fs_stop_checkpoint(sbi, true); } f2fs_bug_on(sbi, page->mapping == NODE_MAPPING(sbi) && page->index != nid_of_node(page)); dec_page_count(sbi, type); if (f2fs_in_warm_node_list(sbi, page)) f2fs_del_fsync_node_entry(sbi, page); clear_page_private_gcing(page); end_page_writeback(page); } if (!get_pages(sbi, F2FS_WB_CP_DATA) && wq_has_sleeper(&sbi->cp_wait)) wake_up(&sbi->cp_wait); bio_put(bio); } struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi, block_t blk_addr, struct bio *bio) { struct block_device *bdev = sbi->sb->s_bdev; int i; if (f2fs_is_multi_device(sbi)) { for (i = 0; i < sbi->s_ndevs; i++) { if (FDEV(i).start_blk <= blk_addr && FDEV(i).end_blk >= blk_addr) { blk_addr -= FDEV(i).start_blk; bdev = FDEV(i).bdev; break; } } } if (bio) { bio_set_dev(bio, bdev); bio->bi_iter.bi_sector = SECTOR_FROM_BLOCK(blk_addr); } return bdev; } int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr) { int i; if (!f2fs_is_multi_device(sbi)) return 0; for (i = 0; i < sbi->s_ndevs; i++) if (FDEV(i).start_blk <= blkaddr && FDEV(i).end_blk >= blkaddr) return i; return 0; } static struct bio *__bio_alloc(struct f2fs_io_info *fio, int npages) { struct f2fs_sb_info *sbi = fio->sbi; struct bio *bio; bio = bio_alloc_bioset(GFP_NOIO, npages, &f2fs_bioset); f2fs_target_device(sbi, fio->new_blkaddr, bio); if (is_read_io(fio->op)) { bio->bi_end_io = f2fs_read_end_io; bio->bi_private = NULL; } else { bio->bi_end_io = f2fs_write_end_io; bio->bi_private = sbi; bio->bi_write_hint = f2fs_io_type_to_rw_hint(sbi, fio->type, fio->temp); } if (fio->io_wbc) wbc_init_bio(fio->io_wbc, bio); return bio; } static void f2fs_set_bio_crypt_ctx(struct bio *bio, const struct inode *inode, pgoff_t first_idx, const struct f2fs_io_info *fio, gfp_t gfp_mask) { /* * The f2fs garbage collector sets ->encrypted_page when it wants to * read/write raw data without encryption. */ if (!fio || !fio->encrypted_page) fscrypt_set_bio_crypt_ctx(bio, inode, first_idx, gfp_mask); } static bool f2fs_crypt_mergeable_bio(struct bio *bio, const struct inode *inode, pgoff_t next_idx, const struct f2fs_io_info *fio) { /* * The f2fs garbage collector sets ->encrypted_page when it wants to * read/write raw data without encryption. */ if (fio && fio->encrypted_page) return !bio_has_crypt_ctx(bio); return fscrypt_mergeable_bio(bio, inode, next_idx); } static inline void __submit_bio(struct f2fs_sb_info *sbi, struct bio *bio, enum page_type type) { if (!is_read_io(bio_op(bio))) { unsigned int start; if (type != DATA && type != NODE) goto submit_io; if (f2fs_lfs_mode(sbi) && current->plug) blk_finish_plug(current->plug); if (!F2FS_IO_ALIGNED(sbi)) goto submit_io; start = bio->bi_iter.bi_size >> F2FS_BLKSIZE_BITS; start %= F2FS_IO_SIZE(sbi); if (start == 0) goto submit_io; /* fill dummy pages */ for (; start < F2FS_IO_SIZE(sbi); start++) { struct page *page = mempool_alloc(sbi->write_io_dummy, GFP_NOIO | __GFP_NOFAIL); f2fs_bug_on(sbi, !page); lock_page(page); zero_user_segment(page, 0, PAGE_SIZE); set_page_private_dummy(page); if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) f2fs_bug_on(sbi, 1); } /* * In the NODE case, we lose next block address chain. So, we * need to do checkpoint in f2fs_sync_file. */ if (type == NODE) set_sbi_flag(sbi, SBI_NEED_CP); } submit_io: if (is_read_io(bio_op(bio))) trace_f2fs_submit_read_bio(sbi->sb, type, bio); else trace_f2fs_submit_write_bio(sbi->sb, type, bio); submit_bio(bio); } void f2fs_submit_bio(struct f2fs_sb_info *sbi, struct bio *bio, enum page_type type) { __submit_bio(sbi, bio, type); } static void __attach_io_flag(struct f2fs_io_info *fio) { struct f2fs_sb_info *sbi = fio->sbi; unsigned int temp_mask = (1 << NR_TEMP_TYPE) - 1; unsigned int io_flag, fua_flag, meta_flag; if (fio->type == DATA) io_flag = sbi->data_io_flag; else if (fio->type == NODE) io_flag = sbi->node_io_flag; else return; fua_flag = io_flag & temp_mask; meta_flag = (io_flag >> NR_TEMP_TYPE) & temp_mask; /* * data/node io flag bits per temp: * REQ_META | REQ_FUA | * 5 | 4 | 3 | 2 | 1 | 0 | * Cold | Warm | Hot | Cold | Warm | Hot | */ if ((1 << fio->temp) & meta_flag) fio->op_flags |= REQ_META; if ((1 << fio->temp) & fua_flag) fio->op_flags |= REQ_FUA; } static void __submit_merged_bio(struct f2fs_bio_info *io) { struct f2fs_io_info *fio = &io->fio; if (!io->bio) return; __attach_io_flag(fio); bio_set_op_attrs(io->bio, fio->op, fio->op_flags); if (is_read_io(fio->op)) trace_f2fs_prepare_read_bio(io->sbi->sb, fio->type, io->bio); else trace_f2fs_prepare_write_bio(io->sbi->sb, fio->type, io->bio); __submit_bio(io->sbi, io->bio, fio->type); io->bio = NULL; } static bool __has_merged_page(struct bio *bio, struct inode *inode, struct page *page, nid_t ino) { struct bio_vec *bvec; struct bvec_iter_all iter_all; if (!bio) return false; if (!inode && !page && !ino) return true; bio_for_each_segment_all(bvec, bio, iter_all) { struct page *target = bvec->bv_page; if (fscrypt_is_bounce_page(target)) { target = fscrypt_pagecache_page(target); if (IS_ERR(target)) continue; } if (f2fs_is_compressed_page(target)) { target = f2fs_compress_control_page(target); if (IS_ERR(target)) continue; } if (inode && inode == target->mapping->host) return true; if (page && page == target) return true; if (ino && ino == ino_of_node(target)) return true; } return false; } static void __f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type, enum temp_type temp) { enum page_type btype = PAGE_TYPE_OF_BIO(type); struct f2fs_bio_info *io = sbi->write_io[btype] + temp; down_write(&io->io_rwsem); /* change META to META_FLUSH in the checkpoint procedure */ if (type >= META_FLUSH) { io->fio.type = META_FLUSH; io->fio.op = REQ_OP_WRITE; io->fio.op_flags = REQ_META | REQ_PRIO | REQ_SYNC; if (!test_opt(sbi, NOBARRIER)) io->fio.op_flags |= REQ_PREFLUSH | REQ_FUA; } __submit_merged_bio(io); up_write(&io->io_rwsem); } static void __submit_merged_write_cond(struct f2fs_sb_info *sbi, struct inode *inode, struct page *page, nid_t ino, enum page_type type, bool force) { enum temp_type temp; bool ret = true; for (temp = HOT; temp < NR_TEMP_TYPE; temp++) { if (!force) { enum page_type btype = PAGE_TYPE_OF_BIO(type); struct f2fs_bio_info *io = sbi->write_io[btype] + temp; down_read(&io->io_rwsem); ret = __has_merged_page(io->bio, inode, page, ino); up_read(&io->io_rwsem); } if (ret) __f2fs_submit_merged_write(sbi, type, temp); /* TODO: use HOT temp only for meta pages now. */ if (type >= META) break; } } void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type) { __submit_merged_write_cond(sbi, NULL, NULL, 0, type, true); } void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi, struct inode *inode, struct page *page, nid_t ino, enum page_type type) { __submit_merged_write_cond(sbi, inode, page, ino, type, false); } void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi) { f2fs_submit_merged_write(sbi, DATA); f2fs_submit_merged_write(sbi, NODE); f2fs_submit_merged_write(sbi, META); } /* * Fill the locked page with data located in the block address. * A caller needs to unlock the page on failure. */ int f2fs_submit_page_bio(struct f2fs_io_info *fio) { struct bio *bio; struct page *page = fio->encrypted_page ? fio->encrypted_page : fio->page; if (!f2fs_is_valid_blkaddr(fio->sbi, fio->new_blkaddr, fio->is_por ? META_POR : (__is_meta_io(fio) ? META_GENERIC : DATA_GENERIC_ENHANCE))) return -EFSCORRUPTED; trace_f2fs_submit_page_bio(page, fio); /* Allocate a new bio */ bio = __bio_alloc(fio, 1); f2fs_set_bio_crypt_ctx(bio, fio->page->mapping->host, fio->page->index, fio, GFP_NOIO); if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) { bio_put(bio); return -EFAULT; } if (fio->io_wbc && !is_read_io(fio->op)) wbc_account_cgroup_owner(fio->io_wbc, page, PAGE_SIZE); __attach_io_flag(fio); bio_set_op_attrs(bio, fio->op, fio->op_flags); inc_page_count(fio->sbi, is_read_io(fio->op) ? __read_io_type(page): WB_DATA_TYPE(fio->page)); __submit_bio(fio->sbi, bio, fio->type); return 0; } static bool page_is_mergeable(struct f2fs_sb_info *sbi, struct bio *bio, block_t last_blkaddr, block_t cur_blkaddr) { if (unlikely(sbi->max_io_bytes && bio->bi_iter.bi_size >= sbi->max_io_bytes)) return false; if (last_blkaddr + 1 != cur_blkaddr) return false; return bio->bi_bdev == f2fs_target_device(sbi, cur_blkaddr, NULL); } static bool io_type_is_mergeable(struct f2fs_bio_info *io, struct f2fs_io_info *fio) { if (io->fio.op != fio->op) return false; return io->fio.op_flags == fio->op_flags; } static bool io_is_mergeable(struct f2fs_sb_info *sbi, struct bio *bio, struct f2fs_bio_info *io, struct f2fs_io_info *fio, block_t last_blkaddr, block_t cur_blkaddr) { if (F2FS_IO_ALIGNED(sbi) && (fio->type == DATA || fio->type == NODE)) { unsigned int filled_blocks = F2FS_BYTES_TO_BLK(bio->bi_iter.bi_size); unsigned int io_size = F2FS_IO_SIZE(sbi); unsigned int left_vecs = bio->bi_max_vecs - bio->bi_vcnt; /* IOs in bio is aligned and left space of vectors is not enough */ if (!(filled_blocks % io_size) && left_vecs < io_size) return false; } if (!page_is_mergeable(sbi, bio, last_blkaddr, cur_blkaddr)) return false; return io_type_is_mergeable(io, fio); } static void add_bio_entry(struct f2fs_sb_info *sbi, struct bio *bio, struct page *page, enum temp_type temp) { struct f2fs_bio_info *io = sbi->write_io[DATA] + temp; struct bio_entry *be; be = f2fs_kmem_cache_alloc(bio_entry_slab, GFP_NOFS); be->bio = bio; bio_get(bio); if (bio_add_page(bio, page, PAGE_SIZE, 0) != PAGE_SIZE) f2fs_bug_on(sbi, 1); down_write(&io->bio_list_lock); list_add_tail(&be->list, &io->bio_list); up_write(&io->bio_list_lock); } static void del_bio_entry(struct bio_entry *be) { list_del(&be->list); kmem_cache_free(bio_entry_slab, be); } static int add_ipu_page(struct f2fs_io_info *fio, struct bio **bio, struct page *page) { struct f2fs_sb_info *sbi = fio->sbi; enum temp_type temp; bool found = false; int ret = -EAGAIN; for (temp = HOT; temp < NR_TEMP_TYPE && !found; temp++) { struct f2fs_bio_info *io = sbi->write_io[DATA] + temp; struct list_head *head = &io->bio_list; struct bio_entry *be; down_write(&io->bio_list_lock); list_for_each_entry(be, head, list) { if (be->bio != *bio) continue; found = true; f2fs_bug_on(sbi, !page_is_mergeable(sbi, *bio, *fio->last_block, fio->new_blkaddr)); if (f2fs_crypt_mergeable_bio(*bio, fio->page->mapping->host, fio->page->index, fio) && bio_add_page(*bio, page, PAGE_SIZE, 0) == PAGE_SIZE) { ret = 0; break; } /* page can't be merged into bio; submit the bio */ del_bio_entry(be); __submit_bio(sbi, *bio, DATA); break; } up_write(&io->bio_list_lock); } if (ret) { bio_put(*bio); *bio = NULL; } return ret; } void f2fs_submit_merged_ipu_write(struct f2fs_sb_info *sbi, struct bio **bio, struct page *page) { enum temp_type temp; bool found = false; struct bio *target = bio ? *bio : NULL; for (temp = HOT; temp < NR_TEMP_TYPE && !found; temp++) { struct f2fs_bio_info *io = sbi->write_io[DATA] + temp; struct list_head *head = &io->bio_list; struct bio_entry *be; if (list_empty(head)) continue; down_read(&io->bio_list_lock); list_for_each_entry(be, head, list) { if (target) found = (target == be->bio); else found = __has_merged_page(be->bio, NULL, page, 0); if (found) break; } up_read(&io->bio_list_lock); if (!found) continue; found = false; down_write(&io->bio_list_lock); list_for_each_entry(be, head, list) { if (target) found = (target == be->bio); else found = __has_merged_page(be->bio, NULL, page, 0); if (found) { target = be->bio; del_bio_entry(be); break; } } up_write(&io->bio_list_lock); } if (found) __submit_bio(sbi, target, DATA); if (bio && *bio) { bio_put(*bio); *bio = NULL; } } int f2fs_merge_page_bio(struct f2fs_io_info *fio) { struct bio *bio = *fio->bio; struct page *page = fio->encrypted_page ? fio->encrypted_page : fio->page; if (!f2fs_is_valid_blkaddr(fio->sbi, fio->new_blkaddr, __is_meta_io(fio) ? META_GENERIC : DATA_GENERIC)) return -EFSCORRUPTED; trace_f2fs_submit_page_bio(page, fio); if (bio && !page_is_mergeable(fio->sbi, bio, *fio->last_block, fio->new_blkaddr)) f2fs_submit_merged_ipu_write(fio->sbi, &bio, NULL); alloc_new: if (!bio) { bio = __bio_alloc(fio, BIO_MAX_VECS); __attach_io_flag(fio); f2fs_set_bio_crypt_ctx(bio, fio->page->mapping->host, fio->page->index, fio, GFP_NOIO); bio_set_op_attrs(bio, fio->op, fio->op_flags); add_bio_entry(fio->sbi, bio, page, fio->temp); } else { if (add_ipu_page(fio, &bio, page)) goto alloc_new; } if (fio->io_wbc) wbc_account_cgroup_owner(fio->io_wbc, page, PAGE_SIZE); inc_page_count(fio->sbi, WB_DATA_TYPE(page)); *fio->last_block = fio->new_blkaddr; *fio->bio = bio; return 0; } void f2fs_submit_page_write(struct f2fs_io_info *fio) { struct f2fs_sb_info *sbi = fio->sbi; enum page_type btype = PAGE_TYPE_OF_BIO(fio->type); struct f2fs_bio_info *io = sbi->write_io[btype] + fio->temp; struct page *bio_page; f2fs_bug_on(sbi, is_read_io(fio->op)); down_write(&io->io_rwsem); next: if (fio->in_list) { spin_lock(&io->io_lock); if (list_empty(&io->io_list)) { spin_unlock(&io->io_lock); goto out; } fio = list_first_entry(&io->io_list, struct f2fs_io_info, list); list_del(&fio->list); spin_unlock(&io->io_lock); } verify_fio_blkaddr(fio); if (fio->encrypted_page) bio_page = fio->encrypted_page; else if (fio->compressed_page) bio_page = fio->compressed_page; else bio_page = fio->page; /* set submitted = true as a return value */ fio->submitted = true; inc_page_count(sbi, WB_DATA_TYPE(bio_page)); if (io->bio && (!io_is_mergeable(sbi, io->bio, io, fio, io->last_block_in_bio, fio->new_blkaddr) || !f2fs_crypt_mergeable_bio(io->bio, fio->page->mapping->host, bio_page->index, fio))) __submit_merged_bio(io); alloc_new: if (io->bio == NULL) { if (F2FS_IO_ALIGNED(sbi) && (fio->type == DATA || fio->type == NODE) && fio->new_blkaddr & F2FS_IO_SIZE_MASK(sbi)) { dec_page_count(sbi, WB_DATA_TYPE(bio_page)); fio->retry = true; goto skip; } io->bio = __bio_alloc(fio, BIO_MAX_VECS); f2fs_set_bio_crypt_ctx(io->bio, fio->page->mapping->host, bio_page->index, fio, GFP_NOIO); io->fio = *fio; } if (bio_add_page(io->bio, bio_page, PAGE_SIZE, 0) < PAGE_SIZE) { __submit_merged_bio(io); goto alloc_new; } if (fio->io_wbc) wbc_account_cgroup_owner(fio->io_wbc, bio_page, PAGE_SIZE); io->last_block_in_bio = fio->new_blkaddr; trace_f2fs_submit_page_write(fio->page, fio); skip: if (fio->in_list) goto next; out: if (is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN) || !f2fs_is_checkpoint_ready(sbi)) __submit_merged_bio(io); up_write(&io->io_rwsem); } static struct bio *f2fs_grab_read_bio(struct inode *inode, block_t blkaddr, unsigned nr_pages, unsigned op_flag, pgoff_t first_idx, bool for_write) { struct f2fs_sb_info *sbi = F2FS_I_SB(inode); struct bio *bio; struct bio_post_read_ctx *ctx; unsigned int post_read_steps = 0; bio = bio_alloc_bioset(for_write ? GFP_NOIO : GFP_KERNEL, bio_max_segs(nr_pages), &f2fs_bioset); if (!bio) return ERR_PTR(-ENOMEM); f2fs_set_bio_crypt_ctx(bio, inode, first_idx, NULL, GFP_NOFS); f2fs_target_device(sbi, blkaddr, bio); bio->bi_end_io = f2fs_read_end_io; bio_set_op_attrs(bio, REQ_OP_READ, op_flag); if (fscrypt_inode_uses_fs_layer_crypto(inode)) post_read_steps |= STEP_DECRYPT; if (f2fs_need_verity(inode, first_idx)) post_read_steps |= STEP_VERITY; /* * STEP_DECOMPRESS is handled specially, since a compressed file might * contain both compressed and uncompressed clusters. We'll allocate a * bio_post_read_ctx if the file is compressed, but the caller is * responsible for enabling STEP_DECOMPRESS if it's actually needed. */ if (post_read_steps || f2fs_compressed_file(inode)) { /* Due to the mempool, this never fails. */ ctx = mempool_alloc(bio_post_read_ctx_pool, GFP_NOFS); ctx->bio = bio; ctx->sbi = sbi; ctx->enabled_steps = post_read_steps; bio->bi_private = ctx; } return bio; } /* This can handle encryption stuffs */ static int f2fs_submit_page_read(struct inode *inode, struct page *page, block_t blkaddr, int op_flags, bool for_write) { struct f2fs_sb_info *sbi = F2FS_I_SB(inode); struct bio *bio; bio = f2fs_grab_read_bio(inode, blkaddr, 1, op_flags, page->index, for_write); if (IS_ERR(bio)) return PTR_ERR(bio); /* wait for GCed page writeback via META_MAPPING */ f2fs_wait_on_block_writeback(inode, blkaddr); if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) { bio_put(bio); return -EFAULT; } ClearPageError(page); inc_page_count(sbi, F2FS_RD_DATA); f2fs_update_iostat(sbi, FS_DATA_READ_IO, F2FS_BLKSIZE); __submit_bio(sbi, bio, DATA); return 0; } static void __set_data_blkaddr(struct dnode_of_data *dn) { struct f2fs_node *rn = F2FS_NODE(dn->node_page); __le32 *addr_array; int base = 0; if (IS_INODE(dn->node_page) && f2fs_has_extra_attr(dn->inode)) base = get_extra_isize(dn->inode); /* Get physical address of data block */ addr_array = blkaddr_in_node(rn); addr_array[base + dn->ofs_in_node] = cpu_to_le32(dn->data_blkaddr); } /* * Lock ordering for the change of data block address: * ->data_page * ->node_page * update block addresses in the node page */ void f2fs_set_data_blkaddr(struct dnode_of_data *dn) { f2fs_wait_on_page_writeback(dn->node_page, NODE, true, true); __set_data_blkaddr(dn); if (set_page_dirty(dn->node_page)) dn->node_changed = true; } void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr) { dn->data_blkaddr = blkaddr; f2fs_set_data_blkaddr(dn); f2fs_update_extent_cache(dn); } /* dn->ofs_in_node will be returned with up-to-date last block pointer */ int f2fs_reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count) { struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); int err; if (!count) return 0; if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC))) return -EPERM; if (unlikely((err = inc_valid_block_count(sbi, dn->inode, &count)))) return err; trace_f2fs_reserve_new_blocks(dn->inode, dn->nid, dn->ofs_in_node, count); f2fs_wait_on_page_writeback(dn->node_page, NODE, true, true); for (; count > 0; dn->ofs_in_node++) { block_t blkaddr = f2fs_data_blkaddr(dn); if (blkaddr == NULL_ADDR) { dn->data_blkaddr = NEW_ADDR; __set_data_blkaddr(dn); count--; } } if (set_page_dirty(dn->node_page)) dn->node_changed = true; return 0; } /* Should keep dn->ofs_in_node unchanged */ int f2fs_reserve_new_block(struct dnode_of_data *dn) { unsigned int ofs_in_node = dn->ofs_in_node; int ret; ret = f2fs_reserve_new_blocks(dn, 1); dn->ofs_in_node = ofs_in_node; return ret; } int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index) { bool need_put = dn->inode_page ? false : true; int err; err = f2fs_get_dnode_of_data(dn, index, ALLOC_NODE); if (err) return err; if (dn->data_blkaddr == NULL_ADDR) err = f2fs_reserve_new_block(dn); if (err || need_put) f2fs_put_dnode(dn); return err; } int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index) { struct extent_info ei = {0, 0, 0}; struct inode *inode = dn->inode; if (f2fs_lookup_extent_cache(inode, index, &ei)) { dn->data_blkaddr = ei.blk + index - ei.fofs; return 0; } return f2fs_reserve_block(dn, index); } struct page *f2fs_get_read_data_page(struct inode *inode, pgoff_t index, int op_flags, bool for_write) { struct address_space *mapping = inode->i_mapping; struct dnode_of_data dn; struct page *page; struct extent_info ei = {0,0,0}; int err; page = f2fs_grab_cache_page(mapping, index, for_write); if (!page) return ERR_PTR(-ENOMEM); if (f2fs_lookup_extent_cache(inode, index, &ei)) { dn.data_blkaddr = ei.blk + index - ei.fofs; if (!f2fs_is_valid_blkaddr(F2FS_I_SB(inode), dn.data_blkaddr, DATA_GENERIC_ENHANCE_READ)) { err = -EFSCORRUPTED; goto put_err; } goto got_it; } set_new_dnode(&dn, inode, NULL, NULL, 0); err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE); if (err) goto put_err; f2fs_put_dnode(&dn); if (unlikely(dn.data_blkaddr == NULL_ADDR)) { err = -ENOENT; goto put_err; } if (dn.data_blkaddr != NEW_ADDR && !f2fs_is_valid_blkaddr(F2FS_I_SB(inode), dn.data_blkaddr, DATA_GENERIC_ENHANCE)) { err = -EFSCORRUPTED; goto put_err; } got_it: if (PageUptodate(page)) { unlock_page(page); return page; } /* * A new dentry page is allocated but not able to be written, since its * new inode page couldn't be allocated due to -ENOSPC. * In such the case, its blkaddr can be remained as NEW_ADDR. * see, f2fs_add_link -> f2fs_get_new_data_page -> * f2fs_init_inode_metadata. */ if (dn.data_blkaddr == NEW_ADDR) { zero_user_segment(page, 0, PAGE_SIZE); if (!PageUptodate(page)) SetPageUptodate(page); unlock_page(page); return page; } err = f2fs_submit_page_read(inode, page, dn.data_blkaddr, op_flags, for_write); if (err) goto put_err; return page; put_err: f2fs_put_page(page, 1); return ERR_PTR(err); } struct page *f2fs_find_data_page(struct inode *inode, pgoff_t index) { struct address_space *mapping = inode->i_mapping; struct page *page; page = find_get_page(mapping, index); if (page && PageUptodate(page)) return page; f2fs_put_page(page, 0); page = f2fs_get_read_data_page(inode, index, 0, false); if (IS_ERR(page)) return page; if (PageUptodate(page)) return page; wait_on_page_locked(page); if (unlikely(!PageUptodate(page))) { f2fs_put_page(page, 0); return ERR_PTR(-EIO); } return page; } /* * If it tries to access a hole, return an error. * Because, the callers, functions in dir.c and GC, should be able to know * whether this page exists or not. */ struct page *f2fs_get_lock_data_page(struct inode *inode, pgoff_t index, bool for_write) { struct address_space *mapping = inode->i_mapping; struct page *page; repeat: page = f2fs_get_read_data_page(inode, index, 0, for_write); if (IS_ERR(page)) return page; /* wait for read completion */ lock_page(page); if (unlikely(page->mapping != mapping)) { f2fs_put_page(page, 1); goto repeat; } if (unlikely(!PageUptodate(page))) { f2fs_put_page(page, 1); return ERR_PTR(-EIO); } return page; } /* * Caller ensures that this data page is never allocated. * A new zero-filled data page is allocated in the page cache. * * Also, caller should grab and release a rwsem by calling f2fs_lock_op() and * f2fs_unlock_op(). * Note that, ipage is set only by make_empty_dir, and if any error occur, * ipage should be released by this function. */ struct page *f2fs_get_new_data_page(struct inode *inode, struct page *ipage, pgoff_t index, bool new_i_size) { struct address_space *mapping = inode->i_mapping; struct page *page; struct dnode_of_data dn; int err; page = f2fs_grab_cache_page(mapping, index, true); if (!page) { /* * before exiting, we should make sure ipage will be released * if any error occur. */ f2fs_put_page(ipage, 1); return ERR_PTR(-ENOMEM); } set_new_dnode(&dn, inode, ipage, NULL, 0); err = f2fs_reserve_block(&dn, index); if (err) { f2fs_put_page(page, 1); return ERR_PTR(err); } if (!ipage) f2fs_put_dnode(&dn); if (PageUptodate(page)) goto got_it; if (dn.data_blkaddr == NEW_ADDR) { zero_user_segment(page, 0, PAGE_SIZE); if (!PageUptodate(page)) SetPageUptodate(page); } else { f2fs_put_page(page, 1); /* if ipage exists, blkaddr should be NEW_ADDR */ f2fs_bug_on(F2FS_I_SB(inode), ipage); page = f2fs_get_lock_data_page(inode, index, true); if (IS_ERR(page)) return page; } got_it: if (new_i_size && i_size_read(inode) < ((loff_t)(index + 1) << PAGE_SHIFT)) f2fs_i_size_write(inode, ((loff_t)(index + 1) << PAGE_SHIFT)); return page; } static int __allocate_data_block(struct dnode_of_data *dn, int seg_type) { struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); struct f2fs_summary sum; struct node_info ni; block_t old_blkaddr; blkcnt_t count = 1; int err; if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC))) return -EPERM; err = f2fs_get_node_info(sbi, dn->nid, &ni); if (err) return err; dn->data_blkaddr = f2fs_data_blkaddr(dn); if (dn->data_blkaddr != NULL_ADDR) goto alloc; if (unlikely((err = inc_valid_block_count(sbi, dn->inode, &count)))) return err; alloc: set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version); old_blkaddr = dn->data_blkaddr; f2fs_allocate_data_block(sbi, NULL, old_blkaddr, &dn->data_blkaddr, &sum, seg_type, NULL); if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO) { invalidate_mapping_pages(META_MAPPING(sbi), old_blkaddr, old_blkaddr); f2fs_invalidate_compress_page(sbi, old_blkaddr); } f2fs_update_data_blkaddr(dn, dn->data_blkaddr); /* * i_size will be updated by direct_IO. Otherwise, we'll get stale * data from unwritten block via dio_read. */ return 0; } int f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *from) { struct inode *inode = file_inode(iocb->ki_filp); struct f2fs_map_blocks map; int flag; int err = 0; bool direct_io = iocb->ki_flags & IOCB_DIRECT; map.m_lblk = F2FS_BLK_ALIGN(iocb->ki_pos); map.m_len = F2FS_BYTES_TO_BLK(iocb->ki_pos + iov_iter_count(from)); if (map.m_len > map.m_lblk) map.m_len -= map.m_lblk; else map.m_len = 0; map.m_next_pgofs = NULL; map.m_next_extent = NULL; map.m_seg_type = NO_CHECK_TYPE; map.m_may_create = true; if (direct_io) { map.m_seg_type = f2fs_rw_hint_to_seg_type(iocb->ki_hint); flag = f2fs_force_buffered_io(inode, iocb, from) ? F2FS_GET_BLOCK_PRE_AIO : F2FS_GET_BLOCK_PRE_DIO; goto map_blocks; } if (iocb->ki_pos + iov_iter_count(from) > MAX_INLINE_DATA(inode)) { err = f2fs_convert_inline_inode(inode); if (err) return err; } if (f2fs_has_inline_data(inode)) return err; flag = F2FS_GET_BLOCK_PRE_AIO; map_blocks: err = f2fs_map_blocks(inode, &map, 1, flag); if (map.m_len > 0 && err == -ENOSPC) { if (!direct_io) set_inode_flag(inode, FI_NO_PREALLOC); err = 0; } return err; } void f2fs_do_map_lock(struct f2fs_sb_info *sbi, int flag, bool lock) { if (flag == F2FS_GET_BLOCK_PRE_AIO) { if (lock) down_read(&sbi->node_change); else up_read(&sbi->node_change); } else { if (lock) f2fs_lock_op(sbi); else f2fs_unlock_op(sbi); } } /* * f2fs_map_blocks() tries to find or build mapping relationship which * maps continuous logical blocks to physical blocks, and return such * info via f2fs_map_blocks structure. */ int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map, int create, int flag) { unsigned int maxblocks = map->m_len; struct dnode_of_data dn; struct f2fs_sb_info *sbi = F2FS_I_SB(inode); int mode = map->m_may_create ? ALLOC_NODE : LOOKUP_NODE; pgoff_t pgofs, end_offset, end; int err = 0, ofs = 1; unsigned int ofs_in_node, last_ofs_in_node; blkcnt_t prealloc; struct extent_info ei = {0,0,0}; block_t blkaddr; unsigned int start_pgofs; if (!maxblocks) return 0; map->m_len = 0; map->m_flags = 0; /* it only supports block size == page size */ pgofs = (pgoff_t)map->m_lblk; end = pgofs + maxblocks; if (!create && f2fs_lookup_extent_cache(inode, pgofs, &ei)) { if (f2fs_lfs_mode(sbi) && flag == F2FS_GET_BLOCK_DIO && map->m_may_create) goto next_dnode; map->m_pblk = ei.blk + pgofs - ei.fofs; map->m_len = min((pgoff_t)maxblocks, ei.fofs + ei.len - pgofs); map->m_flags = F2FS_MAP_MAPPED; if (map->m_next_extent) *map->m_next_extent = pgofs + map->m_len; /* for hardware encryption, but to avoid potential issue in future */ if (flag == F2FS_GET_BLOCK_DIO) f2fs_wait_on_block_writeback_range(inode, map->m_pblk, map->m_len); goto out; } next_dnode: if (map->m_may_create) f2fs_do_map_lock(sbi, flag, true); /* When reading holes, we need its node page */ set_new_dnode(&dn, inode, NULL, NULL, 0); err = f2fs_get_dnode_of_data(&dn, pgofs, mode); if (err) { if (flag == F2FS_GET_BLOCK_BMAP) map->m_pblk = 0; if (err == -ENOENT) { err = 0; if (map->m_next_pgofs) *map->m_next_pgofs = f2fs_get_next_page_offset(&dn, pgofs); if (map->m_next_extent) *map->m_next_extent = f2fs_get_next_page_offset(&dn, pgofs); } goto unlock_out; } start_pgofs = pgofs; prealloc = 0; last_ofs_in_node = ofs_in_node = dn.ofs_in_node; end_offset = ADDRS_PER_PAGE(dn.node_page, inode); next_block: blkaddr = f2fs_data_blkaddr(&dn); if (__is_valid_data_blkaddr(blkaddr) && !f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE)) { err = -EFSCORRUPTED; goto sync_out; } if (__is_valid_data_blkaddr(blkaddr)) { /* use out-place-update for driect IO under LFS mode */ if (f2fs_lfs_mode(sbi) && flag == F2FS_GET_BLOCK_DIO && map->m_may_create) { err = __allocate_data_block(&dn, map->m_seg_type); if (err) goto sync_out; blkaddr = dn.data_blkaddr; set_inode_flag(inode, FI_APPEND_WRITE); } } else { if (create) { if (unlikely(f2fs_cp_error(sbi))) { err = -EIO; goto sync_out; } if (flag == F2FS_GET_BLOCK_PRE_AIO) { if (blkaddr == NULL_ADDR) { prealloc++; last_ofs_in_node = dn.ofs_in_node; } } else { WARN_ON(flag != F2FS_GET_BLOCK_PRE_DIO && flag != F2FS_GET_BLOCK_DIO); err = __allocate_data_block(&dn, map->m_seg_type); if (!err) set_inode_flag(inode, FI_APPEND_WRITE); } if (err) goto sync_out; map->m_flags |= F2FS_MAP_NEW; blkaddr = dn.data_blkaddr; } else { if (flag == F2FS_GET_BLOCK_BMAP) { map->m_pblk = 0; goto sync_out; } if (flag == F2FS_GET_BLOCK_PRECACHE) goto sync_out; if (flag == F2FS_GET_BLOCK_FIEMAP && blkaddr == NULL_ADDR) { if (map->m_next_pgofs) *map->m_next_pgofs = pgofs + 1; goto sync_out; } if (flag != F2FS_GET_BLOCK_FIEMAP) { /* for defragment case */ if (map->m_next_pgofs) *map->m_next_pgofs = pgofs + 1; goto sync_out; } } } if (flag == F2FS_GET_BLOCK_PRE_AIO) goto skip; if (map->m_len == 0) { /* preallocated unwritten block should be mapped for fiemap. */ if (blkaddr == NEW_ADDR) map->m_flags |= F2FS_MAP_UNWRITTEN; map->m_flags |= F2FS_MAP_MAPPED; map->m_pblk = blkaddr; map->m_len = 1; } else if ((map->m_pblk != NEW_ADDR && blkaddr == (map->m_pblk + ofs)) || (map->m_pblk == NEW_ADDR && blkaddr == NEW_ADDR) || flag == F2FS_GET_BLOCK_PRE_DIO) { ofs++; map->m_len++; } else { goto sync_out; } skip: dn.ofs_in_node++; pgofs++; /* preallocate blocks in batch for one dnode page */ if (flag == F2FS_GET_BLOCK_PRE_AIO && (pgofs == end || dn.ofs_in_node == end_offset)) { dn.ofs_in_node = ofs_in_node; err = f2fs_reserve_new_blocks(&dn, prealloc); if (err) goto sync_out; map->m_len += dn.ofs_in_node - ofs_in_node; if (prealloc && dn.ofs_in_node != last_ofs_in_node + 1) { err = -ENOSPC; goto sync_out; } dn.ofs_in_node = end_offset; } if (pgofs >= end) goto sync_out; else if (dn.ofs_in_node < end_offset) goto next_block; if (flag == F2FS_GET_BLOCK_PRECACHE) { if (map->m_flags & F2FS_MAP_MAPPED) { unsigned int ofs = start_pgofs - map->m_lblk; f2fs_update_extent_cache_range(&dn, start_pgofs, map->m_pblk + ofs, map->m_len - ofs); } } f2fs_put_dnode(&dn); if (map->m_may_create) { f2fs_do_map_lock(sbi, flag, false); f2fs_balance_fs(sbi, dn.node_changed); } goto next_dnode; sync_out: /* for hardware encryption, but to avoid potential issue in future */ if (flag == F2FS_GET_BLOCK_DIO && map->m_flags & F2FS_MAP_MAPPED) f2fs_wait_on_block_writeback_range(inode, map->m_pblk, map->m_len); if (flag == F2FS_GET_BLOCK_PRECACHE) { if (map->m_flags & F2FS_MAP_MAPPED) { unsigned int ofs = start_pgofs - map->m_lblk; f2fs_update_extent_cache_range(&dn, start_pgofs, map->m_pblk + ofs, map->m_len - ofs); } if (map->m_next_extent) *map->m_next_extent = pgofs + 1; } f2fs_put_dnode(&dn); unlock_out: if (map->m_may_create) { f2fs_do_map_lock(sbi, flag, false); f2fs_balance_fs(sbi, dn.node_changed); } out: trace_f2fs_map_blocks(inode, map, err); return err; } bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len) { struct f2fs_map_blocks map; block_t last_lblk; int err; if (pos + len > i_size_read(inode)) return false; map.m_lblk = F2FS_BYTES_TO_BLK(pos); map.m_next_pgofs = NULL; map.m_next_extent = NULL; map.m_seg_type = NO_CHECK_TYPE; map.m_may_create = false; last_lblk = F2FS_BLK_ALIGN(pos + len); while (map.m_lblk < last_lblk) { map.m_len = last_lblk - map.m_lblk; err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_DEFAULT); if (err || map.m_len == 0) return false; map.m_lblk += map.m_len; } return true; } static inline u64 bytes_to_blks(struct inode *inode, u64 bytes) { return (bytes >> inode->i_blkbits); } static inline u64 blks_to_bytes(struct inode *inode, u64 blks) { return (blks << inode->i_blkbits); } static int __get_data_block(struct inode *inode, sector_t iblock, struct buffer_head *bh, int create, int flag, pgoff_t *next_pgofs, int seg_type, bool may_write) { struct f2fs_map_blocks map; int err; map.m_lblk = iblock; map.m_len = bytes_to_blks(inode, bh->b_size); map.m_next_pgofs = next_pgofs; map.m_next_extent = NULL; map.m_seg_type = seg_type; map.m_may_create = may_write; err = f2fs_map_blocks(inode, &map, create, flag); if (!err) { map_bh(bh, inode->i_sb, map.m_pblk); bh->b_state = (bh->b_state & ~F2FS_MAP_FLAGS) | map.m_flags; bh->b_size = blks_to_bytes(inode, map.m_len); } return err; } static int get_data_block_dio_write(struct inode *inode, sector_t iblock, struct buffer_head *bh_result, int create) { return __get_data_block(inode, iblock, bh_result, create, F2FS_GET_BLOCK_DIO, NULL, f2fs_rw_hint_to_seg_type(inode->i_write_hint), true); } static int get_data_block_dio(struct inode *inode, sector_t iblock, struct buffer_head *bh_result, int create) { return __get_data_block(inode, iblock, bh_result, create, F2FS_GET_BLOCK_DIO, NULL, f2fs_rw_hint_to_seg_type(inode->i_write_hint), false); } static int f2fs_xattr_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo) { struct f2fs_sb_info *sbi = F2FS_I_SB(inode); struct page *page; struct node_info ni; __u64 phys = 0, len; __u32 flags; nid_t xnid = F2FS_I(inode)->i_xattr_nid; int err = 0; if (f2fs_has_inline_xattr(inode)) { int offset; page = f2fs_grab_cache_page(NODE_MAPPING(sbi), inode->i_ino, false); if (!page) return -ENOMEM; err = f2fs_get_node_info(sbi, inode->i_ino, &ni); if (err) { f2fs_put_page(page, 1); return err; } phys = blks_to_bytes(inode, ni.blk_addr); offset = offsetof(struct f2fs_inode, i_addr) + sizeof(__le32) * (DEF_ADDRS_PER_INODE - get_inline_xattr_addrs(inode)); phys += offset; len = inline_xattr_size(inode); f2fs_put_page(page, 1); flags = FIEMAP_EXTENT_DATA_INLINE | FIEMAP_EXTENT_NOT_ALIGNED; if (!xnid) flags |= FIEMAP_EXTENT_LAST; err = fiemap_fill_next_extent(fieinfo, 0, phys, len, flags); trace_f2fs_fiemap(inode, 0, phys, len, flags, err); if (err || err == 1) return err; } if (xnid) { page = f2fs_grab_cache_page(NODE_MAPPING(sbi), xnid, false); if (!page) return -ENOMEM; err = f2fs_get_node_info(sbi, xnid, &ni); if (err) { f2fs_put_page(page, 1); return err; } phys = blks_to_bytes(inode, ni.blk_addr); len = inode->i_sb->s_blocksize; f2fs_put_page(page, 1); flags = FIEMAP_EXTENT_LAST; } if (phys) { err = fiemap_fill_next_extent(fieinfo, 0, phys, len, flags); trace_f2fs_fiemap(inode, 0, phys, len, flags, err); } return (err < 0 ? err : 0); } static loff_t max_inode_blocks(struct inode *inode) { loff_t result = ADDRS_PER_INODE(inode); loff_t leaf_count = ADDRS_PER_BLOCK(inode); /* two direct node blocks */ result += (leaf_count * 2); /* two indirect node blocks */ leaf_count *= NIDS_PER_BLOCK; result += (leaf_count * 2); /* one double indirect node block */ leaf_count *= NIDS_PER_BLOCK; result += leaf_count; return result; } int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, u64 start, u64 len) { struct f2fs_map_blocks map; sector_t start_blk, last_blk; pgoff_t next_pgofs; u64 logical = 0, phys = 0, size = 0; u32 flags = 0; int ret = 0; bool compr_cluster = false; unsigned int cluster_size = F2FS_I(inode)->i_cluster_size; loff_t maxbytes; if (fieinfo->fi_flags & FIEMAP_FLAG_CACHE) { ret = f2fs_precache_extents(inode); if (ret) return ret; } ret = fiemap_prep(inode, fieinfo, start, &len, FIEMAP_FLAG_XATTR); if (ret) return ret; inode_lock(inode); maxbytes = max_file_blocks(inode) << F2FS_BLKSIZE_BITS; if (start > maxbytes) { ret = -EFBIG; goto out; } if (len > maxbytes || (maxbytes - len) < start) len = maxbytes - start; if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) { ret = f2fs_xattr_fiemap(inode, fieinfo); goto out; } if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode)) { ret = f2fs_inline_data_fiemap(inode, fieinfo, start, len); if (ret != -EAGAIN) goto out; } if (bytes_to_blks(inode, len) == 0) len = blks_to_bytes(inode, 1); start_blk = bytes_to_blks(inode, start); last_blk = bytes_to_blks(inode, start + len - 1); next: memset(&map, 0, sizeof(map)); map.m_lblk = start_blk; map.m_len = bytes_to_blks(inode, len); map.m_next_pgofs = &next_pgofs; map.m_seg_type = NO_CHECK_TYPE; if (compr_cluster) map.m_len = cluster_size - 1; ret = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_FIEMAP); if (ret) goto out; /* HOLE */ if (!(map.m_flags & F2FS_MAP_FLAGS)) { start_blk = next_pgofs; if (blks_to_bytes(inode, start_blk) < blks_to_bytes(inode, max_inode_blocks(inode))) goto prep_next; flags |= FIEMAP_EXTENT_LAST; } if (size) { flags |= FIEMAP_EXTENT_MERGED; if (IS_ENCRYPTED(inode)) flags |= FIEMAP_EXTENT_DATA_ENCRYPTED; ret = fiemap_fill_next_extent(fieinfo, logical, phys, size, flags); trace_f2fs_fiemap(inode, logical, phys, size, flags, ret); if (ret) goto out; size = 0; } if (start_blk > last_blk) goto out; if (compr_cluster) { compr_cluster = false; logical = blks_to_bytes(inode, start_blk - 1); phys = blks_to_bytes(inode, map.m_pblk); size = blks_to_bytes(inode, cluster_size); flags |= FIEMAP_EXTENT_ENCODED; start_blk += cluster_size - 1; if (start_blk > last_blk) goto out; goto prep_next; } if (map.m_pblk == COMPRESS_ADDR) { compr_cluster = true; start_blk++; goto prep_next; } logical = blks_to_bytes(inode, start_blk); phys = blks_to_bytes(inode, map.m_pblk); size = blks_to_bytes(inode, map.m_len); flags = 0; if (map.m_flags & F2FS_MAP_UNWRITTEN) flags = FIEMAP_EXTENT_UNWRITTEN; start_blk += bytes_to_blks(inode, size); prep_next: cond_resched(); if (fatal_signal_pending(current)) ret = -EINTR; else goto next; out: if (ret == 1) ret = 0; inode_unlock(inode); return ret; } static inline loff_t f2fs_readpage_limit(struct inode *inode) { if (IS_ENABLED(CONFIG_FS_VERITY) && (IS_VERITY(inode) || f2fs_verity_in_progress(inode))) return inode->i_sb->s_maxbytes; return i_size_read(inode); } static int f2fs_read_single_page(struct inode *inode, struct page *page, unsigned nr_pages, struct f2fs_map_blocks *map, struct bio **bio_ret, sector_t *last_block_in_bio, bool is_readahead) { struct bio *bio = *bio_ret; const unsigned blocksize = blks_to_bytes(inode, 1); sector_t block_in_file; sector_t last_block; sector_t last_block_in_file; sector_t block_nr; int ret = 0; block_in_file = (sector_t)page_index(page); last_block = block_in_file + nr_pages; last_block_in_file = bytes_to_blks(inode, f2fs_readpage_limit(inode) + blocksize - 1); if (last_block > last_block_in_file) last_block = last_block_in_file; /* just zeroing out page which is beyond EOF */ if (block_in_file >= last_block) goto zero_out; /* * Map blocks using the previous result first. */ if ((map->m_flags & F2FS_MAP_MAPPED) && block_in_file > map->m_lblk && block_in_file < (map->m_lblk + map->m_len)) goto got_it; /* * Then do more f2fs_map_blocks() calls until we are * done with this page. */ map->m_lblk = block_in_file; map->m_len = last_block - block_in_file; ret = f2fs_map_blocks(inode, map, 0, F2FS_GET_BLOCK_DEFAULT); if (ret) goto out; got_it: if ((map->m_flags & F2FS_MAP_MAPPED)) { block_nr = map->m_pblk + block_in_file - map->m_lblk; SetPageMappedToDisk(page); if (!PageUptodate(page) && (!PageSwapCache(page) && !cleancache_get_page(page))) { SetPageUptodate(page); goto confused; } if (!f2fs_is_valid_blkaddr(F2FS_I_SB(inode), block_nr, DATA_GENERIC_ENHANCE_READ)) { ret = -EFSCORRUPTED; goto out; } } else { zero_out: zero_user_segment(page, 0, PAGE_SIZE); if (f2fs_need_verity(inode, page->index) && !fsverity_verify_page(page)) { ret = -EIO; goto out; } if (!PageUptodate(page)) SetPageUptodate(page); unlock_page(page); goto out; } /* * This page will go to BIO. Do we need to send this * BIO off first? */ if (bio && (!page_is_mergeable(F2FS_I_SB(inode), bio, *last_block_in_bio, block_nr) || !f2fs_crypt_mergeable_bio(bio, inode, page->index, NULL))) { submit_and_realloc: __submit_bio(F2FS_I_SB(inode), bio, DATA); bio = NULL; } if (bio == NULL) { bio = f2fs_grab_read_bio(inode, block_nr, nr_pages, is_readahead ? REQ_RAHEAD : 0, page->index, false); if (IS_ERR(bio)) { ret = PTR_ERR(bio); bio = NULL; goto out; } } /* * If the page is under writeback, we need to wait for * its completion to see the correct decrypted data. */ f2fs_wait_on_block_writeback(inode, block_nr); if (bio_add_page(bio, page, blocksize, 0) < blocksize) goto submit_and_realloc; inc_page_count(F2FS_I_SB(inode), F2FS_RD_DATA); f2fs_update_iostat(F2FS_I_SB(inode), FS_DATA_READ_IO, F2FS_BLKSIZE); ClearPageError(page); *last_block_in_bio = block_nr; goto out; confused: if (bio) { __submit_bio(F2FS_I_SB(inode), bio, DATA); bio = NULL; } unlock_page(page); out: *bio_ret = bio; return ret; } #ifdef CONFIG_F2FS_FS_COMPRESSION int f2fs_read_multi_pages(struct compress_ctx *cc, struct bio **bio_ret, unsigned nr_pages, sector_t *last_block_in_bio, bool is_readahead, bool for_write) { struct dnode_of_data dn; struct inode *inode = cc->inode; struct f2fs_sb_info *sbi = F2FS_I_SB(inode); struct bio *bio = *bio_ret; unsigned int start_idx = cc->cluster_idx << cc->log_cluster_size; sector_t last_block_in_file; const unsigned blocksize = blks_to_bytes(inode, 1); struct decompress_io_ctx *dic = NULL; int i; int ret = 0; f2fs_bug_on(sbi, f2fs_cluster_is_empty(cc)); last_block_in_file = bytes_to_blks(inode, f2fs_readpage_limit(inode) + blocksize - 1); /* get rid of pages beyond EOF */ for (i = 0; i < cc->cluster_size; i++) { struct page *page = cc->rpages[i]; if (!page) continue; if ((sector_t)page->index >= last_block_in_file) { zero_user_segment(page, 0, PAGE_SIZE); if (!PageUptodate(page)) SetPageUptodate(page); } else if (!PageUptodate(page)) { continue; } unlock_page(page); cc->rpages[i] = NULL; cc->nr_rpages--; } /* we are done since all pages are beyond EOF */ if (f2fs_cluster_is_empty(cc)) goto out; set_new_dnode(&dn, inode, NULL, NULL, 0); ret = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE); if (ret) goto out; f2fs_bug_on(sbi, dn.data_blkaddr != COMPRESS_ADDR); for (i = 1; i < cc->cluster_size; i++) { block_t blkaddr; blkaddr = data_blkaddr(dn.inode, dn.node_page, dn.ofs_in_node + i); if (!__is_valid_data_blkaddr(blkaddr)) break; if (!f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC)) { ret = -EFAULT; goto out_put_dnode; } cc->nr_cpages++; } /* nothing to decompress */ if (cc->nr_cpages == 0) { ret = 0; goto out_put_dnode; } dic = f2fs_alloc_dic(cc); if (IS_ERR(dic)) { ret = PTR_ERR(dic); goto out_put_dnode; } for (i = 0; i < cc->nr_cpages; i++) { struct page *page = dic->cpages[i]; block_t blkaddr; struct bio_post_read_ctx *ctx; blkaddr = data_blkaddr(dn.inode, dn.node_page, dn.ofs_in_node + i + 1); f2fs_wait_on_block_writeback(inode, blkaddr); if (f2fs_load_compressed_page(sbi, page, blkaddr)) { if (atomic_dec_and_test(&dic->remaining_pages)) f2fs_decompress_cluster(dic); continue; } if (bio && (!page_is_mergeable(sbi, bio, *last_block_in_bio, blkaddr) || !f2fs_crypt_mergeable_bio(bio, inode, page->index, NULL))) { submit_and_realloc: __submit_bio(sbi, bio, DATA); bio = NULL; } if (!bio) { bio = f2fs_grab_read_bio(inode, blkaddr, nr_pages, is_readahead ? REQ_RAHEAD : 0, page->index, for_write); if (IS_ERR(bio)) { ret = PTR_ERR(bio); f2fs_decompress_end_io(dic, ret); f2fs_put_dnode(&dn); *bio_ret = NULL; return ret; } } if (bio_add_page(bio, page, blocksize, 0) < blocksize) goto submit_and_realloc; ctx = bio->bi_private; ctx->enabled_steps |= STEP_DECOMPRESS; refcount_inc(&dic->refcnt); inc_page_count(sbi, F2FS_RD_DATA); f2fs_update_iostat(sbi, FS_DATA_READ_IO, F2FS_BLKSIZE); f2fs_update_iostat(sbi, FS_CDATA_READ_IO, F2FS_BLKSIZE); ClearPageError(page); *last_block_in_bio = blkaddr; } f2fs_put_dnode(&dn); *bio_ret = bio; return 0; out_put_dnode: f2fs_put_dnode(&dn); out: for (i = 0; i < cc->cluster_size; i++) { if (cc->rpages[i]) { ClearPageUptodate(cc->rpages[i]); ClearPageError(cc->rpages[i]); unlock_page(cc->rpages[i]); } } *bio_ret = bio; return ret; } #endif /* * This function was originally taken from fs/mpage.c, and customized for f2fs. * Major change was from block_size == page_size in f2fs by default. */ static int f2fs_mpage_readpages(struct inode *inode, struct readahead_control *rac, struct page *page) { struct bio *bio = NULL; sector_t last_block_in_bio = 0; struct f2fs_map_blocks map; #ifdef CONFIG_F2FS_FS_COMPRESSION struct compress_ctx cc = { .inode = inode, .log_cluster_size = F2FS_I(inode)->i_log_cluster_size, .cluster_size = F2FS_I(inode)->i_cluster_size, .cluster_idx = NULL_CLUSTER, .rpages = NULL, .cpages = NULL, .nr_rpages = 0, .nr_cpages = 0, }; #endif unsigned nr_pages = rac ? readahead_count(rac) : 1; unsigned max_nr_pages = nr_pages; int ret = 0; map.m_pblk = 0; map.m_lblk = 0; map.m_len = 0; map.m_flags = 0; map.m_next_pgofs = NULL; map.m_next_extent = NULL; map.m_seg_type = NO_CHECK_TYPE; map.m_may_create = false; for (; nr_pages; nr_pages--) { if (rac) { page = readahead_page(rac); prefetchw(&page->flags); } #ifdef CONFIG_F2FS_FS_COMPRESSION if (f2fs_compressed_file(inode)) { /* there are remained comressed pages, submit them */ if (!f2fs_cluster_can_merge_page(&cc, page->index)) { ret = f2fs_read_multi_pages(&cc, &bio, max_nr_pages, &last_block_in_bio, rac != NULL, false); f2fs_destroy_compress_ctx(&cc, false); if (ret) goto set_error_page; } ret = f2fs_is_compressed_cluster(inode, page->index); if (ret < 0) goto set_error_page; else if (!ret) goto read_single_page; ret = f2fs_init_compress_ctx(&cc); if (ret) goto set_error_page; f2fs_compress_ctx_add_page(&cc, page); goto next_page; } read_single_page: #endif ret = f2fs_read_single_page(inode, page, max_nr_pages, &map, &bio, &last_block_in_bio, rac); if (ret) { #ifdef CONFIG_F2FS_FS_COMPRESSION set_error_page: #endif SetPageError(page); zero_user_segment(page, 0, PAGE_SIZE); unlock_page(page); } #ifdef CONFIG_F2FS_FS_COMPRESSION next_page: #endif if (rac) put_page(page); #ifdef CONFIG_F2FS_FS_COMPRESSION if (f2fs_compressed_file(inode)) { /* last page */ if (nr_pages == 1 && !f2fs_cluster_is_empty(&cc)) { ret = f2fs_read_multi_pages(&cc, &bio, max_nr_pages, &last_block_in_bio, rac != NULL, false); f2fs_destroy_compress_ctx(&cc, false); } } #endif } if (bio) __submit_bio(F2FS_I_SB(inode), bio, DATA); return ret; } static int f2fs_read_data_page(struct file *file, struct page *page) { struct inode *inode = page_file_mapping(page)->host; int ret = -EAGAIN; trace_f2fs_readpage(page, DATA); if (!f2fs_is_compress_backend_ready(inode)) { unlock_page(page); return -EOPNOTSUPP; } /* If the file has inline data, try to read it directly */ if (f2fs_has_inline_data(inode)) ret = f2fs_read_inline_data(inode, page); if (ret == -EAGAIN) ret = f2fs_mpage_readpages(inode, NULL, page); return ret; } static void f2fs_readahead(struct readahead_control *rac) { struct inode *inode = rac->mapping->host; trace_f2fs_readpages(inode, readahead_index(rac), readahead_count(rac)); if (!f2fs_is_compress_backend_ready(inode)) return; /* If the file has inline data, skip readpages */ if (f2fs_has_inline_data(inode)) return; f2fs_mpage_readpages(inode, rac, NULL); } int f2fs_encrypt_one_page(struct f2fs_io_info *fio) { struct inode *inode = fio->page->mapping->host; struct page *mpage, *page; gfp_t gfp_flags = GFP_NOFS; if (!f2fs_encrypted_file(inode)) return 0; page = fio->compressed_page ? fio->compressed_page : fio->page; /* wait for GCed page writeback via META_MAPPING */ f2fs_wait_on_block_writeback(inode, fio->old_blkaddr); if (fscrypt_inode_uses_inline_crypto(inode)) return 0; retry_encrypt: fio->encrypted_page = fscrypt_encrypt_pagecache_blocks(page, PAGE_SIZE, 0, gfp_flags); if (IS_ERR(fio->encrypted_page)) { /* flush pending IOs and wait for a while in the ENOMEM case */ if (PTR_ERR(fio->encrypted_page) == -ENOMEM) { f2fs_flush_merged_writes(fio->sbi); congestion_wait(BLK_RW_ASYNC, DEFAULT_IO_TIMEOUT); gfp_flags |= __GFP_NOFAIL; goto retry_encrypt; } return PTR_ERR(fio->encrypted_page); } mpage = find_lock_page(META_MAPPING(fio->sbi), fio->old_blkaddr); if (mpage) { if (PageUptodate(mpage)) memcpy(page_address(mpage), page_address(fio->encrypted_page), PAGE_SIZE); f2fs_put_page(mpage, 1); } return 0; } static inline bool check_inplace_update_policy(struct inode *inode, struct f2fs_io_info *fio) { struct f2fs_sb_info *sbi = F2FS_I_SB(inode); unsigned int policy = SM_I(sbi)->ipu_policy; if (policy & (0x1 << F2FS_IPU_FORCE)) return true; if (policy & (0x1 << F2FS_IPU_SSR) && f2fs_need_SSR(sbi)) return true; if (policy & (0x1 << F2FS_IPU_UTIL) && utilization(sbi) > SM_I(sbi)->min_ipu_util) return true; if (policy & (0x1 << F2FS_IPU_SSR_UTIL) && f2fs_need_SSR(sbi) && utilization(sbi) > SM_I(sbi)->min_ipu_util) return true; /* * IPU for rewrite async pages */ if (policy & (0x1 << F2FS_IPU_ASYNC) && fio && fio->op == REQ_OP_WRITE && !(fio->op_flags & REQ_SYNC) && !IS_ENCRYPTED(inode)) return true; /* this is only set during fdatasync */ if (policy & (0x1 << F2FS_IPU_FSYNC) && is_inode_flag_set(inode, FI_NEED_IPU)) return true; if (unlikely(fio && is_sbi_flag_set(sbi, SBI_CP_DISABLED) && !f2fs_is_checkpointed_data(sbi, fio->old_blkaddr))) return true; return false; } bool f2fs_should_update_inplace(struct inode *inode, struct f2fs_io_info *fio) { /* swap file is migrating in aligned write mode */ if (is_inode_flag_set(inode, FI_ALIGNED_WRITE)) return false; if (f2fs_is_pinned_file(inode)) return true; /* if this is cold file, we should overwrite to avoid fragmentation */ if (file_is_cold(inode)) return true; return check_inplace_update_policy(inode, fio); } bool f2fs_should_update_outplace(struct inode *inode, struct f2fs_io_info *fio) { struct f2fs_sb_info *sbi = F2FS_I_SB(inode); if (f2fs_lfs_mode(sbi)) return true; if (S_ISDIR(inode->i_mode)) return true; if (IS_NOQUOTA(inode)) return true; if (f2fs_is_atomic_file(inode)) return true; if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) return true; /* swap file is migrating in aligned write mode */ if (is_inode_flag_set(inode, FI_ALIGNED_WRITE)) return true; if (fio) { if (page_private_gcing(fio->page)) return true; if (page_private_dummy(fio->page)) return true; if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED) && f2fs_is_checkpointed_data(sbi, fio->old_blkaddr))) return true; } return false; } static inline bool need_inplace_update(struct f2fs_io_info *fio) { struct inode *inode = fio->page->mapping->host; if (f2fs_should_update_outplace(inode, fio)) return false; return f2fs_should_update_inplace(inode, fio); } int f2fs_do_write_data_page(struct f2fs_io_info *fio) { struct page *page = fio->page; struct inode *inode = page->mapping->host; struct dnode_of_data dn; struct extent_info ei = {0,0,0}; struct node_info ni; bool ipu_force = false; int err = 0; set_new_dnode(&dn, inode, NULL, NULL, 0); if (need_inplace_update(fio) && f2fs_lookup_extent_cache(inode, page->index, &ei)) { fio->old_blkaddr = ei.blk + page->index - ei.fofs; if (!f2fs_is_valid_blkaddr(fio->sbi, fio->old_blkaddr, DATA_GENERIC_ENHANCE)) return -EFSCORRUPTED; ipu_force = true; fio->need_lock = LOCK_DONE; goto got_it; } /* Deadlock due to between page->lock and f2fs_lock_op */ if (fio->need_lock == LOCK_REQ && !f2fs_trylock_op(fio->sbi)) return -EAGAIN; err = f2fs_get_dnode_of_data(&dn, page->index, LOOKUP_NODE); if (err) goto out; fio->old_blkaddr = dn.data_blkaddr; /* This page is already truncated */ if (fio->old_blkaddr == NULL_ADDR) { ClearPageUptodate(page); clear_page_private_gcing(page); goto out_writepage; } got_it: if (__is_valid_data_blkaddr(fio->old_blkaddr) && !f2fs_is_valid_blkaddr(fio->sbi, fio->old_blkaddr, DATA_GENERIC_ENHANCE)) { err = -EFSCORRUPTED; goto out_writepage; } /* * If current allocation needs SSR, * it had better in-place writes for updated data. */ if (ipu_force || (__is_valid_data_blkaddr(fio->old_blkaddr) && need_inplace_update(fio))) { err = f2fs_encrypt_one_page(fio); if (err) goto out_writepage; set_page_writeback(page); ClearPageError(page); f2fs_put_dnode(&dn); if (fio->need_lock == LOCK_REQ) f2fs_unlock_op(fio->sbi); err = f2fs_inplace_write_data(fio); if (err) { if (fscrypt_inode_uses_fs_layer_crypto(inode)) fscrypt_finalize_bounce_page(&fio->encrypted_page); if (PageWriteback(page)) end_page_writeback(page); } else { set_inode_flag(inode, FI_UPDATE_WRITE); } trace_f2fs_do_write_data_page(fio->page, IPU); return err; } if (fio->need_lock == LOCK_RETRY) { if (!f2fs_trylock_op(fio->sbi)) { err = -EAGAIN; goto out_writepage; } fio->need_lock = LOCK_REQ; } err = f2fs_get_node_info(fio->sbi, dn.nid, &ni); if (err) goto out_writepage; fio->version = ni.version; err = f2fs_encrypt_one_page(fio); if (err) goto out_writepage; set_page_writeback(page); ClearPageError(page); if (fio->compr_blocks && fio->old_blkaddr == COMPRESS_ADDR) f2fs_i_compr_blocks_update(inode, fio->compr_blocks - 1, false); /* LFS mode write path */ f2fs_outplace_write_data(&dn, fio); trace_f2fs_do_write_data_page(page, OPU); set_inode_flag(inode, FI_APPEND_WRITE); if (page->index == 0) set_inode_flag(inode, FI_FIRST_BLOCK_WRITTEN); out_writepage: f2fs_put_dnode(&dn); out: if (fio->need_lock == LOCK_REQ) f2fs_unlock_op(fio->sbi); return err; } int f2fs_write_single_data_page(struct page *page, int *submitted, struct bio **bio, sector_t *last_block, struct writeback_control *wbc, enum iostat_type io_type, int compr_blocks, bool allow_balance) { struct inode *inode = page->mapping->host; struct f2fs_sb_info *sbi = F2FS_I_SB(inode); loff_t i_size = i_size_read(inode); const pgoff_t end_index = ((unsigned long long)i_size) >> PAGE_SHIFT; loff_t psize = (loff_t)(page->index + 1) << PAGE_SHIFT; unsigned offset = 0; bool need_balance_fs = false; int err = 0; struct f2fs_io_info fio = { .sbi = sbi, .ino = inode->i_ino, .type = DATA, .op = REQ_OP_WRITE, .op_flags = wbc_to_write_flags(wbc), .old_blkaddr = NULL_ADDR, .page = page, .encrypted_page = NULL, .submitted = false, .compr_blocks = compr_blocks, .need_lock = LOCK_RETRY, .io_type = io_type, .io_wbc = wbc, .bio = bio, .last_block = last_block, }; trace_f2fs_writepage(page, DATA); /* we should bypass data pages to proceed the kworkder jobs */ if (unlikely(f2fs_cp_error(sbi))) { mapping_set_error(page->mapping, -EIO); /* * don't drop any dirty dentry pages for keeping lastest * directory structure. */ if (S_ISDIR(inode->i_mode)) goto redirty_out; goto out; } if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) goto redirty_out; if (page->index < end_index || f2fs_verity_in_progress(inode) || compr_blocks) goto write; /* * If the offset is out-of-range of file size, * this page does not have to be written to disk. */ offset = i_size & (PAGE_SIZE - 1); if ((page->index >= end_index + 1) || !offset) goto out; zero_user_segment(page, offset, PAGE_SIZE); write: if (f2fs_is_drop_cache(inode)) goto out; /* we should not write 0'th page having journal header */ if (f2fs_is_volatile_file(inode) && (!page->index || (!wbc->for_reclaim && f2fs_available_free_memory(sbi, BASE_CHECK)))) goto redirty_out; /* Dentry/quota blocks are controlled by checkpoint */ if (S_ISDIR(inode->i_mode) || IS_NOQUOTA(inode)) { /* * We need to wait for node_write to avoid block allocation during * checkpoint. This can only happen to quota writes which can cause * the below discard race condition. */ if (IS_NOQUOTA(inode)) down_read(&sbi->node_write); fio.need_lock = LOCK_DONE; err = f2fs_do_write_data_page(&fio); if (IS_NOQUOTA(inode)) up_read(&sbi->node_write); goto done; } if (!wbc->for_reclaim) need_balance_fs = true; else if (has_not_enough_free_secs(sbi, 0, 0)) goto redirty_out; else set_inode_flag(inode, FI_HOT_DATA); err = -EAGAIN; if (f2fs_has_inline_data(inode)) { err = f2fs_write_inline_data(inode, page); if (!err) goto out; } if (err == -EAGAIN) { err = f2fs_do_write_data_page(&fio); if (err == -EAGAIN) { fio.need_lock = LOCK_REQ; err = f2fs_do_write_data_page(&fio); } } if (err) { file_set_keep_isize(inode); } else { spin_lock(&F2FS_I(inode)->i_size_lock); if (F2FS_I(inode)->last_disk_size < psize) F2FS_I(inode)->last_disk_size = psize; spin_unlock(&F2FS_I(inode)->i_size_lock); } done: if (err && err != -ENOENT) goto redirty_out; out: inode_dec_dirty_pages(inode); if (err) { ClearPageUptodate(page); clear_page_private_gcing(page); } if (wbc->for_reclaim) { f2fs_submit_merged_write_cond(sbi, NULL, page, 0, DATA); clear_inode_flag(inode, FI_HOT_DATA); f2fs_remove_dirty_inode(inode); submitted = NULL; } unlock_page(page); if (!S_ISDIR(inode->i_mode) && !IS_NOQUOTA(inode) && !F2FS_I(inode)->cp_task && allow_balance) f2fs_balance_fs(sbi, need_balance_fs); if (unlikely(f2fs_cp_error(sbi))) { f2fs_submit_merged_write(sbi, DATA); f2fs_submit_merged_ipu_write(sbi, bio, NULL); submitted = NULL; } if (submitted) *submitted = fio.submitted ? 1 : 0; return 0; redirty_out: redirty_page_for_writepage(wbc, page); /* * pageout() in MM traslates EAGAIN, so calls handle_write_error() * -> mapping_set_error() -> set_bit(AS_EIO, ...). * file_write_and_wait_range() will see EIO error, which is critical * to return value of fsync() followed by atomic_write failure to user. */ if (!err || wbc->for_reclaim) return AOP_WRITEPAGE_ACTIVATE; unlock_page(page); return err; } static int f2fs_write_data_page(struct page *page, struct writeback_control *wbc) { #ifdef CONFIG_F2FS_FS_COMPRESSION struct inode *inode = page->mapping->host; if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) goto out; if (f2fs_compressed_file(inode)) { if (f2fs_is_compressed_cluster(inode, page->index)) { redirty_page_for_writepage(wbc, page); return AOP_WRITEPAGE_ACTIVATE; } } out: #endif return f2fs_write_single_data_page(page, NULL, NULL, NULL, wbc, FS_DATA_IO, 0, true); } /* * This function was copied from write_cche_pages from mm/page-writeback.c. * The major change is making write step of cold data page separately from * warm/hot data page. */ static int f2fs_write_cache_pages(struct address_space *mapping, struct writeback_control *wbc, enum iostat_type io_type) { int ret = 0; int done = 0, retry = 0; struct pagevec pvec; struct f2fs_sb_info *sbi = F2FS_M_SB(mapping); struct bio *bio = NULL; sector_t last_block; #ifdef CONFIG_F2FS_FS_COMPRESSION struct inode *inode = mapping->host; struct compress_ctx cc = { .inode = inode, .log_cluster_size = F2FS_I(inode)->i_log_cluster_size, .cluster_size = F2FS_I(inode)->i_cluster_size, .cluster_idx = NULL_CLUSTER, .rpages = NULL, .nr_rpages = 0, .cpages = NULL, .rbuf = NULL, .cbuf = NULL, .rlen = PAGE_SIZE * F2FS_I(inode)->i_cluster_size, .private = NULL, }; #endif int nr_pages; pgoff_t index; pgoff_t end; /* Inclusive */ pgoff_t done_index; int range_whole = 0; xa_mark_t tag; int nwritten = 0; int submitted = 0; int i; pagevec_init(&pvec); if (get_dirty_pages(mapping->host) <= SM_I(F2FS_M_SB(mapping))->min_hot_blocks) set_inode_flag(mapping->host, FI_HOT_DATA); else clear_inode_flag(mapping->host, FI_HOT_DATA); if (wbc->range_cyclic) { index = mapping->writeback_index; /* prev offset */ end = -1; } else { index = wbc->range_start >> PAGE_SHIFT; end = wbc->range_end >> PAGE_SHIFT; if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) range_whole = 1; } if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) tag = PAGECACHE_TAG_TOWRITE; else tag = PAGECACHE_TAG_DIRTY; retry: retry = 0; if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) tag_pages_for_writeback(mapping, index, end); done_index = index; while (!done && !retry && (index <= end)) { nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end, tag); if (nr_pages == 0) break; for (i = 0; i < nr_pages; i++) { struct page *page = pvec.pages[i]; bool need_readd; readd: need_readd = false; #ifdef CONFIG_F2FS_FS_COMPRESSION if (f2fs_compressed_file(inode)) { ret = f2fs_init_compress_ctx(&cc); if (ret) { done = 1; break; } if (!f2fs_cluster_can_merge_page(&cc, page->index)) { ret = f2fs_write_multi_pages(&cc, &submitted, wbc, io_type); if (!ret) need_readd = true; goto result; } if (unlikely(f2fs_cp_error(sbi))) goto lock_page; if (f2fs_cluster_is_empty(&cc)) { void *fsdata = NULL; struct page *pagep; int ret2; ret2 = f2fs_prepare_compress_overwrite( inode, &pagep, page->index, &fsdata); if (ret2 < 0) { ret = ret2; done = 1; break; } else if (ret2 && !f2fs_compress_write_end(inode, fsdata, page->index, 1)) { retry = 1; break; } } else { goto lock_page; } } #endif /* give a priority to WB_SYNC threads */ if (atomic_read(&sbi->wb_sync_req[DATA]) && wbc->sync_mode == WB_SYNC_NONE) { done = 1; break; } #ifdef CONFIG_F2FS_FS_COMPRESSION lock_page: #endif done_index = page->index; retry_write: lock_page(page); if (unlikely(page->mapping != mapping)) { continue_unlock: unlock_page(page); continue; } if (!PageDirty(page)) { /* someone wrote it for us */ goto continue_unlock; } if (PageWriteback(page)) { if (wbc->sync_mode != WB_SYNC_NONE) f2fs_wait_on_page_writeback(page, DATA, true, true); else goto continue_unlock; } if (!clear_page_dirty_for_io(page)) goto continue_unlock; #ifdef CONFIG_F2FS_FS_COMPRESSION if (f2fs_compressed_file(inode)) { get_page(page); f2fs_compress_ctx_add_page(&cc, page); continue; } #endif ret = f2fs_write_single_data_page(page, &submitted, &bio, &last_block, wbc, io_type, 0, true); if (ret == AOP_WRITEPAGE_ACTIVATE) unlock_page(page); #ifdef CONFIG_F2FS_FS_COMPRESSION result: #endif nwritten += submitted; wbc->nr_to_write -= submitted; if (unlikely(ret)) { /* * keep nr_to_write, since vfs uses this to * get # of written pages. */ if (ret == AOP_WRITEPAGE_ACTIVATE) { ret = 0; goto next; } else if (ret == -EAGAIN) { ret = 0; if (wbc->sync_mode == WB_SYNC_ALL) { cond_resched(); congestion_wait(BLK_RW_ASYNC, DEFAULT_IO_TIMEOUT); goto retry_write; } goto next; } done_index = page->index + 1; done = 1; break; } if (wbc->nr_to_write <= 0 && wbc->sync_mode == WB_SYNC_NONE) { done = 1; break; } next: if (need_readd) goto readd; } pagevec_release(&pvec); cond_resched(); } #ifdef CONFIG_F2FS_FS_COMPRESSION /* flush remained pages in compress cluster */ if (f2fs_compressed_file(inode) && !f2fs_cluster_is_empty(&cc)) { ret = f2fs_write_multi_pages(&cc, &submitted, wbc, io_type); nwritten += submitted; wbc->nr_to_write -= submitted; if (ret) { done = 1; retry = 0; } } if (f2fs_compressed_file(inode)) f2fs_destroy_compress_ctx(&cc, false); #endif if (retry) { index = 0; end = -1; goto retry; } if (wbc->range_cyclic && !done) done_index = 0; if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0)) mapping->writeback_index = done_index; if (nwritten) f2fs_submit_merged_write_cond(F2FS_M_SB(mapping), mapping->host, NULL, 0, DATA); /* submit cached bio of IPU write */ if (bio) f2fs_submit_merged_ipu_write(sbi, &bio, NULL); return ret; } static inline bool __should_serialize_io(struct inode *inode, struct writeback_control *wbc) { /* to avoid deadlock in path of data flush */ if (F2FS_I(inode)->cp_task) return false; if (!S_ISREG(inode->i_mode)) return false; if (IS_NOQUOTA(inode)) return false; if (f2fs_need_compress_data(inode)) return true; if (wbc->sync_mode != WB_SYNC_ALL) return true; if (get_dirty_pages(inode) >= SM_I(F2FS_I_SB(inode))->min_seq_blocks) return true; return false; } static int __f2fs_write_data_pages(struct address_space *mapping, struct writeback_control *wbc, enum iostat_type io_type) { struct inode *inode = mapping->host; struct f2fs_sb_info *sbi = F2FS_I_SB(inode); struct blk_plug plug; int ret; bool locked = false; /* deal with chardevs and other special file */ if (!mapping->a_ops->writepage) return 0; /* skip writing if there is no dirty page in this inode */ if (!get_dirty_pages(inode) && wbc->sync_mode == WB_SYNC_NONE) return 0; /* during POR, we don't need to trigger writepage at all. */ if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) goto skip_write; if ((S_ISDIR(inode->i_mode) || IS_NOQUOTA(inode)) && wbc->sync_mode == WB_SYNC_NONE && get_dirty_pages(inode) < nr_pages_to_skip(sbi, DATA) && f2fs_available_free_memory(sbi, DIRTY_DENTS)) goto skip_write; /* skip writing during file defragment */ if (is_inode_flag_set(inode, FI_DO_DEFRAG)) goto skip_write; trace_f2fs_writepages(mapping->host, wbc, DATA); /* to avoid spliting IOs due to mixed WB_SYNC_ALL and WB_SYNC_NONE */ if (wbc->sync_mode == WB_SYNC_ALL) atomic_inc(&sbi->wb_sync_req[DATA]); else if (atomic_read(&sbi->wb_sync_req[DATA])) goto skip_write; if (__should_serialize_io(inode, wbc)) { mutex_lock(&sbi->writepages); locked = true; } blk_start_plug(&plug); ret = f2fs_write_cache_pages(mapping, wbc, io_type); blk_finish_plug(&plug); if (locked) mutex_unlock(&sbi->writepages); if (wbc->sync_mode == WB_SYNC_ALL) atomic_dec(&sbi->wb_sync_req[DATA]); /* * if some pages were truncated, we cannot guarantee its mapping->host * to detect pending bios. */ f2fs_remove_dirty_inode(inode); return ret; skip_write: wbc->pages_skipped += get_dirty_pages(inode); trace_f2fs_writepages(mapping->host, wbc, DATA); return 0; } static int f2fs_write_data_pages(struct address_space *mapping, struct writeback_control *wbc) { struct inode *inode = mapping->host; return __f2fs_write_data_pages(mapping, wbc, F2FS_I(inode)->cp_task == current ? FS_CP_DATA_IO : FS_DATA_IO); } static void f2fs_write_failed(struct inode *inode, loff_t to) { loff_t i_size = i_size_read(inode); if (IS_NOQUOTA(inode)) return; /* In the fs-verity case, f2fs_end_enable_verity() does the truncate */ if (to > i_size && !f2fs_verity_in_progress(inode)) { down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); down_write(&F2FS_I(inode)->i_mmap_sem); truncate_pagecache(inode, i_size); f2fs_truncate_blocks(inode, i_size, true); up_write(&F2FS_I(inode)->i_mmap_sem); up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); } } static int prepare_write_begin(struct f2fs_sb_info *sbi, struct page *page, loff_t pos, unsigned len, block_t *blk_addr, bool *node_changed) { struct inode *inode = page->mapping->host; pgoff_t index = page->index; struct dnode_of_data dn; struct page *ipage; bool locked = false; struct extent_info ei = {0,0,0}; int err = 0; int flag; /* * we already allocated all the blocks, so we don't need to get * the block addresses when there is no need to fill the page. */ if (!f2fs_has_inline_data(inode) && len == PAGE_SIZE && !is_inode_flag_set(inode, FI_NO_PREALLOC) && !f2fs_verity_in_progress(inode)) return 0; /* f2fs_lock_op avoids race between write CP and convert_inline_page */ if (f2fs_has_inline_data(inode) && pos + len > MAX_INLINE_DATA(inode)) flag = F2FS_GET_BLOCK_DEFAULT; else flag = F2FS_GET_BLOCK_PRE_AIO; if (f2fs_has_inline_data(inode) || (pos & PAGE_MASK) >= i_size_read(inode)) { f2fs_do_map_lock(sbi, flag, true); locked = true; } restart: /* check inline_data */ ipage = f2fs_get_node_page(sbi, inode->i_ino); if (IS_ERR(ipage)) { err = PTR_ERR(ipage); goto unlock_out; } set_new_dnode(&dn, inode, ipage, ipage, 0); if (f2fs_has_inline_data(inode)) { if (pos + len <= MAX_INLINE_DATA(inode)) { f2fs_do_read_inline_data(page, ipage); set_inode_flag(inode, FI_DATA_EXIST); if (inode->i_nlink) set_page_private_inline(ipage); } else { err = f2fs_convert_inline_page(&dn, page); if (err) goto out; if (dn.data_blkaddr == NULL_ADDR) err = f2fs_get_block(&dn, index); } } else if (locked) { err = f2fs_get_block(&dn, index); } else { if (f2fs_lookup_extent_cache(inode, index, &ei)) { dn.data_blkaddr = ei.blk + index - ei.fofs; } else { /* hole case */ err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE); if (err || dn.data_blkaddr == NULL_ADDR) { f2fs_put_dnode(&dn); f2fs_do_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO, true); WARN_ON(flag != F2FS_GET_BLOCK_PRE_AIO); locked = true; goto restart; } } } /* convert_inline_page can make node_changed */ *blk_addr = dn.data_blkaddr; *node_changed = dn.node_changed; out: f2fs_put_dnode(&dn); unlock_out: if (locked) f2fs_do_map_lock(sbi, flag, false); return err; } static int f2fs_write_begin(struct file *file, struct address_space *mapping, loff_t pos, unsigned len, unsigned flags, struct page **pagep, void **fsdata) { struct inode *inode = mapping->host; struct f2fs_sb_info *sbi = F2FS_I_SB(inode); struct page *page = NULL; pgoff_t index = ((unsigned long long) pos) >> PAGE_SHIFT; bool need_balance = false, drop_atomic = false; block_t blkaddr = NULL_ADDR; int err = 0; trace_f2fs_write_begin(inode, pos, len, flags); if (!f2fs_is_checkpoint_ready(sbi)) { err = -ENOSPC; goto fail; } if ((f2fs_is_atomic_file(inode) && !f2fs_available_free_memory(sbi, INMEM_PAGES)) || is_inode_flag_set(inode, FI_ATOMIC_REVOKE_REQUEST)) { err = -ENOMEM; drop_atomic = true; goto fail; } /* * We should check this at this moment to avoid deadlock on inode page * and #0 page. The locking rule for inline_data conversion should be: * lock_page(page #0) -> lock_page(inode_page) */ if (index != 0) { err = f2fs_convert_inline_inode(inode); if (err) goto fail; } #ifdef CONFIG_F2FS_FS_COMPRESSION if (f2fs_compressed_file(inode)) { int ret; *fsdata = NULL; ret = f2fs_prepare_compress_overwrite(inode, pagep, index, fsdata); if (ret < 0) { err = ret; goto fail; } else if (ret) { return 0; } } #endif repeat: /* * Do not use grab_cache_page_write_begin() to avoid deadlock due to * wait_for_stable_page. Will wait that below with our IO control. */ page = f2fs_pagecache_get_page(mapping, index, FGP_LOCK | FGP_WRITE | FGP_CREAT, GFP_NOFS); if (!page) { err = -ENOMEM; goto fail; } /* TODO: cluster can be compressed due to race with .writepage */ *pagep = page; err = prepare_write_begin(sbi, page, pos, len, &blkaddr, &need_balance); if (err) goto fail; if (need_balance && !IS_NOQUOTA(inode) && has_not_enough_free_secs(sbi, 0, 0)) { unlock_page(page); f2fs_balance_fs(sbi, true); lock_page(page); if (page->mapping != mapping) { /* The page got truncated from under us */ f2fs_put_page(page, 1); goto repeat; } } f2fs_wait_on_page_writeback(page, DATA, false, true); if (len == PAGE_SIZE || PageUptodate(page)) return 0; if (!(pos & (PAGE_SIZE - 1)) && (pos + len) >= i_size_read(inode) && !f2fs_verity_in_progress(inode)) { zero_user_segment(page, len, PAGE_SIZE); return 0; } if (blkaddr == NEW_ADDR) { zero_user_segment(page, 0, PAGE_SIZE); SetPageUptodate(page); } else { if (!f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE_READ)) { err = -EFSCORRUPTED; goto fail; } err = f2fs_submit_page_read(inode, page, blkaddr, 0, true); if (err) goto fail; lock_page(page); if (unlikely(page->mapping != mapping)) { f2fs_put_page(page, 1); goto repeat; } if (unlikely(!PageUptodate(page))) { err = -EIO; goto fail; } } return 0; fail: f2fs_put_page(page, 1); f2fs_write_failed(inode, pos + len); if (drop_atomic) f2fs_drop_inmem_pages_all(sbi, false); return err; } static int f2fs_write_end(struct file *file, struct address_space *mapping, loff_t pos, unsigned len, unsigned copied, struct page *page, void *fsdata) { struct inode *inode = page->mapping->host; trace_f2fs_write_end(inode, pos, len, copied); /* * This should be come from len == PAGE_SIZE, and we expect copied * should be PAGE_SIZE. Otherwise, we treat it with zero copied and * let generic_perform_write() try to copy data again through copied=0. */ if (!PageUptodate(page)) { if (unlikely(copied != len)) copied = 0; else SetPageUptodate(page); } #ifdef CONFIG_F2FS_FS_COMPRESSION /* overwrite compressed file */ if (f2fs_compressed_file(inode) && fsdata) { f2fs_compress_write_end(inode, fsdata, page->index, copied); f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); if (pos + copied > i_size_read(inode) && !f2fs_verity_in_progress(inode)) f2fs_i_size_write(inode, pos + copied); return copied; } #endif if (!copied) goto unlock_out; set_page_dirty(page); if (pos + copied > i_size_read(inode) && !f2fs_verity_in_progress(inode)) f2fs_i_size_write(inode, pos + copied); unlock_out: f2fs_put_page(page, 1); f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); return copied; } static int check_direct_IO(struct inode *inode, struct iov_iter *iter, loff_t offset) { unsigned i_blkbits = READ_ONCE(inode->i_blkbits); unsigned blkbits = i_blkbits; unsigned blocksize_mask = (1 << blkbits) - 1; unsigned long align = offset | iov_iter_alignment(iter); struct block_device *bdev = inode->i_sb->s_bdev; if (iov_iter_rw(iter) == READ && offset >= i_size_read(inode)) return 1; if (align & blocksize_mask) { if (bdev) blkbits = blksize_bits(bdev_logical_block_size(bdev)); blocksize_mask = (1 << blkbits) - 1; if (align & blocksize_mask) return -EINVAL; return 1; } return 0; } static void f2fs_dio_end_io(struct bio *bio) { struct f2fs_private_dio *dio = bio->bi_private; dec_page_count(F2FS_I_SB(dio->inode), dio->write ? F2FS_DIO_WRITE : F2FS_DIO_READ); bio->bi_private = dio->orig_private; bio->bi_end_io = dio->orig_end_io; kfree(dio); bio_endio(bio); } static void f2fs_dio_submit_bio(struct bio *bio, struct inode *inode, loff_t file_offset) { struct f2fs_private_dio *dio; bool write = (bio_op(bio) == REQ_OP_WRITE); dio = f2fs_kzalloc(F2FS_I_SB(inode), sizeof(struct f2fs_private_dio), GFP_NOFS); if (!dio) goto out; dio->inode = inode; dio->orig_end_io = bio->bi_end_io; dio->orig_private = bio->bi_private; dio->write = write; bio->bi_end_io = f2fs_dio_end_io; bio->bi_private = dio; inc_page_count(F2FS_I_SB(inode), write ? F2FS_DIO_WRITE : F2FS_DIO_READ); submit_bio(bio); return; out: bio->bi_status = BLK_STS_IOERR; bio_endio(bio); } static ssize_t f2fs_direct_IO(struct kiocb *iocb, struct iov_iter *iter) { struct address_space *mapping = iocb->ki_filp->f_mapping; struct inode *inode = mapping->host; struct f2fs_sb_info *sbi = F2FS_I_SB(inode); struct f2fs_inode_info *fi = F2FS_I(inode); size_t count = iov_iter_count(iter); loff_t offset = iocb->ki_pos; int rw = iov_iter_rw(iter); int err; enum rw_hint hint = iocb->ki_hint; int whint_mode = F2FS_OPTION(sbi).whint_mode; bool do_opu; err = check_direct_IO(inode, iter, offset); if (err) return err < 0 ? err : 0; if (f2fs_force_buffered_io(inode, iocb, iter)) return 0; do_opu = rw == WRITE && f2fs_lfs_mode(sbi); trace_f2fs_direct_IO_enter(inode, offset, count, rw); if (rw == WRITE && whint_mode == WHINT_MODE_OFF) iocb->ki_hint = WRITE_LIFE_NOT_SET; if (iocb->ki_flags & IOCB_NOWAIT) { if (!down_read_trylock(&fi->i_gc_rwsem[rw])) { iocb->ki_hint = hint; err = -EAGAIN; goto out; } if (do_opu && !down_read_trylock(&fi->i_gc_rwsem[READ])) { up_read(&fi->i_gc_rwsem[rw]); iocb->ki_hint = hint; err = -EAGAIN; goto out; } } else { down_read(&fi->i_gc_rwsem[rw]); if (do_opu) down_read(&fi->i_gc_rwsem[READ]); } err = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev, iter, rw == WRITE ? get_data_block_dio_write : get_data_block_dio, NULL, f2fs_dio_submit_bio, rw == WRITE ? DIO_LOCKING | DIO_SKIP_HOLES : DIO_SKIP_HOLES); if (do_opu) up_read(&fi->i_gc_rwsem[READ]); up_read(&fi->i_gc_rwsem[rw]); if (rw == WRITE) { if (whint_mode == WHINT_MODE_OFF) iocb->ki_hint = hint; if (err > 0) { f2fs_update_iostat(F2FS_I_SB(inode), APP_DIRECT_IO, err); if (!do_opu) set_inode_flag(inode, FI_UPDATE_WRITE); } else if (err == -EIOCBQUEUED) { f2fs_update_iostat(F2FS_I_SB(inode), APP_DIRECT_IO, count - iov_iter_count(iter)); } else if (err < 0) { f2fs_write_failed(inode, offset + count); } } else { if (err > 0) f2fs_update_iostat(sbi, APP_DIRECT_READ_IO, err); else if (err == -EIOCBQUEUED) f2fs_update_iostat(F2FS_I_SB(inode), APP_DIRECT_READ_IO, count - iov_iter_count(iter)); } out: trace_f2fs_direct_IO_exit(inode, offset, count, rw, err); return err; } void f2fs_invalidate_page(struct page *page, unsigned int offset, unsigned int length) { struct inode *inode = page->mapping->host; struct f2fs_sb_info *sbi = F2FS_I_SB(inode); if (inode->i_ino >= F2FS_ROOT_INO(sbi) && (offset % PAGE_SIZE || length != PAGE_SIZE)) return; if (PageDirty(page)) { if (inode->i_ino == F2FS_META_INO(sbi)) { dec_page_count(sbi, F2FS_DIRTY_META); } else if (inode->i_ino == F2FS_NODE_INO(sbi)) { dec_page_count(sbi, F2FS_DIRTY_NODES); } else { inode_dec_dirty_pages(inode); f2fs_remove_dirty_inode(inode); } } clear_page_private_gcing(page); if (test_opt(sbi, COMPRESS_CACHE)) { if (f2fs_compressed_file(inode)) f2fs_invalidate_compress_pages(sbi, inode->i_ino); if (inode->i_ino == F2FS_COMPRESS_INO(sbi)) clear_page_private_data(page); } if (page_private_atomic(page)) return f2fs_drop_inmem_page(inode, page); detach_page_private(page); set_page_private(page, 0); } int f2fs_release_page(struct page *page, gfp_t wait) { /* If this is dirty page, keep PagePrivate */ if (PageDirty(page)) return 0; /* This is atomic written page, keep Private */ if (page_private_atomic(page)) return 0; if (test_opt(F2FS_P_SB(page), COMPRESS_CACHE)) { struct f2fs_sb_info *sbi = F2FS_P_SB(page); struct inode *inode = page->mapping->host; if (f2fs_compressed_file(inode)) f2fs_invalidate_compress_pages(sbi, inode->i_ino); if (inode->i_ino == F2FS_COMPRESS_INO(sbi)) clear_page_private_data(page); } clear_page_private_gcing(page); detach_page_private(page); set_page_private(page, 0); return 1; } static int f2fs_set_data_page_dirty(struct page *page) { struct inode *inode = page_file_mapping(page)->host; trace_f2fs_set_page_dirty(page, DATA); if (!PageUptodate(page)) SetPageUptodate(page); if (PageSwapCache(page)) return __set_page_dirty_nobuffers(page); if (f2fs_is_atomic_file(inode) && !f2fs_is_commit_atomic_write(inode)) { if (!page_private_atomic(page)) { f2fs_register_inmem_page(inode, page); return 1; } /* * Previously, this page has been registered, we just * return here. */ return 0; } if (!PageDirty(page)) { __set_page_dirty_nobuffers(page); f2fs_update_dirty_page(inode, page); return 1; } return 0; } static sector_t f2fs_bmap_compress(struct inode *inode, sector_t block) { #ifdef CONFIG_F2FS_FS_COMPRESSION struct dnode_of_data dn; sector_t start_idx, blknr = 0; int ret; start_idx = round_down(block, F2FS_I(inode)->i_cluster_size); set_new_dnode(&dn, inode, NULL, NULL, 0); ret = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE); if (ret) return 0; if (dn.data_blkaddr != COMPRESS_ADDR) { dn.ofs_in_node += block - start_idx; blknr = f2fs_data_blkaddr(&dn); if (!__is_valid_data_blkaddr(blknr)) blknr = 0; } f2fs_put_dnode(&dn); return blknr; #else return 0; #endif } static sector_t f2fs_bmap(struct address_space *mapping, sector_t block) { struct inode *inode = mapping->host; sector_t blknr = 0; if (f2fs_has_inline_data(inode)) goto out; /* make sure allocating whole blocks */ if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) filemap_write_and_wait(mapping); /* Block number less than F2FS MAX BLOCKS */ if (unlikely(block >= max_file_blocks(inode))) goto out; if (f2fs_compressed_file(inode)) { blknr = f2fs_bmap_compress(inode, block); } else { struct f2fs_map_blocks map; memset(&map, 0, sizeof(map)); map.m_lblk = block; map.m_len = 1; map.m_next_pgofs = NULL; map.m_seg_type = NO_CHECK_TYPE; if (!f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_BMAP)) blknr = map.m_pblk; } out: trace_f2fs_bmap(inode, block, blknr); return blknr; } #ifdef CONFIG_MIGRATION #include int f2fs_migrate_page(struct address_space *mapping, struct page *newpage, struct page *page, enum migrate_mode mode) { int rc, extra_count; struct f2fs_inode_info *fi = F2FS_I(mapping->host); bool atomic_written = page_private_atomic(page); BUG_ON(PageWriteback(page)); /* migrating an atomic written page is safe with the inmem_lock hold */ if (atomic_written) { if (mode != MIGRATE_SYNC) return -EBUSY; if (!mutex_trylock(&fi->inmem_lock)) return -EAGAIN; } /* one extra reference was held for atomic_write page */ extra_count = atomic_written ? 1 : 0; rc = migrate_page_move_mapping(mapping, newpage, page, extra_count); if (rc != MIGRATEPAGE_SUCCESS) { if (atomic_written) mutex_unlock(&fi->inmem_lock); return rc; } if (atomic_written) { struct inmem_pages *cur; list_for_each_entry(cur, &fi->inmem_pages, list) if (cur->page == page) { cur->page = newpage; break; } mutex_unlock(&fi->inmem_lock); put_page(page); get_page(newpage); } /* guarantee to start from no stale private field */ set_page_private(newpage, 0); if (PagePrivate(page)) { set_page_private(newpage, page_private(page)); SetPagePrivate(newpage); get_page(newpage); set_page_private(page, 0); ClearPagePrivate(page); put_page(page); } if (mode != MIGRATE_SYNC_NO_COPY) migrate_page_copy(newpage, page); else migrate_page_states(newpage, page); return MIGRATEPAGE_SUCCESS; } #endif #ifdef CONFIG_SWAP static int f2fs_migrate_blocks(struct inode *inode, block_t start_blk, unsigned int blkcnt) { struct f2fs_sb_info *sbi = F2FS_I_SB(inode); unsigned int blkofs; unsigned int blk_per_sec = BLKS_PER_SEC(sbi); unsigned int secidx = start_blk / blk_per_sec; unsigned int end_sec = secidx + blkcnt / blk_per_sec; int ret = 0; down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); down_write(&F2FS_I(inode)->i_mmap_sem); set_inode_flag(inode, FI_ALIGNED_WRITE); for (; secidx < end_sec; secidx++) { down_write(&sbi->pin_sem); f2fs_lock_op(sbi); f2fs_allocate_new_section(sbi, CURSEG_COLD_DATA_PINNED, false); f2fs_unlock_op(sbi); set_inode_flag(inode, FI_DO_DEFRAG); for (blkofs = 0; blkofs < blk_per_sec; blkofs++) { struct page *page; unsigned int blkidx = secidx * blk_per_sec + blkofs; page = f2fs_get_lock_data_page(inode, blkidx, true); if (IS_ERR(page)) { up_write(&sbi->pin_sem); ret = PTR_ERR(page); goto done; } set_page_dirty(page); f2fs_put_page(page, 1); } clear_inode_flag(inode, FI_DO_DEFRAG); ret = filemap_fdatawrite(inode->i_mapping); up_write(&sbi->pin_sem); if (ret) break; } done: clear_inode_flag(inode, FI_DO_DEFRAG); clear_inode_flag(inode, FI_ALIGNED_WRITE); up_write(&F2FS_I(inode)->i_mmap_sem); up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); return ret; } static int check_swap_activate(struct swap_info_struct *sis, struct file *swap_file, sector_t *span) { struct address_space *mapping = swap_file->f_mapping; struct inode *inode = mapping->host; struct f2fs_sb_info *sbi = F2FS_I_SB(inode); sector_t cur_lblock; sector_t last_lblock; sector_t pblock; sector_t lowest_pblock = -1; sector_t highest_pblock = 0; int nr_extents = 0; unsigned long nr_pblocks; unsigned int blks_per_sec = BLKS_PER_SEC(sbi); unsigned int sec_blks_mask = BLKS_PER_SEC(sbi) - 1; unsigned int not_aligned = 0; int ret = 0; /* * Map all the blocks into the extent list. This code doesn't try * to be very smart. */ cur_lblock = 0; last_lblock = bytes_to_blks(inode, i_size_read(inode)); while (cur_lblock < last_lblock && cur_lblock < sis->max) { struct f2fs_map_blocks map; retry: cond_resched(); memset(&map, 0, sizeof(map)); map.m_lblk = cur_lblock; map.m_len = last_lblock - cur_lblock; map.m_next_pgofs = NULL; map.m_next_extent = NULL; map.m_seg_type = NO_CHECK_TYPE; map.m_may_create = false; ret = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_FIEMAP); if (ret) goto out; /* hole */ if (!(map.m_flags & F2FS_MAP_FLAGS)) { f2fs_err(sbi, "Swapfile has holes"); ret = -EINVAL; goto out; } pblock = map.m_pblk; nr_pblocks = map.m_len; if ((pblock - SM_I(sbi)->main_blkaddr) & sec_blks_mask || nr_pblocks & sec_blks_mask) { not_aligned++; nr_pblocks = roundup(nr_pblocks, blks_per_sec); if (cur_lblock + nr_pblocks > sis->max) nr_pblocks -= blks_per_sec; if (!nr_pblocks) { /* this extent is last one */ nr_pblocks = map.m_len; f2fs_warn(sbi, "Swapfile: last extent is not aligned to section"); goto next; } ret = f2fs_migrate_blocks(inode, cur_lblock, nr_pblocks); if (ret) goto out; goto retry; } next: if (cur_lblock + nr_pblocks >= sis->max) nr_pblocks = sis->max - cur_lblock; if (cur_lblock) { /* exclude the header page */ if (pblock < lowest_pblock) lowest_pblock = pblock; if (pblock + nr_pblocks - 1 > highest_pblock) highest_pblock = pblock + nr_pblocks - 1; } /* * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks */ ret = add_swap_extent(sis, cur_lblock, nr_pblocks, pblock); if (ret < 0) goto out; nr_extents += ret; cur_lblock += nr_pblocks; } ret = nr_extents; *span = 1 + highest_pblock - lowest_pblock; if (cur_lblock == 0) cur_lblock = 1; /* force Empty message */ sis->max = cur_lblock; sis->pages = cur_lblock - 1; sis->highest_bit = cur_lblock - 1; out: if (not_aligned) f2fs_warn(sbi, "Swapfile (%u) is not align to section: 1) creat(), 2) ioctl(F2FS_IOC_SET_PIN_FILE), 3) fallocate(%u * N)", not_aligned, blks_per_sec * F2FS_BLKSIZE); return ret; } static int f2fs_swap_activate(struct swap_info_struct *sis, struct file *file, sector_t *span) { struct inode *inode = file_inode(file); int ret; if (!S_ISREG(inode->i_mode)) return -EINVAL; if (f2fs_readonly(F2FS_I_SB(inode)->sb)) return -EROFS; if (f2fs_lfs_mode(F2FS_I_SB(inode))) { f2fs_err(F2FS_I_SB(inode), "Swapfile not supported in LFS mode"); return -EINVAL; } ret = f2fs_convert_inline_inode(inode); if (ret) return ret; if (!f2fs_disable_compressed_file(inode)) return -EINVAL; f2fs_precache_extents(inode); ret = check_swap_activate(sis, file, span); if (ret < 0) return ret; set_inode_flag(inode, FI_PIN_FILE); f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); return ret; } static void f2fs_swap_deactivate(struct file *file) { struct inode *inode = file_inode(file); clear_inode_flag(inode, FI_PIN_FILE); } #else static int f2fs_swap_activate(struct swap_info_struct *sis, struct file *file, sector_t *span) { return -EOPNOTSUPP; } static void f2fs_swap_deactivate(struct file *file) { } #endif const struct address_space_operations f2fs_dblock_aops = { .readpage = f2fs_read_data_page, .readahead = f2fs_readahead, .writepage = f2fs_write_data_page, .writepages = f2fs_write_data_pages, .write_begin = f2fs_write_begin, .write_end = f2fs_write_end, .set_page_dirty = f2fs_set_data_page_dirty, .invalidatepage = f2fs_invalidate_page, .releasepage = f2fs_release_page, .direct_IO = f2fs_direct_IO, .bmap = f2fs_bmap, .swap_activate = f2fs_swap_activate, .swap_deactivate = f2fs_swap_deactivate, #ifdef CONFIG_MIGRATION .migratepage = f2fs_migrate_page, #endif }; void f2fs_clear_page_cache_dirty_tag(struct page *page) { struct address_space *mapping = page_mapping(page); unsigned long flags; xa_lock_irqsave(&mapping->i_pages, flags); __xa_clear_mark(&mapping->i_pages, page_index(page), PAGECACHE_TAG_DIRTY); xa_unlock_irqrestore(&mapping->i_pages, flags); } int __init f2fs_init_post_read_processing(void) { bio_post_read_ctx_cache = kmem_cache_create("f2fs_bio_post_read_ctx", sizeof(struct bio_post_read_ctx), 0, 0, NULL); if (!bio_post_read_ctx_cache) goto fail; bio_post_read_ctx_pool = mempool_create_slab_pool(NUM_PREALLOC_POST_READ_CTXS, bio_post_read_ctx_cache); if (!bio_post_read_ctx_pool) goto fail_free_cache; return 0; fail_free_cache: kmem_cache_destroy(bio_post_read_ctx_cache); fail: return -ENOMEM; } void f2fs_destroy_post_read_processing(void) { mempool_destroy(bio_post_read_ctx_pool); kmem_cache_destroy(bio_post_read_ctx_cache); } int f2fs_init_post_read_wq(struct f2fs_sb_info *sbi) { if (!f2fs_sb_has_encrypt(sbi) && !f2fs_sb_has_verity(sbi) && !f2fs_sb_has_compression(sbi)) return 0; sbi->post_read_wq = alloc_workqueue("f2fs_post_read_wq", WQ_UNBOUND | WQ_HIGHPRI, num_online_cpus()); if (!sbi->post_read_wq) return -ENOMEM; return 0; } void f2fs_destroy_post_read_wq(struct f2fs_sb_info *sbi) { if (sbi->post_read_wq) destroy_workqueue(sbi->post_read_wq); } int __init f2fs_init_bio_entry_cache(void) { bio_entry_slab = f2fs_kmem_cache_create("f2fs_bio_entry_slab", sizeof(struct bio_entry)); if (!bio_entry_slab) return -ENOMEM; return 0; } void f2fs_destroy_bio_entry_cache(void) { kmem_cache_destroy(bio_entry_slab); }