.. SPDX-License-Identifier: 0BSD ============================ XZ data compression in Linux ============================ Introduction ============ XZ is a general purpose data compression format with high compression ratio. The XZ decompressor in Linux is called XZ Embedded. It supports the LZMA2 filter and optionally also Branch/Call/Jump (BCJ) filters for executable code. CRC32 is supported for integrity checking. See the `XZ Embedded`_ home page for the latest version which includes a few optional extra features that aren't required in the Linux kernel and information about using the code outside the Linux kernel. For userspace, `XZ Utils`_ provide a zlib-like compression library and a gzip-like command line tool. .. _XZ Embedded: https://tukaani.org/xz/embedded.html .. _XZ Utils: https://tukaani.org/xz/ XZ related components in the kernel =================================== The xz_dec module provides XZ decompressor with single-call (buffer to buffer) and multi-call (stateful) APIs in include/linux/xz.h. For decompressing the kernel image, initramfs, and initrd, there is a wrapper function in lib/decompress_unxz.c. Its API is the same as in other decompress_*.c files, which is defined in include/linux/decompress/generic.h. For kernel makefiles, three commands are provided for use with ``$(call if_changed)``. They require the xz tool from XZ Utils. - ``$(call if_changed,xzkern)`` is for compressing the kernel image. It runs the script scripts/xz_wrap.sh which uses arch-optimized options and a big LZMA2 dictionary. - ``$(call if_changed,xzkern_with_size)`` is like ``xzkern`` above but this also appends a four-byte trailer containing the uncompressed size of the file. The trailer is needed by the boot code on some archs. - Other things can be compressed with ``$(call if_needed,xzmisc)`` which will use no BCJ filter and 1 MiB LZMA2 dictionary. Notes on compression options ============================ Since the XZ Embedded supports only streams with CRC32 or no integrity check, make sure that you don't use some other integrity check type when encoding files that are supposed to be decoded by the kernel. With liblzma from XZ Utils, you need to use either ``LZMA_CHECK_CRC32`` or ``LZMA_CHECK_NONE`` when encoding. With the ``xz`` command line tool, use ``--check=crc32`` or ``--check=none`` to override the default ``--check=crc64``. Using CRC32 is strongly recommended unless there is some other layer which will verify the integrity of the uncompressed data anyway. Double checking the integrity would probably be waste of CPU cycles. Note that the headers will always have a CRC32 which will be validated by the decoder; you can only change the integrity check type (or disable it) for the actual uncompressed data. In userspace, LZMA2 is typically used with dictionary sizes of several megabytes. The decoder needs to have the dictionary in RAM: - In multi-call mode the dictionary is allocated as part of the decoder state. The reasonable maximum dictionary size for in-kernel use will depend on the target hardware: a few megabytes is fine for desktop systems while 64 KiB to 1 MiB might be more appropriate on some embedded systems. - In single-call mode the output buffer is used as the dictionary buffer. That is, the size of the dictionary doesn't affect the decompressor memory usage at all. Only the base data structures are allocated which take a little less than 30 KiB of memory. For the best compression, the dictionary should be at least as big as the uncompressed data. A notable example of single-call mode is decompressing the kernel itself (except on PowerPC). The compression presets in XZ Utils may not be optimal when creating files for the kernel, so don't hesitate to use custom settings to, for example, set the dictionary size. Also, xz may produce a smaller file in single-threaded mode so setting that explicitly is recommended. Example:: xz --threads=1 --check=crc32 --lzma2=dict=512KiB inputfile xz_dec API ========== This is available with ``#include ``. .. kernel-doc:: include/linux/xz.h