When exceptions or irq are about to resume userspace, if
the task needs to be rescheduled, the arch low level code
calls schedule() directly.
If we call it, it is because we have the TIF_RESCHED flag:
- It can be set after random local calls to set_need_resched()
(RCU, drm, ...)
- A wake up happened and the CPU needs preemption. This can
happen in several ways:
* Remotely: the remote waking CPU has set TIF_RESCHED and send the
wakee an IPI to schedule the new task.
* Remotely enqueued: the remote waking CPU sends an IPI to the target
and the wake up is made by the target.
* Locally: waking CPU == wakee CPU and the wakeup is done locally.
set_need_resched() is called without IPI.
In the case of local and remotely enqueued wake ups, the tick can
be restarted when we enqueue the new task and RCU can exit the
extended quiescent state at the same time. Then by the time we reach
irq exit path and we call schedule, we are not in RCU user mode.
But if we call schedule() only because something called set_need_resched(),
RCU may still be in user mode when we reach schedule.
Also if a wake up is done remotely, the CPU might see the TIF_RESCHED
flag and call schedule while the IPI has not yet happen to restart the
tick and exit RCU user mode.
We need to manually protect against these corner cases.
Create a new API schedule_user() that calls schedule() inside
rcu_user_exit()-rcu_user_enter() in order to protect it. Archs
will need to rely on it now to implement user preemption safely.
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Alessio Igor Bogani <abogani@kernel.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Avi Kivity <avi@redhat.com>
Cc: Chris Metcalf <cmetcalf@tilera.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Geoff Levand <geoff@infradead.org>
Cc: Gilad Ben Yossef <gilad@benyossef.com>
Cc: Hakan Akkan <hakanakkan@gmail.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Josh Triplett <josh@joshtriplett.org>
Cc: Kevin Hilman <khilman@ti.com>
Cc: Max Krasnyansky <maxk@qualcomm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephen Hemminger <shemminger@vyatta.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Sven-Thorsten Dietrich <thebigcorporation@gmail.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Reviewed-by: Josh Triplett <josh@joshtriplett.org>
When an exception or an irq exits, and we are going to resume into
interrupted kernel code, the low level architecture code calls
preempt_schedule_irq() if there is a need to reschedule.
If the interrupt/exception occured between a call to rcu_user_enter()
(from syscall exit, exception exit, do_notify_resume exit, ...) and
a real resume to userspace (iret,...), preempt_schedule_irq() can be
called whereas RCU thinks we are in userspace. But preempt_schedule_irq()
is going to run kernel code and may be some RCU read side critical
section. We must exit the userspace extended quiescent state before
we call it.
To solve this, just call rcu_user_exit() in the beginning of
preempt_schedule_irq().
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Alessio Igor Bogani <abogani@kernel.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Avi Kivity <avi@redhat.com>
Cc: Chris Metcalf <cmetcalf@tilera.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Geoff Levand <geoff@infradead.org>
Cc: Gilad Ben Yossef <gilad@benyossef.com>
Cc: Hakan Akkan <hakanakkan@gmail.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Josh Triplett <josh@joshtriplett.org>
Cc: Kevin Hilman <khilman@ti.com>
Cc: Max Krasnyansky <maxk@qualcomm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephen Hemminger <shemminger@vyatta.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Sven-Thorsten Dietrich <thebigcorporation@gmail.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Reviewed-by: Josh Triplett <josh@joshtriplett.org>
Clear the syscalls hook of a task when it's scheduled out so that if
the task migrates, it doesn't run the syscall slow path on a CPU
that might not need it.
Also set the syscalls hook on the next task if needed.
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Alessio Igor Bogani <abogani@kernel.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Avi Kivity <avi@redhat.com>
Cc: Chris Metcalf <cmetcalf@tilera.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Geoff Levand <geoff@infradead.org>
Cc: Gilad Ben Yossef <gilad@benyossef.com>
Cc: Hakan Akkan <hakanakkan@gmail.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Josh Triplett <josh@joshtriplett.org>
Cc: Kevin Hilman <khilman@ti.com>
Cc: Max Krasnyansky <maxk@qualcomm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephen Hemminger <shemminger@vyatta.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Sven-Thorsten Dietrich <thebigcorporation@gmail.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Reviewed-by: Josh Triplett <josh@joshtriplett.org>
Use a naming based on vtime as a prefix for virtual based
cputime accounting APIs:
- account_system_vtime() -> vtime_account()
- account_switch_vtime() -> vtime_task_switch()
It makes it easier to allow for further declension such
as vtime_account_system(), vtime_account_idle(), ... if we
want to find out the context we account to from generic code.
This also make it better to know on which subsystem these APIs
refer to.
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Rabik and Paul reported two different issues related to the same few
lines of code.
Rabik's issue is that the nr_uninterruptible migration code is wrong in
that he sees artifacts due to this (Rabik please do expand in more
detail).
Paul's issue is that this code as it stands relies on us using
stop_machine() for unplug, we all would like to remove this assumption
so that eventually we can remove this stop_machine() usage altogether.
The only reason we'd have to migrate nr_uninterruptible is so that we
could use for_each_online_cpu() loops in favour of
for_each_possible_cpu() loops, however since nr_uninterruptible() is the
only such loop and its using possible lets not bother at all.
The problem Rabik sees is (probably) caused by the fact that by
migrating nr_uninterruptible we screw rq->calc_load_active for both rqs
involved.
So don't bother with fancy migration schemes (meaning we now have to
keep using for_each_possible_cpu()) and instead fold any nr_active delta
after we migrate all tasks away to make sure we don't have any skewed
nr_active accounting.
[ paulmck: Move call to calc_load_migration to CPU_DEAD to avoid
miscounting noted by Rakib. ]
Reported-by: Rakib Mullick <rakib.mullick@gmail.com>
Reported-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Paul E. McKenney <paul.mckenney@linaro.org>
This reverts commit 970e178985.
Nikolay Ulyanitsky reported thatthe 3.6-rc5 kernel has a 15-20%
performance drop on PostgreSQL 9.2 on his machine (running "pgbench").
Borislav Petkov was able to reproduce this, and bisected it to this
commit 970e178985 ("sched: Improve scalability via 'CPU buddies' ...")
apparently because the new single-idle-buddy model simply doesn't find
idle CPU's to reschedule on aggressively enough.
Mike Galbraith suspects that it is likely due to the user-mode spinlocks
in PostgreSQL not reacting well to preemption, but we don't really know
the details - I'll just revert the commit for now.
There are hopefully other approaches to improve scheduler scalability
without it causing these kinds of downsides.
Reported-by: Nikolay Ulyanitsky <lystor@gmail.com>
Bisected-by: Borislav Petkov <bp@alien8.de>
Acked-by: Mike Galbraith <efault@gmx.de>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Commit f319da0c68 ("sched: Fix load avg vs cpu-hotplug") was an
incomplete fix:
In particular, the problem is that at the point it calls
calc_load_migrate() nr_running := 1 (the stopper thread), so move the
call to CPU_DEAD where we're sure that nr_running := 0.
Also note that we can call calc_load_migrate() without serialization, we
know the state of rq is stable since its cpu is dead, and we modify the
global state using appropriate atomic ops.
Suggested-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/1346882630.2600.59.camel@twins
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Now that the last architecture to use this has stopped doing so (ARM,
thanks Catalin!) we can remove this complexity from the scheduler
core.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Link: http://lkml.kernel.org/n/tip-g9p2a1w81xxbrze25v9zpzbf@git.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
It's impossible to enter the else branch if we have set
skip_clock_update in task_yield_fair(), as yield_to_task_fair()
will directly return true after invoke task_yield_fair().
Signed-off-by: Michael Wang <wangyun@linux.vnet.ibm.com>
Acked-by: Mike Galbraith <efault@gmx.de>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/4FF2925A.9060005@linux.vnet.ibm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Various sd->*_idx's are used for refering the rq's load average table
when selecting a cpu to run. However they can be set to any number
with sysctl knobs so that it can crash the kernel if something bad is
given. Fix it by limiting them into the actual range.
Signed-off-by: Namhyung Kim <namhyung@kernel.org>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/1345104204-8317-1-git-send-email-namhyung@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
migrate_tasks() uses _pick_next_task_rt() to get tasks from the
real-time runqueues to be migrated. When rt_rq is throttled
_pick_next_task_rt() won't return anything, in which case
migrate_tasks() can't move all threads over and gets stuck in an
infinite loop.
Instead unthrottle rt runqueues before migrating tasks.
Additionally: move unthrottle_offline_cfs_rqs() to rq_offline_fair()
Signed-off-by: Peter Boonstoppel <pboonstoppel@nvidia.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Paul Turner <pjt@google.com>
Link: http://lkml.kernel.org/r/5FBF8E85CA34454794F0F7ECBA79798F379D3648B7@HQMAIL04.nvidia.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Rabik and Paul reported two different issues related to the same few
lines of code.
Rabik's issue is that the nr_uninterruptible migration code is wrong in
that he sees artifacts due to this (Rabik please do expand in more
detail).
Paul's issue is that this code as it stands relies on us using
stop_machine() for unplug, we all would like to remove this assumption
so that eventually we can remove this stop_machine() usage altogether.
The only reason we'd have to migrate nr_uninterruptible is so that we
could use for_each_online_cpu() loops in favour of
for_each_possible_cpu() loops, however since nr_uninterruptible() is the
only such loop and its using possible lets not bother at all.
The problem Rabik sees is (probably) caused by the fact that by
migrating nr_uninterruptible we screw rq->calc_load_active for both rqs
involved.
So don't bother with fancy migration schemes (meaning we now have to
keep using for_each_possible_cpu()) and instead fold any nr_active delta
after we migrate all tasks away to make sure we don't have any skewed
nr_active accounting.
Reported-by: Rakib Mullick <rakib.mullick@gmail.com>
Reported-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/1345454817.23018.27.camel@twins
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Pull scheduler fixes from Ingo Molnar.
* 'sched-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
sched: Fix migration thread runtime bogosity
sched,rt: fix isolated CPUs leaving root_task_group indefinitely throttled
sched,cgroup: Fix up task_groups list
sched: fix divide by zero at {thread_group,task}_times
sched, cgroup: Reduce rq->lock hold times for large cgroup hierarchies
The archs that implement virtual cputime accounting all
flush the cputime of a task when it gets descheduled
and sometimes set up some ground initialization for the
next task to account its cputime.
These archs all put their own hooks in their context
switch callbacks and handle the off-case themselves.
Consolidate this by creating a new account_switch_vtime()
callback called in generic code right after a context switch
and that these archs must implement to flush the prev task
cputime and initialize the next task cputime related state.
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Acked-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Extract cputime code from the giant sched/core.c and
put it in its own file. This make it easier to deal with
this particular area and de-bloat a bit more core.c
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Acked-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Since power saving code was removed from sched now, the implement
code is out of service in this function, and even pollute other logical.
like, 'want_sd' never has chance to be set '0', that remove the effect
of SD_WAKE_AFFINE here.
So, clean up the obsolete code, includes SD_PREFER_LOCAL.
Signed-off-by: Alex Shi <alex.shi@intel.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/5028F431.6000306@intel.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
This patch adds a comment on top of the schedule() function to explain
to scheduler newbies how the main scheduler function is entered.
Acked-by: Randy Dunlap <rdunlap@xenotime.net>
Explained-by: Ingo Molnar <mingo@kernel.org>
Explained-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Pekka Enberg <penberg@kernel.org>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/1344070187-2420-1-git-send-email-penberg@kernel.org
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
With multiple instances of task_groups, for_each_rt_rq() is a noop,
no task groups having been added to the rt.c list instance. This
renders __enable/disable_runtime() and print_rt_stats() noop, the
user (non) visible effect being that rt task groups are missing in
/proc/sched_debug.
Signed-off-by: Mike Galbraith <efault@gmx.de>
Cc: stable@kernel.org # v3.3+
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/1344308413.6846.7.camel@marge.simpson.net
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
On architectures where cputime_t is 64 bit type, is possible to trigger
divide by zero on do_div(temp, (__force u32) total) line, if total is a
non zero number but has lower 32 bit's zeroed. Removing casting is not
a good solution since some do_div() implementations do cast to u32
internally.
This problem can be triggered in practice on very long lived processes:
PID: 2331 TASK: ffff880472814b00 CPU: 2 COMMAND: "oraagent.bin"
#0 [ffff880472a51b70] machine_kexec at ffffffff8103214b
#1 [ffff880472a51bd0] crash_kexec at ffffffff810b91c2
#2 [ffff880472a51ca0] oops_end at ffffffff814f0b00
#3 [ffff880472a51cd0] die at ffffffff8100f26b
#4 [ffff880472a51d00] do_trap at ffffffff814f03f4
#5 [ffff880472a51d60] do_divide_error at ffffffff8100cfff
#6 [ffff880472a51e00] divide_error at ffffffff8100be7b
[exception RIP: thread_group_times+0x56]
RIP: ffffffff81056a16 RSP: ffff880472a51eb8 RFLAGS: 00010046
RAX: bc3572c9fe12d194 RBX: ffff880874150800 RCX: 0000000110266fad
RDX: 0000000000000000 RSI: ffff880472a51eb8 RDI: 001038ae7d9633dc
RBP: ffff880472a51ef8 R8: 00000000b10a3a64 R9: ffff880874150800
R10: 00007fcba27ab680 R11: 0000000000000202 R12: ffff880472a51f08
R13: ffff880472a51f10 R14: 0000000000000000 R15: 0000000000000007
ORIG_RAX: ffffffffffffffff CS: 0010 SS: 0018
#7 [ffff880472a51f00] do_sys_times at ffffffff8108845d
#8 [ffff880472a51f40] sys_times at ffffffff81088524
#9 [ffff880472a51f80] system_call_fastpath at ffffffff8100b0f2
RIP: 0000003808caac3a RSP: 00007fcba27ab6d8 RFLAGS: 00000202
RAX: 0000000000000064 RBX: ffffffff8100b0f2 RCX: 0000000000000000
RDX: 00007fcba27ab6e0 RSI: 000000000076d58e RDI: 00007fcba27ab6e0
RBP: 00007fcba27ab700 R8: 0000000000000020 R9: 000000000000091b
R10: 00007fcba27ab680 R11: 0000000000000202 R12: 00007fff9ca41940
R13: 0000000000000000 R14: 00007fcba27ac9c0 R15: 00007fff9ca41940
ORIG_RAX: 0000000000000064 CS: 0033 SS: 002b
Cc: stable@vger.kernel.org
Signed-off-by: Stanislaw Gruszka <sgruszka@redhat.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/20120808092714.GA3580@redhat.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Pull scheduler fixes from Ingo Molnar:
"Fixes and two late cleanups"
* 'sched-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
sched/cleanups: Add load balance cpumask pointer to 'struct lb_env'
sched: Fix comment about PREEMPT_ACTIVE bit location
sched: Fix minor code style issues
sched: Use task_rq_unlock() in __sched_setscheduler()
sched/numa: Add SD_PERFER_SIBLING to CPU domain
Pull perf updates from Ingo Molnar:
"The biggest changes are Intel Nehalem-EX PMU uncore support, uprobes
updates/cleanups/fixes from Oleg and diverse tooling updates (mostly
fixes) now that Arnaldo is back from vacation."
* 'perf-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (40 commits)
uprobes: __replace_page() needs munlock_vma_page()
uprobes: Rename vma_address() and make it return "unsigned long"
uprobes: Fix register_for_each_vma()->vma_address() check
uprobes: Introduce vaddr_to_offset(vma, vaddr)
uprobes: Teach build_probe_list() to consider the range
uprobes: Remove insert_vm_struct()->uprobe_mmap()
uprobes: Remove copy_vma()->uprobe_mmap()
uprobes: Fix overflow in vma_address()/find_active_uprobe()
uprobes: Suppress uprobe_munmap() from mmput()
uprobes: Uprobe_mmap/munmap needs list_for_each_entry_safe()
uprobes: Clean up and document write_opcode()->lock_page(old_page)
uprobes: Kill write_opcode()->lock_page(new_page)
uprobes: __replace_page() should not use page_address_in_vma()
uprobes: Don't recheck vma/f_mapping in write_opcode()
perf/x86: Fix missing struct before structure name
perf/x86: Fix format definition of SNB-EP uncore QPI box
perf/x86: Make bitfield unsigned
perf/x86: Fix LLC-* and node-* events on Intel SandyBridge
perf/x86: Add Intel Nehalem-EX uncore support
perf/x86: Fix typo in format definition of uncore PCU filter
...
Otherwise they can't be filtered for a defined task:
perf record -e sched:sched_switch ./foo
This command doesn't report any events without this patch.
I think it isn't a security concern if someone knows who will
be executed next - this can already be observed by polling /proc
state. By default perf is disabled for non-root users in any case.
I need these events for profiling sleep times. sched_switch is used for
getting callchains and sched_stat_* is used for getting time periods.
These events are combined in user space, then it can be analyzed by
perf tools.
Signed-off-by: Andrew Vagin <avagin@openvz.org>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Arun Sharma <asharma@fb.com>
Link: http://lkml.kernel.org/r/1342088069-1005148-1-git-send-email-avagin@openvz.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
It seems there's no specific reason to open-code it. I guess
commit 0122ec5b02 ("sched: Add p->pi_lock to task_rq_lock()")
simply missed it. Let's be consistent with others.
Signed-off-by: Namhyung Kim <namhyung@kernel.org>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/1341647342-6742-1-git-send-email-namhyung@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Stefan reported a crash on a kernel before a3e5d1091c ("sched:
Don't call task_group() too many times in set_task_rq()"), he
found the reason to be that the multiple task_group()
invocations in set_task_rq() returned different values.
Looking at all that I found a lack of serialization and plain
wrong comments.
The below tries to fix it using an extra pointer which is
updated under the appropriate scheduler locks. Its not pretty,
but I can't really see another way given how all the cgroup
stuff works.
Reported-and-tested-by: Stefan Bader <stefan.bader@canonical.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/1340364965.18025.71.camel@twins
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Traversing an entire package is not only expensive, it also leads to tasks
bouncing all over a partially idle and possible quite large package. Fix
that up by assigning a 'buddy' CPU to try to motivate. Each buddy may try
to motivate that one other CPU, if it's busy, tough, it may then try its
SMT sibling, but that's all this optimization is allowed to cost.
Sibling cache buddies are cross-wired to prevent bouncing.
4 socket 40 core + SMT Westmere box, single 30 sec tbench runs, higher is better:
clients 1 2 4 8 16 32 64 128
..........................................................................
pre 30 41 118 645 3769 6214 12233 14312
post 299 603 1211 2418 4697 6847 11606 14557
A nice increase in performance.
Signed-off-by: Mike Galbraith <efault@gmx.de>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1339471112.7352.32.camel@marge.simpson.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Separate out the cpuset related handling for CPU/Memory online/offline.
This also helps us exploit the most obvious and basic level of optimization
that any notification mechanism (CPU/Mem online/offline) has to offer us:
"We *know* why we have been invoked. So stop pretending that we are lost,
and do only the necessary amount of processing!".
And while at it, rename scan_for_empty_cpusets() to
scan_cpusets_upon_hotplug(), which is more appropriate considering how
it is restructured.
Signed-off-by: Srivatsa S. Bhat <srivatsa.bhat@linux.vnet.ibm.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20120524141650.3692.48637.stgit@srivatsabhat.in.ibm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
In the event of CPU hotplug, the kernel modifies the cpusets' cpus_allowed
masks as and when necessary to ensure that the tasks belonging to the cpusets
have some place (online CPUs) to run on. And regular CPU hotplug is
destructive in the sense that the kernel doesn't remember the original cpuset
configurations set by the user, across hotplug operations.
However, suspend/resume (which uses CPU hotplug) is a special case in which
the kernel has the responsibility to restore the system (during resume), to
exactly the same state it was in before suspend.
In order to achieve that, do the following:
1. Don't modify cpusets during suspend/resume. At all.
In particular, don't move the tasks from one cpuset to another, and
don't modify any cpuset's cpus_allowed mask. So, simply ignore cpusets
during the CPU hotplug operations that are carried out in the
suspend/resume path.
2. However, cpusets and sched domains are related. We just want to avoid
altering cpusets alone. So, to keep the sched domains updated, build
a single sched domain (containing all active cpus) during each of the
CPU hotplug operations carried out in s/r path, effectively ignoring
the cpusets' cpus_allowed masks.
(Since userspace is frozen while doing all this, it will go unnoticed.)
3. During the last CPU online operation during resume, build the sched
domains by looking up the (unaltered) cpusets' cpus_allowed masks.
That will bring back the system to the same original state as it was in
before suspend.
Ultimately, this will not only solve the cpuset problem related to suspend
resume (ie., restores the cpusets to exactly what it was before suspend, by
not touching it at all) but also speeds up suspend/resume because we avoid
running cpuset update code for every CPU being offlined/onlined.
Signed-off-by: Srivatsa S. Bhat <srivatsa.bhat@linux.vnet.ibm.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20120524141611.3692.20155.stgit@srivatsabhat.in.ibm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Pull RCU, perf, and scheduler fixes from Ingo Molnar.
The RCU fix is a revert for an optimization that could cause deadlocks.
One of the scheduler commits (164c33c6ad "sched: Fix fork() error path
to not crash") is correct but not complete (some architectures like Tile
are not covered yet) - the resulting additional fixes are still WIP and
Ingo did not want to delay these pending fixes. See this thread on
lkml:
[PATCH] fork: fix error handling in dup_task()
The perf fixes are just trivial oneliners.
* 'core-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
Revert "rcu: Move PREEMPT_RCU preemption to switch_to() invocation"
* 'perf-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
perf kvm: Fix segfault with report and mixed guestmount use
perf kvm: Fix regression with guest machine creation
perf script: Fix format regression due to libtraceevent merge
ring-buffer: Fix accounting of entries when removing pages
ring-buffer: Fix crash due to uninitialized new_pages list head
* 'sched-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
MAINTAINERS/sched: Update scheduler file pattern
sched/nohz: Rewrite and fix load-avg computation -- again
sched: Fix fork() error path to not crash
Thanks to Charles Wang for spotting the defects in the current code:
- If we go idle during the sample window -- after sampling, we get a
negative bias because we can negate our own sample.
- If we wake up during the sample window we get a positive bias
because we push the sample to a known active period.
So rewrite the entire nohz load-avg muck once again, now adding
copious documentation to the code.
Reported-and-tested-by: Doug Smythies <dsmythies@telus.net>
Reported-and-tested-by: Charles Wang <muming.wq@gmail.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: stable@kernel.org
Link: http://lkml.kernel.org/r/1340373782.18025.74.camel@twins
[ minor edits ]
Signed-off-by: Ingo Molnar <mingo@kernel.org>
This reverts commit 616c310e83.
(Move PREEMPT_RCU preemption to switch_to() invocation).
Testing by Sasha Levin <levinsasha928@gmail.com> showed that this
can result in deadlock due to invoking the scheduler when one of
the runqueue locks is held. Because this commit was simply a
performance optimization, revert it.
Reported-by: Sasha Levin <levinsasha928@gmail.com>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Tested-by: Sasha Levin <levinsasha928@gmail.com>
It does not get processed because sched_domain_level_max is 0 at the
time that setup_relax_domain_level() is run.
Simply accept the value as it is, as we don't know the value of
sched_domain_level_max until sched domain construction is completed.
Fix sched_relax_domain_level in cpuset. The build_sched_domain() routine calls
the set_domain_attribute() routine prior to setting the sd->level, however,
the set_domain_attribute() routine relies on the sd->level to decide whether
idle load balancing will be off/on.
Signed-off-by: Dimitri Sivanich <sivanich@sgi.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/20120605184436.GA15668@sgi.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Add some code to validate assumptions we're making and output
warnings if they are not.
If this trigger we want to know about it.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Alex Shi <lkml.alex@gmail.com>
Link: http://lkml.kernel.org/n/tip-6uc3wk5s9udxtdl9cnku0vtt@git.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Often when we run into mis-shapen topologies the balance iteration
fails to update the cpu power properly and we'll end up in /0 traps.
Always initialize the cpu-power to a semi-sane value so that we can
at least boot the machine, even if the load-balancer might not
function correctly.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/n/tip-3lbhyj25sr169ha7z3qht5na@git.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Weird topologies can lead to asymmetric domain setups. This needs
further consideration since these setups are typically non-minimal
too.
For now, make it work by adding an extra mask selecting which CPUs
are allowed to iterate up.
The topology that triggered it is the one from David Rientjes:
10 20 20 30
20 10 20 20
20 20 10 20
30 20 20 10
resulting in boxes that wouldn't even boot.
Reported-by: David Rientjes <rientjes@google.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/n/tip-3p86l9cuaqnxz7uxsojmz5rm@git.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Commit cb83b629b ("sched/numa: Rewrite the CONFIG_NUMA sched
domain support") removed the NODE sched domain and started checking
if the node distance in SLIT table is farther than REMOTE_DISTANCE,
if so, it will lose the load balance chance at exec/fork/wake_affine
points.
But actually, even the node distance is farther than REMOTE_DISTANCE.
Modern CPUs also has QPI like connections, which ensures that memory
access is not too slow between nodes. So the above change in behavior
on NUMA machine causes a performance regression on various benchmarks:
hackbench, tbench, netperf, oltp, etc.
This patch will recover the scheduler behavior to old mode on all my
Intel platforms: NHM EP/EX, WSM EP, SNB EP/EP4S, and thus fixes the
perfromance regressions. (all of them just have 2 kinds distance, 10, 21)
Signed-off-by: Alex Shi <alex.shi@intel.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/1338965571-9812-1-git-send-email-alex.shi@intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
No need to have the last NULL entry.
Signed-off-by: Hiroshi Shimamoto <h-shimamoto@ct.jp.nec.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/4FBF29E7.5020805@ct.jp.nec.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The strings sched_feat_names are never changed.
Signed-off-by: Hiroshi Shimamoto <h-shimamoto@ct.jp.nec.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/4FBF29B2.9030904@ct.jp.nec.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Since nr_cpus_allowed is used outside of sched/rt.c and wants to be
used outside of there more, move it to a more natural site.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/n/tip-kr61f02y9brwzkh6x53pdptm@git.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
SD_OVERLAP exists to allow overlapping groups, overlapping groups
appear in NUMA topologies that aren't fully connected.
The typical result of not fully connected NUMA is that each cpu (or
rather node) will have different spans for a particular distance.
However due to how sched domains are traversed -- only the first cpu
in the mask goes one level up -- the next level only cares about the
spans of the cpus that went up.
Due to this two things were observed to be broken:
- build_overlap_sched_groups() -- since its possible the cpu we're
building the groups for exists in multiple (or all) groups, the
selection criteria of the first group didn't ensure there was a cpu
for which is was true that cpumask_first(span) == cpu. Thus load-
balancing would terminate.
- update_group_power() -- assumed that the cpu span of the first
group of the domain was covered by all groups of the child domain.
The above explains why this isn't true, so deal with it.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: David Rientjes <rientjes@google.com>
Link: http://lkml.kernel.org/r/1337788843.9783.14.camel@laptop
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Allocators don't appreciate it when you try and allocate memory from
offline nodes.
Reported-and-tested-by: Tony Luck <tony.luck@intel.com>
Reported-and-tested-by: Anton Blanchard <anton@samba.org>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/n/tip-epfc1io9whb7o22bcujf31vn@git.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Follow up on commit 556061b00 ("sched/nohz: Fix rq->cpu_load[]
calculations") since while that fixed the busy case it regressed the
mostly idle case.
Add a callback from the nohz exit to also age the rq->cpu_load[]
array. This closes the hole where either there was no nohz load
balance pass during the nohz, or there was a 'significant' amount of
idle time between the last nohz balance and the nohz exit.
So we'll update unconditionally from the tick to not insert any
accidental 0 load periods while busy, and we try and catch up from
nohz idle balance and nohz exit. Both these are still prone to missing
a jiffy, but that has always been the case.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: pjt@google.com
Cc: Venkatesh Pallipadi <venki@google.com>
Link: http://lkml.kernel.org/n/tip-kt0trz0apodbf84ucjfdbr1a@git.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Pull user namespace enhancements from Eric Biederman:
"This is a course correction for the user namespace, so that we can
reach an inexpensive, maintainable, and reasonably complete
implementation.
Highlights:
- Config guards make it impossible to enable the user namespace and
code that has not been converted to be user namespace safe.
- Use of the new kuid_t type ensures the if you somehow get past the
config guards the kernel will encounter type errors if you enable
user namespaces and attempt to compile in code whose permission
checks have not been updated to be user namespace safe.
- All uids from child user namespaces are mapped into the initial
user namespace before they are processed. Removing the need to add
an additional check to see if the user namespace of the compared
uids remains the same.
- With the user namespaces compiled out the performance is as good or
better than it is today.
- For most operations absolutely nothing changes performance or
operationally with the user namespace enabled.
- The worst case performance I could come up with was timing 1
billion cache cold stat operations with the user namespace code
enabled. This went from 156s to 164s on my laptop (or 156ns to
164ns per stat operation).
- (uid_t)-1 and (gid_t)-1 are reserved as an internal error value.
Most uid/gid setting system calls treat these value specially
anyway so attempting to use -1 as a uid would likely cause
entertaining failures in userspace.
- If setuid is called with a uid that can not be mapped setuid fails.
I have looked at sendmail, login, ssh and every other program I
could think of that would call setuid and they all check for and
handle the case where setuid fails.
- If stat or a similar system call is called from a context in which
we can not map a uid we lie and return overflowuid. The LFS
experience suggests not lying and returning an error code might be
better, but the historical precedent with uids is different and I
can not think of anything that would break by lying about a uid we
can't map.
- Capabilities are localized to the current user namespace making it
safe to give the initial user in a user namespace all capabilities.
My git tree covers all of the modifications needed to convert the core
kernel and enough changes to make a system bootable to runlevel 1."
Fix up trivial conflicts due to nearby independent changes in fs/stat.c
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/ebiederm/user-namespace: (46 commits)
userns: Silence silly gcc warning.
cred: use correct cred accessor with regards to rcu read lock
userns: Convert the move_pages, and migrate_pages permission checks to use uid_eq
userns: Convert cgroup permission checks to use uid_eq
userns: Convert tmpfs to use kuid and kgid where appropriate
userns: Convert sysfs to use kgid/kuid where appropriate
userns: Convert sysctl permission checks to use kuid and kgids.
userns: Convert proc to use kuid/kgid where appropriate
userns: Convert ext4 to user kuid/kgid where appropriate
userns: Convert ext3 to use kuid/kgid where appropriate
userns: Convert ext2 to use kuid/kgid where appropriate.
userns: Convert devpts to use kuid/kgid where appropriate
userns: Convert binary formats to use kuid/kgid where appropriate
userns: Add negative depends on entries to avoid building code that is userns unsafe
userns: signal remove unnecessary map_cred_ns
userns: Teach inode_capable to understand inodes whose uids map to other namespaces.
userns: Fail exec for suid and sgid binaries with ids outside our user namespace.
userns: Convert stat to return values mapped from kuids and kgids
userns: Convert user specfied uids and gids in chown into kuids and kgid
userns: Use uid_eq gid_eq helpers when comparing kuids and kgids in the vfs
...
Pull perf fixes from Ingo Molnar:
- Leftover AMD PMU driver fix fix from the end of the v3.4
stabilization cycle.
- Late tools/perf/ changes that missed the first round:
* endianness fixes
* event parsing improvements
* libtraceevent fixes factored out from trace-cmd
* perl scripting engine fixes related to libtraceevent,
* testcase improvements
* perf inject / pipe mode fixes
* plus a kernel side fix
* 'perf-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
perf/x86: Update event scheduling constraints for AMD family 15h models
* 'perf-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
Revert "sched, perf: Use a single callback into the scheduler"
perf evlist: Show event attribute details
perf tools: Bump default sample freq to 4 kHz
perf buildid-list: Work better with pipe mode
perf tools: Fix piped mode read code
perf inject: Fix broken perf inject -b
perf tools: rename HEADER_TRACE_INFO to HEADER_TRACING_DATA
perf tools: Add union u64_swap type for swapping u64 data
perf tools: Carry perf_event_attr bitfield throught different endians
perf record: Fix documentation for branch stack sampling
perf target: Add cpu flag to sample_type if target has cpu
perf tools: Always try to build libtraceevent
perf tools: Rename libparsevent to libtraceevent in Makefile
perf script: Rename struct event to struct event_format in perl engine
perf script: Explicitly handle known default print arg type
perf tools: Add hardcoded name term for pmu events
perf tools: Separate 'mem:' event scanner bits
perf tools: Use allocated list for each parsed event
perf tools: Add support for displaying event parser debug info
perf test: Move parse event automated tests to separated object
This reverts commit cb04ff9ac4 ("sched, perf: Use a single
callback into the scheduler").
Before this change was introduced, the process switch worked
like this (wrt. to perf event schedule):
schedule (prev, next)
- schedule out all perf events for prev
- switch to next
- schedule in all perf events for current (next)
After the commit, the process switch looks like:
schedule (prev, next)
- schedule out all perf events for prev
- schedule in all perf events for (next)
- switch to next
The problem is, that after we schedule perf events in, the pmu
is enabled and we can receive events even before we make the
switch to next - so "current" still being prev process (event
SAMPLE data are filled based on the value of the "current"
process).
Thats exactly what we see for test__PERF_RECORD test. We receive
SAMPLES with PID of the process that our tracee is scheduled
from.
Discussed with Peter Zijlstra:
> Bah!, yeah I guess reverting is the right thing for now. Sad
> though.
>
> So by having the two hooks we have a black-spot between them
> where we receive no events at all, this black-spot covers the
> hand-over of current and we thus don't receive the 'wrong'
> events.
>
> I rather liked we could do away with both that black-spot and
> clean up the code a little, but apparently people rely on it.
Signed-off-by: Jiri Olsa <jolsa@redhat.com>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: acme@redhat.com
Cc: paulus@samba.org
Cc: cjashfor@linux.vnet.ibm.com
Cc: fweisbec@gmail.com
Cc: eranian@google.com
Link: http://lkml.kernel.org/r/20120523111302.GC1638@m.brq.redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Pull scheduler changes from Ingo Molnar:
"The biggest change is the cleanup/simplification of the load-balancer:
instead of the current practice of architectures twiddling scheduler
internal data structures and providing the scheduler domains in
colorfully inconsistent ways, we now have generic scheduler code in
kernel/sched/core.c:sched_init_numa() that looks at the architecture's
node_distance() parameters and (while not fully trusting it) deducts a
NUMA topology from it.
This inevitably changes balancing behavior - hopefully for the better.
There are various smaller optimizations, cleanups and fixlets as well"
* 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
sched: Taint kernel with TAINT_WARN after sleep-in-atomic bug
sched: Remove stale power aware scheduling remnants and dysfunctional knobs
sched/debug: Fix printing large integers on 32-bit platforms
sched/fair: Improve the ->group_imb logic
sched/nohz: Fix rq->cpu_load[] calculations
sched/numa: Don't scale the imbalance
sched/fair: Revert sched-domain iteration breakage
sched/x86: Rewrite set_cpu_sibling_map()
sched/numa: Fix the new NUMA topology bits
sched/numa: Rewrite the CONFIG_NUMA sched domain support
sched/fair: Propagate 'struct lb_env' usage into find_busiest_group
sched/fair: Add some serialization to the sched_domain load-balance walk
sched/fair: Let minimally loaded cpu balance the group
sched: Change rq->nr_running to unsigned int
x86/numa: Check for nonsensical topologies on real hw as well
x86/numa: Hard partition cpu topology masks on node boundaries
x86/numa: Allow specifying node_distance() for numa=fake
x86/sched: Make mwait_usable() heed to "idle=" kernel parameters properly
sched: Update documentation and comments
sched_rt: Avoid unnecessary dequeue and enqueue of pushable tasks in set_cpus_allowed_rt()
Pull perf changes from Ingo Molnar:
"Lots of changes:
- (much) improved assembly annotation support in perf report, with
jump visualization, searching, navigation, visual output
improvements and more.
- kernel support for AMD IBS PMU hardware features. Notably 'perf
record -e cycles:p' and 'perf top -e cycles:p' should work without
skid now, like PEBS does on the Intel side, because it takes
advantage of IBS transparently.
- the libtracevents library: it is the first step towards unifying
tracing tooling and perf, and it also gives a tracing library for
external tools like powertop to rely on.
- infrastructure: various improvements and refactoring of the UI
modules and related code
- infrastructure: cleanup and simplification of the profiling
targets code (--uid, --pid, --tid, --cpu, --all-cpus, etc.)
- tons of robustness fixes all around
- various ftrace updates: speedups, cleanups, robustness
improvements.
- typing 'make' in tools/ will now give you a menu of projects to
build and a short help text to explain what each does.
- ... and lots of other changes I forgot to list.
The perf record make bzImage + perf report regression you reported
should be fixed."
* 'perf-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (166 commits)
tracing: Remove kernel_lock annotations
tracing: Fix initial buffer_size_kb state
ring-buffer: Merge separate resize loops
perf evsel: Create events initially disabled -- again
perf tools: Split term type into value type and term type
perf hists: Fix callchain ip printf format
perf target: Add uses_mmap field
ftrace: Remove selecting FRAME_POINTER with FUNCTION_TRACER
ftrace/x86: Have x86 ftrace use the ftrace_modify_all_code()
ftrace: Make ftrace_modify_all_code() global for archs to use
ftrace: Return record ip addr for ftrace_location()
ftrace: Consolidate ftrace_location() and ftrace_text_reserved()
ftrace: Speed up search by skipping pages by address
ftrace: Remove extra helper functions
ftrace: Sort all function addresses, not just per page
tracing: change CPU ring buffer state from tracing_cpumask
tracing: Check return value of tracing_dentry_percpu()
ring-buffer: Reset head page before running self test
ring-buffer: Add integrity check at end of iter read
ring-buffer: Make addition of pages in ring buffer atomic
...
Pull cgroup updates from Tejun Heo:
"cgroup file type addition / removal is updated so that file types are
added and removed instead of individual files so that dynamic file
type addition / removal can be implemented by cgroup and used by
controllers. blkio controller changes which will come through block
tree are dependent on this. Other changes include res_counter cleanup
and disallowing kthread / PF_THREAD_BOUND threads to be attached to
non-root cgroups.
There's a reported bug with the file type addition / removal handling
which can lead to oops on cgroup umount. The issue is being looked
into. It shouldn't cause problems for most setups and isn't a
security concern."
Fix up trivial conflict in Documentation/feature-removal-schedule.txt
* 'for-3.5' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup: (21 commits)
res_counter: Account max_usage when calling res_counter_charge_nofail()
res_counter: Merge res_counter_charge and res_counter_charge_nofail
cgroups: disallow attaching kthreadd or PF_THREAD_BOUND threads
cgroup: remove cgroup_subsys->populate()
cgroup: get rid of populate for memcg
cgroup: pass struct mem_cgroup instead of struct cgroup to socket memcg
cgroup: make css->refcnt clearing on cgroup removal optional
cgroup: use negative bias on css->refcnt to block css_tryget()
cgroup: implement cgroup_rm_cftypes()
cgroup: introduce struct cfent
cgroup: relocate __d_cgrp() and __d_cft()
cgroup: remove cgroup_add_file[s]()
cgroup: convert memcg controller to the new cftype interface
memcg: always create memsw files if CONFIG_CGROUP_MEM_RES_CTLR_SWAP
cgroup: convert all non-memcg controllers to the new cftype interface
cgroup: relocate cftype and cgroup_subsys definitions in controllers
cgroup: merge cft_release_agent cftype array into the base files array
cgroup: implement cgroup_add_cftypes() and friends
cgroup: build list of all cgroups under a given cgroupfs_root
cgroup: move cgroup_clear_directory() call out of cgroup_populate_dir()
...
Pull smp hotplug cleanups from Thomas Gleixner:
"This series is merily a cleanup of code copied around in arch/* and
not changing any of the real cpu hotplug horrors yet. I wish I'd had
something more substantial for 3.5, but I underestimated the lurking
horror..."
Fix up trivial conflicts in arch/{arm,sparc,x86}/Kconfig and
arch/sparc/include/asm/thread_info_32.h
* 'smp-hotplug-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (79 commits)
um: Remove leftover declaration of alloc_task_struct_node()
task_allocator: Use config switches instead of magic defines
sparc: Use common threadinfo allocator
score: Use common threadinfo allocator
sh-use-common-threadinfo-allocator
mn10300: Use common threadinfo allocator
powerpc: Use common threadinfo allocator
mips: Use common threadinfo allocator
hexagon: Use common threadinfo allocator
m32r: Use common threadinfo allocator
frv: Use common threadinfo allocator
cris: Use common threadinfo allocator
x86: Use common threadinfo allocator
c6x: Use common threadinfo allocator
fork: Provide kmemcache based thread_info allocator
tile: Use common threadinfo allocator
fork: Provide weak arch_release_[task_struct|thread_info] functions
fork: Move thread info gfp flags to header
fork: Remove the weak insanity
sh: Remove cpu_idle_wait()
...
Pull RCU changes from Ingo Molnar:
"This is the v3.5 RCU tree from Paul E. McKenney:
1) A set of improvements and fixes to the RCU_FAST_NO_HZ feature (with
more on the way for 3.6). Posted to LKML:
https://lkml.org/lkml/2012/4/23/324 (commits 1-3 and 5),
https://lkml.org/lkml/2012/4/16/611 (commit 4),
https://lkml.org/lkml/2012/4/30/390 (commit 6), and
https://lkml.org/lkml/2012/5/4/410 (commit 7, combined with
the other commits for the convenience of the tester).
2) Changes to make rcu_barrier() avoid disrupting execution of CPUs
that have no RCU callbacks. Posted to LKML:
https://lkml.org/lkml/2012/4/23/322.
3) A couple of commits that improve the efficiency of the interaction
between preemptible RCU and the scheduler, these two being all that
survived an abortive attempt to allow preemptible RCU's
__rcu_read_lock() to be inlined. The full set was posted to LKML at
https://lkml.org/lkml/2012/4/14/143, and the first and third patches
of that set remain.
4) Lai Jiangshan's algorithmic implementation of SRCU, which includes
call_srcu() and srcu_barrier(). A major feature of this new
implementation is that synchronize_srcu() no longer disturbs the
execution of other CPUs. This work is based on earlier
implementations by Peter Zijlstra and Paul E. McKenney. Posted to
LKML: https://lkml.org/lkml/2012/2/22/82.
5) A number of miscellaneous bug fixes and improvements which were
posted to LKML at: https://lkml.org/lkml/2012/4/23/353 with
subsequent updates posted to LKML."
* 'core-rcu-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (32 commits)
rcu: Make rcu_barrier() less disruptive
rcu: Explicitly initialize RCU_FAST_NO_HZ per-CPU variables
rcu: Make RCU_FAST_NO_HZ handle timer migration
rcu: Update RCU maintainership
rcu: Make exit_rcu() more precise and consolidate
rcu: Move PREEMPT_RCU preemption to switch_to() invocation
rcu: Ensure that RCU_FAST_NO_HZ timers expire on correct CPU
rcu: Add rcutorture test for call_srcu()
rcu: Implement per-domain single-threaded call_srcu() state machine
rcu: Use single value to handle expedited SRCU grace periods
rcu: Improve srcu_readers_active_idx()'s cache locality
rcu: Remove unused srcu_barrier()
rcu: Implement a variant of Peter's SRCU algorithm
rcu: Improve SRCU's wait_idx() comments
rcu: Flip ->completed only once per SRCU grace period
rcu: Increment upper bit only for srcu_read_lock()
rcu: Remove fast check path from __synchronize_srcu()
rcu: Direct algorithmic SRCU implementation
rcu: Introduce rcutorture testing for rcu_barrier()
timer: Fix mod_timer_pinned() header comment
...
Merge reason: We are going to queue up a dependent patch:
"perf tools: Move parse event automated tests to separated object"
That depends on:
commit e7c72d8
perf tools: Add 'G' and 'H' modifiers to event parsing
Conflicts:
tools/perf/builtin-stat.c
Conflicted with the recent 'perf_target' patches when checking the
result of perf_evsel open routines to see if a retry is needed to cope
with older kernels where the exclude guest/host perf_event_attr bits
were not used.
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
Usually sleep-in-atomic bugs are followed by dozens other warnings.
This patch should help to figure out original source of problem.
Signed-off-by: Konstantin Khlebnikov <khlebnikov@openvz.org>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/20120510122004.4873.12726.stgit@zurg
Signed-off-by: Ingo Molnar <mingo@kernel.org>
It's been broken forever (i.e. it's not scheduling in a power
aware fashion), as reported by Suresh and others sending
patches, and nobody cares enough to fix it properly ...
so remove it to make space free for something better.
There's various problems with the code as it stands today, first
and foremost the user interface which is bound to topology
levels and has multiple values per level. This results in a
state explosion which the administrator or distro needs to
master and almost nobody does.
Furthermore large configuration state spaces aren't good, it
means the thing doesn't just work right because it's either
under so many impossibe to meet constraints, or even if
there's an achievable state workloads have to be aware of
it precisely and can never meet it for dynamic workloads.
So pushing this kind of decision to user-space was a bad idea
even with a single knob - it's exponentially worse with knobs
on every node of the topology.
There is a proposal to replace the user interface with a single
3 state knob:
sched_balance_policy := { performance, power, auto }
where 'auto' would be the preferred default which looks at things
like Battery/AC mode and possible cpufreq state or whatever the hw
exposes to show us power use expectations - but there's been no
progress on it in the past many months.
Aside from that, the actual implementation of the various knobs
is known to be broken. There have been sporadic attempts at
fixing things but these always stop short of reaching a mergable
state.
Therefore this wholesale removal with the hopes of spurring
people who care to come forward once again and work on a
coherent replacement.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Suresh Siddha <suresh.b.siddha@intel.com>
Cc: Arjan van de Ven <arjan@linux.intel.com>
Cc: Vincent Guittot <vincent.guittot@linaro.org>
Cc: Vaidyanathan Srinivasan <svaidy@linux.vnet.ibm.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Link: http://lkml.kernel.org/r/1326104915.2442.53.camel@twins
Signed-off-by: Ingo Molnar <mingo@kernel.org>
While investigating why the load-balancer did funny I found that the
rq->cpu_load[] tables were completely screwy.. a bit more digging
revealed that the updates that got through were missing ticks followed
by a catchup of 2 ticks.
The catchup assumes the cpu was idle during that time (since only nohz
can cause missed ticks and the machine is idle etc..) this means that
esp. the higher indices were significantly lower than they ought to
be.
The reason for this is that its not correct to compare against jiffies
on every jiffy on any other cpu than the cpu that updates jiffies.
This patch cludges around it by only doing the catch-up stuff from
nohz_idle_balance() and doing the regular stuff unconditionally from
the tick.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: pjt@google.com
Cc: Venkatesh Pallipadi <venki@google.com>
Link: http://lkml.kernel.org/n/tip-tp4kj18xdd5aj4vvj0qg55s2@git.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
It's far too easy to get ridiculously large imbalance pct when you
scale it like that. Use a fixed 125% for now.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/n/tip-zsriaft1dv7hhboyrpvqjy6s@git.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Patches c22402a2f ("sched/fair: Let minimally loaded cpu balance the
group") and 0ce90475 ("sched/fair: Add some serialization to the
sched_domain load-balance walk") are horribly broken so revert them.
The problem is that while it sounds good to have the minimally loaded
cpu do the pulling of more load, the way we walk the domains there is
absolutely no guarantee this cpu will actually get to the domain. In
fact its very likely it wont. Therefore the higher up the tree we get,
the less likely it is we'll balance at all.
The first of mask always walks up, while sucky in that it accumulates
load on the first cpu and needs extra passes to spread it out at least
guarantees a cpu gets up that far and load-balancing happens at all.
Since its now always the first and idle cpus should always be able to
balance so they get a task as fast as possible we can also do away
with the added serialization.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/n/tip-rpuhs5s56aiv1aw7khv9zkw6@git.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
There's no need to convert a node number to a node number by
pretending its a cpu number..
Reported-by: Yinghai Lu <yinghai@kernel.org>
Reported-and-Tested-by: Greg Pearson <greg.pearson@hp.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/n/tip-0sqhrht34phowgclj12dgk8h@git.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Pull the v3.5 RCU tree from Paul E. McKenney:
1) A set of improvements and fixes to the RCU_FAST_NO_HZ feature
(with more on the way for 3.6). Posted to LKML:
https://lkml.org/lkml/2012/4/23/324 (commits 1-3 and 5),
https://lkml.org/lkml/2012/4/16/611 (commit 4),
https://lkml.org/lkml/2012/4/30/390 (commit 6), and
https://lkml.org/lkml/2012/5/4/410 (commit 7, combined with
the other commits for the convenience of the tester).
2) Changes to make rcu_barrier() avoid disrupting execution of CPUs
that have no RCU callbacks. Posted to LKML:
https://lkml.org/lkml/2012/4/23/322.
3) A couple of commits that improve the efficiency of the interaction
between preemptible RCU and the scheduler, these two being all
that survived an abortive attempt to allow preemptible RCU's
__rcu_read_lock() to be inlined. The full set was posted to
LKML at https://lkml.org/lkml/2012/4/14/143, and the first and
third patches of that set remain.
4) Lai Jiangshan's algorithmic implementation of SRCU, which includes
call_srcu() and srcu_barrier(). A major feature of this new
implementation is that synchronize_srcu() no longer disturbs
the execution of other CPUs. This work is based on earlier
implementations by Peter Zijlstra and Paul E. McKenney. Posted to
LKML: https://lkml.org/lkml/2012/2/22/82.
5) A number of miscellaneous bug fixes and improvements which were
posted to LKML at: https://lkml.org/lkml/2012/4/23/353 with
subsequent updates posted to LKML.
Signed-off-by: Ingo Molnar <mingo@kernel.org>
We can easily use a single callback for both sched-in and sched-out. This
reduces the code footprint in the scheduler path as well as removes
the PMU black spot otherwise present between the out and in callback.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/n/tip-o56ajxp1edwqg6x9d31wb805@git.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The current code groups up to 16 nodes in a level and then puts an
ALLNODES domain spanning the entire tree on top of that. This doesn't
reflect the numa topology and esp for the smaller not-fully-connected
machines out there today this might make a difference.
Therefore, build a proper numa topology based on node_distance().
Since there's no fixed numa layers anymore, the static SD_NODE_INIT
and SD_ALLNODES_INIT aren't usable anymore, the new code tries to
construct something similar and scales some values either on the
number of cpus in the domain and/or the node_distance() ratio.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Anton Blanchard <anton@samba.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Chris Metcalf <cmetcalf@tilera.com>
Cc: David Howells <dhowells@redhat.com>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru>
Cc: linux-alpha@vger.kernel.org
Cc: linux-ia64@vger.kernel.org
Cc: linux-kernel@vger.kernel.org
Cc: linux-mips@linux-mips.org
Cc: linuxppc-dev@lists.ozlabs.org
Cc: linux-sh@vger.kernel.org
Cc: Matt Turner <mattst88@gmail.com>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Paul Mundt <lethal@linux-sh.org>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Richard Henderson <rth@twiddle.net>
Cc: sparclinux@vger.kernel.org
Cc: Tony Luck <tony.luck@intel.com>
Cc: x86@kernel.org
Cc: Dimitri Sivanich <sivanich@sgi.com>
Cc: Greg Pearson <greg.pearson@hp.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: bob.picco@oracle.com
Cc: chris.mason@oracle.com
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Link: http://lkml.kernel.org/n/tip-r74n3n8hhuc2ynbrnp3vt954@git.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Since the sched_domain walk is completely unserialized (!SD_SERIALIZE)
it is possible that multiple cpus in the group get elected to do the
next level. Avoid this by adding some serialization.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/n/tip-vqh9ai6s0ewmeakjz80w4qz6@git.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
If we have one cpu that failed to boot and boot cpu gave up on
waiting for it and then another cpu is being booted, kernel
might crash with following OOPS:
BUG: unable to handle kernel NULL pointer dereference at 0000000000000018
IP: [<ffffffff812c3630>] __bitmap_weight+0x30/0x80
Call Trace:
[<ffffffff8108b9b6>] build_sched_domains+0x7b6/0xa50
The crash happens in init_sched_groups_power() that expects
sched_groups to be circular linked list. However it is not
always true, since sched_groups preallocated in __sdt_alloc are
initialized in build_sched_groups and it may exit early
if (cpu != cpumask_first(sched_domain_span(sd)))
return 0;
without initializing sd->groups->next field.
Fix bug by initializing next field right after sched_group was
allocated.
Also-Reported-by: Jiang Liu <liuj97@gmail.com>
Signed-off-by: Igor Mammedov <imammedo@redhat.com>
Cc: a.p.zijlstra@chello.nl
Cc: pjt@google.com
Cc: seto.hidetoshi@jp.fujitsu.com
Link: http://lkml.kernel.org/r/1336559908-32533-1-git-send-email-imammedo@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
- Compare kuids with uid_eq
- kuid are uniuqe across all user namespaces so there is no longer the
need for a user_namespace comparison.
Acked-by: Serge Hallyn <serge.hallyn@canonical.com>
Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
Currently, PREEMPT_RCU readers are enqueued upon entry to the scheduler.
This is inefficient because enqueuing is required only if there is a
context switch, and entry to the scheduler does not guarantee a context
switch.
The commit therefore moves the enqueuing to immediately precede the
call to switch_to() from the scheduler.
Signed-off-by: Paul E. McKenney <paul.mckenney@linaro.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Tested-by: Linus Torvalds <torvalds@linux-foundation.org>
Under extreme memory used up situations, percpu allocation
might fail. We hit it when system goes to suspend-to-ram,
causing a kworker panic:
EIP: [<c124411a>] build_sched_domains+0x23a/0xad0
Kernel panic - not syncing: Fatal exception
Pid: 3026, comm: kworker/u:3
3.0.8-137473-gf42fbef #1
Call Trace:
[<c18cc4f2>] panic+0x66/0x16c
[...]
[<c1244c37>] partition_sched_domains+0x287/0x4b0
[<c12a77be>] cpuset_update_active_cpus+0x1fe/0x210
[<c123712d>] cpuset_cpu_inactive+0x1d/0x30
[...]
With this fix applied build_sched_domains() will return -ENOMEM and
the suspend attempt fails.
Signed-off-by: he, bo <bo.he@intel.com>
Reviewed-by: Zhang, Yanmin <yanmin.zhang@intel.com>
Reviewed-by: Srivatsa S. Bhat <srivatsa.bhat@linux.vnet.ibm.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: <stable@kernel.org>
Link: http://lkml.kernel.org/r/1335355161.5892.17.camel@hebo
[ So, we fail to deallocate a CPU because we cannot allocate RAM :-/
I don't like that kind of sad behavior but nevertheless it should
not crash under high memory load. ]
Signed-off-by: Ingo Molnar <mingo@kernel.org>
All SMP architectures have magic to fork the idle task and to store it
for reusage when cpu hotplug is enabled. Provide a generic
infrastructure for it.
Create/reinit the idle thread for the cpu which is brought up in the
generic code and hand the thread pointer to the architecture code via
__cpu_up().
Note, that fork_idle() is called via a workqueue, because this
guarantees that the idle thread does not get a reference to a user
space VM. This can happen when the boot process did not bring up all
possible cpus and a later cpu_up() is initiated via the sysfs
interface. In that case fork_idle() would be called in the context of
the user space task and take a reference on the user space VM.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Srivatsa S. Bhat <srivatsa.bhat@linux.vnet.ibm.com>
Cc: Matt Turner <mattst88@gmail.com>
Cc: Russell King <linux@arm.linux.org.uk>
Cc: Mike Frysinger <vapier@gentoo.org>
Cc: Jesper Nilsson <jesper.nilsson@axis.com>
Cc: Richard Kuo <rkuo@codeaurora.org>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Hirokazu Takata <takata@linux-m32r.org>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: David Howells <dhowells@redhat.com>
Cc: James E.J. Bottomley <jejb@parisc-linux.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Paul Mundt <lethal@linux-sh.org>
Cc: David S. Miller <davem@davemloft.net>
Cc: Chris Metcalf <cmetcalf@tilera.com>
Cc: Richard Weinberger <richard@nod.at>
Cc: x86@kernel.org
Acked-by: Venkatesh Pallipadi <venki@google.com>
Link: http://lkml.kernel.org/r/20120420124557.102478630@linutronix.de
Optimize performance and prepare for the removal of the user_ns reference
from user_struct. Remove the slow long walk through cred->user->user_ns and
instead go straight to cred->user_ns.
Acked-by: Serge Hallyn <serge.hallyn@canonical.com>
Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
Convert debug, freezer, cpuset, cpu_cgroup, cpuacct, net_prio, blkio,
net_cls and device controllers to use the new cftype based interface.
Termination entry is added to cftype arrays and populate callbacks are
replaced with cgroup_subsys->base_cftypes initializations.
This is functionally identical transformation. There shouldn't be any
visible behavior change.
memcg is rather special and will be converted separately.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizf@cn.fujitsu.com>
Cc: Paul Menage <paul@paulmenage.org>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Vivek Goyal <vgoyal@redhat.com>
Pull scheduler fixes from Ingo Molnar.
* 'sched-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
sched: Fix incorrect usage of for_each_cpu_mask() in select_fallback_rq()
sched: Fix __schedule_bug() output when called from an interrupt
sched/arch: Introduce the finish_arch_post_lock_switch() scheduler callback
The function for_each_cpu_mask() expects a *pointer* to struct
cpumask as its second argument, whereas select_fallback_rq()
passes the value itself.
And moreover, for_each_cpu_mask() has been marked as obselete
in include/linux/cpumask.h. So move to the more appropriate
for_each_cpu() variant.
Reported-by: Sasha Levin <levinsasha928@gmail.com>
Signed-off-by: Srivatsa S. Bhat <srivatsa.bhat@linux.vnet.ibm.com>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Dave Jones <davej@redhat.com>
Cc: Liu Chuansheng <chuansheng.liu@intel.com>
Cc: vapier@gentoo.org
Cc: rusty@rustcorp.com.au
Link: http://lkml.kernel.org/r/4F75BED4.9050005@linux.vnet.ibm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Pull scheduler fixes from Ingo Molnar.
* 'sched-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
cpusets: Remove an unused variable
sched/rt: Improve pick_next_highest_task_rt()
sched: Fix select_fallback_rq() vs cpu_active/cpu_online
sched/x86/smp: Do not enable IRQs over calibrate_delay()
sched: Fix compiler warning about declared inline after use
MAINTAINERS: Update email address for SCHEDULER and PERF EVENTS
If schedule is called from an interrupt handler __schedule_bug()
will call show_regs() with the registers saved during the
interrupt handling done in do_IRQ(). This means we'll see the
registers and the backtrace for the process that was interrupted
and not the full backtrace explaining who called schedule().
This is due to 838225b ("sched: use show_regs() to improve
__schedule_bug() output", 2007-10-24) which improperly assumed
that get_irq_regs() would return the registers for the current
stack because it is being called from within an interrupt
handler. Simply remove the show_reg() code so that we dump a
backtrace for the interrupt handler that called schedule().
[ I ran across this when I was presented with a scheduling while
atomic log with a stacktrace pointing at spin_unlock_irqrestore().
It made no sense and I had to guess what interrupt handler could
be called and poke around for someone calling schedule() in an
interrupt handler. A simple test of putting an msleep() in
an interrupt handler works better with this patch because you
can actually see the msleep() call in the backtrace. ]
Also-reported-by: Chris Metcalf <cmetcalf@tilera.com>
Signed-off-by: Stephen Boyd <sboyd@codeaurora.org>
Cc: Satyam Sharma <satyam@infradead.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1332979847-27102-1-git-send-email-sboyd@codeaurora.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
asm/system.h is a cause of circular dependency problems because it contains
commonly used primitive stuff like barrier definitions and uncommonly used
stuff like switch_to() that might require MMU definitions.
asm/system.h has been disintegrated by this point on all arches into the
following common segments:
(1) asm/barrier.h
Moved memory barrier definitions here.
(2) asm/cmpxchg.h
Moved xchg() and cmpxchg() here. #included in asm/atomic.h.
(3) asm/bug.h
Moved die() and similar here.
(4) asm/exec.h
Moved arch_align_stack() here.
(5) asm/elf.h
Moved AT_VECTOR_SIZE_ARCH here.
(6) asm/switch_to.h
Moved switch_to() here.
Signed-off-by: David Howells <dhowells@redhat.com>
Commit 5fbd036b55 ("sched: Cleanup cpu_active madness"), which was
supposed to finally sort the cpu_active mess, instead uncovered more.
Since CPU_STARTING is ran before setting the cpu online, there's a
(small) window where the cpu has active,!online.
If during this time there's a wakeup of a task that used to reside on
that cpu select_task_rq() will use select_fallback_rq() to compute an
alternative cpu to run on since we find !online.
select_fallback_rq() however will compute the new cpu against
cpu_active, this means that it can return the same cpu it started out
with, the !online one, since that cpu is in fact marked active.
This results in us trying to scheduling a task on an offline cpu and
triggering a WARN in the IPI code.
The solution proposed by Chuansheng Liu of setting cpu_active in
set_cpu_online() is buggy, firstly not all archs actually use
set_cpu_online(), secondly, not all archs call set_cpu_online() with
IRQs disabled, this means we would introduce either the same race or
the race from fd8a7de17 ("x86: cpu-hotplug: Prevent softirq wakeup on
wrong CPU") -- albeit much narrower.
[ By setting online first and active later we have a window of
online,!active, fresh and bound kthreads have task_cpu() of 0 and
since cpu0 isn't in tsk_cpus_allowed() we end up in
select_fallback_rq() which excludes !active, resulting in a reset
of ->cpus_allowed and the thread running all over the place. ]
The solution is to re-work select_fallback_rq() to require active
_and_ online. This makes the active,!online case work as expected,
OTOH archs running CPU_STARTING after setting online are now
vulnerable to the issue from fd8a7de17 -- these are alpha and
blackfin.
Reported-by: Chuansheng Liu <chuansheng.liu@intel.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Mike Frysinger <vapier@gentoo.org>
Cc: linux-alpha@vger.kernel.org
Link: http://lkml.kernel.org/n/tip-hubqk1i10o4dpvlm06gq7v6j@git.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Pull security subsystem updates for 3.4 from James Morris:
"The main addition here is the new Yama security module from Kees Cook,
which was discussed at the Linux Security Summit last year. Its
purpose is to collect miscellaneous DAC security enhancements in one
place. This also marks a departure in policy for LSM modules, which
were previously limited to being standalone access control systems.
Chromium OS is using Yama, and I believe there are plans for Ubuntu,
at least.
This patchset also includes maintenance updates for AppArmor, TOMOYO
and others."
Fix trivial conflict in <net/sock.h> due to the jumo_label->static_key
rename.
* 'next' of git://git.kernel.org/pub/scm/linux/kernel/git/jmorris/linux-security: (38 commits)
AppArmor: Fix location of const qualifier on generated string tables
TOMOYO: Return error if fails to delete a domain
AppArmor: add const qualifiers to string arrays
AppArmor: Add ability to load extended policy
TOMOYO: Return appropriate value to poll().
AppArmor: Move path failure information into aa_get_name and rename
AppArmor: Update dfa matching routines.
AppArmor: Minor cleanup of d_namespace_path to consolidate error handling
AppArmor: Retrieve the dentry_path for error reporting when path lookup fails
AppArmor: Add const qualifiers to generated string tables
AppArmor: Fix oops in policy unpack auditing
AppArmor: Fix error returned when a path lookup is disconnected
KEYS: testing wrong bit for KEY_FLAG_REVOKED
TOMOYO: Fix mount flags checking order.
security: fix ima kconfig warning
AppArmor: Fix the error case for chroot relative path name lookup
AppArmor: fix mapping of META_READ to audit and quiet flags
AppArmor: Fix underflow in xindex calculation
AppArmor: Fix dropping of allowed operations that are force audited
AppArmor: Add mising end of structure test to caps unpacking
...
Pull cgroup changes from Tejun Heo:
"Out of the 8 commits, one fixes a long-standing locking issue around
tasklist walking and others are cleanups."
* 'for-3.4' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup:
cgroup: Walk task list under tasklist_lock in cgroup_enable_task_cg_list
cgroup: Remove wrong comment on cgroup_enable_task_cg_list()
cgroup: remove cgroup_subsys argument from callbacks
cgroup: remove extra calls to find_existing_css_set
cgroup: replace tasklist_lock with rcu_read_lock
cgroup: simplify double-check locking in cgroup_attach_proc
cgroup: move struct cgroup_pidlist out from the header file
cgroup: remove cgroup_attach_task_current_cg()
Pull scheduler changes for v3.4 from Ingo Molnar
* 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (27 commits)
printk: Make it compile with !CONFIG_PRINTK
sched/x86: Fix overflow in cyc2ns_offset
sched: Fix nohz load accounting -- again!
sched: Update yield() docs
printk/sched: Introduce special printk_sched() for those awkward moments
sched/nohz: Correctly initialize 'next_balance' in 'nohz' idle balancer
sched: Cleanup cpu_active madness
sched: Fix load-balance wreckage
sched: Clean up parameter passing of proc_sched_autogroup_set_nice()
sched: Ditch per cgroup task lists for load-balancing
sched: Rename load-balancing fields
sched: Move load-balancing arguments into helper struct
sched/rt: Do not submit new work when PI-blocked
sched/rt: Prevent idle task boosting
sched/wait: Add __wake_up_all_locked() API
sched/rt: Document scheduler related skip-resched-check sites
sched/rt: Use schedule_preempt_disabled()
sched/rt: Add schedule_preempt_disabled()
sched/rt: Do not throttle when PI boosting
sched/rt: Keep period timer ticking when rt throttling is active
...
This callback is called by the scheduler after rq->lock has been released
and interrupts enabled. It will be used in subsequent patches on the ARM
architecture.
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Reviewed-by: Will Deacon <will.deacon@arm.com>
Reviewed-by: Frank Rowand <frank.rowand@am.sony.com>
Tested-by: Will Deacon <will.deacon@arm.com>
Tested-by: Marc Zyngier <Marc.Zyngier@arm.com>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/n/20120313110840.7b444deb6b1bb902c15f3cdf@canb.auug.org.au
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Various people reported nohz load tracking still being wrecked, but Doug
spotted the actual problem. We fold the nohz remainder in too soon,
causing us to loose samples and under-account.
So instead of playing catch-up up-front, always do a single load-fold
with whatever state we encounter and only then fold the nohz remainder
and play catch-up.
Reported-by: Doug Smythies <dsmythies@telus.net>
Reported-by: LesÅ=82aw Kope=C4=87 <leslaw.kopec@nasza-klasa.pl>
Reported-by: Aman Gupta <aman@tmm1.net>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/n/tip-4v31etnhgg9kwd6ocgx3rxl8@git.kernel.org
Signed-off-by: Ingo Molnar <mingo@elte.hu>
There's a few awkward printk()s inside of scheduler guts that people
prefer to keep but really are rather deadlock prone. Fudge around it
by storing the text in a per-cpu buffer and poll it using the existing
printk_tick() handler.
This will drop output when its more frequent than once a tick, however
only the affinity thing could possible go that fast and for that just
one should suffice to notify the admin he's done something silly..
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Link: http://lkml.kernel.org/n/tip-wua3lmkt3dg8nfts66o6brne@git.kernel.org
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Stepan found:
CPU0 CPUn
_cpu_up()
__cpu_up()
boostrap()
notify_cpu_starting()
set_cpu_online()
while (!cpu_active())
cpu_relax()
<PREEMPT-out>
smp_call_function(.wait=1)
/* we find cpu_online() is true */
arch_send_call_function_ipi_mask()
/* wait-forever-more */
<PREEMPT-in>
local_irq_enable()
cpu_notify(CPU_ONLINE)
sched_cpu_active()
set_cpu_active()
Now the purpose of cpu_active is mostly with bringing down a cpu, where
we mark it !active to avoid the load-balancer from moving tasks to it
while we tear down the cpu. This is required because we only update the
sched_domain tree after we brought the cpu-down. And this is needed so
that some tasks can still run while we bring it down, we just don't want
new tasks to appear.
On cpu-up however the sched_domain tree doesn't yet include the new cpu,
so its invisible to the load-balancer, regardless of the active state.
So instead of setting the active state after we boot the new cpu (and
consequently having to wait for it before enabling interrupts) set the
cpu active before we set it online and avoid the whole mess.
Reported-by: Stepan Moskovchenko <stepanm@codeaurora.org>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1323965362.18942.71.camel@twins
Signed-off-by: Ingo Molnar <mingo@elte.hu>
This reverts commit 8f2f748b06.
It causes some odd regression that we have not figured out, and it's too
late in the -rc series to try to figure it out now.
As reported by Konstantin Khlebnikov, it causes consistent hangs on his
laptop (Thinkpad x220: 2x cores + HT). They can be avoided by adding
calls to "rebuild_sched_domains();" in cpuset_cpu_[in]active() for the
CPU_{ONLINE/DOWN_FAILED/DOWN_PREPARE}_FROZEN cases, but it's not at all
clear why, and it makes no sense.
Konstantin's config doesn't even have CONFIG_CPUSETS enabled, just to
make things even more interesting. So it's not the cpusets, it's just
the scheduling domains.
So until this is understood, revert.
Bisected-reported-and-tested-by: Konstantin Khlebnikov <khlebnikov@openvz.org>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Acked-by: Ingo Molnar <mingo@elte.hu>
Acked-by: Srivatsa S. Bhat <srivatsa.bhat@linux.vnet.ibm.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Per cgroup load-balance has numerous problems, chief amongst them that
there is no real sane order in them. So stop pretending it makes sense
and enqueue all tasks on a single list.
This also allows us to more easily fix the fwd progress issue
uncovered by the lock-break stuff. Rotate the list on failure to
migreate and limit the total iterations to nr_running (which with
releasing the lock isn't strictly accurate but close enough).
Also add a filter that skips very light tasks on the first attempt
around the list, this attempts to avoid shooting whole cgroups around
without affecting over balance.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: pjt@google.com
Link: http://lkml.kernel.org/n/tip-tx8yqydc7eimgq7i4rkc3a4g@git.kernel.org
Signed-off-by: Ingo Molnar <mingo@elte.hu>
When we are PI-blocked then we want to get things done ASAP.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/n/tip-vw8et3445km5b8mpihf4trae@git.kernel.org
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Idle task boosting is a nono in general. There is one
exception, when PREEMPT_RT and NOHZ is active:
The idle task calls get_next_timer_interrupt() and holds
the timer wheel base->lock on the CPU and another CPU wants
to access the timer (probably to cancel it). We can safely
ignore the boosting request, as the idle CPU runs this code
with interrupts disabled and will complete the lock
protected section without being interrupted. So there is no
real need to boost.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/n/tip-755rvsosz7sdzot12a3gbha6@git.kernel.org
Signed-off-by: Ingo Molnar <mingo@elte.hu>
For code which protects the waitqueue itself with another lock it
makes no sense to acquire the waitqueue lock for wakeup all. Provide
__wake_up_all_locked().
This is an optimization on the vanilla kernel (to be used by the
PCI code) and an important semantic distinction on -rt.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/n/tip-ux6m4b8jonb9inx8xafh77ds@git.kernel.org
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Create a distinction between scheduler related preempt_enable_no_resched()
calls and the nearly one hundred other places in the kernel that do not
want to reschedule, for one reason or another.
This distinction matters for -rt, where the scheduler and the non-scheduler
preempt models (and checks) are different. For upstream it's purely
documentational.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/n/tip-gs88fvx2mdv5psnzxnv575ke@git.kernel.org
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Add helper to get rid of the ever repeating:
preempt_enable_no_resched();
schedule();
preempt_disable();
patterns.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/n/tip-wxx7btox7coby6ifv5vzhzgp@git.kernel.org
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Currently, during CPU hotplug, the cpuset callbacks modify the cpusets
to reflect the state of the system, and this handling is asymmetric.
That is, upon CPU offline, that CPU is removed from all cpusets. However
when it comes back online, it is put back only to the root cpuset.
This gives rise to a significant problem during suspend/resume. During
suspend, we offline all non-boot cpus and during resume we online them back.
Which means, after a resume, all cpusets (except the root cpuset) will be
restricted to just one single CPU (the boot cpu). But the whole point of
suspend/resume is to restore the system to a state which is as close as
possible to how it was before suspend.
So to fix this, don't touch cpusets during suspend/resume. That is, modify
the cpuset-related CPU hotplug callback to just ignore CPU hotplug when it
is initiated as part of the suspend/resume sequence.
Reported-by: Prashanth Nageshappa <prashanth@linux.vnet.ibm.com>
Signed-off-by: Srivatsa S. Bhat <srivatsa.bhat@linux.vnet.ibm.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: stable@vger.kernel.org
Link: http://lkml.kernel.org/r/4F460D7B.1020703@linux.vnet.ibm.com
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
So here's a boot tested patch on top of Jason's series that does
all the cleanups I talked about and turns jump labels into a
more intuitive to use facility. It should also address the
various misconceptions and confusions that surround jump labels.
Typical usage scenarios:
#include <linux/static_key.h>
struct static_key key = STATIC_KEY_INIT_TRUE;
if (static_key_false(&key))
do unlikely code
else
do likely code
Or:
if (static_key_true(&key))
do likely code
else
do unlikely code
The static key is modified via:
static_key_slow_inc(&key);
...
static_key_slow_dec(&key);
The 'slow' prefix makes it abundantly clear that this is an
expensive operation.
I've updated all in-kernel code to use this everywhere. Note
that I (intentionally) have not pushed through the rename
blindly through to the lowest levels: the actual jump-label
patching arch facility should be named like that, so we want to
decouple jump labels from the static-key facility a bit.
On non-jump-label enabled architectures static keys default to
likely()/unlikely() branches.
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Acked-by: Jason Baron <jbaron@redhat.com>
Acked-by: Steven Rostedt <rostedt@goodmis.org>
Cc: a.p.zijlstra@chello.nl
Cc: mathieu.desnoyers@efficios.com
Cc: davem@davemloft.net
Cc: ddaney.cavm@gmail.com
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: http://lkml.kernel.org/r/20120222085809.GA26397@elte.hu
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Commit 1ac9bc69 ("sched/tracing: Add a new tracepoint for sleeptime")
added a new sched:sched_stat_sleeptime tracepoint.
It's broken: the first sample we get on a task might be bad because
of a stale sleep_start value that wasn't reset at the last task switch
because the tracepoint was not active.
It also breaks the existing schedstat samples due to the side
effects of:
- se->statistics.sleep_start = 0;
...
- se->statistics.block_start = 0;
Nor do I see means to fix it without adding overhead to the scheduler
fast path, which I'm not willing to for the sake of redundant
instrumentation.
Most importantly, sleep time information can already be constructed
by tracing context switches and wakeups, and taking the timestamp
difference between the schedule-out, the wakeup and the schedule-in.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Andrew Vagin <avagin@openvz.org>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Link: http://lkml.kernel.org/n/tip-pc4c9qhl8q6vg3bs4j6k0rbd@git.kernel.org
Signed-off-by: Ingo Molnar <mingo@elte.hu>
The argument is not used at all, and it's not necessary, because
a specific callback handler of course knows which subsys it
belongs to.
Now only ->pupulate() takes this argument, because the handlers of
this callback always call cgroup_add_file()/cgroup_add_files().
So we reduce a few lines of code, though the shrinking of object size
is minimal.
16 files changed, 113 insertions(+), 162 deletions(-)
text data bss dec hex filename
5486240 656987 7039960 13183187 c928d3 vmlinux.o.orig
5486170 656987 7039960 13183117 c9288d vmlinux.o
Signed-off-by: Li Zefan <lizf@cn.fujitsu.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
The block layer has some code trying to determine if two CPUs share a
cache, the scheduler has a similar function. Expose the function used
by the scheduler and make the block layer use it, thereby removing the
block layers usage of CONFIG_SCHED* and topology bits.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Acked-by: Jens Axboe <axboe@kernel.dk>
Link: http://lkml.kernel.org/r/1327579450.2446.95.camel@twins
Commit 029632fbb7 ("sched: Make
separate sched*.c translation units") removed the include of
asm/mutex.h from sched.c.
This breaks the combination of:
CONFIG_MUTEX_SPIN_ON_OWNER=yes
CONFIG_HAVE_ARCH_MUTEX_CPU_RELAX=yes
like s390 without mutex debugging:
CC kernel/sched/core.o
kernel/sched/core.c: In function ‘mutex_spin_on_owner’:
kernel/sched/core.c:3287: error: implicit declaration of function ‘arch_mutex_cpu_relax’
Lets re-add the include to kernel/sched/core.c
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/1326268696-30904-1-git-send-email-borntraeger@de.ibm.com
Signed-off-by: Ingo Molnar <mingo@elte.hu>
KOSAKI Motohiro noticed the following race:
> CPU0 CPU1
> --------------------------------------------------------
> deactivate_task()
> task->state = TASK_UNINTERRUPTIBLE;
> activate_task()
> rq->nr_uninterruptible--;
>
> schedule()
> deactivate_task()
> rq->nr_uninterruptible++;
>
Kosaki-San's scenario is possible when CPU0 runs
__sched_setscheduler() against CPU1's current @task.
__sched_setscheduler() does a dequeue/enqueue in order to move
the task to its new queue (position) to reflect the newly provided
scheduling parameters. However it should be completely invariant to
nr_uninterruptible accounting, sched_setscheduler() doesn't affect
readyness to run, merely policy on when to run.
So convert the inappropriate activate/deactivate_task usage to
enqueue/dequeue_task, which avoids the nr_uninterruptible accounting.
Also convert the two other sites: __migrate_task() and
normalize_task() that still use activate/deactivate_task. These sites
aren't really a problem since __migrate_task() will only be called on
non-running task (and therefore are immume to the described problem)
and normalize_task() isn't ever used on regular systems.
Also remove the comments from activate/deactivate_task since they're
misleading at best.
Reported-by: KOSAKI Motohiro <kosaki.motohiro@gmail.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/1327486224.2614.45.camel@laptop
Signed-off-by: Ingo Molnar <mingo@elte.hu>
* 'for-linus' of git://selinuxproject.org/~jmorris/linux-security:
capabilities: remove __cap_full_set definition
security: remove the security_netlink_recv hook as it is equivalent to capable()
ptrace: do not audit capability check when outputing /proc/pid/stat
capabilities: remove task_ns_* functions
capabitlies: ns_capable can use the cap helpers rather than lsm call
capabilities: style only - move capable below ns_capable
capabilites: introduce new has_ns_capabilities_noaudit
capabilities: call has_ns_capability from has_capability
capabilities: remove all _real_ interfaces
capabilities: introduce security_capable_noaudit
capabilities: reverse arguments to security_capable
capabilities: remove the task from capable LSM hook entirely
selinux: sparse fix: fix several warnings in the security server cod
selinux: sparse fix: fix warnings in netlink code
selinux: sparse fix: eliminate warnings for selinuxfs
selinux: sparse fix: declare selinux_disable() in security.h
selinux: sparse fix: move selinux_complete_init
selinux: sparse fix: make selinux_secmark_refcount static
SELinux: Fix RCU deref check warning in sel_netport_insert()
Manually fix up a semantic mis-merge wrt security_netlink_recv():
- the interface was removed in commit fd77846152 ("security: remove
the security_netlink_recv hook as it is equivalent to capable()")
- a new user of it appeared in commit a38f7907b9 ("crypto: Add
userspace configuration API")
causing no automatic merge conflict, but Eric Paris pointed out the
issue.
* 'for-3.3' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup: (21 commits)
cgroup: fix to allow mounting a hierarchy by name
cgroup: move assignement out of condition in cgroup_attach_proc()
cgroup: Remove task_lock() from cgroup_post_fork()
cgroup: add sparse annotation to cgroup_iter_start() and cgroup_iter_end()
cgroup: mark cgroup_rmdir_waitq and cgroup_attach_proc() as static
cgroup: only need to check oldcgrp==newgrp once
cgroup: remove redundant get/put of task struct
cgroup: remove redundant get/put of old css_set from migrate
cgroup: Remove unnecessary task_lock before fetching css_set on migration
cgroup: Drop task_lock(parent) on cgroup_fork()
cgroups: remove redundant get/put of css_set from css_set_check_fetched()
resource cgroups: remove bogus cast
cgroup: kill subsys->can_attach_task(), pre_attach() and attach_task()
cgroup, cpuset: don't use ss->pre_attach()
cgroup: don't use subsys->can_attach_task() or ->attach_task()
cgroup: introduce cgroup_taskset and use it in subsys->can_attach(), cancel_attach() and attach()
cgroup: improve old cgroup handling in cgroup_attach_proc()
cgroup: always lock threadgroup during migration
threadgroup: extend threadgroup_lock() to cover exit and exec
threadgroup: rename signal->threadgroup_fork_lock to ->group_rwsem
...
Fix up conflict in kernel/cgroup.c due to commit e0197aae59: "cgroups:
fix a css_set not found bug in cgroup_attach_proc" that already
mentioned that the bug is fixed (differently) in Tejun's cgroup
patchset. This one, in other words.
* 'for-linus2' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs: (165 commits)
reiserfs: Properly display mount options in /proc/mounts
vfs: prevent remount read-only if pending removes
vfs: count unlinked inodes
vfs: protect remounting superblock read-only
vfs: keep list of mounts for each superblock
vfs: switch ->show_options() to struct dentry *
vfs: switch ->show_path() to struct dentry *
vfs: switch ->show_devname() to struct dentry *
vfs: switch ->show_stats to struct dentry *
switch security_path_chmod() to struct path *
vfs: prefer ->dentry->d_sb to ->mnt->mnt_sb
vfs: trim includes a bit
switch mnt_namespace ->root to struct mount
vfs: take /proc/*/mounts and friends to fs/proc_namespace.c
vfs: opencode mntget() mnt_set_mountpoint()
vfs: spread struct mount - remaining argument of next_mnt()
vfs: move fsnotify junk to struct mount
vfs: move mnt_devname
vfs: move mnt_list to struct mount
vfs: switch pnode.h macros to struct mount *
...
* 'driver-core-next' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/driver-core: (73 commits)
arm: fix up some samsung merge sysdev conversion problems
firmware: Fix an oops on reading fw_priv->fw in sysfs loading file
Drivers:hv: Fix a bug in vmbus_driver_unregister()
driver core: remove __must_check from device_create_file
debugfs: add missing #ifdef HAS_IOMEM
arm: time.h: remove device.h #include
driver-core: remove sysdev.h usage.
clockevents: remove sysdev.h
arm: convert sysdev_class to a regular subsystem
arm: leds: convert sysdev_class to a regular subsystem
kobject: remove kset_find_obj_hinted()
m86k: gpio - convert sysdev_class to a regular subsystem
mips: txx9_sram - convert sysdev_class to a regular subsystem
mips: 7segled - convert sysdev_class to a regular subsystem
sh: dma - convert sysdev_class to a regular subsystem
sh: intc - convert sysdev_class to a regular subsystem
power: suspend - convert sysdev_class to a regular subsystem
power: qe_ic - convert sysdev_class to a regular subsystem
power: cmm - convert sysdev_class to a regular subsystem
s390: time - convert sysdev_class to a regular subsystem
...
Fix up conflicts with 'struct sysdev' removal from various platform
drivers that got changed:
- arch/arm/mach-exynos/cpu.c
- arch/arm/mach-exynos/irq-eint.c
- arch/arm/mach-s3c64xx/common.c
- arch/arm/mach-s3c64xx/cpu.c
- arch/arm/mach-s5p64x0/cpu.c
- arch/arm/mach-s5pv210/common.c
- arch/arm/plat-samsung/include/plat/cpu.h
- arch/powerpc/kernel/sysfs.c
and fix up cpu_is_hotpluggable() as per Greg in include/linux/cpu.h
If CONFIG_SCHEDSTATS is defined, the kernel maintains
information about how long the task was sleeping or
in the case of iowait, blocking in the kernel before
getting woken up.
This will be useful for sleep time profiling.
Note: this information is only provided for sched_fair.
Other scheduling classes may choose to provide this in
the future.
Note: the delay includes the time spent on the runqueue
as well.
Signed-off-by: Arun Sharma <asharma@fb.com>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Arnaldo Carvalho de Melo <acme@infradead.org>
Cc: Andrew Vagin <avagin@openvz.org>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Link: http://lkml.kernel.org/r/1324512940-32060-2-git-send-email-asharma@fb.com
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Remove cfs bandwidth period check from tg_set_cfs_period.
Invalid bandwidth period's lower/upper limits are denoted
by min_cfs_quota_period/max_cfs_quota_period repsectively,
and are checked against valid period in tg_set_cfs_bandwidth().
As pjt pointed out, negative input will result in very large unsigned
numbers and will be caught by the max allowed period test.
Signed-off-by: Kamalesh Babulal <kamalesh@linux.vnet.ibm.com>
Acked-by: Paul Turner <pjt@google.com>
[ammended changelog to mention negative values]
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/20111210135925.GA14593@linux.vnet.ibm.com
--
kernel/sched/core.c | 3 ---
1 file changed, 3 deletions(-)
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Mike reported a 13% drop in netperf TCP_RR performance due to the
new remote wakeup code. Suresh too noticed some performance issues
with it.
Reducing the IPIs to only cross cache domains solves the observed
performance issues.
Reported-by: Suresh Siddha <suresh.b.siddha@intel.com>
Reported-by: Mike Galbraith <efault@gmx.de>
Acked-by: Suresh Siddha <suresh.b.siddha@intel.com>
Acked-by: Mike Galbraith <efault@gmx.de>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Chris Mason <chris.mason@oracle.com>
Cc: Dave Kleikamp <dave.kleikamp@oracle.com>
Link: http://lkml.kernel.org/r/1323338531.17673.7.camel@twins
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Now that we initialize jump_labels before sched_init() we can use them
for the debug features without having to worry about a window where
they have the wrong setting.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/n/tip-vpreo4hal9e0kzqmg5y0io2k@git.kernel.org
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Now that we're pointing cpuacct's root cgroup to cpustat and accounting
through task_group_account_field(), we should not access cpustat directly.
Since it is done anyway inside the acessor function, we end up accounting
it twice, which is wrong.
Signed-off-by: Glauber Costa <glommer@parallels.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/1322863119-14225-2-git-send-email-glommer@parallels.com
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Right now, after we collect tick statistics for user and system and store them
in a well known location, we keep the same statistics again for cpuacct.
Since cpuacct is hierarchical, the numbers for the root cgroup should be
absolutely equal to the system-wide numbers.
So it would be better to just use it: this patch changes cpuacct accounting
in a way that the cpustat statistics are kept in a struct kernel_cpustat percpu
array. In the root cgroup case, we just point it to the main array. The rest of
the hierarchy walk can be totally disabled later with a static branch - but I am
not doing it here.
Signed-off-by: Glauber Costa <glommer@parallels.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Paul Tuner <pjt@google.com>
Link: http://lkml.kernel.org/r/1322498719-2255-4-git-send-email-glommer@parallels.com
Signed-off-by: Ingo Molnar <mingo@elte.hu>
We already have a pointer to the cgroup parent (whose data is more likely
to be in the cache than this, anyway), so there is no need to have this one
in cpuacct.
This patch makes the underlying cgroup be used instead.
Signed-off-by: Glauber Costa <glommer@parallels.com>
Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Paul Tuner <pjt@google.com>
Cc: Li Zefan <lizf@cn.fujitsu.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/1322498719-2255-3-git-send-email-glommer@parallels.com
Signed-off-by: Ingo Molnar <mingo@elte.hu>
This patch changes fields in cpustat from a structure, to an
u64 array. Math gets easier, and the code is more flexible.
Signed-off-by: Glauber Costa <glommer@parallels.com>
Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Paul Tuner <pjt@google.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/1322498719-2255-2-git-send-email-glommer@parallels.com
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Introduce nr_busy_cpus in the struct sched_group_power [Not in sched_group
because sched groups are duplicated for the SD_OVERLAP scheduler domain]
and for each cpu that enters and exits idle, this parameter will
be updated in each scheduler group of the scheduler domain that this cpu
belongs to.
To avoid the frequent update of this state as the cpu enters
and exits idle, the update of the stat during idle exit is
delayed to the first timer tick that happens after the cpu becomes busy.
This is done using NOHZ_IDLE flag in the struct rq's nohz_flags.
Signed-off-by: Suresh Siddha <suresh.b.siddha@intel.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20111202010832.555984323@sbsiddha-desk.sc.intel.com
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Introduce nohz_flags in the struct rq, which will track these two flags
for now.
NOHZ_TICK_STOPPED keeps track of the tick stopped status that gets set when
the tick is stopped. It will be used to update the nohz idle load balancer data
structures during the first busy tick after the tick is restarted. At this
first busy tick after tickless idle, NOHZ_TICK_STOPPED flag will be reset.
This will minimize the nohz idle load balancer status updates that currently
happen for every tickless exit, making it more scalable when there
are many logical cpu's that enter and exit idle often.
NOHZ_BALANCE_KICK will track the need for nohz idle load balance
on this rq. This will replace the nohz_balance_kick in the rq, which was
not being updated atomically.
Signed-off-by: Suresh Siddha <suresh.b.siddha@intel.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20111202010832.499438999@sbsiddha-desk.sc.intel.com
Signed-off-by: Ingo Molnar <mingo@elte.hu>
For the SD_OVERLAP domain, sched_groups for each CPU's sched_domain are
privately allocated and not shared with any other cpu. So the
sched group allocation should come from the cpu's node for which
SD_OVERLAP sched domain is being setup.
Signed-off-by: Suresh Siddha <suresh.b.siddha@intel.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/20111118230554.164910950@sbsiddha-desk.sc.intel.com
Signed-off-by: Ingo Molnar <mingo@elte.hu>
This is another case where we are on our way to schedule(),
so can save a useless clock update and resulting microscopic
vruntime update.
Signed-off-by: Mike Galbraith <efault@gmx.de>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/1321971686.6855.18.camel@marge.simson.net
Signed-off-by: Ingo Molnar <mingo@elte.hu>
There's too many sched*.[ch] files in kernel/, give them their own
directory.
(No code changed, other than Makefile glue added.)
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>