Certain btree flags never change for the life of a btree cursor because
they describe the geometry of the btree itself. Encode these in the
btree ops structure and reduce the amount of code required in each btree
type's init_cursor functions. This also frees up most of the bits in
bc_flags.
A previous version of this patch also converted the open-coded flags
logic to helpers. This was removed due to the pending refactoring (that
follows this patch) to eliminate most of the state flags.
Conversion script:
sed \
-e 's/XFS_BTREE_LONG_PTRS/XFS_BTGEO_LONG_PTRS/g' \
-e 's/XFS_BTREE_ROOT_IN_INODE/XFS_BTGEO_ROOT_IN_INODE/g' \
-e 's/XFS_BTREE_LASTREC_UPDATE/XFS_BTGEO_LASTREC_UPDATE/g' \
-e 's/XFS_BTREE_OVERLAPPING/XFS_BTGEO_OVERLAPPING/g' \
-e 's/cur->bc_flags & XFS_BTGEO_/cur->bc_ops->geom_flags \& XFS_BTGEO_/g' \
-i $(git ls-files fs/xfs/*.[ch] fs/xfs/libxfs/*.[ch] fs/xfs/scrub/*.[ch])
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
A reviewer was confused by the init_sa logic in this function. Upon
checking the logic, I discovered that the code is imprecise. What we
want to do here is check that there is an ownership record in the rmap
btree for the AG that contains a btree block.
For an inode-rooted btree (e.g. the bmbt) the per-AG btree cursors have
not been initialized because inode btrees can span multiple AGs.
Therefore, we must initialize the per-AG btree cursors in sc->sa before
proceeding. That is what init_sa controls, and hence the logic should
be gated on XFS_BTREE_ROOT_IN_INODE, not XFS_BTREE_LONG_PTRS.
In practice, ROOT_IN_INODE and LONG_PTRS are coincident so this hasn't
mattered. However, we're about to refactor both of those flags into
separate btree_ops fields so we want this the logic to make sense
afterwards.
Fixes: 858333dcf0 ("xfs: check btree block ownership with bnobt/rmapbt when scrubbing btree")
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Strengthen online scrub's checking even further by enabling us to check
that a range of blocks are owned solely by a given owner.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Create wrapper functions around ->diff_two_keys so that we don't have to
remember what the return values mean, and adjust some of the code
comments to reflect the longtime code behavior. We're going to
introduce more uses of ->diff_two_keys in the next patch, so reduce the
cognitive load for readers by doing this refactoring now.
Suggested-by: Dave Chinner <david@fromorbit.com>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
In commit d47fef9342, we removed the firstrec and firstkey fields of
struct xchk_btree because Christoph thought they were unnecessary
because we could use the record index in the btree cursor. This is
incorrect because bc_ptrs (now bc_levels[].ptr) tracks the cursor
position within a specific btree block, not within the entire level.
The end result is that scrub no longer detects situations where the
rightmost record of a block is identical to the leftmost record of that
block's right sibling. Fix this regression by reintroducing record
validity booleans so that order checking skips *only* the leftmost
record/key in each level.
Fixes: d47fef9342 ("xfs: don't track firstrec/firstkey separately in xchk_btree")
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
When scrub is checking a non-root btree block, it should make sure that
the keys in the parent btree block accurately capture the keyspace that
the child block stores.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
In the last patch, we changed the rmapbt code to remove the UNWRITTEN
bit when creating an rmapbt key from an rmapbt record, and we changed
the rmapbt key comparison code to start considering the ATTR and BMBT
flags during lookup. This brought the behavior of the rmapbt
implementation in line with its specification.
However, there may exist filesystems that have the unwritten bit still
set in the rmapbt keys. We should detect these situations and flag the
rmapbt as one that would benefit from optimization. Eventually, online
repair will be able to do something in response to this.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
In the previous patch, we added jump labels to the intent drain code so
that regular filesystem operations need not pay the price of checking
for someone (scrub) waiting on intents to drain from some part of the
filesystem when that someone isn't running.
However, I observed that xfs/285 now spends a lot more time pushing the
AIL from the inode btree scrubber than it used to. This is because the
inobt scrubber will try push the AIL to try to get logged inode cores
written to the filesystem when it sees a weird discrepancy between the
ondisk inode and the inobt records. This AIL push is triggered when the
setup function sees TRY_HARDER is set; and the requisite EDEADLOCK
return is initiated when the discrepancy is seen.
The solution to this performance slow down is to use a different result
code (ECHRNG) for scrub code to signal that it needs to wait for
deferred intent work items to drain out of some part of the filesystem.
When this happens, set a new scrub state flag (XCHK_NEED_DRAIN) so that
setup functions will activate the jump label.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Update the copyright years in the scrub/ source code files. This isn't
required, but it's helpful to remind myself just how long it's taken to
develop this feature.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Fix the spdx tags to match current practice, and update the author
contact information.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Convert all the online scrub code to use the Linux slab allocator
functions directly instead of going through the kmem wrappers.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Initialize the check_owner list head so that we don't corrupt the list.
Reduce the scope of the object pointer.
Fixes: 858333dcf0 ("xfs: check btree block ownership with bnobt/rmapbt when scrubbing btree")
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Replace this shouty macro with a real C function that has a more
descriptive name.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Split out the btree level information into a separate struct and put it
at the end of the cursor structure as a VLA. Files with huge data forks
(and in the future, the realtime rmap btree) will require the ability to
support many more levels than a per-AG btree cursor, which means that
we're going to create per-btree type cursor caches to conserve memory
for the more common case.
Note that a subsequent patch actually introduces dynamic cursor heights.
This one merely rearranges the structure to prepare for that.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Chandan Babu R <chandan.babu@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Reorganize struct xchk_btree so that we can dynamically size the context
structure to fit the type of btree cursor that we have. This will
enable us to use memory more efficiently once we start adding very tall
btree types. Right-size the lastkey array to match the number of *node*
levels in the tree so that we stop wasting space.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
The btree scrubbing code checks that the records (or keys) that it finds
in a btree block are all in order by calling the btree cursor's
->recs_inorder function. This of course makes no sense for the first
item in the block, so we switch that off with a separate variable in
struct xchk_btree.
Christoph helped me figure out that the variable is unnecessary, since
we just accessed bc_ptrs[level] and can compare that against zero. Use
that, and save ourselves some memory space.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Convert the on-stack scrub context, btree scrub context, and da btree
scrub context into a heap allocation so that we reduce stack usage and
gain the ability to handle tall btrees without issue.
Specifically, this saves us ~208 bytes for the dabtree scrub, ~464 bytes
for the btree scrub, and ~200 bytes for the main scrub context.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Chandan Babu R <chandan.babu@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
The kernel test robot found the following bug when running xfs/355 to
scrub a bmap btree:
XFS: Assertion failed: !sa->pag, file: fs/xfs/scrub/common.c, line: 412
------------[ cut here ]------------
kernel BUG at fs/xfs/xfs_message.c:110!
invalid opcode: 0000 [#1] SMP PTI
CPU: 2 PID: 1415 Comm: xfs_scrub Not tainted 5.14.0-rc4-00021-g48c6615cc557 #1
Hardware name: Hewlett-Packard p6-1451cx/2ADA, BIOS 8.15 02/05/2013
RIP: 0010:assfail+0x23/0x28 [xfs]
RSP: 0018:ffffc9000aacb890 EFLAGS: 00010202
RAX: 0000000000000000 RBX: ffffc9000aacbcc8 RCX: 0000000000000000
RDX: 00000000ffffffc0 RSI: 000000000000000a RDI: ffffffffc09e7dcd
RBP: ffffc9000aacbc80 R08: ffff8881fdf17d50 R09: 0000000000000000
R10: 000000000000000a R11: f000000000000000 R12: 0000000000000000
R13: ffff88820c7ed000 R14: 0000000000000001 R15: ffffc9000aacb980
FS: 00007f185b955700(0000) GS:ffff8881fdf00000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007f7f6ef43000 CR3: 000000020de38002 CR4: 00000000001706e0
Call Trace:
xchk_ag_read_headers+0xda/0x100 [xfs]
xchk_ag_init+0x15/0x40 [xfs]
xchk_btree_check_block_owner+0x76/0x180 [xfs]
xchk_btree_get_block+0xd0/0x140 [xfs]
xchk_btree+0x32e/0x440 [xfs]
xchk_bmap_btree+0xd4/0x140 [xfs]
xchk_bmap+0x1eb/0x3c0 [xfs]
xfs_scrub_metadata+0x227/0x4c0 [xfs]
xfs_ioc_scrub_metadata+0x50/0xc0 [xfs]
xfs_file_ioctl+0x90c/0xc40 [xfs]
__x64_sys_ioctl+0x83/0xc0
do_syscall_64+0x3b/0xc0
The unusual handling of errors while initializing struct xchk_ag is the
root cause here. Since the beginning of xfs_scrub, the goal of
xchk_ag_read_headers has been to read all three AG header buffers and
attach them both to the xchk_ag structure and the scrub transaction.
Corruption errors on any of the three headers doesn't necessarily
trigger an immediate return to userspace, because xfs_scrub can also
tell us to /fix/ the problem.
In other words, it's possible for the xchk_ag init functions to return
an error code and a partially filled out structure so that scrub can use
however much information it managed to pull. Before 5.15, it was
sufficient to cancel (or commit) the scrub transaction on the way out of
the scrub code to release the buffers.
Ccommit 48c6615cc5 added a reference to the perag structure to struct
xchk_ag. Since perag structures are not attached to transactions like
buffers are, this adds the requirement that the perag ref be released
explicitly. The scrub teardown function xchk_teardown was amended to do
this for the xchk_ag embedded in struct xfs_scrub.
Unfortunately, I forgot that certain parts of the scrub code probe
multiple AGs and therefore handle the initialization and cleanup on
their own. Specifically, the bmbt scrubber will initialize it long
enough to cross-reference AG metadata for btree blocks and for the
extent mappings in the bmbt.
If one of the AG headers is corrupt, the init function returns with a
live perag structure reference and some of the AG header buffers. If an
error occurs, the cross referencing will be noted as XCORRUPTion and
skipped, but the main scrub process will move on to the next record.
It is now necessary to release the perag reference before we try to
analyze something from a different AG, or else we'll trip over the
assertion noted above.
Fixes: 48c6615cc5 ("xfs: grab active perag ref when reading AG headers")
Reported-by: kernel test robot <oliver.sang@intel.com>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Chandan Babu R <chandanrlinux@gmail.com>
Introduce a helper function xfs_buf_daddr() to extract the disk
address of the buffer from the struct xfs_buf. This will replace
direct accesses to bp->b_bn and bp->b_maps[0].bm_bn, as well as
the XFS_BUF_ADDR() macro.
This patch introduces the helper function and replaces all uses of
XFS_BUF_ADDR() as this is just a simple sed replacement.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
This patch prepares scrub to deal with the possibility of tearing down
entire AGs by changing the order of resource acquisition to match the
rest of the XFS codebase. In other words, scrub now grabs AG resources
in order of: perag structure, then AGI/AGF/AGFL buffers, then btree
cursors; and releases them in reverse order.
This requires us to distinguish xchk_ag_init callers -- some are
responding to a user request to check AG metadata, in which case we can
return ENOENT to userspace; but other callers have an ondisk reference
to an AG that they're trying to cross-reference. In this second case,
the lack of an AG means there's ondisk corruption, since ondisk metadata
cannot point into nonexistent space.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Chandan Babu R <chandanrlinux@gmail.com>
In preparation to enable -Wimplicit-fallthrough for Clang, fix
the following warnings by replacing /* fall through */ comments,
and its variants, with the new pseudo-keyword macro fallthrough:
fs/xfs/libxfs/xfs_alloc.c:3167:2: warning: unannotated fall-through between switch labels [-Wimplicit-fallthrough]
fs/xfs/libxfs/xfs_da_btree.c:286:3: warning: unannotated fall-through between switch labels [-Wimplicit-fallthrough]
fs/xfs/libxfs/xfs_ag_resv.c:346:2: warning: unannotated fall-through between switch labels [-Wimplicit-fallthrough]
fs/xfs/libxfs/xfs_ag_resv.c:388:2: warning: unannotated fall-through between switch labels [-Wimplicit-fallthrough]
fs/xfs/xfs_bmap_util.c:246:2: warning: unannotated fall-through between switch labels [-Wimplicit-fallthrough]
fs/xfs/xfs_export.c:88:2: warning: unannotated fall-through between switch labels [-Wimplicit-fallthrough]
fs/xfs/xfs_export.c:96:2: warning: unannotated fall-through between switch labels [-Wimplicit-fallthrough]
fs/xfs/xfs_file.c:867:3: warning: unannotated fall-through between switch labels [-Wimplicit-fallthrough]
fs/xfs/xfs_ioctl.c:562:2: warning: unannotated fall-through between switch labels [-Wimplicit-fallthrough]
fs/xfs/xfs_ioctl.c:1548:2: warning: unannotated fall-through between switch labels [-Wimplicit-fallthrough]
fs/xfs/xfs_iomap.c:1040:2: warning: unannotated fall-through between switch labels [-Wimplicit-fallthrough]
fs/xfs/xfs_inode.c:852:2: warning: unannotated fall-through between switch labels [-Wimplicit-fallthrough]
fs/xfs/xfs_log.c:2627:2: warning: unannotated fall-through between switch labels [-Wimplicit-fallthrough]
fs/xfs/xfs_trans_buf.c:298:2: warning: unannotated fall-through between switch labels [-Wimplicit-fallthrough]
fs/xfs/scrub/bmap.c:275:2: warning: unannotated fall-through between switch labels [-Wimplicit-fallthrough]
fs/xfs/scrub/btree.c:48:2: warning: unannotated fall-through between switch labels [-Wimplicit-fallthrough]
fs/xfs/scrub/common.c:85:2: warning: unannotated fall-through between switch labels [-Wimplicit-fallthrough]
fs/xfs/scrub/common.c:138:2: warning: unannotated fall-through between switch labels [-Wimplicit-fallthrough]
fs/xfs/scrub/common.c:698:2: warning: unannotated fall-through between switch labels [-Wimplicit-fallthrough]
fs/xfs/scrub/dabtree.c:51:2: warning: unannotated fall-through between switch labels [-Wimplicit-fallthrough]
fs/xfs/scrub/repair.c:951:2: warning: unannotated fall-through between switch labels [-Wimplicit-fallthrough]
fs/xfs/scrub/agheader.c:89:2: warning: unannotated fall-through between switch labels [-Wimplicit-fallthrough]
Notice that Clang doesn't recognize /* fall through */ comments as
implicit fall-through markings, so in order to globally enable
-Wimplicit-fallthrough for Clang, these comments need to be
replaced with fallthrough; in the whole codebase.
Link: https://github.com/KSPP/linux/issues/115
Signed-off-by: Gustavo A. R. Silva <gustavoars@kernel.org>
xchk_btree_check_minrecs() checks if the contents of the immediate child of a
bmbt root block can fit within the root block. This check could fail on inodes
with an attr fork since xfs_bmap_add_attrfork_btree() used to demote the
current root node of the data fork as the child of a newly allocated root node
if it found that the size of "struct xfs_btree_block" along with the space
required for records exceeded that of space available in the data fork.
xfs_bmap_add_attrfork_btree() should have used "struct xfs_bmdr_block" instead
of "struct xfs_btree_block" for the above mentioned space requirement
calculation. This commit disables the check for unoptimized (in terms of
disk space usage) data fork bmbt trees since there could be filesystems
in use that already have such a layout.
Suggested-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Chandan Babu R <chandanrlinux@gmail.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
The comment and logic in xchk_btree_check_minrecs for dealing with
inode-rooted btrees isn't quite correct. While the direct children of
the inode root are allowed to have fewer records than what would
normally be allowed for a regular ondisk btree block, this is only true
if there is only one child block and the number of records don't fit in
the inode root.
Fixes: 08a3a692ef ("xfs: btree scrub should check minrecs")
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Chandan Babu R <chandanrlinux@gmail.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
There are many, many xfs header files which are included but
unneeded (or included twice) in the xfs code, so remove them.
nb: xfs_linux.h includes about 9 headers for everyone, so those
explicit includes get removed by this. I'm not sure what the
preference is, but if we wanted explicit includes everywhere,
a followup patch could remove those xfs_*.h includes from
xfs_linux.h and move them into the files that need them.
Or it could be left as-is.
Signed-off-by: Eric Sandeen <sandeen@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
In xchk_btree_check_owner, we can be passed a null buffer pointer. This
should only happen for the root of a root-in-inode btree type, but we
should program defensively in case the btree cursor state ever gets
screwed up and we get a null buffer anyway.
Coverity-id: 1438713
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Only certain functions actually change the contents of an
xfs_owner_info; the rest can accept a const struct pointer. This will
enable us to save stack space by hoisting static owner info types to
be const global variables.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Now that we've shortened everything, fix up all the indentation and
whitespace problems. There are no functional changes.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Shorten the name of the online fsck context structure. Whitespace
damage will be fixed by a subsequent patch. There are no functional
changes.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Shorten all the metadata checking xfs_scrub_ prefixes to xchk_. After
this, the only xfs_scrub* symbols are the ones that pertain to both
scrub and repair. Whitespace damage will be fixed in a subsequent
patch. There are no functional changes.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Remove the verbose license text from XFS files and replace them
with SPDX tags. This does not change the license of any of the code,
merely refers to the common, up-to-date license files in LICENSES/
This change was mostly scripted. fs/xfs/Makefile and
fs/xfs/libxfs/xfs_fs.h were modified by hand, the rest were detected
and modified by the following command:
for f in `git grep -l "GNU General" fs/xfs/` ; do
echo $f
cat $f | awk -f hdr.awk > $f.new
mv -f $f.new $f
done
And the hdr.awk script that did the modification (including
detecting the difference between GPL-2.0 and GPL-2.0+ licenses)
is as follows:
$ cat hdr.awk
BEGIN {
hdr = 1.0
tag = "GPL-2.0"
str = ""
}
/^ \* This program is free software/ {
hdr = 2.0;
next
}
/any later version./ {
tag = "GPL-2.0+"
next
}
/^ \*\// {
if (hdr > 0.0) {
print "// SPDX-License-Identifier: " tag
print str
print $0
str=""
hdr = 0.0
next
}
print $0
next
}
/^ \* / {
if (hdr > 1.0)
next
if (hdr > 0.0) {
if (str != "")
str = str "\n"
str = str $0
next
}
print $0
next
}
/^ \*/ {
if (hdr > 0.0)
next
print $0
next
}
// {
if (hdr > 0.0) {
if (str != "")
str = str "\n"
str = str $0
next
}
print $0
}
END { }
$
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Strengthen the btree block header checks to detect the number of records
being less than the btree type's minimum record count. Certain blocks
are allowed to violate this constraint -- specifically any btree block
at the top of the tree can have fewer than minrecs records.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
All scrub code runs in transaction context, which means that memory
allocations are automatically run in PF_MEMALLOC_NOFS context. It's
therefore unnecessary to pass in KM_NOFS to allocation routines, so
clean them all out.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Whenever we load a buffer, explicitly re-call the structure verifier to
ensure that memory isn't corrupting things.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
When scrubbing various btrees, we should cross-reference the records
with the reverse mapping btree and ensure that traversing the btree
finds the same number of blocks that the rmapbt thinks are owned by
that btree.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
When we're scrubbing various btrees, cross-reference the records with
the bnobt to ensure that we don't also think the space is free.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
When scanning a metadata btree block, cross-reference the block location
with the free space btree and the reverse mapping btree to ensure that
the rmapbt knows about the block and the bnobt does not. Add a
mechanism to defer checks when we happen to be scanning the bnobt/rmapbt
itself because it's less efficient to repeatedly clone and destroy the
cursor.
This patch provides the framework to make btree block owner checks
happen; the actual meat will be added in subsequent patches.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Create some helper functions that we'll use later to deal with problems
we might encounter while cross referencing metadata with other metadata.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
The btree scrubber has some custom code to retrieve and check a btree
block via xfs_btree_lookup_get_block. This function will either return
an error code (verifiers failed) or a *pblock will be untouched (bad
pointer). Since we previously set *pblock to NULL, we need to check
*pblock, not pblock, to trigger the early bailout.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
[darrick: fix broken initializer in xfs_scrub_xattr]
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
When we're done checking all the records/keys in a btree block, compute
the low and high key of the block and compare them to the associated key
in the parent btree block.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Add to the btree scrubber the ability to check that the keys and
records are in the right order and actually call out to our record
iterator to do actual checking of the records.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Create a function that can check the shape of a btree -- each block
passes basic inspection and all the pointers look ok. In the next patch
we'll add the ability to check the actual keys and records stored within
the btree. Add some helper functions so that we report detailed scrub
errors in a uniform manner in dmesg. These are helper functions for
subsequent patches.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Create helper functions and tracepoints to deal with errors while
scrubbing a metadata btree.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>