mirror of
https://github.com/torvalds/linux.git
synced 2024-12-29 06:12:08 +00:00
fd60b28842
17585 Commits
Author | SHA1 | Message | Date | |
---|---|---|---|---|
Muchun Song
|
fd60b28842 |
fs: allocate inode by using alloc_inode_sb()
The inode allocation is supposed to use alloc_inode_sb(), so convert kmem_cache_alloc() of all filesystems to alloc_inode_sb(). Link: https://lkml.kernel.org/r/20220228122126.37293-5-songmuchun@bytedance.com Signed-off-by: Muchun Song <songmuchun@bytedance.com> Acked-by: Theodore Ts'o <tytso@mit.edu> [ext4] Acked-by: Roman Gushchin <roman.gushchin@linux.dev> Cc: Alex Shi <alexs@kernel.org> Cc: Anna Schumaker <Anna.Schumaker@Netapp.com> Cc: Chao Yu <chao@kernel.org> Cc: Dave Chinner <david@fromorbit.com> Cc: Fam Zheng <fam.zheng@bytedance.com> Cc: Jaegeuk Kim <jaegeuk@kernel.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Kari Argillander <kari.argillander@gmail.com> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: Qi Zheng <zhengqi.arch@bytedance.com> Cc: Shakeel Butt <shakeelb@google.com> Cc: Trond Myklebust <trond.myklebust@hammerspace.com> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Wei Yang <richard.weiyang@gmail.com> Cc: Xiongchun Duan <duanxiongchun@bytedance.com> Cc: Yang Shi <shy828301@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Muchun Song
|
88f2ef73fd |
mm: introduce kmem_cache_alloc_lru
We currently allocate scope for every memcg to be able to tracked on every superblock instantiated in the system, regardless of whether that superblock is even accessible to that memcg. These huge memcg counts come from container hosts where memcgs are confined to just a small subset of the total number of superblocks that instantiated at any given point in time. For these systems with huge container counts, list_lru does not need the capability of tracking every memcg on every superblock. What it comes down to is that adding the memcg to the list_lru at the first insert. So introduce kmem_cache_alloc_lru to allocate objects and its list_lru. In the later patch, we will convert all inode and dentry allocation from kmem_cache_alloc to kmem_cache_alloc_lru. Link: https://lkml.kernel.org/r/20220228122126.37293-3-songmuchun@bytedance.com Signed-off-by: Muchun Song <songmuchun@bytedance.com> Cc: Alex Shi <alexs@kernel.org> Cc: Anna Schumaker <Anna.Schumaker@Netapp.com> Cc: Chao Yu <chao@kernel.org> Cc: Dave Chinner <david@fromorbit.com> Cc: Fam Zheng <fam.zheng@bytedance.com> Cc: Jaegeuk Kim <jaegeuk@kernel.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Kari Argillander <kari.argillander@gmail.com> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: Qi Zheng <zhengqi.arch@bytedance.com> Cc: Roman Gushchin <roman.gushchin@linux.dev> Cc: Shakeel Butt <shakeelb@google.com> Cc: Theodore Ts'o <tytso@mit.edu> Cc: Trond Myklebust <trond.myklebust@hammerspace.com> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Wei Yang <richard.weiyang@gmail.com> Cc: Xiongchun Duan <duanxiongchun@bytedance.com> Cc: Yang Shi <shy828301@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Muchun Song
|
6a6b7b77cc |
mm: list_lru: transpose the array of per-node per-memcg lru lists
Patch series "Optimize list lru memory consumption", v6. In our server, we found a suspected memory leak problem. The kmalloc-32 consumes more than 6GB of memory. Other kmem_caches consume less than 2GB memory. After our in-depth analysis, the memory consumption of kmalloc-32 slab cache is the cause of list_lru_one allocation. crash> p memcg_nr_cache_ids memcg_nr_cache_ids = $2 = 24574 memcg_nr_cache_ids is very large and memory consumption of each list_lru can be calculated with the following formula. num_numa_node * memcg_nr_cache_ids * 32 (kmalloc-32) There are 4 numa nodes in our system, so each list_lru consumes ~3MB. crash> list super_blocks | wc -l 952 Every mount will register 2 list lrus, one is for inode, another is for dentry. There are 952 super_blocks. So the total memory is 952 * 2 * 3 MB (~5.6GB). But now the number of memory cgroups is less than 500. So I guess more than 12286 memory cgroups have been created on this machine (I do not know why there are so many cgroups, it may be a user's bug or the user really want to do that). Because memcg_nr_cache_ids has not been reduced to a suitable value. It leads to waste a lot of memory. If we want to reduce memcg_nr_cache_ids, we have to *reboot* the server. This is not what we want. In order to reduce memcg_nr_cache_ids, I had posted a patchset [1] to do this. But this did not fundamentally solve the problem. We currently allocate scope for every memcg to be able to tracked on every superblock instantiated in the system, regardless of whether that superblock is even accessible to that memcg. These huge memcg counts come from container hosts where memcgs are confined to just a small subset of the total number of superblocks that instantiated at any given point in time. For these systems with huge container counts, list_lru does not need the capability of tracking every memcg on every superblock. What it comes down to is that the list_lru is only needed for a given memcg if that memcg is instatiating and freeing objects on a given list_lru. As Dave said, "Which makes me think we should be moving more towards 'add the memcg to the list_lru at the first insert' model rather than 'instantiate all at memcg init time just in case'." This patchset aims to optimize the list lru memory consumption from different aspects. I had done a easy test to show the optimization. I create 10k memory cgroups and mount 10k filesystems in the systems. We use free command to show how many memory does the systems comsumes after this operation (There are 2 numa nodes in the system). +-----------------------+------------------------+ | condition | memory consumption | +-----------------------+------------------------+ | without this patchset | 24464 MB | +-----------------------+------------------------+ | after patch 1 | 21957 MB | <--------+ +-----------------------+------------------------+ | | after patch 10 | 6895 MB | | +-----------------------+------------------------+ | | after patch 12 | 4367 MB | | +-----------------------+------------------------+ | | The more the number of nodes, the more obvious the effect---+ BTW, there was a recent discussion [2] on the same issue. [1] https://lore.kernel.org/all/20210428094949.43579-1-songmuchun@bytedance.com/ [2] https://lore.kernel.org/all/20210405054848.GA1077931@in.ibm.com/ This series not only optimizes the memory usage of list_lru but also simplifies the code. This patch (of 16): The current scheme of maintaining per-node per-memcg lru lists looks like: struct list_lru { struct list_lru_node *node; (for each node) struct list_lru_memcg *memcg_lrus; struct list_lru_one *lru[]; (for each memcg) } By effectively transposing the two-dimension array of list_lru_one's structures (per-node per-memcg => per-memcg per-node) it's possible to save some memory and simplify alloc/dealloc paths. The new scheme looks like: struct list_lru { struct list_lru_memcg *mlrus; struct list_lru_per_memcg *mlru[]; (for each memcg) struct list_lru_one node[0]; (for each node) } Memory savings are coming from not only 'struct rcu_head' but also some pointer arrays used to store the pointer to 'struct list_lru_one'. The array is per node and its size is 8 (a pointer) * num_memcgs. So the total size of the arrays is 8 * num_nodes * memcg_nr_cache_ids. After this patch, the size becomes 8 * memcg_nr_cache_ids. Link: https://lkml.kernel.org/r/20220228122126.37293-1-songmuchun@bytedance.com Link: https://lkml.kernel.org/r/20220228122126.37293-2-songmuchun@bytedance.com Signed-off-by: Muchun Song <songmuchun@bytedance.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Shakeel Butt <shakeelb@google.com> Cc: Yang Shi <shy828301@gmail.com> Cc: Alex Shi <alexs@kernel.org> Cc: Wei Yang <richard.weiyang@gmail.com> Cc: Dave Chinner <david@fromorbit.com> Cc: Trond Myklebust <trond.myklebust@hammerspace.com> Cc: Anna Schumaker <Anna.Schumaker@Netapp.com> Cc: Jaegeuk Kim <jaegeuk@kernel.org> Cc: Chao Yu <chao@kernel.org> Cc: Kari Argillander <kari.argillander@gmail.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Qi Zheng <zhengqi.arch@bytedance.com> Cc: Xiongchun Duan <duanxiongchun@bytedance.com> Cc: Fam Zheng <fam.zheng@bytedance.com> Cc: Roman Gushchin <roman.gushchin@linux.dev> Cc: Theodore Ts'o <tytso@mit.edu> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Sebastian Andrzej Siewior
|
0790ed6238 |
mm/memcg: disable migration instead of preemption in drain_all_stock().
Before the for-each-CPU loop, preemption is disabled so that so that drain_local_stock() can be invoked directly instead of scheduling a worker. Ensuring that drain_local_stock() completed on the local CPU is not correctness problem. It _could_ be that the charging path will be forced to reclaim memory because cached charges are still waiting for their draining. Disabling preemption before invoking drain_local_stock() is problematic on PREEMPT_RT due to the sleeping locks involved. To ensure that no CPU migrations happens across for_each_online_cpu() it is enouhg to use migrate_disable() which disables migration and keeps context preemptible to a sleeping lock can be acquired. A race with CPU hotplug is not a problem because pcp data is not going away. In the worst case we just schedule draining of an empty stock. Use migrate_disable() instead of get_cpu() around the for_each_online_cpu() loop. Link: https://lkml.kernel.org/r/20220226204144.1008339-7-bigeasy@linutronix.de Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: kernel test robot <oliver.sang@intel.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Michal Koutný <mkoutny@suse.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Roman Gushchin <roman.gushchin@linux.dev> Cc: Shakeel Butt <shakeelb@google.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Waiman Long <longman@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Sebastian Andrzej Siewior
|
5675114623 |
mm/memcg: protect memcg_stock with a local_lock_t
The members of the per-CPU structure memcg_stock_pcp are protected by disabling interrupts. This is not working on PREEMPT_RT because it creates atomic context in which actions are performed which require preemptible context. One example is obj_cgroup_release(). The IRQ-disable sections can be replaced with local_lock_t which preserves the explicit disabling of interrupts while keeps the code preemptible on PREEMPT_RT. drain_obj_stock() drops a reference on obj_cgroup which leads to an invocat= ion of obj_cgroup_release() if it is the last object. This in turn leads to recursive locking of the local_lock_t. To avoid this, obj_cgroup_release() = is invoked outside of the locked section. obj_cgroup_uncharge_pages() can be invoked with the local_lock_t acquired a= nd without it. This will lead later to a recursion in refill_stock(). To avoid the locking recursion provide obj_cgroup_uncharge_pages_locked() which uses the locked version of refill_stock(). - Replace disabling interrupts for memcg_stock with a local_lock_t. - Let drain_obj_stock() return the old struct obj_cgroup which is passed to obj_cgroup_put() outside of the locked section. - Provide obj_cgroup_uncharge_pages_locked() which uses the locked version of refill_stock() to avoid recursive locking in drain_obj_stock(). Link: https://lkml.kernel.org/r/20220209014709.GA26885@xsang-OptiPlex-9020 Link: https://lkml.kernel.org/r/20220226204144.1008339-6-bigeasy@linutronix.de Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Reported-by: kernel test robot <oliver.sang@intel.com> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Koutný <mkoutny@suse.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Roman Gushchin <roman.gushchin@linux.dev> Cc: Shakeel Butt <shakeelb@google.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Waiman Long <longman@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Johannes Weiner
|
af9a3b69e8 |
mm/memcg: opencode the inner part of obj_cgroup_uncharge_pages() in drain_obj_stock()
Provide the inner part of refill_stock() as __refill_stock() without disabling interrupts. This eases the integration of local_lock_t where recursive locking must be avoided. Open code obj_cgroup_uncharge_pages() in drain_obj_stock() and use __refill_stock(). The caller of drain_obj_stock() already disables interrupts. [bigeasy@linutronix.de: patch body around Johannes' diff] Link: https://lkml.kernel.org/r/20220226204144.1008339-5-bigeasy@linutronix.de Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Reviewed-by: Shakeel Butt <shakeelb@google.com> Reviewed-by: Roman Gushchin <guro@fb.com> Acked-by: Michal Hocko <mhocko@suse.com> Cc: kernel test robot <oliver.sang@intel.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Michal Koutný <mkoutny@suse.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Waiman Long <longman@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Sebastian Andrzej Siewior
|
be3e67b54b |
mm/memcg: protect per-CPU counter by disabling preemption on PREEMPT_RT where needed.
The per-CPU counter are modified with the non-atomic modifier. The consistency is ensured by disabling interrupts for the update. On non PREEMPT_RT configuration this works because acquiring a spinlock_t typed lock with the _irq() suffix disables interrupts. On PREEMPT_RT configurations the RMW operation can be interrupted. Another problem is that mem_cgroup_swapout() expects to be invoked with disabled interrupts because the caller has to acquire a spinlock_t which is acquired with disabled interrupts. Since spinlock_t never disables interrupts on PREEMPT_RT the interrupts are never disabled at this point. The code is never called from in_irq() context on PREEMPT_RT therefore disabling preemption during the update is sufficient on PREEMPT_RT. The sections which explicitly disable interrupts can remain on PREEMPT_RT because the sections remain short and they don't involve sleeping locks (memcg_check_events() is doing nothing on PREEMPT_RT). Disable preemption during update of the per-CPU variables which do not explicitly disable interrupts. Link: https://lkml.kernel.org/r/20220226204144.1008339-4-bigeasy@linutronix.de Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Acked-by: Roman Gushchin <guro@fb.com> Reviewed-by: Shakeel Butt <shakeelb@google.com Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: kernel test robot <oliver.sang@intel.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Michal Hocko <mhocko@suse.com> Cc: Michal Koutný <mkoutny@suse.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Waiman Long <longman@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Sebastian Andrzej Siewior
|
2343e88d23 |
mm/memcg: disable threshold event handlers on PREEMPT_RT
During the integration of PREEMPT_RT support, the code flow around memcg_check_events() resulted in `twisted code'. Moving the code around and avoiding then would then lead to an additional local-irq-save section within memcg_check_events(). While looking better, it adds a local-irq-save section to code flow which is usually within an local-irq-off block on non-PREEMPT_RT configurations. The threshold event handler is a deprecated memcg v1 feature. Instead of trying to get it to work under PREEMPT_RT just disable it. There should be no users on PREEMPT_RT. From that perspective it makes even less sense to get it to work under PREEMPT_RT while having zero users. Make memory.soft_limit_in_bytes and cgroup.event_control return -EOPNOTSUPP on PREEMPT_RT. Make an empty memcg_check_events() and memcg_write_event_control() which return only -EOPNOTSUPP on PREEMPT_RT. Document that the two knobs are disabled on PREEMPT_RT. Link: https://lkml.kernel.org/r/20220226204144.1008339-3-bigeasy@linutronix.de Suggested-by: Michal Hocko <mhocko@kernel.org> Suggested-by: Michal Koutný <mkoutny@suse.com> Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Acked-by: Roman Gushchin <guro@fb.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Reviewed-by: Shakeel Butt <shakeelb@google.com> Acked-by: Michal Hocko <mhocko@suse.com> Cc: kernel test robot <oliver.sang@intel.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Waiman Long <longman@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Michal Hocko
|
fead2b8697 |
mm/memcg: revert ("mm/memcg: optimize user context object stock access")
Patch series "mm/memcg: Address PREEMPT_RT problems instead of disabling it", v5. This series aims to address the memcg related problem on PREEMPT_RT. I tested them on CONFIG_PREEMPT and CONFIG_PREEMPT_RT with the tools/testing/selftests/cgroup/* tests and I haven't observed any regressions (other than the lockdep report that is already there). This patch (of 6): The optimisation is based on a micro benchmark where local_irq_save() is more expensive than a preempt_disable(). There is no evidence that it is visible in a real-world workload and there are CPUs where the opposite is true (local_irq_save() is cheaper than preempt_disable()). Based on micro benchmarks, the optimisation makes sense on PREEMPT_NONE where preempt_disable() is optimized away. There is no improvement with PREEMPT_DYNAMIC since the preemption counter is always available. The optimization makes also the PREEMPT_RT integration more complicated since most of the assumption are not true on PREEMPT_RT. Revert the optimisation since it complicates the PREEMPT_RT integration and the improvement is hardly visible. [bigeasy@linutronix.de: patch body around Michal's diff] Link: https://lkml.kernel.org/r/20220226204144.1008339-1-bigeasy@linutronix.de Link: https://lore.kernel.org/all/YgOGkXXCrD%2F1k+p4@dhcp22.suse.cz Link: https://lkml.kernel.org/r/YdX+INO9gQje6d0S@linutronix.de Link: https://lkml.kernel.org/r/20220226204144.1008339-2-bigeasy@linutronix.de Signed-off-by: Michal Hocko <mhocko@suse.com> Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Acked-by: Roman Gushchin <guro@fb.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Reviewed-by: Shakeel Butt <shakeelb@google.com> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Waiman Long <longman@redhat.com> Cc: kernel test robot <oliver.sang@intel.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Michal Koutný <mkoutny@suse.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Randy Dunlap
|
460a79e188 |
mm/memcontrol: return 1 from cgroup.memory __setup() handler
__setup() handlers should return 1 if the command line option is handled
and 0 if not (or maybe never return 0; it just pollutes init's
environment).
The only reason that this particular __setup handler does not pollute
init's environment is that the setup string contains a '.', as in
"cgroup.memory". This causes init/main.c::unknown_boottoption() to
consider it to be an "Unused module parameter" and ignore it. (This is
for parsing of loadable module parameters any time after kernel init.)
Otherwise the string "cgroup.memory=whatever" would be added to init's
environment strings.
Instead of relying on this '.' quirk, just return 1 to indicate that the
boot option has been handled.
Note that there is no warning message if someone enters:
cgroup.memory=anything_invalid
Link: https://lkml.kernel.org/r/20220222005811.10672-1-rdunlap@infradead.org
Fixes:
|
||
Shakeel Butt
|
c9afe31ec4 |
memcg: synchronously enforce memory.high for large overcharges
The high limit is used to throttle the workload without invoking the oom-killer. Recently we tried to use the high limit to right size our internal workloads. More specifically dynamically adjusting the limits of the workload without letting the workload get oom-killed. However due to the limitation of the implementation of high limit enforcement, we observed the mechanism fails for some real workloads. The high limit is enforced on return-to-userspace i.e. the kernel let the usage goes over the limit and when the execution returns to userspace, the high reclaim is triggered and the process can get throttled as well. However this mechanism fails for workloads which do large allocations in a single kernel entry e.g. applications that mlock() a large chunk of memory in a single syscall. Such applications bypass the high limit and can trigger the oom-killer. To make high limit enforcement more robust, this patch makes the limit enforcement synchronous only if the accumulated overcharge becomes larger than MEMCG_CHARGE_BATCH. So, most of the allocations would still be throttled on the return-to-userspace path but only the extreme allocations which accumulates large amount of overcharge without returning to the userspace will be throttled synchronously. The value MEMCG_CHARGE_BATCH is a bit arbitrary but most of other places in the memcg codebase uses this constant therefore for now uses the same one. Link: https://lkml.kernel.org/r/20220211064917.2028469-5-shakeelb@google.com Signed-off-by: Shakeel Butt <shakeelb@google.com> Reviewed-by: Roman Gushchin <guro@fb.com> Acked-by: Chris Down <chris@chrisdown.name> Cc: Roman Gushchin <roman.gushchin@linux.dev> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Shakeel Butt
|
1461e8c2b6 |
memcg: unify force charging conditions
Currently the kernel force charges the allocations which have __GFP_HIGH
flag without triggering the memory reclaim. __GFP_HIGH indicates that
the caller is high priority and since commit
|
||
Shakeel Butt
|
becdf89d77 |
memcg: refactor mem_cgroup_oom
Patch series "memcg: robust enforcement of memory.high", v2. Due to the semantics of memory.high enforcement i.e. throttle the workload without oom-kill, we are trying to use it for right sizing the workloads in our production environment. However we observed the mechanism fails for some specific applications which does big chunck of allocations in a single syscall. The reason behind this failure is due to the limitation of the memory.high enforcement's current implementation. This patch series solves this issue by enforcing the memory.high synchronously if the current process has accumulated a large amount of high overcharge. This patch (of 4): The function mem_cgroup_oom returns enum which has four possible values but the caller does not care about such values and only cares if the return value is OOM_SUCCESS or not. So, remove the enum altogether and make mem_cgroup_oom returns a simple bool. Link: https://lkml.kernel.org/r/20220211064917.2028469-1-shakeelb@google.com Link: https://lkml.kernel.org/r/20220211064917.2028469-2-shakeelb@google.com Signed-off-by: Shakeel Butt <shakeelb@google.com> Reviewed-by: Roman Gushchin <guro@fb.com> Cc: Roman Gushchin <roman.gushchin@linux.dev> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.com> Cc: Chris Down <chris@chrisdown.name> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Wei Yang
|
c857266dca |
mm/memcg: mem_cgroup_per_node is already set to 0 on allocation
kzalloc_node() would set data to 0, so it's not necessary to set it again. Link: https://lkml.kernel.org/r/20220201004643.8391-1-richard.weiyang@gmail.com Signed-off-by: Wei Yang <richard.weiyang@gmail.com> Reviewed-by: Muchun Song <songmuchun@bytedance.com> Acked-by: Michal Hocko <mhocko@suse.com> Reviewed-by: Roman Gushchin <guro@fb.com> Reviewed-by: Mike Rapoport <rppt@linux.ibm.com> Reviewed-by: Shakeel Butt <shakeelb@google.com> Cc: Roman Gushchin <roman.gushchin@linux.dev> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Suren Baghdasaryan <surenb@google.com> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Yang Shi <shy828301@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Yosry Ahmed
|
a8c49af3be |
memcg: add per-memcg total kernel memory stat
Currently memcg stats show several types of kernel memory: kernel stack, page tables, sock, vmalloc, and slab. However, there are other allocations with __GFP_ACCOUNT (or supersets such as GFP_KERNEL_ACCOUNT) that are not accounted in any of those stats, a few examples are: - various kvm allocations (e.g. allocated pages to create vcpus) - io_uring - tmp_page in pipes during pipe_write() - bpf ringbuffers - unix sockets Keeping track of the total kernel memory is essential for the ease of migration from cgroup v1 to v2 as there are large discrepancies between v1's kmem.usage_in_bytes and the sum of the available kernel memory stats in v2. Adding separate memcg stats for all __GFP_ACCOUNT kernel allocations is an impractical maintenance burden as there a lot of those all over the kernel code, with more use cases likely to show up in the future. Therefore, add a "kernel" memcg stat that is analogous to kmem page counter, with added benefits such as using rstat infrastructure which aggregates stats more efficiently. Additionally, this provides a lighter alternative in case the legacy kmem is deprecated in the future [yosryahmed@google.com: v2] Link: https://lkml.kernel.org/r/20220203193856.972500-1-yosryahmed@google.com Link: https://lkml.kernel.org/r/20220201200823.3283171-1-yosryahmed@google.com Signed-off-by: Yosry Ahmed <yosryahmed@google.com> Acked-by: Shakeel Butt <shakeelb@google.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: Muchun Song <songmuchun@bytedance.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Shakeel Butt
|
086f694a75 |
memcg: replace in_interrupt() with !in_task()
Replace the deprecated in_interrupt() with !in_task() because in_interrupt() returns true for BH disabled even if the call happens in the task context. in_task() is the right interface to differentiate task context from NMI, hard IRQ and softirq contexts. Link: https://lkml.kernel.org/r/20220127162636.3461256-1-shakeelb@google.com Signed-off-by: Shakeel Butt <shakeelb@google.com> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Vasily Averin <vvs@virtuozzo.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Roman Gushchin <roman.gushchin@linux.dev> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Miaohe Lin
|
4bfa8ada80 |
mm: shmem: use helper macro __ATTR_RW
Use helper macro __ATTR_RW to define shmem_enabled_attr to make code more clear. Minor readability improvement. Link: https://lkml.kernel.org/r/20220312082252.55586-1-linmiaohe@huawei.com Signed-off-by: Miaohe Lin <linmiaohe@huawei.com> Cc: Hugh Dickins <hughd@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Hugh Dickins
|
56a8c8eb1e |
tmpfs: do not allocate pages on read
Mikulas asked in "Do we still need commit
|
||
Hugh Dickins
|
bc7863906f |
shmem: mapping_set_exiting() to help mapped resilience
When I added page_mapped() resilience in __delete_from_page_cache() for
the mapping_exiting() case, I missed that mapping_set_exiting() is done
in truncate_inode_pages_final(), which is not actually called for shmem.
(Today, it is folio_mapped() resilience in filemap_unaccount_folio().)
So the fixup to avoid a memory leak in this case never worked on shmem:
add a mapping_set_exiting() in shmem_evict_inode() at last. But this is
hardly a candidate for stable, since it's only useful if "Bad page".
Link: https://lkml.kernel.org/r/beefffda-6326-e36d-2d41-ed15b51af872@google.com
Fixes:
|
||
Xavier Roche
|
f7cd16a558 |
tmpfs: support for file creation time
Various filesystems (including ext4) now support file creation time. This adds such support for tmpfs-based filesystems. Note that using shmem_getattr() on other file types than regular requires that shmem_is_huge() check type, to stop incorrect HPAGE_PMD_SIZE blksize. [hughd@google.com: three tweaks to creation time patch] Link: https://lkml.kernel.org/r/b954973a-b8d1-cab8-63bd-6ea8063de3@google.com Link: https://lkml.kernel.org/r/20220314211150.GA123458@xavier-xps Link: https://lkml.kernel.org/r/b954973a-b8d1-cab8-63bd-6ea8063de3@google.com Link: https://lkml.kernel.org/r/20220211213628.GA1919658@xavier-xps Signed-off-by: Xavier Roche <xavier.roche@algolia.com> Signed-off-by: Hugh Dickins <hughd@google.com> Tested-by: Jean Delvare <jdelvare@suse.de> Tested-by: Sylvain Bellone <sylvain.bellone@algolia.com> Reported-by: Xavier Grand <xavier.grand@algolia.com> Reviewed-by: Jean Delvare <jdelvare@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Bang Li
|
914c32e45d |
mm/swap: fix confusing comment in folio_mark_accessed
For unevictable pages, we don't need mark them. Link: https://lkml.kernel.org/r/20220311141519.59948-1-libang.linuxer@gmail.com Signed-off-by: Bang Li <libang.linuxer@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
John Hubbard
|
73fd16d808 |
mm/gup: remove unused get_user_pages_locked()
Now that the last caller of get_user_pages_locked() is gone, remove it. Link: https://lkml.kernel.org/r/20220204020010.68930-6-jhubbard@nvidia.com Signed-off-by: John Hubbard <jhubbard@nvidia.com> Reviewed-by: Jan Kara <jack@suse.cz> Reviewed-by: Jason Gunthorpe <jgg@nvidia.com> Reviewed-by: Claudio Imbrenda <imbrenda@linux.ibm.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Cc: Alex Williamson <alex.williamson@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: David Hildenbrand <david@redhat.com> Cc: Jason Gunthorpe <jgg@ziepe.ca> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Lukas Bulwahn <lukas.bulwahn@gmail.com> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Peter Xu <peterx@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
John Hubbard
|
f728b9c48d |
mm: change lookup_node() to use get_user_pages_fast()
The purpose of calling get_user_pages_locked() from lookup_node() was to allow for unlocking the mmap_lock when reading a page from the disk during a page fault (hidden behind VM_FAULT_RETRY). The idea was to reduce contention on the heavily-used mmap_lock. (Thanks to Jan Kara for clearly pointing that out, and in fact I've used some of his wording here.) However, it is unlikely for lookup_node() to take a page fault. With that in mind, change over to calling get_user_pages_fast(). This simplifies the code, runs a little faster in the expected case, and allows removing get_user_pages_locked() entirely, in a subsequent patch. Link: https://lkml.kernel.org/r/20220204020010.68930-5-jhubbard@nvidia.com Signed-off-by: John Hubbard <jhubbard@nvidia.com> Reviewed-by: Jan Kara <jack@suse.cz> Reviewed-by: Jason Gunthorpe <jgg@nvidia.com> Reviewed-by: Claudio Imbrenda <imbrenda@linux.ibm.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Cc: Alex Williamson <alex.williamson@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: David Hildenbrand <david@redhat.com> Cc: Jason Gunthorpe <jgg@ziepe.ca> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Lukas Bulwahn <lukas.bulwahn@gmail.com> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Peter Xu <peterx@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
John Hubbard
|
ad6c441266 |
mm/gup: remove unused pin_user_pages_locked()
This routine was used for a short while, but then the calling code was refactored and the only caller was removed. Link: https://lkml.kernel.org/r/20220204020010.68930-4-jhubbard@nvidia.com Signed-off-by: John Hubbard <jhubbard@nvidia.com> Reviewed-by: David Hildenbrand <david@redhat.com> Reviewed-by: Jason Gunthorpe <jgg@nvidia.com> Reviewed-by: Jan Kara <jack@suse.cz> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Claudio Imbrenda <imbrenda@linux.ibm.com> Cc: Alex Williamson <alex.williamson@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Jason Gunthorpe <jgg@ziepe.ca> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Lukas Bulwahn <lukas.bulwahn@gmail.com> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Peter Xu <peterx@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
John Hubbard
|
65462462ff |
mm/gup: follow_pfn_pte(): -EEXIST cleanup
Remove a quirky special case from follow_pfn_pte(), and adjust its callers to match. Caller changes include: __get_user_pages(): Regardless of any FOLL_* flags, get_user_pages() and its variants should handle PFN-only entries by stopping early, if the caller expected **pages to be filled in. This makes for a more reliable API, as compared to the previous approach of skipping over such entries (and thus leaving them silently unwritten). move_pages(): squash the -EEXIST error return from follow_page() into -EFAULT, because -EFAULT is listed in the man page, whereas -EEXIST is not. Link: https://lkml.kernel.org/r/20220204020010.68930-3-jhubbard@nvidia.com Signed-off-by: John Hubbard <jhubbard@nvidia.com> Suggested-by: Jason Gunthorpe <jgg@nvidia.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Jan Kara <jack@suse.cz> Cc: Peter Xu <peterx@redhat.com> Cc: Lukas Bulwahn <lukas.bulwahn@gmail.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Claudio Imbrenda <imbrenda@linux.ibm.com> Cc: Alex Williamson <alex.williamson@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: David Hildenbrand <david@redhat.com> Cc: Jason Gunthorpe <jgg@ziepe.ca> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Peter Xu
|
7196040e19 |
mm: fix invalid page pointer returned with FOLL_PIN gups
Patch series "mm/gup: some cleanups", v5. This patch (of 5): Alex reported invalid page pointer returned with pin_user_pages_remote() from vfio after upstream commit |
||
Miaohe Lin
|
854d8e3616 |
mm/writeback: minor clean up for highmem_dirtyable_memory
Since commit
|
||
Miaohe Lin
|
eb5279fb7e |
filemap: remove find_get_pages()
It's unused now. Remove it and clean up the relevant comment. Link: https://lkml.kernel.org/r/20220208134149.47299-1-linmiaohe@huawei.com Signed-off-by: Miaohe Lin <linmiaohe@huawei.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: David Howells <dhowells@redhat.com> Cc: William Kucharski <william.kucharski@oracle.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Andreas Gruenbacher <agruenba@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Miaohe Lin
|
a74c6c00b1 |
mm/memremap: avoid calling kasan_remove_zero_shadow() for device private memory
For device private memory, we do not create a linear mapping for the memory because the device memory is un-accessible. Thus we do not add kasan zero shadow for it. So it's unnecessary to do kasan_remove_zero_shadow() for it. Link: https://lkml.kernel.org/r/20220126092602.1425-1-linmiaohe@huawei.com Signed-off-by: Miaohe Lin <linmiaohe@huawei.com> Reviewed-by: Muchun Song <songmuchun@bytedance.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
NeilBrown
|
a88f2096d5 |
remove congestion tracking framework
This framework is no longer used - so discard it. Link: https://lkml.kernel.org/r/164549983747.9187.6171768583526866601.stgit@noble.brown Signed-off-by: NeilBrown <neilb@suse.de> Cc: Anna Schumaker <Anna.Schumaker@Netapp.com> Cc: Chao Yu <chao@kernel.org> Cc: Darrick J. Wong <djwong@kernel.org> Cc: Ilya Dryomov <idryomov@gmail.com> Cc: Jaegeuk Kim <jaegeuk@kernel.org> Cc: Jan Kara <jack@suse.cz> Cc: Jeff Layton <jlayton@kernel.org> Cc: Jens Axboe <axboe@kernel.dk> Cc: Lars Ellenberg <lars.ellenberg@linbit.com> Cc: Miklos Szeredi <miklos@szeredi.hu> Cc: Paolo Valente <paolo.valente@linaro.org> Cc: Philipp Reisner <philipp.reisner@linbit.com> Cc: Ryusuke Konishi <konishi.ryusuke@gmail.com> Cc: Trond Myklebust <trond.myklebust@hammerspace.com> Cc: Wu Fengguang <fengguang.wu@intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
NeilBrown
|
b9b1335e64 |
remove bdi_congested() and wb_congested() and related functions
These functions are no longer useful as no BDIs report congestions any more. Removing the test on bdi_write_contested() in current_may_throttle() could cause a small change in behaviour, but only when PF_LOCAL_THROTTLE is set. So replace the calls by 'false' and simplify the code - and remove the functions. [akpm@linux-foundation.org: fix build] Link: https://lkml.kernel.org/r/164549983742.9187.2570198746005819592.stgit@noble.brown Signed-off-by: NeilBrown <neilb@suse.de> Acked-by: Ryusuke Konishi <konishi.ryusuke@gmail.com> [nilfs] Cc: Anna Schumaker <Anna.Schumaker@Netapp.com> Cc: Chao Yu <chao@kernel.org> Cc: Darrick J. Wong <djwong@kernel.org> Cc: Ilya Dryomov <idryomov@gmail.com> Cc: Jaegeuk Kim <jaegeuk@kernel.org> Cc: Jan Kara <jack@suse.cz> Cc: Jeff Layton <jlayton@kernel.org> Cc: Jens Axboe <axboe@kernel.dk> Cc: Lars Ellenberg <lars.ellenberg@linbit.com> Cc: Miklos Szeredi <miklos@szeredi.hu> Cc: Paolo Valente <paolo.valente@linaro.org> Cc: Philipp Reisner <philipp.reisner@linbit.com> Cc: Trond Myklebust <trond.myklebust@hammerspace.com> Cc: Wu Fengguang <fengguang.wu@intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
NeilBrown
|
fe55d563d4 |
remove inode_congested()
inode_congested() reports if the backing-device for the inode is congested. No bdi reports congestion any more, so this always returns 'false'. So remove inode_congested() and related functions, and remove the call sites, assuming that inode_congested() always returns 'false'. Link: https://lkml.kernel.org/r/164549983741.9187.2174285592262191311.stgit@noble.brown Signed-off-by: NeilBrown <neilb@suse.de> Cc: Anna Schumaker <Anna.Schumaker@Netapp.com> Cc: Chao Yu <chao@kernel.org> Cc: Darrick J. Wong <djwong@kernel.org> Cc: Ilya Dryomov <idryomov@gmail.com> Cc: Jaegeuk Kim <jaegeuk@kernel.org> Cc: Jan Kara <jack@suse.cz> Cc: Jeff Layton <jlayton@kernel.org> Cc: Jens Axboe <axboe@kernel.dk> Cc: Lars Ellenberg <lars.ellenberg@linbit.com> Cc: Miklos Szeredi <miklos@szeredi.hu> Cc: Paolo Valente <paolo.valente@linaro.org> Cc: Philipp Reisner <philipp.reisner@linbit.com> Cc: Ryusuke Konishi <konishi.ryusuke@gmail.com> Cc: Trond Myklebust <trond.myklebust@hammerspace.com> Cc: Wu Fengguang <fengguang.wu@intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
NeilBrown
|
9fd472af84 |
mm: improve cleanup when ->readpages doesn't process all pages
If ->readpages doesn't process all the pages, then it is best to act as though they weren't requested so that a subsequent readahead can try again. So: - remove any 'ahead' pages from the page cache so they can be loaded with ->readahead() rather then multiple ->read()s - update the file_ra_state to reflect the reads that were actually submitted. This allows ->readpages() to abort early due e.g. to congestion, which will then allow us to remove the inode_read_congested() test from page_Cache_async_ra(). Link: https://lkml.kernel.org/r/164549983736.9187.16755913785880819183.stgit@noble.brown Signed-off-by: NeilBrown <neilb@suse.de> Cc: Anna Schumaker <Anna.Schumaker@Netapp.com> Cc: Chao Yu <chao@kernel.org> Cc: Darrick J. Wong <djwong@kernel.org> Cc: Ilya Dryomov <idryomov@gmail.com> Cc: Jaegeuk Kim <jaegeuk@kernel.org> Cc: Jan Kara <jack@suse.cz> Cc: Jeff Layton <jlayton@kernel.org> Cc: Jens Axboe <axboe@kernel.dk> Cc: Lars Ellenberg <lars.ellenberg@linbit.com> Cc: Miklos Szeredi <miklos@szeredi.hu> Cc: Paolo Valente <paolo.valente@linaro.org> Cc: Philipp Reisner <philipp.reisner@linbit.com> Cc: Ryusuke Konishi <konishi.ryusuke@gmail.com> Cc: Trond Myklebust <trond.myklebust@hammerspace.com> Cc: Wu Fengguang <fengguang.wu@intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
NeilBrown
|
84dacdbd53 |
mm: document and polish read-ahead code
Add some "big-picture" documentation for read-ahead and polish the code to make it fit this documentation. The meaning of ->async_size is clarified to match its name. i.e. Any request to ->readahead() has a sync part and an async part. The caller will wait for the sync pages to complete, but will not wait for the async pages. The first async page is still marked PG_readahead Note that the current function names page_cache_sync_ra() and page_cache_async_ra() are misleading. All ra request are partly sync and partly async, so either part can be empty. A page_cache_sync_ra() request will usually set ->async_size non-zero, implying it is not all synchronous. When a non-zero req_count is passed to page_cache_async_ra(), the implication is that some prefix of the request is synchronous, though the calculation made there is incorrect - I haven't tried to fix it. Link: https://lkml.kernel.org/r/164549983734.9187.11586890887006601405.stgit@noble.brown Signed-off-by: NeilBrown <neilb@suse.de> Cc: Anna Schumaker <Anna.Schumaker@Netapp.com> Cc: Chao Yu <chao@kernel.org> Cc: Darrick J. Wong <djwong@kernel.org> Cc: Ilya Dryomov <idryomov@gmail.com> Cc: Jaegeuk Kim <jaegeuk@kernel.org> Cc: Jan Kara <jack@suse.cz> Cc: Jeff Layton <jlayton@kernel.org> Cc: Jens Axboe <axboe@kernel.dk> Cc: Lars Ellenberg <lars.ellenberg@linbit.com> Cc: Miklos Szeredi <miklos@szeredi.hu> Cc: Paolo Valente <paolo.valente@linaro.org> Cc: Philipp Reisner <philipp.reisner@linbit.com> Cc: Ryusuke Konishi <konishi.ryusuke@gmail.com> Cc: Trond Myklebust <trond.myklebust@hammerspace.com> Cc: Wu Fengguang <fengguang.wu@intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Guo Ziliang
|
029c4628b2 |
mm: swap: get rid of livelock in swapin readahead
In our testing, a livelock task was found. Through sysrq printing, same stack was found every time, as follows: __swap_duplicate+0x58/0x1a0 swapcache_prepare+0x24/0x30 __read_swap_cache_async+0xac/0x220 read_swap_cache_async+0x58/0xa0 swapin_readahead+0x24c/0x628 do_swap_page+0x374/0x8a0 __handle_mm_fault+0x598/0xd60 handle_mm_fault+0x114/0x200 do_page_fault+0x148/0x4d0 do_translation_fault+0xb0/0xd4 do_mem_abort+0x50/0xb0 The reason for the livelock is that swapcache_prepare() always returns EEXIST, indicating that SWAP_HAS_CACHE has not been cleared, so that it cannot jump out of the loop. We suspect that the task that clears the SWAP_HAS_CACHE flag never gets a chance to run. We try to lower the priority of the task stuck in a livelock so that the task that clears the SWAP_HAS_CACHE flag will run. The results show that the system returns to normal after the priority is lowered. In our testing, multiple real-time tasks are bound to the same core, and the task in the livelock is the highest priority task of the core, so the livelocked task cannot be preempted. Although cond_resched() is used by __read_swap_cache_async, it is an empty function in the preemptive system and cannot achieve the purpose of releasing the CPU. A high-priority task cannot release the CPU unless preempted by a higher-priority task. But when this task is already the highest priority task on this core, other tasks will not be able to be scheduled. So we think we should replace cond_resched() with schedule_timeout_uninterruptible(1), schedule_timeout_interruptible will call set_current_state first to set the task state, so the task will be removed from the running queue, so as to achieve the purpose of giving up the CPU and prevent it from running in kernel mode for too long. (akpm: ugly hack becomes uglier. But it fixes the issue in a backportable-to-stable fashion while we hopefully work on something better) Link: https://lkml.kernel.org/r/20220221111749.1928222-1-cgel.zte@gmail.com Signed-off-by: Guo Ziliang <guo.ziliang@zte.com.cn> Reported-by: Zeal Robot <zealci@zte.com.cn> Reviewed-by: Ran Xiaokai <ran.xiaokai@zte.com.cn> Reviewed-by: Jiang Xuexin <jiang.xuexin@zte.com.cn> Reviewed-by: Yang Yang <yang.yang29@zte.com.cn> Acked-by: Hugh Dickins <hughd@google.com> Cc: Naoya Horiguchi <naoya.horiguchi@nec.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Roger Quadros <rogerq@kernel.org> Cc: Ziliang Guo <guo.ziliang@zte.com.cn> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Linus Torvalds
|
fe673d3f5b |
mm: gup: make fault_in_safe_writeable() use fixup_user_fault()
Instead of using GUP, make fault_in_safe_writeable() actually force a
'handle_mm_fault()' using the same fixup_user_fault() machinery that
futexes already use.
Using the GUP machinery meant that fault_in_safe_writeable() did not do
everything that a real fault would do, ranging from not auto-expanding
the stack segment, to not updating accessed or dirty flags in the page
tables (GUP sets those flags on the pages themselves).
The latter causes problems on architectures (like s390) that do accessed
bit handling in software, which meant that fault_in_safe_writeable()
didn't actually do all the fault handling it needed to, and trying to
access the user address afterwards would still cause faults.
Reported-and-tested-by: Andreas Gruenbacher <agruenba@redhat.com>
Fixes:
|
||
Hugh Dickins
|
f2b277c4d1 |
memfd: fix F_SEAL_WRITE after shmem huge page allocated
Wangyong reports: after enabling tmpfs filesystem to support transparent hugepage with the following command: echo always > /sys/kernel/mm/transparent_hugepage/shmem_enabled the docker program tries to add F_SEAL_WRITE through the following command, but it fails unexpectedly with errno EBUSY: fcntl(5, F_ADD_SEALS, F_SEAL_WRITE) = -1. That is because memfd_tag_pins() and memfd_wait_for_pins() were never updated for shmem huge pages: checking page_mapcount() against page_count() is hopeless on THP subpages - they need to check total_mapcount() against page_count() on THP heads only. Make memfd_tag_pins() (compared > 1) as strict as memfd_wait_for_pins() (compared != 1): either can be justified, but given the non-atomic total_mapcount() calculation, it is better now to be strict. Bear in mind that total_mapcount() itself scans all of the THP subpages, when choosing to take an XA_CHECK_SCHED latency break. Also fix the unlikely xa_is_value() case in memfd_wait_for_pins(): if a page has been swapped out since memfd_tag_pins(), then its refcount must have fallen, and so it can safely be untagged. Link: https://lkml.kernel.org/r/a4f79248-df75-2c8c-3df-ba3317ccb5da@google.com Signed-off-by: Hugh Dickins <hughd@google.com> Reported-by: Zeal Robot <zealci@zte.com.cn> Reported-by: wangyong <wang.yong12@zte.com.cn> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: CGEL ZTE <cgel.zte@gmail.com> Cc: Kirill A. Shutemov <kirill@shutemov.name> Cc: Song Liu <songliubraving@fb.com> Cc: Yang Yang <yang.yang29@zte.com.cn> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Suren Baghdasaryan
|
942341dcc5 |
mm: fix use-after-free when anon vma name is used after vma is freed
When adjacent vmas are being merged it can result in the vma that was
originally passed to madvise_update_vma being destroyed. In the current
implementation, the name parameter passed to madvise_update_vma points
directly to vma->anon_name and it is used after the call to vma_merge.
In the cases when vma_merge merges the original vma and destroys it,
this might result in UAF. For that the original vma would have to hold
the anon_vma_name with the last reference. The following vma would need
to contain a different anon_vma_name object with the same string. Such
scenario is shown below:
madvise_vma_behavior(vma)
madvise_update_vma(vma, ..., anon_name == vma->anon_name)
vma_merge(vma)
__vma_adjust(vma) <-- merges vma with adjacent one
vm_area_free(vma) <-- frees the original vma
replace_vma_anon_name(anon_name) <-- UAF of vma->anon_name
Fix this by raising the name refcount and stabilizing it.
Link: https://lkml.kernel.org/r/20220224231834.1481408-3-surenb@google.com
Link: https://lkml.kernel.org/r/20220223153613.835563-3-surenb@google.com
Fixes:
|
||
Suren Baghdasaryan
|
96403e1128 |
mm: prevent vm_area_struct::anon_name refcount saturation
A deep process chain with many vmas could grow really high. With default sysctl_max_map_count (64k) and default pid_max (32k) the max number of vmas in the system is 2147450880 and the refcounter has headroom of 1073774592 before it reaches REFCOUNT_SATURATED (3221225472). Therefore it's unlikely that an anonymous name refcounter will overflow with these defaults. Currently the max for pid_max is PID_MAX_LIMIT (4194304) and for sysctl_max_map_count it's INT_MAX (2147483647). In this configuration anon_vma_name refcount overflow becomes theoretically possible (that still require heavy sharing of that anon_vma_name between processes). kref refcounting interface used in anon_vma_name structure will detect a counter overflow when it reaches REFCOUNT_SATURATED value but will only generate a warning and freeze the ref counter. This would lead to the refcounted object never being freed. A determined attacker could leak memory like that but it would be rather expensive and inefficient way to do so. To ensure anon_vma_name refcount does not overflow, stop anon_vma_name sharing when the refcount reaches REFCOUNT_MAX (2147483647), which still leaves INT_MAX/2 (1073741823) values before the counter reaches REFCOUNT_SATURATED. This should provide enough headroom for raising the refcounts temporarily. Link: https://lkml.kernel.org/r/20220223153613.835563-2-surenb@google.com Signed-off-by: Suren Baghdasaryan <surenb@google.com> Suggested-by: Michal Hocko <mhocko@suse.com> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Alexey Gladkov <legion@kernel.org> Cc: Chris Hyser <chris.hyser@oracle.com> Cc: Christian Brauner <brauner@kernel.org> Cc: Colin Cross <ccross@google.com> Cc: Cyrill Gorcunov <gorcunov@gmail.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: David Hildenbrand <david@redhat.com> Cc: Davidlohr Bueso <dave@stgolabs.net> Cc: "Eric W. Biederman" <ebiederm@xmission.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Kees Cook <keescook@chromium.org> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Peter Collingbourne <pcc@google.com> Cc: Sasha Levin <sashal@kernel.org> Cc: Sumit Semwal <sumit.semwal@linaro.org> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Xiaofeng Cao <caoxiaofeng@yulong.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Suren Baghdasaryan
|
5c26f6ac94 |
mm: refactor vm_area_struct::anon_vma_name usage code
Avoid mixing strings and their anon_vma_name referenced pointers by using struct anon_vma_name whenever possible. This simplifies the code and allows easier sharing of anon_vma_name structures when they represent the same name. [surenb@google.com: fix comment] Link: https://lkml.kernel.org/r/20220223153613.835563-1-surenb@google.com Link: https://lkml.kernel.org/r/20220224231834.1481408-1-surenb@google.com Signed-off-by: Suren Baghdasaryan <surenb@google.com> Suggested-by: Matthew Wilcox <willy@infradead.org> Suggested-by: Michal Hocko <mhocko@suse.com> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Colin Cross <ccross@google.com> Cc: Sumit Semwal <sumit.semwal@linaro.org> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Kees Cook <keescook@chromium.org> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: "Eric W. Biederman" <ebiederm@xmission.com> Cc: Christian Brauner <brauner@kernel.org> Cc: Alexey Gladkov <legion@kernel.org> Cc: Sasha Levin <sashal@kernel.org> Cc: Chris Hyser <chris.hyser@oracle.com> Cc: Davidlohr Bueso <dave@stgolabs.net> Cc: Peter Collingbourne <pcc@google.com> Cc: Xiaofeng Cao <caoxiaofeng@yulong.com> Cc: David Hildenbrand <david@redhat.com> Cc: Cyrill Gorcunov <gorcunov@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Daniel Borkmann
|
0708a0afe2 |
mm: Consider __GFP_NOWARN flag for oversized kvmalloc() calls
syzkaller was recently triggering an oversized kvmalloc() warning via xdp_umem_create(). The triggered warning was added back in |
||
Linus Torvalds
|
e41898d2ba |
memblock: use kfree() to release kmalloced memblock regions
memblock.{reserved,memory}.regions may be allocated using kmalloc() in memblock_double_array(). Use kfree() to release these kmalloced regions. -----BEGIN PGP SIGNATURE----- iQFHBAABCAAxFiEEeOVYVaWZL5900a/pOQOGJssO/ZEFAmIZ1qgTHHJwcHRAbGlu dXguaWJtLmNvbQAKCRA5A4Ymyw79kXsaB/0TnrLt98t/jPvVGinsnf7r3hXnNq7F 8FXWqdUIBWRfiHVd74pX6VE4Be56BbMUUyRQWDfbjrluVFnBibA3qJhNmpIuwdSb 9GESikUdEnuq0t059yPLupKvYY0ysq4OjNLWage+8tnA/TzlN/+t27c75iZWwGn2 JbutM/j5YKnvAcqUVv/plLVIVrGz1RCaG0diYoY1vxrbpRCicmAI8LHTkK1Xtow2 7YVkRuQWY+yJLOJ/SCst5pxy6cm3R96KvnaC9fg1Pp+8wVFrZp/hDsH8nObFccXq 6zQTbXqS88VKOoNEcuqk2ITbFyghepPIBrliEmcI2h96OSdp6BtrNau7 =UpBU -----END PGP SIGNATURE----- Merge tag 'fixes-2022-02-26' of git://git.kernel.org/pub/scm/linux/kernel/git/rppt/memblock Pull memblock fix from Mike Rapoport: "Use kfree() to release kmalloced memblock regions memblock.{reserved,memory}.regions may be allocated using kmalloc() in memblock_double_array(). Use kfree() to release these kmalloced regions" * tag 'fixes-2022-02-26' of git://git.kernel.org/pub/scm/linux/kernel/git/rppt/memblock: memblock: use kfree() to release kmalloced memblock regions |
||
Suren Baghdasaryan
|
f798a1d4f9 |
mm: fix use-after-free bug when mm->mmap is reused after being freed
oom reaping (__oom_reap_task_mm) relies on a 2 way synchronization with exit_mmap. First it relies on the mmap_lock to exclude from unlock path[1], page tables tear down (free_pgtables) and vma destruction. This alone is not sufficient because mm->mmap is never reset. For historical reasons[2] the lock is taken there is also MMF_OOM_SKIP set for oom victims before. The oom reaper only ever looks at oom victims so the whole scheme works properly but process_mrelease can opearate on any task (with fatal signals pending) which doesn't really imply oom victims. That means that the MMF_OOM_SKIP part of the synchronization doesn't work and it can see a task after the whole address space has been demolished and traverse an already released mm->mmap list. This leads to use after free as properly caught up by KASAN report. Fix the issue by reseting mm->mmap so that MMF_OOM_SKIP synchronization is not needed anymore. The MMF_OOM_SKIP is not removed from exit_mmap yet but it acts mostly as an optimization now. [1] |
||
Liu Yuntao
|
e79ce98323 |
hugetlbfs: fix a truncation issue in hugepages parameter
When we specify a large number for node in hugepages parameter, it may
be parsed to another number due to truncation in this statement:
node = tmp;
For example, add following parameter in command line:
hugepagesz=1G hugepages=4294967297:5
and kernel will allocate 5 hugepages for node 1 instead of ignoring it.
I move the validation check earlier to fix this issue, and slightly
simplifies the condition here.
Link: https://lkml.kernel.org/r/20220209134018.8242-1-liuyuntao10@huawei.com
Fixes:
|
||
Aneesh Kumar K.V
|
db110a99d3 |
mm/hugetlb: fix kernel crash with hugetlb mremap
This fixes the below crash:
kernel BUG at include/linux/mm.h:2373!
cpu 0x5d: Vector: 700 (Program Check) at [c00000003c6e76e0]
pc: c000000000581a54: pmd_to_page+0x54/0x80
lr: c00000000058d184: move_hugetlb_page_tables+0x4e4/0x5b0
sp: c00000003c6e7980
msr: 9000000000029033
current = 0xc00000003bd8d980
paca = 0xc000200fff610100 irqmask: 0x03 irq_happened: 0x01
pid = 9349, comm = hugepage-mremap
kernel BUG at include/linux/mm.h:2373!
move_hugetlb_page_tables+0x4e4/0x5b0 (link register)
move_hugetlb_page_tables+0x22c/0x5b0 (unreliable)
move_page_tables+0xdbc/0x1010
move_vma+0x254/0x5f0
sys_mremap+0x7c0/0x900
system_call_exception+0x160/0x2c0
the kernel can't use huge_pte_offset before it set the pte entry because
a page table lookup check for huge PTE bit in the page table to
differentiate between a huge pte entry and a pointer to pte page. A
huge_pte_alloc won't mark the page table entry huge and hence kernel
should not use huge_pte_offset after a huge_pte_alloc.
Link: https://lkml.kernel.org/r/20220211063221.99293-1-aneesh.kumar@linux.ibm.com
Fixes:
|
||
Miaohe Lin
|
c94afc46ca |
memblock: use kfree() to release kmalloced memblock regions
memblock.{reserved,memory}.regions may be allocated using kmalloc() in
memblock_double_array(). Use kfree() to release these kmalloced regions
indicated by memblock_{reserved,memory}_in_slab.
Signed-off-by: Miaohe Lin <linmiaohe@huawei.com>
Fixes:
|
||
Linus Torvalds
|
80d47f5de5 |
mm: don't try to NUMA-migrate COW pages that have other uses
Oded Gabbay reports that enabling NUMA balancing causes corruption with his Gaudi accelerator test load: "All the details are in the bug, but the bottom line is that somehow, this patch causes corruption when the numa balancing feature is enabled AND we don't use process affinity AND we use GUP to pin pages so our accelerator can DMA to/from system memory. Either disabling numa balancing, using process affinity to bind to specific numa-node or reverting this patch causes the bug to disappear" and Oded bisected the issue to commit |
||
Peng Liu
|
8913c61001 |
kfence: make test case compatible with run time set sample interval
The parameter kfence_sample_interval can be set via boot parameter and late shell command, which is convenient for automated tests and KFENCE parameter optimization. However, KFENCE test case just uses compile-time CONFIG_KFENCE_SAMPLE_INTERVAL, which will make KFENCE test case not run as users desired. Export kfence_sample_interval, so that KFENCE test case can use run-time-set sample interval. Link: https://lkml.kernel.org/r/20220207034432.185532-1-liupeng256@huawei.com Signed-off-by: Peng Liu <liupeng256@huawei.com> Reviewed-by: Marco Elver <elver@google.com> Cc: Alexander Potapenko <glider@google.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Sumit Semwal <sumit.semwal@linaro.org> Cc: Christian Knig <christian.koenig@amd.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Roman Gushchin
|
0764db9b49 |
mm: memcg: synchronize objcg lists with a dedicated spinlock
Alexander reported a circular lock dependency revealed by the mmap1 ltp
test:
LOCKDEP_CIRCULAR (suite: ltp, case: mtest06 (mmap1))
WARNING: possible circular locking dependency detected
5.17.0-20220113.rc0.git0.f2211f194038.300.fc35.s390x+debug #1 Not tainted
------------------------------------------------------
mmap1/202299 is trying to acquire lock:
00000001892c0188 (css_set_lock){..-.}-{2:2}, at: obj_cgroup_release+0x4a/0xe0
but task is already holding lock:
00000000ca3b3818 (&sighand->siglock){-.-.}-{2:2}, at: force_sig_info_to_task+0x38/0x180
which lock already depends on the new lock.
the existing dependency chain (in reverse order) is:
-> #1 (&sighand->siglock){-.-.}-{2:2}:
__lock_acquire+0x604/0xbd8
lock_acquire.part.0+0xe2/0x238
lock_acquire+0xb0/0x200
_raw_spin_lock_irqsave+0x6a/0xd8
__lock_task_sighand+0x90/0x190
cgroup_freeze_task+0x2e/0x90
cgroup_migrate_execute+0x11c/0x608
cgroup_update_dfl_csses+0x246/0x270
cgroup_subtree_control_write+0x238/0x518
kernfs_fop_write_iter+0x13e/0x1e0
new_sync_write+0x100/0x190
vfs_write+0x22c/0x2d8
ksys_write+0x6c/0xf8
__do_syscall+0x1da/0x208
system_call+0x82/0xb0
-> #0 (css_set_lock){..-.}-{2:2}:
check_prev_add+0xe0/0xed8
validate_chain+0x736/0xb20
__lock_acquire+0x604/0xbd8
lock_acquire.part.0+0xe2/0x238
lock_acquire+0xb0/0x200
_raw_spin_lock_irqsave+0x6a/0xd8
obj_cgroup_release+0x4a/0xe0
percpu_ref_put_many.constprop.0+0x150/0x168
drain_obj_stock+0x94/0xe8
refill_obj_stock+0x94/0x278
obj_cgroup_charge+0x164/0x1d8
kmem_cache_alloc+0xac/0x528
__sigqueue_alloc+0x150/0x308
__send_signal+0x260/0x550
send_signal+0x7e/0x348
force_sig_info_to_task+0x104/0x180
force_sig_fault+0x48/0x58
__do_pgm_check+0x120/0x1f0
pgm_check_handler+0x11e/0x180
other info that might help us debug this:
Possible unsafe locking scenario:
CPU0 CPU1
---- ----
lock(&sighand->siglock);
lock(css_set_lock);
lock(&sighand->siglock);
lock(css_set_lock);
*** DEADLOCK ***
2 locks held by mmap1/202299:
#0: 00000000ca3b3818 (&sighand->siglock){-.-.}-{2:2}, at: force_sig_info_to_task+0x38/0x180
#1: 00000001892ad560 (rcu_read_lock){....}-{1:2}, at: percpu_ref_put_many.constprop.0+0x0/0x168
stack backtrace:
CPU: 15 PID: 202299 Comm: mmap1 Not tainted 5.17.0-20220113.rc0.git0.f2211f194038.300.fc35.s390x+debug #1
Hardware name: IBM 3906 M04 704 (LPAR)
Call Trace:
dump_stack_lvl+0x76/0x98
check_noncircular+0x136/0x158
check_prev_add+0xe0/0xed8
validate_chain+0x736/0xb20
__lock_acquire+0x604/0xbd8
lock_acquire.part.0+0xe2/0x238
lock_acquire+0xb0/0x200
_raw_spin_lock_irqsave+0x6a/0xd8
obj_cgroup_release+0x4a/0xe0
percpu_ref_put_many.constprop.0+0x150/0x168
drain_obj_stock+0x94/0xe8
refill_obj_stock+0x94/0x278
obj_cgroup_charge+0x164/0x1d8
kmem_cache_alloc+0xac/0x528
__sigqueue_alloc+0x150/0x308
__send_signal+0x260/0x550
send_signal+0x7e/0x348
force_sig_info_to_task+0x104/0x180
force_sig_fault+0x48/0x58
__do_pgm_check+0x120/0x1f0
pgm_check_handler+0x11e/0x180
INFO: lockdep is turned off.
In this example a slab allocation from __send_signal() caused a
refilling and draining of a percpu objcg stock, resulted in a releasing
of another non-related objcg. Objcg release path requires taking the
css_set_lock, which is used to synchronize objcg lists.
This can create a circular dependency with the sighandler lock, which is
taken with the locked css_set_lock by the freezer code (to freeze a
task).
In general it seems that using css_set_lock to synchronize objcg lists
makes any slab allocations and deallocation with the locked css_set_lock
and any intervened locks risky.
To fix the problem and make the code more robust let's stop using
css_set_lock to synchronize objcg lists and use a new dedicated spinlock
instead.
Link: https://lkml.kernel.org/r/Yfm1IHmoGdyUR81T@carbon.dhcp.thefacebook.com
Fixes:
|
||
Mel Gorman
|
b485c6f1f9 |
mm: vmscan: remove deadlock due to throttling failing to make progress
A soft lockup bug in kcompactd was reported in a private bugzilla with
the following visible in dmesg;
watchdog: BUG: soft lockup - CPU#33 stuck for 26s! [kcompactd0:479]
watchdog: BUG: soft lockup - CPU#33 stuck for 52s! [kcompactd0:479]
watchdog: BUG: soft lockup - CPU#33 stuck for 78s! [kcompactd0:479]
watchdog: BUG: soft lockup - CPU#33 stuck for 104s! [kcompactd0:479]
The machine had 256G of RAM with no swap and an earlier failed
allocation indicated that node 0 where kcompactd was run was potentially
unreclaimable;
Node 0 active_anon:29355112kB inactive_anon:2913528kB active_file:0kB
inactive_file:0kB unevictable:64kB isolated(anon):0kB isolated(file):0kB
mapped:8kB dirty:0kB writeback:0kB shmem:26780kB shmem_thp:
0kB shmem_pmdmapped: 0kB anon_thp: 23480320kB writeback_tmp:0kB
kernel_stack:2272kB pagetables:24500kB all_unreclaimable? yes
Vlastimil Babka investigated a crash dump and found that a task
migrating pages was trying to drain PCP lists;
PID: 52922 TASK: ffff969f820e5000 CPU: 19 COMMAND: "kworker/u128:3"
Call Trace:
__schedule
schedule
schedule_timeout
wait_for_completion
__flush_work
__drain_all_pages
__alloc_pages_slowpath.constprop.114
__alloc_pages
alloc_migration_target
migrate_pages
migrate_to_node
do_migrate_pages
cpuset_migrate_mm_workfn
process_one_work
worker_thread
kthread
ret_from_fork
This failure is specific to CONFIG_PREEMPT=n builds. The root of the
problem is that kcompact0 is not rescheduling on a CPU while a task that
has isolated a large number of the pages from the LRU is waiting on
kcompact0 to reschedule so the pages can be released. While
shrink_inactive_list() only loops once around too_many_isolated, reclaim
can continue without rescheduling if sc->skipped_deactivate == 1 which
could happen if there was no file LRU and the inactive anon list was not
low.
Link: https://lkml.kernel.org/r/20220203100326.GD3301@suse.de
Fixes:
|