Unfortunately the design of fscrypt_set_test_dummy_encryption() doesn't
work properly for the new mount API, as it combines too many steps into
one function:
- Parse the argument to test_dummy_encryption
- Check the setting against the filesystem instance
- Apply the setting to the filesystem instance
The new mount API has split these into separate steps. ext4 partially
worked around this by duplicating some of the logic, but it still had
some bugs. To address this, add some new helper functions that split up
the steps of fscrypt_set_test_dummy_encryption():
- fscrypt_parse_test_dummy_encryption()
- fscrypt_dummy_policies_equal()
- fscrypt_add_test_dummy_key()
While we're add it, also add a function fscrypt_is_dummy_policy_set()
which will be useful to avoid some #ifdef's.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Link: https://lore.kernel.org/r/20220501050857.538984-5-ebiggers@kernel.org
Factor out a function that builds the fscrypt_key_specifier for an
fscrypt_policy. Before this was only needed when finding the key for a
file, but now it will also be needed for test_dummy_encryption support.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Link: https://lore.kernel.org/r/20220501050857.538984-4-ebiggers@kernel.org
When inline encryption is used, the usual message "fscrypt: AES-256-XTS
using implementation <impl>" doesn't appear in the kernel log. Add a
similar message for the blk-crypto case that indicates that inline
encryption was used, and whether blk-crypto-fallback was used or not.
This can be useful for debugging performance problems.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Link: https://lore.kernel.org/r/20220414053415.158986-1-ebiggers@kernel.org
FS_CRYPTO_BLOCK_SIZE is neither the filesystem block size nor the
granularity of encryption. Rather, it defines two logically separate
constraints that both arise from the block size of the AES cipher:
- The alignment required for the lengths of file contents blocks
- The minimum input/output length for the filenames encryption modes
Since there are way too many things called the "block size", and the
connection with the AES block size is not easily understood, split
FS_CRYPTO_BLOCK_SIZE into two constants FSCRYPT_CONTENTS_ALIGNMENT and
FSCRYPT_FNAME_MIN_MSG_LEN that more clearly describe what they are.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Link: https://lore.kernel.org/r/20220405010914.18519-1-ebiggers@kernel.org
All filesystems have now been converted to use ->readahead, so
remove the ->readpages operation and fix all the comments that
used to refer to it.
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Al Viro <viro@zeniv.linux.org.uk>
Acked-by: Al Viro <viro@zeniv.linux.org.uk>
Add support for direct I/O on encrypted files when blk-crypto (inline
encryption) is being used for file contents encryption.
There will be a merge conflict with the block pull request in
fs/iomap/direct-io.c, due to some bio interface cleanups. The merge
resolution is straightforward and can be found in linux-next.
-----BEGIN PGP SIGNATURE-----
iIoEABYIADIWIQSacvsUNc7UX4ntmEPzXCl4vpKOKwUCYjgCfhQcZWJpZ2dlcnNA
Z29vZ2xlLmNvbQAKCRDzXCl4vpKOK6vjAQDp8D8OKIyj67KjYwvyHpNy0fZhxeur
RexC0nDfd9BE/AD/fV6zpCglmsuGxqxL0jmqeczKXn2y7nRFmPciCBTi/wY=
=kwNd
-----END PGP SIGNATURE-----
Merge tag 'fscrypt-for-linus' of git://git.kernel.org/pub/scm/fs/fscrypt/fscrypt
Pull fscrypt updates from Eric Biggers:
"Add support for direct I/O on encrypted files when blk-crypto (inline
encryption) is being used for file contents encryption"
* tag 'fscrypt-for-linus' of git://git.kernel.org/pub/scm/fs/fscrypt/fscrypt:
fscrypt: update documentation for direct I/O support
f2fs: support direct I/O with fscrypt using blk-crypto
ext4: support direct I/O with fscrypt using blk-crypto
iomap: support direct I/O with fscrypt using blk-crypto
fscrypt: add functions for direct I/O support
Encrypted files traditionally haven't supported DIO, due to the need to
encrypt/decrypt the data. However, when the encryption is implemented
using inline encryption (blk-crypto) instead of the traditional
filesystem-layer encryption, it is straightforward to support DIO.
In preparation for supporting this, add the following functions:
- fscrypt_dio_supported() checks whether a DIO request is supported as
far as encryption is concerned. Encrypted files will only support DIO
when inline encryption is used and the I/O request is properly
aligned; this function checks these preconditions.
- fscrypt_limit_io_blocks() limits the length of a bio to avoid crossing
a place in the file that a bio with an encryption context cannot
cross due to a DUN discontiguity. This function is needed by
filesystems that use the iomap DIO implementation (which operates
directly on logical ranges, so it won't use fscrypt_mergeable_bio())
and that support FSCRYPT_POLICY_FLAG_IV_INO_LBLK_32.
Co-developed-by: Satya Tangirala <satyat@google.com>
Signed-off-by: Satya Tangirala <satyat@google.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Link: https://lore.kernel.org/r/20220128233940.79464-2-ebiggers@kernel.org
Signed-off-by: Eric Biggers <ebiggers@google.com>
Pass the block_device that we plan to use this bio for and the
operation to bio_reset to optimize the assigment. A NULL block_device
can be passed, both for the passthrough case on a raw request_queue and
to temporarily avoid refactoring some nasty code.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Chaitanya Kulkarni <kch@nvidia.com>
Link: https://lore.kernel.org/r/20220124091107.642561-20-hch@lst.de
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Pass the block_device and operation that we plan to use this bio for to
bio_alloc to optimize the assignment. NULL/0 can be passed, both for the
passthrough case on a raw request_queue and to temporarily avoid
refactoring some nasty code.
Also move the gfp_mask argument after the nr_vecs argument for a much
more logical calling convention matching what most of the kernel does.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Chaitanya Kulkarni <kch@nvidia.com>
Link: https://lore.kernel.org/r/20220124091107.642561-18-hch@lst.de
Signed-off-by: Jens Axboe <axboe@kernel.dk>
fscrypt currently requires a 512-bit master key when AES-256-XTS is
used, since AES-256-XTS keys are 512-bit and fscrypt requires that the
master key be at least as long any key that will be derived from it.
However, this is overly strict because AES-256-XTS doesn't actually have
a 512-bit security strength, but rather 256-bit. The fact that XTS
takes twice the expected key size is a quirk of the XTS mode. It is
sufficient to use 256 bits of entropy for AES-256-XTS, provided that it
is first properly expanded into a 512-bit key, which HKDF-SHA512 does.
Therefore, relax the check of the master key size to use the security
strength of the derived key rather than the size of the derived key
(except for v1 encryption policies, which don't use HKDF).
Besides making things more flexible for userspace, this is needed in
order for the use of a KDF which only takes a 256-bit key to be
introduced into the fscrypt key hierarchy. This will happen with
hardware-wrapped keys support, as all known hardware which supports that
feature uses an SP800-108 KDF using AES-256-CMAC, so the wrapped keys
are wrapped 256-bit AES keys. Moreover, there is interest in fscrypt
supporting the same type of AES-256-CMAC based KDF in software as an
alternative to HKDF-SHA512. There is no security problem with such
features, so fix the key length check to work properly with them.
Reviewed-by: Paul Crowley <paulcrowley@google.com>
Link: https://lore.kernel.org/r/20210921030303.5598-1-ebiggers@kernel.org
Signed-off-by: Eric Biggers <ebiggers@google.com>
The file comment in bio.c is almost completely irrelevant to the actual
contents of the file; it was originally copied from crypto.c. Fix it
up, and also add a kerneldoc comment for fscrypt_decrypt_bio().
Link: https://lore.kernel.org/r/20210909190737.140841-1-ebiggers@kernel.org
Signed-off-by: Eric Biggers <ebiggers@google.com>
The max_namelen field is unnecessary, as it is set to 255 (NAME_MAX) on
all filesystems that support fscrypt (or plan to support fscrypt). For
simplicity, just use NAME_MAX directly instead.
Link: https://lore.kernel.org/r/20210909184513.139281-1-ebiggers@kernel.org
Signed-off-by: Eric Biggers <ebiggers@google.com>
fscrypt uses a Base64 encoding to encode no-key filenames (the filenames
that are presented to userspace when a directory is listed without its
encryption key). There are many variants of Base64, but the most common
ones are specified by RFC 4648. fscrypt can't use the regular RFC 4648
"base64" variant because "base64" uses the '/' character, which isn't
allowed in filenames. However, RFC 4648 also specifies a "base64url"
variant for use in URLs and filenames. "base64url" is less common than
"base64", but it's still implemented in many programming libraries.
Unfortunately, what fscrypt actually uses is a custom Base64 variant
that differs from "base64url" in several ways:
- The binary data is divided into 6-bit chunks differently.
- Values 62 and 63 are encoded with '+' and ',' instead of '-' and '_'.
- '='-padding isn't used. This isn't a problem per se, as the padding
isn't technically necessary, and RFC 4648 doesn't strictly require it.
But it needs to be properly documented.
There have been two attempts to copy the fscrypt Base64 code into lib/
(https://lkml.kernel.org/r/20200821182813.52570-6-jlayton@kernel.org and
https://lkml.kernel.org/r/20210716110428.9727-5-hare@suse.de), and both
have been caught up by the fscrypt Base64 variant being nonstandard and
not properly documented. Also, the planned use of the fscrypt Base64
code in the CephFS storage back-end will prevent it from being changed
later (whereas currently it can still be changed), so we need to choose
an encoding that we're happy with before it's too late.
Therefore, switch the fscrypt Base64 variant to base64url, in order to
align more closely with RFC 4648 and other implementations and uses of
Base64. However, I opted not to implement '='-padding, as '='-padding
adds complexity, is unnecessary, and isn't required by the RFC.
Link: https://lore.kernel.org/r/20210718000125.59701-1-ebiggers@kernel.org
Reviewed-by: Hannes Reinecke <hare@suse.de>
Signed-off-by: Eric Biggers <ebiggers@google.com>
Add a helper function fscrypt_symlink_getattr() which will be called
from the various filesystems' ->getattr() methods to read and decrypt
the target of encrypted symlinks in order to report the correct st_size.
Detailed explanation:
As required by POSIX and as documented in various man pages, st_size for
a symlink is supposed to be the length of the symlink target.
Unfortunately, st_size has always been wrong for encrypted symlinks
because st_size is populated from i_size from disk, which intentionally
contains the length of the encrypted symlink target. That's slightly
greater than the length of the decrypted symlink target (which is the
symlink target that userspace usually sees), and usually won't match the
length of the no-key encoded symlink target either.
This hadn't been fixed yet because reporting the correct st_size would
require reading the symlink target from disk and decrypting or encoding
it, which historically has been considered too heavyweight to do in
->getattr(). Also historically, the wrong st_size had only broken a
test (LTP lstat03) and there were no known complaints from real users.
(This is probably because the st_size of symlinks isn't used too often,
and when it is, typically it's for a hint for what buffer size to pass
to readlink() -- which a slightly-too-large size still works for.)
However, a couple things have changed now. First, there have recently
been complaints about the current behavior from real users:
- Breakage in rpmbuild:
https://github.com/rpm-software-management/rpm/issues/1682https://github.com/google/fscrypt/issues/305
- Breakage in toybox cpio:
https://www.mail-archive.com/toybox@lists.landley.net/msg07193.html
- Breakage in libgit2: https://issuetracker.google.com/issues/189629152
(on Android public issue tracker, requires login)
Second, we now cache decrypted symlink targets in ->i_link. Therefore,
taking the performance hit of reading and decrypting the symlink target
in ->getattr() wouldn't be as big a deal as it used to be, since usually
it will just save having to do the same thing later.
Also note that eCryptfs ended up having to read and decrypt symlink
targets in ->getattr() as well, to fix this same issue; see
commit 3a60a1686f ("eCryptfs: Decrypt symlink target for stat size").
So, let's just bite the bullet, and read and decrypt the symlink target
in ->getattr() in order to report the correct st_size. Add a function
fscrypt_symlink_getattr() which the filesystems will call to do this.
(Alternatively, we could store the decrypted size of symlinks on-disk.
But there isn't a great place to do so, and encryption is meant to hide
the original size to some extent; that property would be lost.)
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/20210702065350.209646-2-ebiggers@kernel.org
Signed-off-by: Eric Biggers <ebiggers@google.com>
Typically, the cryptographic APIs that fscrypt uses take keys as byte
arrays, which avoids endianness issues. However, siphash_key_t is an
exception. It is defined as 'u64 key[2];', i.e. the 128-bit key is
expected to be given directly as two 64-bit words in CPU endianness.
fscrypt_derive_dirhash_key() and fscrypt_setup_iv_ino_lblk_32_key()
forgot to take this into account. Therefore, the SipHash keys used to
index encrypted+casefolded directories differ on big endian vs. little
endian platforms, as do the SipHash keys used to hash inode numbers for
IV_INO_LBLK_32-encrypted directories. This makes such directories
non-portable between these platforms.
Fix this by always using the little endian order. This is a breaking
change for big endian platforms, but this should be fine in practice
since these features (encrypt+casefold support, and the IV_INO_LBLK_32
flag) aren't known to actually be used on any big endian platforms yet.
Fixes: aa408f835d ("fscrypt: derive dirhash key for casefolded directories")
Fixes: e3b1078bed ("fscrypt: add support for IV_INO_LBLK_32 policies")
Cc: <stable@vger.kernel.org> # v5.6+
Link: https://lore.kernel.org/r/20210605075033.54424-1-ebiggers@kernel.org
Signed-off-by: Eric Biggers <ebiggers@google.com>
When initializing a no-key name, fscrypt_fname_disk_to_usr() sets the
minor_hash to 0 if the (major) hash is 0.
This doesn't make sense because 0 is a valid hash code, so we shouldn't
ignore the filesystem-provided minor_hash in that case. Fix this by
removing the special case for 'hash == 0'.
This is an old bug that appears to have originated when the encryption
code in ext4 and f2fs was moved into fs/crypto/. The original ext4 and
f2fs code passed the hash by pointer instead of by value. So
'if (hash)' actually made sense then, as it was checking whether a
pointer was NULL. But now the hashes are passed by value, and
filesystems just pass 0 for any hashes they don't have. There is no
need to handle this any differently from the hashes actually being 0.
It is difficult to reproduce this bug, as it only made a difference in
the case where a filename's 32-bit major hash happened to be 0.
However, it probably had the largest chance of causing problems on
ubifs, since ubifs uses minor_hash to do lookups of no-key names, in
addition to using it as a readdir cookie. ext4 only uses minor_hash as
a readdir cookie, and f2fs doesn't use minor_hash at all.
Fixes: 0b81d07790 ("fs crypto: move per-file encryption from f2fs tree to fs/crypto")
Cc: <stable@vger.kernel.org> # v4.6+
Link: https://lore.kernel.org/r/20210527235236.2376556-1-ebiggers@kernel.org
Signed-off-by: Eric Biggers <ebiggers@google.com>
Pull crypto updates from Herbert Xu:
"API:
- crypto_destroy_tfm now ignores errors as well as NULL pointers
Algorithms:
- Add explicit curve IDs in ECDH algorithm names
- Add NIST P384 curve parameters
- Add ECDSA
Drivers:
- Add support for Green Sardine in ccp
- Add ecdh/curve25519 to hisilicon/hpre
- Add support for AM64 in sa2ul"
* 'linus' of git://git.kernel.org/pub/scm/linux/kernel/git/herbert/crypto-2.6: (184 commits)
fsverity: relax build time dependency on CRYPTO_SHA256
fscrypt: relax Kconfig dependencies for crypto API algorithms
crypto: camellia - drop duplicate "depends on CRYPTO"
crypto: s5p-sss - consistently use local 'dev' variable in probe()
crypto: s5p-sss - remove unneeded local variable initialization
crypto: s5p-sss - simplify getting of_device_id match data
ccp: ccp - add support for Green Sardine
crypto: ccp - Make ccp_dev_suspend and ccp_dev_resume void functions
crypto: octeontx2 - add support for OcteonTX2 98xx CPT block.
crypto: chelsio/chcr - Remove useless MODULE_VERSION
crypto: ux500/cryp - Remove duplicate argument
crypto: chelsio - remove unused function
crypto: sa2ul - Add support for AM64
crypto: sa2ul - Support for per channel coherency
dt-bindings: crypto: ti,sa2ul: Add new compatible for AM64
crypto: hisilicon - enable new error types for QM
crypto: hisilicon - add new error type for SEC
crypto: hisilicon - support new error types for ZIP
crypto: hisilicon - dynamic configuration 'err_info'
crypto: doc - fix kernel-doc notation in chacha.c and af_alg.c
...
Even if FS encryption has strict functional dependencies on various
crypto algorithms and chaining modes. those dependencies could potentially
be satisified by other implementations than the generic ones, and no link
time dependency exists on the 'depends on' claused defined by
CONFIG_FS_ENCRYPTION_ALGS.
So let's relax these clauses to 'imply', so that the default behavior
is still to pull in those generic algorithms, but in a way that permits
them to be disabled again in Kconfig.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Acked-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Ever since the addition of multipage bio_vecs BIO_MAX_PAGES has been
horribly confusingly misnamed. Rename it to BIO_MAX_VECS to stop
confusing users of the bio API.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Reviewed-by: Martin K. Petersen <martin.petersen@oracle.com>
Link: https://lore.kernel.org/r/20210311110137.1132391-2-hch@lst.de
Signed-off-by: Jens Axboe <axboe@kernel.dk>
The inode_owner_or_capable() helper determines whether the caller is the
owner of the inode or is capable with respect to that inode. Allow it to
handle idmapped mounts. If the inode is accessed through an idmapped
mount it according to the mount's user namespace. Afterwards the checks
are identical to non-idmapped mounts. If the initial user namespace is
passed nothing changes so non-idmapped mounts will see identical
behavior as before.
Similarly, allow the inode_init_owner() helper to handle idmapped
mounts. It initializes a new inode on idmapped mounts by mapping the
fsuid and fsgid of the caller from the mount's user namespace. If the
initial user namespace is passed nothing changes so non-idmapped mounts
will see identical behavior as before.
Link: https://lore.kernel.org/r/20210121131959.646623-7-christian.brauner@ubuntu.com
Cc: Christoph Hellwig <hch@lst.de>
Cc: David Howells <dhowells@redhat.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: linux-fsdevel@vger.kernel.org
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: James Morris <jamorris@linux.microsoft.com>
Signed-off-by: Christian Brauner <christian.brauner@ubuntu.com>
In this round, we've made more work into per-file compression support. For
example, F2FS_IOC_GET|SET_COMPRESS_OPTION provides a way to change the
algorithm or cluster size per file. F2FS_IOC_COMPRESS|DECOMPRESS_FILE provides
a way to compress and decompress the existing normal files manually along with
a new mount option, compress_mode=fs|user, which can control who compresses the
data. Chao also added a checksum feature with a mount option so that we are able
to detect any corrupted cluster. In addition, Daniel contributed casefolding
with encryption patch, which will be used for Android devices.
Enhancement:
- add ioctls and mount option to manage per-file compression feature
- support casefolding with encryption
- support checksum for compressed cluster
- avoid IO starvation by replacing mutex with rwsem
- add sysfs, max_io_bytes, to control max bio size
Bug fix:
- fix use-after-free issue when compression and fsverity are enabled
- fix consistency corruption during fault injection test
- fix data offset for lseek
- get rid of buffer_head which has 32bits limit in fiemap
- fix some bugs in multi-partitions support
- fix nat entry count calculation in shrinker
- fix some stat information
And, we've refactored some logics and fix minor bugs as well.
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEE00UqedjCtOrGVvQiQBSofoJIUNIFAl/a8ywACgkQQBSofoJI
UNLa2RAAjK+6tOs+NuYx2w9SegghKxwCg4Mb362BMdaAGx6GzMqAkCiVdujuoz/r
+wy8sdqO9QE7723ZDNsebNMLRnkNPHnpneSL2p6OsSLJrD3ORTELVRrzNlkemvnK
rRHZyYnNJvQQnD4uU7ABvROKsIDw/nCfcFvzHmLIgEw8EHO0W4n6fTtBdTwXv1qi
N3qXhGuQldonR9XICuGjzj7wh17n9ua6Mr12XX3Ok38giMcZb9KFBwgvlhl35cxt
htEmUpxWD3NTSw6zJmV4VAiajpiIkW6QRQuVA1nzdLZK644gaJMhM1EUsOnZhfDl
wX0ZtKoNkXxb0glD34O3aYqeHJ3tHWgPmmpVm9TECJP9A/X7kmEHgQYpH/eJ9I7d
tk51Uz28Mz1RShXU4i5RyKZeeoNTLiVlqiC95E2cnq4C1tLOJyI00N9AinrLzvR+
fqUrAwCrBpiYX63mWKYwq7GWxWwp4+PY09kyIZxxJiWhTE/St0bRx2bQL8zA8C6J
Rtxl+QWyQhkFbNu8fAukLFAhC6mqX/FKpXvUqRehBnHRvMWBiVZG0//eOPQLk71u
qsdCgYuEVcg3itDQrZvmsjxi4Pb5E9mNr0s5oC4I2WvBPMheD4esSyG7cKDN0qfS
3FFHlRYLOvnjPMLnKTmZXjFvFyHR8mwsD4Z83MeSrqYnWC14tFY=
=KneU
-----END PGP SIGNATURE-----
Merge tag 'f2fs-for-5.11-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/jaegeuk/f2fs
Pull f2fs updates from Jaegeuk Kim:
"In this round, we've made more work into per-file compression support.
For example, F2FS_IOC_GET | SET_COMPRESS_OPTION provides a way to
change the algorithm or cluster size per file. F2FS_IOC_COMPRESS |
DECOMPRESS_FILE provides a way to compress and decompress the existing
normal files manually.
There is also a new mount option, compress_mode=fs|user, which can
control who compresses the data.
Chao also added a checksum feature with a mount option so that
we are able to detect any corrupted cluster.
In addition, Daniel contributed casefolding with encryption patch,
which will be used for Android devices.
Summary:
Enhancements:
- add ioctls and mount option to manage per-file compression feature
- support casefolding with encryption
- support checksum for compressed cluster
- avoid IO starvation by replacing mutex with rwsem
- add sysfs, max_io_bytes, to control max bio size
Bug fixes:
- fix use-after-free issue when compression and fsverity are enabled
- fix consistency corruption during fault injection test
- fix data offset for lseek
- get rid of buffer_head which has 32bits limit in fiemap
- fix some bugs in multi-partitions support
- fix nat entry count calculation in shrinker
- fix some stat information
And, we've refactored some logics and fix minor bugs as well"
* tag 'f2fs-for-5.11-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/jaegeuk/f2fs: (36 commits)
f2fs: compress: fix compression chksum
f2fs: fix shift-out-of-bounds in sanity_check_raw_super()
f2fs: fix race of pending_pages in decompression
f2fs: fix to account inline xattr correctly during recovery
f2fs: inline: fix wrong inline inode stat
f2fs: inline: correct comment in f2fs_recover_inline_data
f2fs: don't check PAGE_SIZE again in sanity_check_raw_super()
f2fs: convert to F2FS_*_INO macro
f2fs: introduce max_io_bytes, a sysfs entry, to limit bio size
f2fs: don't allow any writes on readonly mount
f2fs: avoid race condition for shrinker count
f2fs: add F2FS_IOC_DECOMPRESS_FILE and F2FS_IOC_COMPRESS_FILE
f2fs: add compress_mode mount option
f2fs: Remove unnecessary unlikely()
f2fs: init dirty_secmap incorrectly
f2fs: remove buffer_head which has 32bits limit
f2fs: fix wrong block count instead of bytes
f2fs: use new conversion functions between blks and bytes
f2fs: rename logical_to_blk and blk_to_logical
f2fs: fix kbytes written stat for multi-device case
...
Pull crypto updates from Herbert Xu:
"API:
- Add speed testing on 1420-byte blocks for networking
Algorithms:
- Improve performance of chacha on ARM for network packets
- Improve performance of aegis128 on ARM for network packets
Drivers:
- Add support for Keem Bay OCS AES/SM4
- Add support for QAT 4xxx devices
- Enable crypto-engine retry mechanism in caam
- Enable support for crypto engine on sdm845 in qce
- Add HiSilicon PRNG driver support"
* 'linus' of git://git.kernel.org/pub/scm/linux/kernel/git/herbert/crypto-2.6: (161 commits)
crypto: qat - add capability detection logic in qat_4xxx
crypto: qat - add AES-XTS support for QAT GEN4 devices
crypto: qat - add AES-CTR support for QAT GEN4 devices
crypto: atmel-i2c - select CONFIG_BITREVERSE
crypto: hisilicon/trng - replace atomic_add_return()
crypto: keembay - Add support for Keem Bay OCS AES/SM4
dt-bindings: Add Keem Bay OCS AES bindings
crypto: aegis128 - avoid spurious references crypto_aegis128_update_simd
crypto: seed - remove trailing semicolon in macro definition
crypto: x86/poly1305 - Use TEST %reg,%reg instead of CMP $0,%reg
crypto: x86/sha512 - Use TEST %reg,%reg instead of CMP $0,%reg
crypto: aesni - Use TEST %reg,%reg instead of CMP $0,%reg
crypto: cpt - Fix sparse warnings in cptpf
hwrng: ks-sa - Add dependency on IOMEM and OF
crypto: lib/blake2s - Move selftest prototype into header file
crypto: arm/aes-ce - work around Cortex-A57/A72 silion errata
crypto: ecdh - avoid unaligned accesses in ecdh_set_secret()
crypto: ccree - rework cache parameters handling
crypto: cavium - Use dma_set_mask_and_coherent to simplify code
crypto: marvell/octeontx - Use dma_set_mask_and_coherent to simplify code
...
This shifts the responsibility of setting up dentry operations from
fscrypt to the individual filesystems, allowing them to have their own
operations while still setting fscrypt's d_revalidate as appropriate.
Most filesystems can just use generic_set_encrypted_ci_d_ops, unless
they have their own specific dentry operations as well. That operation
will set the minimal d_ops required under the circumstances.
Since the fscrypt d_ops are set later on, we must set all d_ops there,
since we cannot adjust those later on. This should not result in any
change in behavior.
Signed-off-by: Daniel Rosenberg <drosen@google.com>
Acked-by: Theodore Ts'o <tytso@mit.edu>
Acked-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
Currently it's impossible to delete files that use an unsupported
encryption policy, as the kernel will just return an error when
performing any operation on the top-level encrypted directory, even just
a path lookup into the directory or opening the directory for readdir.
More specifically, this occurs in any of the following cases:
- The encryption context has an unrecognized version number. Current
kernels know about v1 and v2, but there could be more versions in the
future.
- The encryption context has unrecognized encryption modes
(FSCRYPT_MODE_*) or flags (FSCRYPT_POLICY_FLAG_*), an unrecognized
combination of modes, or reserved bits set.
- The encryption key has been added and the encryption modes are
recognized but aren't available in the crypto API -- for example, a
directory is encrypted with FSCRYPT_MODE_ADIANTUM but the kernel
doesn't have CONFIG_CRYPTO_ADIANTUM enabled.
It's desirable to return errors for most operations on files that use an
unsupported encryption policy, but the current behavior is too strict.
We need to allow enough to delete files, so that people can't be stuck
with undeletable files when downgrading kernel versions. That includes
allowing directories to be listed and allowing dentries to be looked up.
Fix this by modifying the key setup logic to treat an unsupported
encryption policy in the same way as "key unavailable" in the cases that
are required for a recursive delete to work: preparing for a readdir or
a dentry lookup, revalidating a dentry, or checking whether an inode has
the same encryption policy as its parent directory.
Reviewed-by: Andreas Dilger <adilger@dilger.ca>
Link: https://lore.kernel.org/r/20201203022041.230976-10-ebiggers@kernel.org
Signed-off-by: Eric Biggers <ebiggers@google.com>
Now that fscrypt_get_encryption_info() is only called from files in
fs/crypto/ (due to all key setup now being handled by higher-level
helper functions instead of directly by filesystems), unexport it and
move its declaration to fscrypt_private.h.
Reviewed-by: Andreas Dilger <adilger@dilger.ca>
Link: https://lore.kernel.org/r/20201203022041.230976-9-ebiggers@kernel.org
Signed-off-by: Eric Biggers <ebiggers@google.com>
fscrypt_require_key() is now only used by files in fs/crypto/. So
reduce its visibility to fscrypt_private.h. This is also a prerequsite
for unexporting fscrypt_get_encryption_info().
Reviewed-by: Andreas Dilger <adilger@dilger.ca>
Link: https://lore.kernel.org/r/20201203022041.230976-8-ebiggers@kernel.org
Signed-off-by: Eric Biggers <ebiggers@google.com>
In preparation for reducing the visibility of fscrypt_require_key() by
moving it to fscrypt_private.h, move the call to it from
fscrypt_prepare_setattr() to an out-of-line function.
Reviewed-by: Andreas Dilger <adilger@dilger.ca>
Link: https://lore.kernel.org/r/20201203022041.230976-7-ebiggers@kernel.org
Signed-off-by: Eric Biggers <ebiggers@google.com>
The last remaining use of fscrypt_get_encryption_info() from filesystems
is for readdir (->iterate_shared()). Every other call is now in
fs/crypto/ as part of some other higher-level operation.
We need to add a new argument to fscrypt_get_encryption_info() to
indicate whether the encryption policy is allowed to be unrecognized or
not. Doing this is easier if we can work with high-level operations
rather than direct filesystem use of fscrypt_get_encryption_info().
So add a function fscrypt_prepare_readdir() which wraps the call to
fscrypt_get_encryption_info() for the readdir use case.
Reviewed-by: Andreas Dilger <adilger@dilger.ca>
Link: https://lore.kernel.org/r/20201203022041.230976-6-ebiggers@kernel.org
Signed-off-by: Eric Biggers <ebiggers@google.com>
The stated reasons for separating fscrypt_master_key::mk_secret_sem from
the standard semaphore contained in every 'struct key' no longer apply.
First, due to commit a992b20cd4 ("fscrypt: add
fscrypt_prepare_new_inode() and fscrypt_set_context()"),
fscrypt_get_encryption_info() is no longer called from within a
filesystem transaction.
Second, due to commit d3ec10aa95 ("KEYS: Don't write out to userspace
while holding key semaphore"), the semaphore for the "keyring" key type
no longer ranks above page faults.
That leaves performance as the only possible reason to keep the separate
mk_secret_sem. Specifically, having mk_secret_sem reduces the
contention between setup_file_encryption_key() and
FS_IOC_{ADD,REMOVE}_ENCRYPTION_KEY. However, these ioctls aren't
executed often, so this doesn't seem to be worth the extra complexity.
Therefore, simplify the locking design by just using key->sem instead of
mk_secret_sem.
Link: https://lore.kernel.org/r/20201117032626.320275-1-ebiggers@kernel.org
Signed-off-by: Eric Biggers <ebiggers@google.com>
In an encrypted directory, a regular dentry (one that doesn't have the
no-key name flag) can only be created if the directory's encryption key
is available.
Therefore the calls to fscrypt_require_key() in __fscrypt_prepare_link()
and __fscrypt_prepare_rename() are unnecessary, as these functions
already check that the dentries they're given aren't no-key names.
Remove these unnecessary calls to fscrypt_require_key().
Link: https://lore.kernel.org/r/20201118075609.120337-6-ebiggers@kernel.org
Signed-off-by: Eric Biggers <ebiggers@google.com>
It's possible to create a duplicate filename in an encrypted directory
by creating a file concurrently with adding the encryption key.
Specifically, sys_open(O_CREAT) (or sys_mkdir(), sys_mknod(), or
sys_symlink()) can lookup the target filename while the directory's
encryption key hasn't been added yet, resulting in a negative no-key
dentry. The VFS then calls ->create() (or ->mkdir(), ->mknod(), or
->symlink()) because the dentry is negative. Normally, ->create() would
return -ENOKEY due to the directory's key being unavailable. However,
if the key was added between the dentry lookup and ->create(), then the
filesystem will go ahead and try to create the file.
If the target filename happens to already exist as a normal name (not a
no-key name), a duplicate filename may be added to the directory.
In order to fix this, we need to fix the filesystems to prevent
->create(), ->mkdir(), ->mknod(), and ->symlink() on no-key names.
(->rename() and ->link() need it too, but those are already handled
correctly by fscrypt_prepare_rename() and fscrypt_prepare_link().)
In preparation for this, add a helper function fscrypt_is_nokey_name()
that filesystems can use to do this check. Use this helper function for
the existing checks that fs/crypto/ does for rename and link.
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/20201118075609.120337-2-ebiggers@kernel.org
Signed-off-by: Eric Biggers <ebiggers@google.com>
Currently <crypto/sha.h> contains declarations for both SHA-1 and SHA-2,
and <crypto/sha3.h> contains declarations for SHA-3.
This organization is inconsistent, but more importantly SHA-1 is no
longer considered to be cryptographically secure. So to the extent
possible, SHA-1 shouldn't be grouped together with any of the other SHA
versions, and usage of it should be phased out.
Therefore, split <crypto/sha.h> into two headers <crypto/sha1.h> and
<crypto/sha2.h>, and make everyone explicitly specify whether they want
the declarations for SHA-1, SHA-2, or both.
This avoids making the SHA-1 declarations visible to files that don't
want anything to do with SHA-1. It also prepares for potentially moving
sha1.h into a new insecure/ or dangerous/ directory.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Acked-by: Ard Biesheuvel <ardb@kernel.org>
Acked-by: Jason A. Donenfeld <Jason@zx2c4.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
There isn't really any valid reason to use __FSCRYPT_MODE_MAX or
FSCRYPT_POLICY_FLAGS_VALID in a userspace program. These constants are
only meant to be used by the kernel internally, and they are defined in
the UAPI header next to the mode numbers and flags only so that kernel
developers don't forget to update them when adding new modes or flags.
In https://lkml.kernel.org/r/20201005074133.1958633-2-satyat@google.com
there was an example of someone wanting to use __FSCRYPT_MODE_MAX in a
user program, and it was wrong because the program would have broken if
__FSCRYPT_MODE_MAX were ever increased. So having this definition
available is harmful. FSCRYPT_POLICY_FLAGS_VALID has the same problem.
So, remove these definitions from the UAPI header. Replace
FSCRYPT_POLICY_FLAGS_VALID with just listing the valid flags explicitly
in the one kernel function that needs it. Move __FSCRYPT_MODE_MAX to
fscrypt_private.h, remove the double underscores (which were only
present to discourage use by userspace), and add a BUILD_BUG_ON() and
comments to (hopefully) ensure it is kept in sync.
Keep the old name FS_POLICY_FLAGS_VALID, since it's been around for
longer and there's a greater chance that removing it would break source
compatibility with some program. Indeed, mtd-utils is using it in
an #ifdef, and removing it would introduce compiler warnings (about
FS_POLICY_FLAGS_PAD_* being redefined) into the mtd-utils build.
However, reduce its value to 0x07 so that it only includes the flags
with old names (the ones present before Linux 5.4), and try to make it
clear that it's now "frozen" and no new flags should be added to it.
Fixes: 2336d0deb2 ("fscrypt: use FSCRYPT_ prefix for uapi constants")
Cc: <stable@vger.kernel.org> # v5.4+
Link: https://lore.kernel.org/r/20201024005132.495952-1-ebiggers@kernel.org
Signed-off-by: Eric Biggers <ebiggers@google.com>
The new helper function fscrypt_prepare_new_inode() runs before
S_ENCRYPTED has been set on the new inode. This accidentally made
fscrypt_select_encryption_impl() never enable inline encryption on newly
created files, due to its use of fscrypt_needs_contents_encryption()
which only returns true when S_ENCRYPTED is set.
Fix this by using S_ISREG() directly instead of
fscrypt_needs_contents_encryption(), analogous to what
select_encryption_mode() does.
I didn't notice this earlier because by design, the user-visible
behavior is the same (other than performance, potentially) regardless of
whether inline encryption is used or not.
Fixes: a992b20cd4 ("fscrypt: add fscrypt_prepare_new_inode() and fscrypt_set_context()")
Reviewed-by: Satya Tangirala <satyat@google.com>
Link: https://lore.kernel.org/r/20201111015224.303073-1-ebiggers@kernel.org
Signed-off-by: Eric Biggers <ebiggers@google.com>
I_CREATING isn't actually set until the inode has been assigned an inode
number and inserted into the inode hash table. So the WARN_ON() in
fscrypt_setup_iv_ino_lblk_32_key() is wrong, and it can trigger when
creating an encrypted file on ext4. Remove it.
This was sometimes causing xfstest generic/602 to fail on ext4. I
didn't notice it before because due to a separate oversight, new inodes
that haven't been assigned an inode number yet don't necessarily have
i_ino == 0 as I had thought, so by chance I never saw the test fail.
Fixes: a992b20cd4 ("fscrypt: add fscrypt_prepare_new_inode() and fscrypt_set_context()")
Reported-by: Theodore Y. Ts'o <tytso@mit.edu>
Link: https://lore.kernel.org/r/20201031004556.87862-1-ebiggers@kernel.org
Signed-off-by: Eric Biggers <ebiggers@google.com>
Dentries that represent no-key names must have a dentry_operations that
includes fscrypt_d_revalidate(). Currently, this is handled by
fscrypt_prepare_lookup() installing fscrypt_d_ops.
However, ceph support for encryption
(https://lore.kernel.org/r/20200914191707.380444-1-jlayton@kernel.org)
can't use fscrypt_d_ops, since ceph already has its own
dentry_operations.
Similarly, ext4 and f2fs support for directories that are both encrypted
and casefolded
(https://lore.kernel.org/r/20200923010151.69506-1-drosen@google.com)
can't use fscrypt_d_ops either, since casefolding requires some dentry
operations too.
To satisfy both users, we need to move the responsibility of installing
the dentry_operations to filesystems.
In preparation for this, export fscrypt_d_revalidate() and give it a
!CONFIG_FS_ENCRYPTION stub.
Reviewed-by: Jeff Layton <jlayton@kernel.org>
Link: https://lore.kernel.org/r/20200924054721.187797-1-ebiggers@kernel.org
Signed-off-by: Eric Biggers <ebiggers@google.com>
Originally we used the term "encrypted name" or "ciphertext name" to
mean the encoded filename that is shown when an encrypted directory is
listed without its key. But these terms are ambiguous since they also
mean the filename stored on-disk. "Encrypted name" is especially
ambiguous since it could also be understood to mean "this filename is
encrypted on-disk", similar to "encrypted file".
So we've started calling these encoded names "no-key names" instead.
Therefore, rename DCACHE_ENCRYPTED_NAME to DCACHE_NOKEY_NAME to avoid
confusion about what this flag means.
Link: https://lore.kernel.org/r/20200924042624.98439-3-ebiggers@kernel.org
Signed-off-by: Eric Biggers <ebiggers@google.com>
Currently we're using the term "ciphertext name" ambiguously because it
can mean either the actual ciphertext filename, or the encoded filename
that is shown when an encrypted directory is listed without its key.
The latter we're now usually calling the "no-key name"; and while it's
derived from the ciphertext name, it's not the same thing.
To avoid this ambiguity, rename fscrypt_name::is_ciphertext_name to
fscrypt_name::is_nokey_name, and update comments that say "ciphertext
name" (or "encrypted name") to say "no-key name" instead when warranted.
Link: https://lore.kernel.org/r/20200924042624.98439-2-ebiggers@kernel.org
Signed-off-by: Eric Biggers <ebiggers@google.com>
Now that there's a library function that calculates the SHA-256 digest
of a buffer in one step, use it instead of sha256_init() +
sha256_update() + sha256_final().
Link: https://lore.kernel.org/r/20200917045341.324996-1-ebiggers@kernel.org
Signed-off-by: Eric Biggers <ebiggers@google.com>
fscrypt_set_test_dummy_encryption() requires that the optional argument
to the test_dummy_encryption mount option be specified as a substring_t.
That doesn't work well with filesystems that use the new mount API,
since the new way of parsing mount options doesn't use substring_t.
Make it take the argument as a 'const char *' instead.
Instead of moving the match_strdup() into the callers in ext4 and f2fs,
make them just use arg->from directly. Since the pattern is
"test_dummy_encryption=%s", the argument will be null-terminated.
Acked-by: Jeff Layton <jlayton@kernel.org>
Link: https://lore.kernel.org/r/20200917041136.178600-14-ebiggers@kernel.org
Signed-off-by: Eric Biggers <ebiggers@google.com>
The behavior of the test_dummy_encryption mount option is that when a
new file (or directory or symlink) is created in an unencrypted
directory, it's automatically encrypted using a dummy encryption policy.
That's it; in particular, the encryption (or lack thereof) of existing
files (or directories or symlinks) doesn't change.
Unfortunately the implementation of test_dummy_encryption is a bit weird
and confusing. When test_dummy_encryption is enabled and a file is
being created in an unencrypted directory, we set up an encryption key
(->i_crypt_info) for the directory. This isn't actually used to do any
encryption, however, since the directory is still unencrypted! Instead,
->i_crypt_info is only used for inheriting the encryption policy.
One consequence of this is that the filesystem ends up providing a
"dummy context" (policy + nonce) instead of a "dummy policy". In
commit ed318a6cc0 ("fscrypt: support test_dummy_encryption=v2"), I
mistakenly thought this was required. However, actually the nonce only
ends up being used to derive a key that is never used.
Another consequence of this implementation is that it allows for
'inode->i_crypt_info != NULL && !IS_ENCRYPTED(inode)', which is an edge
case that can be forgotten about. For example, currently
FS_IOC_GET_ENCRYPTION_POLICY on an unencrypted directory may return the
dummy encryption policy when the filesystem is mounted with
test_dummy_encryption. That seems like the wrong thing to do, since
again, the directory itself is not actually encrypted.
Therefore, switch to a more logical and maintainable implementation
where the dummy encryption policy inheritance is done without setting up
keys for unencrypted directories. This involves:
- Adding a function fscrypt_policy_to_inherit() which returns the
encryption policy to inherit from a directory. This can be a real
policy, a dummy policy, or no policy.
- Replacing struct fscrypt_dummy_context, ->get_dummy_context(), etc.
with struct fscrypt_dummy_policy, ->get_dummy_policy(), etc.
- Making fscrypt_fname_encrypted_size() take an fscrypt_policy instead
of an inode.
Acked-by: Jaegeuk Kim <jaegeuk@kernel.org>
Acked-by: Jeff Layton <jlayton@kernel.org>
Link: https://lore.kernel.org/r/20200917041136.178600-13-ebiggers@kernel.org
Signed-off-by: Eric Biggers <ebiggers@google.com>
In preparation for moving the logic for "get the encryption policy
inherited by new files in this directory" to a single place, make
fscrypt_prepare_symlink() a regular function rather than an inline
function that wraps __fscrypt_prepare_symlink().
This way, the new function fscrypt_policy_to_inherit() won't need to be
exported to filesystems.
Acked-by: Jeff Layton <jlayton@kernel.org>
Link: https://lore.kernel.org/r/20200917041136.178600-12-ebiggers@kernel.org
Signed-off-by: Eric Biggers <ebiggers@google.com>
The fscrypt UAPI header defines fscrypt_policy to fscrypt_policy_v1,
for source compatibility with old userspace programs.
Internally, the kernel doesn't want that compatibility definition.
Instead, fscrypt_private.h #undefs it and re-defines it to a union.
That works for now. However, in order to add
fscrypt_operations::get_dummy_policy(), we'll need to forward declare
'union fscrypt_policy' in include/linux/fscrypt.h. That would cause
build errors because "fscrypt_policy" is used in ioctl numbers.
To avoid this, modify the UAPI header to make the fscrypt_policy
compatibility definition conditional on !__KERNEL__, and make the ioctls
use fscrypt_policy_v1 instead of fscrypt_policy.
Note that this doesn't change the actual ioctl numbers.
Acked-by: Jeff Layton <jlayton@kernel.org>
Link: https://lore.kernel.org/r/20200917041136.178600-11-ebiggers@kernel.org
Signed-off-by: Eric Biggers <ebiggers@google.com>
fscrypt_get_encryption_info() has never actually been safe to call in a
context that needs GFP_NOFS, since it calls crypto_alloc_skcipher().
crypto_alloc_skcipher() isn't GFP_NOFS-safe, even if called under
memalloc_nofs_save(). This is because it may load kernel modules, and
also because it internally takes crypto_alg_sem. Other tasks can do
GFP_KERNEL allocations while holding crypto_alg_sem for write.
The use of fscrypt_init_mutex isn't GFP_NOFS-safe either.
So, stop pretending that fscrypt_get_encryption_info() is nofs-safe.
I.e., when it allocates memory, just use GFP_KERNEL instead of GFP_NOFS.
Note, another reason to do this is that GFP_NOFS is deprecated in favor
of using memalloc_nofs_save() in the proper places.
Acked-by: Jeff Layton <jlayton@kernel.org>
Link: https://lore.kernel.org/r/20200917041136.178600-10-ebiggers@kernel.org
Signed-off-by: Eric Biggers <ebiggers@google.com>
Now that all filesystems have been converted to use
fscrypt_prepare_new_inode(), the encryption key for new symlink inodes
is now already set up whenever we try to encrypt the symlink target.
Enforce this rather than try to set up the key again when it may be too
late to do so safely.
Acked-by: Jeff Layton <jlayton@kernel.org>
Link: https://lore.kernel.org/r/20200917041136.178600-9-ebiggers@kernel.org
Signed-off-by: Eric Biggers <ebiggers@google.com>
Now that all filesystems have been converted to use
fscrypt_prepare_new_inode() and fscrypt_set_context(),
fscrypt_inherit_context() is no longer used. Remove it.
Acked-by: Jeff Layton <jlayton@kernel.org>
Link: https://lore.kernel.org/r/20200917041136.178600-8-ebiggers@kernel.org
Signed-off-by: Eric Biggers <ebiggers@google.com>
Now that a fscrypt_info may be set up for inodes that are currently
being created and haven't yet had an inode number assigned, avoid
logging confusing messages about "inode 0".
Acked-by: Jeff Layton <jlayton@kernel.org>
Link: https://lore.kernel.org/r/20200917041136.178600-7-ebiggers@kernel.org
Signed-off-by: Eric Biggers <ebiggers@google.com>
fscrypt_get_encryption_info() is intended to be GFP_NOFS-safe. But
actually it isn't, since it uses functions like crypto_alloc_skcipher()
which aren't GFP_NOFS-safe, even when called under memalloc_nofs_save().
Therefore it can deadlock when called from a context that needs
GFP_NOFS, e.g. during an ext4 transaction or between f2fs_lock_op() and
f2fs_unlock_op(). This happens when creating a new encrypted file.
We can't fix this by just not setting up the key for new inodes right
away, since new symlinks need their key to encrypt the symlink target.
So we need to set up the new inode's key before starting the
transaction. But just calling fscrypt_get_encryption_info() earlier
doesn't work, since it assumes the encryption context is already set,
and the encryption context can't be set until the transaction.
The recently proposed fscrypt support for the ceph filesystem
(https://lkml.kernel.org/linux-fscrypt/20200821182813.52570-1-jlayton@kernel.org/T/#u)
will have this same ordering problem too, since ceph will need to
encrypt new symlinks before setting their encryption context.
Finally, f2fs can deadlock when the filesystem is mounted with
'-o test_dummy_encryption' and a new file is created in an existing
unencrypted directory. Similarly, this is caused by holding too many
locks when calling fscrypt_get_encryption_info().
To solve all these problems, add new helper functions:
- fscrypt_prepare_new_inode() sets up a new inode's encryption key
(fscrypt_info), using the parent directory's encryption policy and a
new random nonce. It neither reads nor writes the encryption context.
- fscrypt_set_context() persists the encryption context of a new inode,
using the information from the fscrypt_info already in memory. This
replaces fscrypt_inherit_context().
Temporarily keep fscrypt_inherit_context() around until all filesystems
have been converted to use fscrypt_set_context().
Acked-by: Jeff Layton <jlayton@kernel.org>
Link: https://lore.kernel.org/r/20200917041136.178600-2-ebiggers@kernel.org
Signed-off-by: Eric Biggers <ebiggers@google.com>
When an encryption policy has the IV_INO_LBLK_32 flag set, the IV
generation method involves hashing the inode number. This is different
from fscrypt's other IV generation methods, where the inode number is
either not used at all or is included directly in the IVs.
Therefore, in principle IV_INO_LBLK_32 can work with any length inode
number. However, currently fscrypt gets the inode number from
inode::i_ino, which is 'unsigned long'. So currently the implementation
limit is actually 32 bits (like IV_INO_LBLK_64), since longer inode
numbers will have been truncated by the VFS on 32-bit platforms.
Fix fscrypt_supported_v2_policy() to enforce the correct limit.
This doesn't actually matter currently, since only ext4 and f2fs support
IV_INO_LBLK_32, and they both only support 32-bit inode numbers. But we
might as well fix it in case it matters in the future.
Ideally inode::i_ino would instead be made 64-bit, but for now it's not
needed. (Note, this limit does *not* prevent filesystems with 64-bit
inode numbers from adding fscrypt support, since IV_INO_LBLK_* support
is optional and is useful only on certain hardware.)
Fixes: e3b1078bed ("fscrypt: add support for IV_INO_LBLK_32 policies")
Reported-by: Jeff Layton <jlayton@kernel.org>
Link: https://lore.kernel.org/r/20200824203841.1707847-1-ebiggers@kernel.org
Signed-off-by: Eric Biggers <ebiggers@google.com>
As said by Linus:
A symmetric naming is only helpful if it implies symmetries in use.
Otherwise it's actively misleading.
In "kzalloc()", the z is meaningful and an important part of what the
caller wants.
In "kzfree()", the z is actively detrimental, because maybe in the
future we really _might_ want to use that "memfill(0xdeadbeef)" or
something. The "zero" part of the interface isn't even _relevant_.
The main reason that kzfree() exists is to clear sensitive information
that should not be leaked to other future users of the same memory
objects.
Rename kzfree() to kfree_sensitive() to follow the example of the recently
added kvfree_sensitive() and make the intention of the API more explicit.
In addition, memzero_explicit() is used to clear the memory to make sure
that it won't get optimized away by the compiler.
The renaming is done by using the command sequence:
git grep -w --name-only kzfree |\
xargs sed -i 's/kzfree/kfree_sensitive/'
followed by some editing of the kfree_sensitive() kerneldoc and adding
a kzfree backward compatibility macro in slab.h.
[akpm@linux-foundation.org: fs/crypto/inline_crypt.c needs linux/slab.h]
[akpm@linux-foundation.org: fix fs/crypto/inline_crypt.c some more]
Suggested-by: Joe Perches <joe@perches.com>
Signed-off-by: Waiman Long <longman@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: David Howells <dhowells@redhat.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Jarkko Sakkinen <jarkko.sakkinen@linux.intel.com>
Cc: James Morris <jmorris@namei.org>
Cc: "Serge E. Hallyn" <serge@hallyn.com>
Cc: Joe Perches <joe@perches.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Dan Carpenter <dan.carpenter@oracle.com>
Cc: "Jason A . Donenfeld" <Jason@zx2c4.com>
Link: http://lkml.kernel.org/r/20200616154311.12314-3-longman@redhat.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
In fscrypt_set_bio_crypt_ctx(), ->i_crypt_info isn't known to be
non-NULL until we check fscrypt_inode_uses_inline_crypto(). So, load
->i_crypt_info after the check rather than before. This makes no
difference currently, but it prevents people from introducing bugs where
the pointer is dereferenced when it may be NULL.
Suggested-by: Dave Chinner <david@fromorbit.com>
Cc: Satya Tangirala <satyat@google.com>
Link: https://lore.kernel.org/r/20200727174158.121456-1-ebiggers@kernel.org
Signed-off-by: Eric Biggers <ebiggers@google.com>
Normally smp_store_release() or cmpxchg_release() is paired with
smp_load_acquire(). Sometimes smp_load_acquire() can be replaced with
the more lightweight READ_ONCE(). However, for this to be safe, all the
published memory must only be accessed in a way that involves the
pointer itself. This may not be the case if allocating the object also
involves initializing a static or global variable, for example.
fscrypt_info includes various sub-objects which are internal to and are
allocated by other kernel subsystems such as keyrings and crypto. So by
using READ_ONCE() for ->i_crypt_info, we're relying on internal
implementation details of these other kernel subsystems.
Remove this fragile assumption by using smp_load_acquire() instead.
(Note: I haven't seen any real-world problems here. This change is just
fixing the code to be guaranteed correct and less fragile.)
Fixes: e37a784d8b ("fscrypt: use READ_ONCE() to access ->i_crypt_info")
Link: https://lore.kernel.org/r/20200721225920.114347-5-ebiggers@kernel.org
Signed-off-by: Eric Biggers <ebiggers@google.com>
Normally smp_store_release() or cmpxchg_release() is paired with
smp_load_acquire(). Sometimes smp_load_acquire() can be replaced with
the more lightweight READ_ONCE(). However, for this to be safe, all the
published memory must only be accessed in a way that involves the
pointer itself. This may not be the case if allocating the object also
involves initializing a static or global variable, for example.
super_block::s_master_keys is a keyring, which is internal to and is
allocated by the keyrings subsystem. By using READ_ONCE() for it, we're
relying on internal implementation details of the keyrings subsystem.
Remove this fragile assumption by using smp_load_acquire() instead.
(Note: I haven't seen any real-world problems here. This change is just
fixing the code to be guaranteed correct and less fragile.)
Fixes: 22d94f493b ("fscrypt: add FS_IOC_ADD_ENCRYPTION_KEY ioctl")
Link: https://lore.kernel.org/r/20200721225920.114347-4-ebiggers@kernel.org
Signed-off-by: Eric Biggers <ebiggers@google.com>
Normally smp_store_release() or cmpxchg_release() is paired with
smp_load_acquire(). Sometimes smp_load_acquire() can be replaced with
the more lightweight READ_ONCE(). However, for this to be safe, all the
published memory must only be accessed in a way that involves the
pointer itself. This may not be the case if allocating the object also
involves initializing a static or global variable, for example.
fscrypt_prepared_key includes a pointer to a crypto_skcipher object,
which is internal to and is allocated by the crypto subsystem. By using
READ_ONCE() for it, we're relying on internal implementation details of
the crypto subsystem.
Remove this fragile assumption by using smp_load_acquire() instead.
(Note: I haven't seen any real-world problems here. This change is just
fixing the code to be guaranteed correct and less fragile.)
Fixes: 5fee36095c ("fscrypt: add inline encryption support")
Cc: Satya Tangirala <satyat@google.com>
Link: https://lore.kernel.org/r/20200721225920.114347-3-ebiggers@kernel.org
Signed-off-by: Eric Biggers <ebiggers@google.com>
fscrypt_do_sha256() is only used for hashing encrypted filenames to
create no-key tokens, which isn't performance-critical. Therefore a C
implementation of SHA-256 is sufficient.
Also, the logic to create no-key tokens is always potentially needed.
This differs from fscrypt's other dependencies on crypto API algorithms,
which are conditionally needed depending on what encryption policies
userspace is using. Therefore, for fscrypt there isn't much benefit to
allowing SHA-256 to be a loadable module.
So, make fscrypt_do_sha256() use the SHA-256 library instead of the
crypto_shash API. This is much simpler, since it avoids having to
implement one-time-init (which is hard to do correctly, and in fact was
implemented incorrectly) and handle failures to allocate the
crypto_shash object.
Fixes: edc440e3d2 ("fscrypt: improve format of no-key names")
Cc: Daniel Rosenberg <drosen@google.com>
Link: https://lore.kernel.org/r/20200721225920.114347-2-ebiggers@kernel.org
Signed-off-by: Eric Biggers <ebiggers@google.com>
IV_INO_LBLK_* exist only because of hardware limitations, and currently
the only known use case for them involves AES-256-XTS. Therefore, for
now only allow them in combination with AES-256-XTS. This way we don't
have to worry about them being combined with other encryption modes.
(To be clear, combining IV_INO_LBLK_* with other encryption modes
*should* work just fine. It's just not being tested, so we can't be
100% sure it works. So with no known use case, it's best to disallow it
for now, just like we don't allow other weird combinations like
AES-256-XTS contents encryption with Adiantum filenames encryption.)
This can be relaxed later if a use case for other combinations arises.
Fixes: b103fb7653 ("fscrypt: add support for IV_INO_LBLK_64 policies")
Fixes: e3b1078bed ("fscrypt: add support for IV_INO_LBLK_32 policies")
Link: https://lore.kernel.org/r/20200721181012.39308-1-ebiggers@kernel.org
Signed-off-by: Eric Biggers <ebiggers@google.com>
The name "FS_KEY_DERIVATION_NONCE_SIZE" is a bit outdated since due to
the addition of FSCRYPT_POLICY_FLAG_DIRECT_KEY, the file nonce may now
be used as a tweak instead of for key derivation. Also, we're now
prefixing the fscrypt constants with "FSCRYPT_" instead of "FS_".
Therefore, rename this constant to FSCRYPT_FILE_NONCE_SIZE.
Link: https://lore.kernel.org/r/20200708215722.147154-1-ebiggers@kernel.org
Signed-off-by: Eric Biggers <ebiggers@google.com>
Each HKDF context byte is associated with a specific format of the
remaining part of the application-specific info string. Add comments so
that it's easier to keep track of what these all are.
Link: https://lore.kernel.org/r/20200708215529.146890-1-ebiggers@kernel.org
Signed-off-by: Eric Biggers <ebiggers@google.com>
Add support for inline encryption to fs/crypto/. With "inline
encryption", the block layer handles the decryption/encryption as part
of the bio, instead of the filesystem doing the crypto itself via
Linux's crypto API. This model is needed in order to take advantage of
the inline encryption hardware present on most modern mobile SoCs.
To use inline encryption, the filesystem needs to be mounted with
'-o inlinecrypt'. Blk-crypto will then be used instead of the traditional
filesystem-layer crypto whenever possible to encrypt the contents
of any encrypted files in that filesystem. Fscrypt still provides the key
and IV to use, and the actual ciphertext on-disk is still the same;
therefore it's testable using the existing fscrypt ciphertext verification
tests.
Note that since blk-crypto has a fallback to Linux's crypto API, and
also supports all the encryption modes currently supported by fscrypt,
this feature is usable and testable even without actual inline
encryption hardware.
Per-filesystem changes will be needed to set encryption contexts when
submitting bios and to implement the 'inlinecrypt' mount option. This
patch just adds the common code.
Signed-off-by: Satya Tangirala <satyat@google.com>
Reviewed-by: Jaegeuk Kim <jaegeuk@kernel.org>
Reviewed-by: Eric Biggers <ebiggers@google.com>
Reviewed-by: Theodore Ts'o <tytso@mit.edu>
Link: https://lore.kernel.org/r/20200702015607.1215430-3-satyat@google.com
Co-developed-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Eric Biggers <ebiggers@google.com>
- Add the IV_INO_LBLK_32 encryption policy flag which modifies the
encryption to be optimized for eMMC inline encryption hardware.
- Make the test_dummy_encryption mount option for ext4 and f2fs support
v2 encryption policies.
- Fix kerneldoc warnings and some coding style inconsistencies.
There will be merge conflicts with the ext4 and f2fs trees due to the
test_dummy_encryption change, but the resolutions are straightforward.
-----BEGIN PGP SIGNATURE-----
iIoEABYIADIWIQSacvsUNc7UX4ntmEPzXCl4vpKOKwUCXtScMBQcZWJpZ2dlcnNA
Z29vZ2xlLmNvbQAKCRDzXCl4vpKOKxC6AP0eOEkMrc9e10YftdN6xsyRjvqiPyFg
oMjuU+SvQ+/sVgEAo0mBFITnl75ZGb8PyqXCNMDAy6uHaxcEjVGufx5q2QE=
=dbxy
-----END PGP SIGNATURE-----
Merge tag 'fscrypt-for-linus' of git://git.kernel.org/pub/scm/fs/fscrypt/fscrypt
Pull fscrypt updates from Eric Biggers:
- Add the IV_INO_LBLK_32 encryption policy flag which modifies the
encryption to be optimized for eMMC inline encryption hardware.
- Make the test_dummy_encryption mount option for ext4 and f2fs support
v2 encryption policies.
- Fix kerneldoc warnings and some coding style inconsistencies.
* tag 'fscrypt-for-linus' of git://git.kernel.org/pub/scm/fs/fscrypt/fscrypt:
fscrypt: add support for IV_INO_LBLK_32 policies
fscrypt: make test_dummy_encryption use v2 by default
fscrypt: support test_dummy_encryption=v2
fscrypt: add fscrypt_add_test_dummy_key()
linux/parser.h: add include guards
fscrypt: remove unnecessary extern keywords
fscrypt: name all function parameters
fscrypt: fix all kerneldoc warnings
The eMMC inline crypto standard will only specify 32 DUN bits (a.k.a. IV
bits), unlike UFS's 64. IV_INO_LBLK_64 is therefore not applicable, but
an encryption format which uses one key per policy and permits the
moving of encrypted file contents (as f2fs's garbage collector requires)
is still desirable.
To support such hardware, add a new encryption format IV_INO_LBLK_32
that makes the best use of the 32 bits: the IV is set to
'SipHash-2-4(inode_number) + file_logical_block_number mod 2^32', where
the SipHash key is derived from the fscrypt master key. We hash only
the inode number and not also the block number, because we need to
maintain contiguity of DUNs to merge bios.
Unlike with IV_INO_LBLK_64, with this format IV reuse is possible; this
is unavoidable given the size of the DUN. This means this format should
only be used where the requirements of the first paragraph apply.
However, the hash spreads out the IVs in the whole usable range, and the
use of a keyed hash makes it difficult for an attacker to determine
which files use which IVs.
Besides the above differences, this flag works like IV_INO_LBLK_64 in
that on ext4 it is only allowed if the stable_inodes feature has been
enabled to prevent inode numbers and the filesystem UUID from changing.
Link: https://lore.kernel.org/r/20200515204141.251098-1-ebiggers@kernel.org
Reviewed-by: Theodore Ts'o <tytso@mit.edu>
Reviewed-by: Paul Crowley <paulcrowley@google.com>
Signed-off-by: Eric Biggers <ebiggers@google.com>
Since v1 encryption policies are deprecated, make test_dummy_encryption
test v2 policies by default.
Note that this causes ext4/023 and ext4/028 to start failing due to
known bugs in those tests (see previous commit).
Link: https://lore.kernel.org/r/20200512233251.118314-5-ebiggers@kernel.org
Reviewed-by: Jaegeuk Kim <jaegeuk@kernel.org>
Reviewed-by: Theodore Ts'o <tytso@mit.edu>
Signed-off-by: Eric Biggers <ebiggers@google.com>
v1 encryption policies are deprecated in favor of v2, and some new
features (e.g. encryption+casefolding) are only being added for v2.
Therefore, the "test_dummy_encryption" mount option (which is used for
encryption I/O testing with xfstests) needs to support v2 policies.
To do this, extend its syntax to be "test_dummy_encryption=v1" or
"test_dummy_encryption=v2". The existing "test_dummy_encryption" (no
argument) also continues to be accepted, to specify the default setting
-- currently v1, but the next patch changes it to v2.
To cleanly support both v1 and v2 while also making it easy to support
specifying other encryption settings in the future (say, accepting
"$contents_mode:$filenames_mode:v2"), make ext4 and f2fs maintain a
pointer to the dummy fscrypt_context rather than using mount flags.
To avoid concurrency issues, don't allow test_dummy_encryption to be set
or changed during a remount. (The former restriction is new, but
xfstests doesn't run into it, so no one should notice.)
Tested with 'gce-xfstests -c {ext4,f2fs}/encrypt -g auto'. On ext4,
there are two regressions, both of which are test bugs: ext4/023 and
ext4/028 fail because they set an xattr and expect it to be stored
inline, but the increase in size of the fscrypt_context from
24 to 40 bytes causes this xattr to be spilled into an external block.
Link: https://lore.kernel.org/r/20200512233251.118314-4-ebiggers@kernel.org
Acked-by: Jaegeuk Kim <jaegeuk@kernel.org>
Reviewed-by: Theodore Ts'o <tytso@mit.edu>
Signed-off-by: Eric Biggers <ebiggers@google.com>
Currently, the test_dummy_encryption mount option (which is used for
encryption I/O testing with xfstests) uses v1 encryption policies, and
it relies on userspace inserting a test key into the session keyring.
We need test_dummy_encryption to support v2 encryption policies too.
Requiring userspace to add the test key doesn't work well with v2
policies, since v2 policies only support the filesystem keyring (not the
session keyring), and keys in the filesystem keyring are lost when the
filesystem is unmounted. Hooking all test code that unmounts and
re-mounts the filesystem would be difficult.
Instead, let's make the filesystem automatically add the test key to its
keyring when test_dummy_encryption is enabled.
That puts the responsibility for choosing the test key on the kernel.
We could just hard-code a key. But out of paranoia, let's first try
using a per-boot random key, to prevent this code from being misused.
A per-boot key will work as long as no one expects dummy-encrypted files
to remain accessible after a reboot. (gce-xfstests doesn't.)
Therefore, this patch adds a function fscrypt_add_test_dummy_key() which
implements the above. The next patch will use it.
Link: https://lore.kernel.org/r/20200512233251.118314-3-ebiggers@kernel.org
Reviewed-by: Theodore Ts'o <tytso@mit.edu>
Reviewed-by: Jaegeuk Kim <jaegeuk@kernel.org>
Signed-off-by: Eric Biggers <ebiggers@google.com>
Remove the unnecessary 'extern' keywords from function declarations.
This makes it so that we don't have a mix of both styles, so it won't be
ambiguous what to use in new fscrypt patches. This also makes the code
shorter and matches the 'checkpatch --strict' expectation.
Link: https://lore.kernel.org/r/20200511191358.53096-4-ebiggers@kernel.org
Signed-off-by: Eric Biggers <ebiggers@google.com>
Fix all kerneldoc warnings in fs/crypto/ and include/linux/fscrypt.h.
Most of these were due to missing documentation for function parameters.
Detected with:
scripts/kernel-doc -v -none fs/crypto/*.{c,h} include/linux/fscrypt.h
This cleanup makes it possible to check new patches for kerneldoc
warnings without having to filter out all the existing ones.
For consistency, also adjust some function "brief descriptions" to
include the parentheses and to wrap at 80 characters. (The latter
matches the checkpatch expectation.)
Link: https://lore.kernel.org/r/20200511191358.53096-2-ebiggers@kernel.org
Signed-off-by: Eric Biggers <ebiggers@google.com>
Instead of manually allocating a 'struct shash_desc' on the stack and
calling crypto_shash_digest(), switch to using the new helper function
crypto_shash_tfm_digest() which does this for us.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Add an ioctl FS_IOC_GET_ENCRYPTION_NONCE which retrieves a file's
encryption nonce. This makes it easier to write automated tests which
verify that fscrypt is doing the encryption correctly.
-----BEGIN PGP SIGNATURE-----
iIoEABYIADIWIQSacvsUNc7UX4ntmEPzXCl4vpKOKwUCXoIg/RQcZWJpZ2dlcnNA
Z29vZ2xlLmNvbQAKCRDzXCl4vpKOK2mZAQDjEil0Kf8AqZhjPuJSRrbifkzEPfu+
4EmERSyBZ5OCLgEA155kKnL5jiz7b5DRS9wGEw+drGpW8I7WfhTGv/XjoQs=
=2jU9
-----END PGP SIGNATURE-----
Merge tag 'fscrypt-for-linus' of git://git.kernel.org/pub/scm/fs/fscrypt/fscrypt
Pull fscrypt updates from Eric Biggers:
"Add an ioctl FS_IOC_GET_ENCRYPTION_NONCE which retrieves a file's
encryption nonce.
This makes it easier to write automated tests which verify that
fscrypt is doing the encryption correctly"
* tag 'fscrypt-for-linus' of git://git.kernel.org/pub/scm/fs/fscrypt/fscrypt:
ubifs: wire up FS_IOC_GET_ENCRYPTION_NONCE
f2fs: wire up FS_IOC_GET_ENCRYPTION_NONCE
ext4: wire up FS_IOC_GET_ENCRYPTION_NONCE
fscrypt: add FS_IOC_GET_ENCRYPTION_NONCE ioctl
Add an ioctl FS_IOC_GET_ENCRYPTION_NONCE which retrieves the nonce from
an encrypted file or directory. The nonce is the 16-byte random value
stored in the inode's encryption xattr. It is normally used together
with the master key to derive the inode's actual encryption key.
The nonces are needed by automated tests that verify the correctness of
the ciphertext on-disk. Except for the IV_INO_LBLK_64 case, there's no
way to replicate a file's ciphertext without knowing that file's nonce.
The nonces aren't secret, and the existing ciphertext verification tests
in xfstests retrieve them from disk using debugfs or dump.f2fs. But in
environments that lack these debugging tools, getting the nonces by
manually parsing the filesystem structure would be very hard.
To make this important type of testing much easier, let's just add an
ioctl that retrieves the nonce.
Link: https://lore.kernel.org/r/20200314205052.93294-2-ebiggers@kernel.org
Reviewed-by: Theodore Ts'o <tytso@mit.edu>
Signed-off-by: Eric Biggers <ebiggers@google.com>
After FS_IOC_REMOVE_ENCRYPTION_KEY removes a key, it syncs the
filesystem and tries to get and put all inodes that were unlocked by the
key so that unused inodes get evicted via fscrypt_drop_inode().
Normally, the inodes are all clean due to the sync.
However, after the filesystem is sync'ed, userspace can modify and close
one of the files. (Userspace is *supposed* to close the files before
removing the key. But it doesn't always happen, and the kernel can't
assume it.) This causes the inode to be dirtied and have i_count == 0.
Then, fscrypt_drop_inode() failed to consider this case and indicated
that the inode can be dropped, causing the write to be lost.
On f2fs, other problems such as a filesystem freeze could occur due to
the inode being freed while still on f2fs's dirty inode list.
Fix this bug by making fscrypt_drop_inode() only drop clean inodes.
I've written an xfstest which detects this bug on ext4, f2fs, and ubifs.
Fixes: b1c0ec3599 ("fscrypt: add FS_IOC_REMOVE_ENCRYPTION_KEY ioctl")
Cc: <stable@vger.kernel.org> # v5.4+
Link: https://lore.kernel.org/r/20200305084138.653498-1-ebiggers@kernel.org
Signed-off-by: Eric Biggers <ebiggers@google.com>
When an encrypted directory is listed without the key, the filesystem
must show "no-key names" that uniquely identify directory entries, are
at most 255 (NAME_MAX) bytes long, and don't contain '/' or '\0'.
Currently, for short names the no-key name is the base64 encoding of the
ciphertext filename, while for long names it's the base64 encoding of
the ciphertext filename's dirhash and second-to-last 16-byte block.
This format has the following problems:
- Since it doesn't always include the dirhash, it's incompatible with
directories that will use a secret-keyed dirhash over the plaintext
filenames. In this case, the dirhash won't be computable from the
ciphertext name without the key, so it instead must be retrieved from
the directory entry and always included in the no-key name.
Casefolded encrypted directories will use this type of dirhash.
- It's ambiguous: it's possible to craft two filenames that map to the
same no-key name, since the method used to abbreviate long filenames
doesn't use a proper cryptographic hash function.
Solve both these problems by switching to a new no-key name format that
is the base64 encoding of a variable-length structure that contains the
dirhash, up to 149 bytes of the ciphertext filename, and (if any bytes
remain) the SHA-256 of the remaining bytes of the ciphertext filename.
This ensures that each no-key name contains everything needed to find
the directory entry again, contains only legal characters, doesn't
exceed NAME_MAX, is unambiguous unless there's a SHA-256 collision, and
that we only take the performance hit of SHA-256 on very long filenames.
Note: this change does *not* address the existing issue where users can
modify the 'dirhash' part of a no-key name and the filesystem may still
accept the name.
Signed-off-by: Daniel Rosenberg <drosen@google.com>
[EB: improved comments and commit message, fixed checking return value
of base64_decode(), check for SHA-256 error, continue to set disk_name
for short names to keep matching simpler, and many other cleanups]
Link: https://lore.kernel.org/r/20200120223201.241390-7-ebiggers@kernel.org
Signed-off-by: Eric Biggers <ebiggers@google.com>
Now that there's sometimes a second type of per-file key (the dirhash
key), clarify some function names, macros, and documentation that
specifically deal with per-file *encryption* keys.
Link: https://lore.kernel.org/r/20200120223201.241390-4-ebiggers@kernel.org
Reviewed-by: Daniel Rosenberg <drosen@google.com>
Signed-off-by: Eric Biggers <ebiggers@google.com>
When we allow indexed directories to use both encryption and
casefolding, for the dirhash we can't just hash the ciphertext filenames
that are stored on-disk (as is done currently) because the dirhash must
be case insensitive, but the stored names are case-preserving. Nor can
we hash the plaintext names with an unkeyed hash (or a hash keyed with a
value stored on-disk like ext4's s_hash_seed), since that would leak
information about the names that encryption is meant to protect.
Instead, if we can accept a dirhash that's only computable when the
fscrypt key is available, we can hash the plaintext names with a keyed
hash using a secret key derived from the directory's fscrypt master key.
We'll use SipHash-2-4 for this purpose.
Prepare for this by deriving a SipHash key for each casefolded encrypted
directory. Make sure to handle deriving the key not only when setting
up the directory's fscrypt_info, but also in the case where the casefold
flag is enabled after the fscrypt_info was already set up. (We could
just always derive the key regardless of casefolding, but that would
introduce unnecessary overhead for people not using casefolding.)
Signed-off-by: Daniel Rosenberg <drosen@google.com>
[EB: improved commit message, updated fscrypt.rst, squashed with change
that avoids unnecessarily deriving the key, and many other cleanups]
Link: https://lore.kernel.org/r/20200120223201.241390-3-ebiggers@kernel.org
Signed-off-by: Eric Biggers <ebiggers@google.com>
Casefolded encrypted directories will use a new dirhash method that
requires a secret key. If the directory uses a v2 encryption policy,
it's easy to derive this key from the master key using HKDF. However,
v1 encryption policies don't provide a way to derive additional keys.
Therefore, don't allow casefolding on directories that use a v1 policy.
Specifically, make it so that trying to enable casefolding on a
directory that has a v1 policy fails, trying to set a v1 policy on a
casefolded directory fails, and trying to open a casefolded directory
that has a v1 policy (if one somehow exists on-disk) fails.
Signed-off-by: Daniel Rosenberg <drosen@google.com>
[EB: improved commit message, updated fscrypt.rst, and other cleanups]
Link: https://lore.kernel.org/r/20200120223201.241390-2-ebiggers@kernel.org
Signed-off-by: Eric Biggers <ebiggers@google.com>
fname_encrypt() is a global function, due to being used in both fname.c
and hooks.c. So it should be prefixed with "fscrypt_", like all the
other global functions in fs/crypto/.
Link: https://lore.kernel.org/r/20200120071736.45915-1-ebiggers@kernel.org
Signed-off-by: Eric Biggers <ebiggers@google.com>
When an encryption key can't be fully removed due to file(s) protected
by it still being in-use, we shouldn't really print the path to one of
these files to the kernel log, since parts of this path are likely to be
encrypted on-disk, and (depending on how the system is set up) the
confidentiality of this path might be lost by printing it to the log.
This is a trade-off: a single file path often doesn't matter at all,
especially if it's a directory; the kernel log might still be protected
in some way; and I had originally hoped that any "inode(s) still busy"
bugs (which are security weaknesses in their own right) would be quickly
fixed and that to do so it would be super helpful to always know the
file path and not have to run 'find dir -inum $inum' after the fact.
But in practice, these bugs can be hard to fix (e.g. due to asynchronous
process killing that is difficult to eliminate, for performance
reasons), and also not tied to specific files, so knowing a file path
doesn't necessarily help.
So to be safe, for now let's just show the inode number, not the path.
If someone really wants to know a path they can use 'find -inum'.
Fixes: b1c0ec3599 ("fscrypt: add FS_IOC_REMOVE_ENCRYPTION_KEY ioctl")
Cc: <stable@vger.kernel.org> # v5.4+
Link: https://lore.kernel.org/r/20200120060732.390362-1-ebiggers@kernel.org
Signed-off-by: Eric Biggers <ebiggers@google.com>
Document that fscrypt_encrypt_pagecache_blocks() allocates the bounce
page from a mempool, and document what this means for the @gfp_flags
argument.
Link: https://lore.kernel.org/r/20191231181026.47400-1-ebiggers@kernel.org
Reviewed-by: Theodore Ts'o <tytso@mit.edu>
Signed-off-by: Eric Biggers <ebiggers@google.com>
Currently fscrypt_zeroout_range() issues and waits on a bio for each
block it writes, which makes it very slow.
Optimize it to write up to 16 pages at a time instead.
Also add a function comment, and improve reliability by allowing the
allocations of the bio and the first ciphertext page to wait on the
corresponding mempools.
Link: https://lore.kernel.org/r/20191226160813.53182-1-ebiggers@kernel.org
Reviewed-by: Theodore Ts'o <tytso@mit.edu>
Signed-off-by: Eric Biggers <ebiggers@google.com>
The commit 643fa9612b ("fscrypt: remove filesystem specific
build config option") removed modular support for fs/crypto. This
causes the Crypto API to be built-in whenever fscrypt is enabled.
This makes it very difficult for me to test modular builds of
the Crypto API without disabling fscrypt which is a pain.
As fscrypt is still evolving and it's developing new ties with the
fs layer, it's hard to build it as a module for now.
However, the actual algorithms are not required until a filesystem
is mounted. Therefore we can allow them to be built as modules.
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Link: https://lore.kernel.org/r/20191227024700.7vrzuux32uyfdgum@gondor.apana.org.au
Signed-off-by: Eric Biggers <ebiggers@google.com>
fscrypt_valid_enc_modes() is only used by policy.c, so move it to there.
Also adjust the order of the checks to be more natural, matching the
numerical order of the constants and also keeping AES-256 (the
recommended default) first in the list.
No change in behavior.
Link: https://lore.kernel.org/r/20191209211829.239800-4-ebiggers@kernel.org
Signed-off-by: Eric Biggers <ebiggers@google.com>
FSCRYPT_POLICY_FLAG_DIRECT_KEY is currently only allowed with Adiantum
encryption. But FS_IOC_SET_ENCRYPTION_POLICY allowed it in combination
with other encryption modes, and an error wasn't reported until later
when the encrypted directory was actually used.
Fix it to report the error earlier by validating the correct use of the
DIRECT_KEY flag in fscrypt_supported_policy(), similar to how we
validate the IV_INO_LBLK_64 flag.
Link: https://lore.kernel.org/r/20191209211829.239800-3-ebiggers@kernel.org
Signed-off-by: Eric Biggers <ebiggers@google.com>
Make fscrypt_supported_policy() call new functions
fscrypt_supported_v1_policy() and fscrypt_supported_v2_policy(), to
reduce the indentation level and make the code easier to read.
Also adjust the function comment to mention that whether the encryption
policy is supported can also depend on the inode.
No change in behavior.
Link: https://lore.kernel.org/r/20191209211829.239800-2-ebiggers@kernel.org
Signed-off-by: Eric Biggers <ebiggers@google.com>
fscrypt_d_revalidate() and fscrypt_d_ops really belong in fname.c, since
they're specific to filenames encryption. crypto.c is for contents
encryption and general fs/crypto/ initialization and utilities.
Link: https://lore.kernel.org/r/20191209204359.228544-1-ebiggers@kernel.org
Signed-off-by: Eric Biggers <ebiggers@google.com>
Constify the struct fscrypt_hkdf parameter to fscrypt_hkdf_expand().
This makes it clearer that struct fscrypt_hkdf contains the key only,
not any per-request state.
Link: https://lore.kernel.org/r/20191209204054.227736-1-ebiggers@kernel.org
Signed-off-by: Eric Biggers <ebiggers@google.com>
As a sanity check, verify that the allocated crypto_skcipher actually
has the ivsize that fscrypt is assuming it has. This will always be the
case unless there's a bug. But if there ever is such a bug (e.g. like
there was in earlier versions of the ESSIV conversion patch [1]) it's
preferable for it to be immediately obvious, and not rely on the
ciphertext verification tests failing due to uninitialized IV bytes.
[1] https://lkml.kernel.org/linux-crypto/20190702215517.GA69157@gmail.com/
Link: https://lore.kernel.org/r/20191209203918.225691-1-ebiggers@kernel.org
Signed-off-by: Eric Biggers <ebiggers@google.com>
Crypto API users shouldn't really be accessing struct skcipher_alg
directly. <crypto/skcipher.h> already has a function
crypto_skcipher_driver_name(), so use that instead.
No change in behavior.
Link: https://lore.kernel.org/r/20191209203810.225302-1-ebiggers@kernel.org
Signed-off-by: Eric Biggers <ebiggers@google.com>
Extend the FS_IOC_ADD_ENCRYPTION_KEY ioctl to allow the raw key to be
specified by a Linux keyring key, rather than specified directly.
This is useful because fscrypt keys belong to a particular filesystem
instance, so they are destroyed when that filesystem is unmounted.
Usually this is desired. But in some cases, userspace may need to
unmount and re-mount the filesystem while keeping the keys, e.g. during
a system update. This requires keeping the keys somewhere else too.
The keys could be kept in memory in a userspace daemon. But depending
on the security architecture and assumptions, it can be preferable to
keep them only in kernel memory, where they are unreadable by userspace.
We also can't solve this by going back to the original fscrypt API
(where for each file, the master key was looked up in the process's
keyring hierarchy) because that caused lots of problems of its own.
Therefore, add the ability for FS_IOC_ADD_ENCRYPTION_KEY to accept a
Linux keyring key. This solves the problem by allowing userspace to (if
needed) save the keys securely in a Linux keyring for re-provisioning,
while still using the new fscrypt key management ioctls.
This is analogous to how dm-crypt accepts a Linux keyring key, but the
key is then stored internally in the dm-crypt data structures rather
than being looked up again each time the dm-crypt device is accessed.
Use a custom key type "fscrypt-provisioning" rather than one of the
existing key types such as "logon". This is strongly desired because it
enforces that these keys are only usable for a particular purpose: for
fscrypt as input to a particular KDF. Otherwise, the keys could also be
passed to any kernel API that accepts a "logon" key with any service
prefix, e.g. dm-crypt, UBIFS, or (recently proposed) AF_ALG. This would
risk leaking information about the raw key despite it ostensibly being
unreadable. Of course, this mistake has already been made for multiple
kernel APIs; but since this is a new API, let's do it right.
This patch has been tested using an xfstest which I wrote to test it.
Link: https://lore.kernel.org/r/20191119222447.226853-1-ebiggers@kernel.org
Signed-off-by: Eric Biggers <ebiggers@google.com>
Replace all the occurrences of FIELD_SIZEOF() with sizeof_field() except
at places where these are defined. Later patches will remove the unused
definition of FIELD_SIZEOF().
This patch is generated using following script:
EXCLUDE_FILES="include/linux/stddef.h|include/linux/kernel.h"
git grep -l -e "\bFIELD_SIZEOF\b" | while read file;
do
if [[ "$file" =~ $EXCLUDE_FILES ]]; then
continue
fi
sed -i -e 's/\bFIELD_SIZEOF\b/sizeof_field/g' $file;
done
Signed-off-by: Pankaj Bharadiya <pankaj.laxminarayan.bharadiya@intel.com>
Link: https://lore.kernel.org/r/20190924105839.110713-3-pankaj.laxminarayan.bharadiya@intel.com
Co-developed-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Kees Cook <keescook@chromium.org>
Acked-by: David Miller <davem@davemloft.net> # for net
Inline encryption hardware compliant with the UFS v2.1 standard or with
the upcoming version of the eMMC standard has the following properties:
(1) Per I/O request, the encryption key is specified by a previously
loaded keyslot. There might be only a small number of keyslots.
(2) Per I/O request, the starting IV is specified by a 64-bit "data unit
number" (DUN). IV bits 64-127 are assumed to be 0. The hardware
automatically increments the DUN for each "data unit" of
configurable size in the request, e.g. for each filesystem block.
Property (1) makes it inefficient to use the traditional fscrypt
per-file keys. Property (2) precludes the use of the existing
DIRECT_KEY fscrypt policy flag, which needs at least 192 IV bits.
Therefore, add a new fscrypt policy flag IV_INO_LBLK_64 which causes the
encryption to modified as follows:
- The encryption keys are derived from the master key, encryption mode
number, and filesystem UUID.
- The IVs are chosen as (inode_number << 32) | file_logical_block_num.
For filenames encryption, file_logical_block_num is 0.
Since the file nonces aren't used in the key derivation, many files may
share the same encryption key. This is much more efficient on the
target hardware. Including the inode number in the IVs and mixing the
filesystem UUID into the keys ensures that data in different files is
nevertheless still encrypted differently.
Additionally, limiting the inode and block numbers to 32 bits and
placing the block number in the low bits maintains compatibility with
the 64-bit DUN convention (property (2) above).
Since this scheme assumes that inode numbers are stable (which may
preclude filesystem shrinking) and that inode and file logical block
numbers are at most 32-bit, IV_INO_LBLK_64 will only be allowed on
filesystems that meet these constraints. These are acceptable
limitations for the cases where this format would actually be used.
Note that IV_INO_LBLK_64 is an on-disk format, not an implementation.
This patch just adds support for it using the existing filesystem layer
encryption. A later patch will add support for inline encryption.
Reviewed-by: Paul Crowley <paulcrowley@google.com>
Co-developed-by: Satya Tangirala <satyat@google.com>
Signed-off-by: Satya Tangirala <satyat@google.com>
Signed-off-by: Eric Biggers <ebiggers@google.com>
The access to logged_impl_name is technically a data race, which tools
like KCSAN could complain about in the future. See:
https://github.com/google/ktsan/wiki/READ_ONCE-and-WRITE_ONCE
Fix by using xchg(), which also ensures that only one thread does the
logging.
This also required switching from bool to int, to avoid a build error on
the RISC-V architecture which doesn't implement xchg on bytes.
Signed-off-by: Eric Biggers <ebiggers@google.com>
memset the struct fscrypt_info to zero before freeing. This isn't
really needed currently, since there's no secret key directly in the
fscrypt_info. But there's a decent chance that someone will add such a
field in the future, e.g. in order to use an API that takes a raw key
such as siphash(). So it's good to do this as a hardening measure.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Now that ext4 and f2fs implement their own post-read workflow that
supports both fscrypt and fsverity, the fscrypt-only workflow based
around struct fscrypt_ctx is no longer used. So remove the unused code.
This is based on a patch from Chandan Rajendra's "Consolidate FS read
I/O callbacks code" patchset, but rebased onto the latest kernel, folded
__fscrypt_decrypt_bio() into fscrypt_decrypt_bio(), cleaned up
fscrypt_initialize(), and updated the commit message.
Originally-from: Chandan Rajendra <chandan@linux.ibm.com>
Signed-off-by: Eric Biggers <ebiggers@google.com>
Instead of open-coding the calculations for ESSIV handling, use an ESSIV
skcipher which does all of this under the hood. ESSIV was added to the
crypto API in v5.4.
This is based on a patch from Ard Biesheuvel, but reworked to apply
after all the fscrypt changes that went into v5.4.
Tested with 'kvm-xfstests -c ext4,f2fs -g encrypt', including the
ciphertext verification tests for v1 and v2 encryption policies.
Originally-from: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Acked-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Eric Biggers <ebiggers@google.com>
By looking up the master keys in a filesystem-level keyring rather than
in the calling processes' key hierarchy, it becomes possible for a user
to set an encryption policy which refers to some key they don't actually
know, then encrypt their files using that key. Cryptographically this
isn't much of a problem, but the semantics of this would be a bit weird.
Thus, enforce that a v2 encryption policy can only be set if the user
has previously added the key, or has capable(CAP_FOWNER).
We tolerate that this problem will continue to exist for v1 encryption
policies, however; there is no way around that.
Reviewed-by: Theodore Ts'o <tytso@mit.edu>
Signed-off-by: Eric Biggers <ebiggers@google.com>
Add a root-only variant of the FS_IOC_REMOVE_ENCRYPTION_KEY ioctl which
removes all users' claims of the key, not just the current user's claim.
I.e., it always removes the key itself, no matter how many users have
added it.
This is useful for forcing a directory to be locked, without having to
figure out which user ID(s) the key was added under. This is planned to
be used by a command like 'sudo fscrypt lock DIR --all-users' in the
fscrypt userspace tool (http://github.com/google/fscrypt).
Reviewed-by: Theodore Ts'o <tytso@mit.edu>
Signed-off-by: Eric Biggers <ebiggers@google.com>