ARMv6 and greater introduced a new instruction ("bx") which can be used
to return from function calls. Recent CPUs perform better when the
"bx lr" instruction is used rather than the "mov pc, lr" instruction,
and this sequence is strongly recommended to be used by the ARM
architecture manual (section A.4.1.1).
We provide a new macro "ret" with all its variants for the condition
code which will resolve to the appropriate instruction.
Rather than doing this piecemeal, and miss some instances, change all
the "mov pc" instances to use the new macro, with the exception of
the "movs" instruction and the kprobes code. This allows us to detect
the "mov pc, lr" case and fix it up - and also gives us the possibility
of deploying this for other registers depending on the CPU selection.
Reported-by: Will Deacon <will.deacon@arm.com>
Tested-by: Stephen Warren <swarren@nvidia.com> # Tegra Jetson TK1
Tested-by: Robert Jarzmik <robert.jarzmik@free.fr> # mioa701_bootresume.S
Tested-by: Andrew Lunn <andrew@lunn.ch> # Kirkwood
Tested-by: Shawn Guo <shawn.guo@freescale.com>
Tested-by: Tony Lindgren <tony@atomide.com> # OMAPs
Tested-by: Gregory CLEMENT <gregory.clement@free-electrons.com> # Armada XP, 375, 385
Acked-by: Sekhar Nori <nsekhar@ti.com> # DaVinci
Acked-by: Christoffer Dall <christoffer.dall@linaro.org> # kvm/hyp
Acked-by: Haojian Zhuang <haojian.zhuang@gmail.com> # PXA3xx
Acked-by: Stefano Stabellini <stefano.stabellini@eu.citrix.com> # Xen
Tested-by: Uwe Kleine-König <u.kleine-koenig@pengutronix.de> # ARMv7M
Tested-by: Simon Horman <horms+renesas@verge.net.au> # Shmobile
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
ARM v7 architecture introduced the concept of cache levels and related
control registers. New processors like A7 and A15 embed an L2 unified cache
controller that becomes part of the cache level hierarchy. Some operations in
the kernel like cpu_suspend and __cpu_disable do not require a flush of the
entire cache hierarchy to DRAM but just the cache levels belonging to the
Level of Unification Inner Shareable (LoUIS), which in most of ARM v7 systems
correspond to L1.
The current cache flushing API used in cpu_suspend and __cpu_disable,
flush_cache_all(), ends up flushing the whole cache hierarchy since for
v7 it cleans and invalidates all cache levels up to Level of Coherency
(LoC) which cripples system performance when used in hot paths like hotplug
and cpuidle.
Therefore a new kernel cache maintenance API must be added to cope with
latest ARM system requirements.
This patch adds flush_cache_louis() to the ARM kernel cache maintenance API.
This function cleans and invalidates all data cache levels up to the
Level of Unification Inner Shareable (LoUIS) and invalidates the instruction
cache for processors that support it (> v7).
This patch also creates an alias of the cache LoUIS function to flush_kern_all
for all processor versions prior to v7, so that the current cache flushing
behaviour is unchanged for those processors.
v7 cache maintenance code implements a cache LoUIS function that cleans and
invalidates the D-cache up to LoUIS and invalidates the I-cache, according
to the new API.
Reviewed-by: Santosh Shilimkar <santosh.shilimkar@ti.com>
Reviewed-by: Nicolas Pitre <nico@linaro.org>
Signed-off-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
Tested-by: Shawn Guo <shawn.guo@linaro.org>
The cacheflush syscall can fail for two reasons:
(1) The arguments are invalid (nonsensical address range or no VMA)
(2) The region generates a translation fault on a VIPT or PIPT cache
This patch allows do_cache_op to return an error code to userspace in
the case of the above. The various coherent_user_range implementations
are modified to return 0 in the case of VIVT caches or -EFAULT in the
case of an abort on v6/v7 cores.
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
The v6 and v7 implementations of flush_kern_dcache_area do not align
the passed MVA to the size of a cacheline in the data cache. If a
misaligned address is used, only a subset of the requested area will
be flushed. This has been observed to cause failures in SMP boot where
the secondary_data initialised by the primary CPU is not cacheline
aligned, causing the secondary CPUs to read incorrect values for their
pgd and stack pointers.
This patch ensures that the base address is cacheline aligned before
flushing the d-cache.
Cc: <stable@kernel.org>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
Cache ownership must be acquired by reading/writing data from the
cache line to make cache operation have the desired effect on the
SMP MPCore CPU. However, the ownership is never acquired in the
v6_dma_inv_range function when cleaning the first line and
flushing the last one, in case the address is not aligned
to D_CACHE_LINE_SIZE boundary.
Fix this by reading/writing data if needed, before performing
cache operations.
While at it, fix v6_dma_flush_range to prevent RWFO outside
the buffer.
Cc: stable@kernel.org
Signed-off-by: Valentine Barshak <vbarshak@mvista.com>
Signed-off-by: George G. Davis <gdavis@mvista.com>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
Do this by adding flush_icache_all to cache_fns for ARMv6 and 7.
As flush_icache_all may neeed to be called from flush_kern_cache_all,
add it as the first entry in the cache_fns.
Note that now we can remove the ARM_ERRATA_411920 dependency
to !SMP so it can be selected on UP ARMv6 processors, such
as omap2.
Signed-off-by: Tony Lindgren <tony@atomide.com>
Signed-off-by: Anand Gadiyar <gadiyar@ti.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
Commit f4d6477f introduced a workaround for the lack of hardware
broadcasting of the cache maintenance operations on ARM11MPCore.
However, the workaround is only valid on CPUs that do not do speculative
loads into the D-cache.
This patch adds a Kconfig option with the corresponding help to make the
above clear. When the DMA_CACHE_RWFO option is disabled, the kernel
behaviour is that prior to the f4d6477f commit. This also allows ARMv6
UP processors with speculative loads to work correctly.
For other processors, a different workaround may be needed.
Cc: Ronen Shitrit <rshitrit@marvell.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
A recent patch for DMA cache maintenance on ARM11MPCore added a write
for ownership trick to the v6_dma_inv_range() function. Such operation
destroys data already present in the buffer. However, this function is
used with with dma_sync_single_for_device() which is supposed to
preserve the existing data transfered into the buffer. This patch adds a
combination of read/write for ownership to preserve the original data.
Reported-by: Ronen Shitrit <rshitrit@marvell.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
The Snoop Control Unit on the ARM11MPCore hardware does not detect the
cache operations and the dma_cache_maint*() functions may leave stale
cache entries on other CPUs. The solution implemented in this patch
performs a Read or Write For Ownership in the ARMv6 DMA cache
maintenance functions. These LDR/STR instructions change the cache line
state to shared or exclusive so that the cache maintenance operation has
the desired effect.
Tested-by: George G. Davis <gdavis@mvista.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
ARMv6 and ARMv7 CPUs can perform speculative prefetching, which makes
DMA cache coherency handling slightly more interesting. Rather than
being able to rely upon the CPU not accessing the DMA buffer until DMA
has completed, we now must expect that the cache could be loaded with
possibly stale data from the DMA buffer.
Where DMA involves data being transferred to the device, we clean the
cache before handing it over for DMA, otherwise we invalidate the buffer
to get rid of potential writebacks. On DMA Completion, if data was
transferred from the device, we invalidate the buffer to get rid of
any stale speculative prefetches.
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
Tested-By: Santosh Shilimkar <santosh.shilimkar@ti.com>
These are now unused, and so can be removed.
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
Tested-By: Santosh Shilimkar <santosh.shilimkar@ti.com>
This is needed because applications using the sys_cacheflush system call
can pass a memory range which isn't mapped yet even though the
corresponding vma is valid. The patch also adds unwinding annotations
for correct backtraces from the coherent_user_range() functions.
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
This patch implements the recommended workaround for erratum 411920
(ARM1136, ARM1156, ARM1176).
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
Patch from Catalin Marinas
ARM1136 erratum 371025 (category 2) specifies that, under rare
conditions, an invalidate I-cache by MVA (line or range) operation can
fail to invalidate a cache line. The recommended workaround is to
either invalidate the entire I-cache or invalidate the range by
set/way rather than MVA.
Note that for a 16K cache size, invalidating a 4K page by set/way is
equivalent to invalidating the entire I-cache.
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
Patch from Nicolas Pitre
Doing so adds a much larger cost to the loop than the cost implied by
simply invalidating the whole BTB at once.
Signed-off-by: Nicolas Pitre <nico@cam.org>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
Patch from Gen FUKATSU
Invalidate BTB entry instruction flushes two instruction
at a time. Therefore this instruction should be done four
times after invalidate instruction cache line.
Signed-off-by: Gen Fukatsu
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
Initial git repository build. I'm not bothering with the full history,
even though we have it. We can create a separate "historical" git
archive of that later if we want to, and in the meantime it's about
3.2GB when imported into git - space that would just make the early
git days unnecessarily complicated, when we don't have a lot of good
infrastructure for it.
Let it rip!