Commit Graph

17 Commits

Author SHA1 Message Date
Jens Axboe
cf8929885d cgroup/bfq: revert bfq.weight symlink change
There's some discussion on how to do this the best, and Tejun prefers
that BFQ just create the file itself instead of having cgroups support
a symlink feature.

Hence revert commit 54b7b868e8 and 19e9da9e86 for 5.2, and this
can be done properly for 5.3.

Signed-off-by: Jens Axboe <axboe@kernel.dk>
2019-06-10 03:35:41 -06:00
Angelo Ruocco
19e9da9e86 block, bfq: add weight symlink to the bfq.weight cgroup parameter
Many userspace tools and services use the proportional-share policy of
the blkio/io cgroups controller. The CFQ I/O scheduler implemented
this policy for the legacy block layer. To modify the weight of a
group in case CFQ was in charge, the 'weight' parameter of the group
must be modified. On the other hand, the BFQ I/O scheduler implements
the same policy in blk-mq, but, with BFQ, the parameter to modify has
a different name: bfq.weight (forced choice until legacy block was
present, because two different policies cannot share a common parameter
in cgroups).

Due to CFQ legacy, most if not all userspace configurations still use
the parameter 'weight', and for the moment do not seem likely to be
changed. But, when CFQ went away with legacy block, such a parameter
ceased to exist.

So, a simple workaround has been proposed [1] to make all
configurations work: add a symlink, named weight, to bfq.weight. This
commit adds such a symlink.

[1] https://lkml.org/lkml/2019/4/8/555

Suggested-by: Johannes Thumshirn <jthumshirn@suse.de>
Signed-off-by: Angelo Ruocco <angeloruocco90@gmail.com>
Signed-off-by: Paolo Valente <paolo.valente@linaro.org>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2019-06-07 01:29:40 -06:00
Christoph Hellwig
a497ee34a4 block: switch all files cleared marked as GPLv2 or later to SPDX tags
All these files have some form of the usual GPLv2 or later boilerplate.
Switch them to use SPDX tags instead.

Reviewed-by: Chaitanya Kulkarni <chaitanya.kulkarni@wdc.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2019-04-30 16:11:59 -06:00
Angelo Ruocco
636b8fe86b block, bfq: fix some typos in comments
Some of the comments in the bfq files had typos. This patch fixes them.

Signed-off-by: Angelo Ruocco <angeloruocco90@gmail.com>
Signed-off-by: Paolo Valente <paolo.valente@linaro.org>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2019-04-08 10:05:43 -06:00
Paolo Valente
8cacc5ab3e block, bfq: do not merge queues on flash storage with queueing
To boost throughput with a set of processes doing interleaved I/O
(i.e., a set of processes whose individual I/O is random, but whose
merged cumulative I/O is sequential), BFQ merges the queues associated
with these processes, i.e., redirects the I/O of these processes into a
common, shared queue. In the shared queue, I/O requests are ordered by
their position on the medium, thus sequential I/O gets dispatched to
the device when the shared queue is served.

Queue merging costs execution time, because, to detect which queues to
merge, BFQ must maintain a list of the head I/O requests of active
queues, ordered by request positions. Measurements showed that this
costs about 10% of BFQ's total per-request processing time.

Request processing time becomes more and more critical as the speed of
the underlying storage device grows. Yet, fortunately, queue merging
is basically useless on the very devices that are so fast to make
request processing time critical. To reach a high throughput, these
devices must have many requests queued at the same time. But, in this
configuration, the internal scheduling algorithms of these devices do
also the job of queue merging: they reorder requests so as to obtain
as much as possible a sequential I/O pattern. As a consequence, with
processes doing interleaved I/O, the throughput reached by one such
device is likely to be the same, with and without queue merging.

In view of this fact, this commit disables queue merging, and all
related housekeeping, for non-rotational devices with internal
queueing. The total, single-lock-protected, per-request processing
time of BFQ drops to, e.g., 1.9 us on an Intel Core i7-2760QM@2.40GHz
(time measured with simple code instrumentation, and using the
throughput-sync.sh script of the S suite [1], in performance-profiling
mode). To put this result into context, the total,
single-lock-protected, per-request execution time of the lightest I/O
scheduler available in blk-mq, mq-deadline, is 0.7 us (mq-deadline is
~800 LOC, against ~10500 LOC for BFQ).

Disabling merging provides a further, remarkable benefit in terms of
throughput. Merging tends to make many workloads artificially more
uneven, mainly because of shared queues remaining non empty for
incomparably more time than normal queues. So, if, e.g., one of the
queues in a set of merged queues has a higher weight than a normal
queue, then the shared queue may inherit such a high weight and, by
staying almost always active, may force BFQ to perform I/O plugging
most of the time. This evidently makes it harder for BFQ to let the
device reach a high throughput.

As a practical example of this problem, and of the benefits of this
commit, we measured again the throughput in the nasty scenario
considered in previous commit messages: dbench test (in the Phoronix
suite), with 6 clients, on a filesystem with journaling, and with the
journaling daemon enjoying a higher weight than normal processes. With
this commit, the throughput grows from ~150 MB/s to ~200 MB/s on a
PLEXTOR PX-256M5 SSD. This is the same peak throughput reached by any
of the other I/O schedulers. As such, this is also likely to be the
maximum possible throughput reachable with this workload on this
device, because I/O is mostly random, and the other schedulers
basically just pass I/O requests to the drive as fast as possible.

[1] https://github.com/Algodev-github/S

Tested-by: Holger Hoffstätte <holger@applied-asynchrony.com>
Tested-by: Oleksandr Natalenko <oleksandr@natalenko.name>
Tested-by: Francesco Pollicino <fra.fra.800@gmail.com>
Signed-off-by: Alessio Masola <alessio.masola@gmail.com>
Signed-off-by: Paolo Valente <paolo.valente@linaro.org>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2019-04-01 08:15:40 -06:00
Dennis Zhou
0fe061b9f0 blkcg: fix ref count issue with bio_blkcg() using task_css
The bio_blkcg() function turns out to be inconsistent and consequently
dangerous to use. The first part returns a blkcg where a reference is
owned by the bio meaning it does not need to be rcu protected. However,
the third case, the last line, is problematic:

	return css_to_blkcg(task_css(current, io_cgrp_id));

This can race against task migration and the cgroup dying. It is also
semantically different as it must be called rcu protected and is
susceptible to failure when trying to get a reference to it.

This patch adds association ahead of calling bio_blkcg() rather than
after. This makes association a required and explicit step along the
code paths for calling bio_blkcg(). In blk-iolatency, association is
moved above the bio_blkcg() call to ensure it will not return %NULL.

BFQ uses the old bio_blkcg() function, but I do not want to address it
in this series due to the complexity. I have created a private version
documenting the inconsistency and noting not to use it.

Signed-off-by: Dennis Zhou <dennis@kernel.org>
Acked-by: Tejun Heo <tj@kernel.org>
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2018-12-07 22:26:36 -07:00
Christoph Hellwig
0d945c1f96 block: remove the queue_lock indirection
With the legacy request path gone there is no good reason to keep
queue_lock as a pointer, we can always use the embedded lock now.

Reviewed-by: Hannes Reinecke <hare@suse.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>

Fixed floppy and blk-cgroup missing conversions and half done edits.

Signed-off-by: Jens Axboe <axboe@kernel.dk>
2018-11-15 12:17:28 -07:00
Dennis Zhou
b5f2954d30 blkcg: revert blkcg cleanups series
This reverts a series committed earlier due to null pointer exception
bug report in [1]. It seems there are edge case interactions that I did
not consider and will need some time to understand what causes the
adverse interactions.

The original series can be found in [2] with a follow up series in [3].

[1] https://www.spinics.net/lists/cgroups/msg20719.html
[2] https://lore.kernel.org/lkml/20180911184137.35897-1-dennisszhou@gmail.com/
[3] https://lore.kernel.org/lkml/20181020185612.51587-1-dennis@kernel.org/

This reverts the following commits:
d459d853c2, b2c3fa5467, 101246ec02, b3b9f24f5f, e2b0989954,
f0fcb3ec89, c839e7a03f, bdc2491708, 74b7c02a9b, 5bf9a1f3b4,
a7b39b4e96, 07b05bcc32, 49f4c2dc2b, 27e6fa996c

Signed-off-by: Dennis Zhou <dennis@kernel.org>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2018-11-01 19:59:53 -06:00
Dennis Zhou (Facebook)
27e6fa996c blkcg: fix ref count issue with bio_blkcg using task_css
The accessor function bio_blkcg either returns the blkcg associated with
the bio or finds one in the current context. This can cause an issue
when trying to associate a bio with a blkcg. Particularly, it's the
third case that is problematic:

	return css_to_blkcg(task_css(current, io_cgrp_id));

As the above may race against task migration and the cgroup exiting, it
is not always ok to take a reference on the blkcg returned from
bio_blkcg.

This patch adds association ahead of calling bio_blkcg rather than
after. This makes association a required and explicit step along the
code paths for calling bio_blkcg. blk_get_rl is modified as well to get
a reference to the blkcg it may use and blk_put_rl will always put the
reference back. Association is also moved above the bio_blkcg call to
ensure it will not return NULL in blk-iolatency.

BFQ and CFQ utilize this flaw, but due to the complexity, I do not want
to address this in this series. I've created a private version of the
function with notes not to use it describing the flaw. Hopefully soon,
that code can be cleaned up.

Signed-off-by: Dennis Zhou <dennisszhou@gmail.com>
Acked-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2018-09-21 20:29:02 -06:00
Konstantin Khlebnikov
d5274b3cd6 block: bfq: swap puts in bfqg_and_blkg_put
Fix trivial use-after-free. This could be last reference to bfqg.

Fixes: 8f9bebc33d ("block, bfq: access and cache blkg data only when safe")
Acked-by: Paolo Valente <paolo.valente@linaro.org>
Signed-off-by: Konstantin Khlebnikov <khlebnikov@yandex-team.ru>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2018-09-06 11:32:58 -06:00
Maciej S. Szmigiero
fc8ebd01de block, bfq: return nbytes and not zero from struct cftype .write() method
The value that struct cftype .write() method returns is then directly
returned to userspace as the value returned by write() syscall, so it
should be the number of bytes actually written (or consumed) and not zero.

Returning zero from write() syscall makes programs like /bin/echo or bash
spin.

Signed-off-by: Maciej S. Szmigiero <mail@maciej.szmigiero.name>
Fixes: e21b7a0b98 ("block, bfq: add full hierarchical scheduling and cgroups support")
Cc: stable@vger.kernel.org
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2018-08-16 13:11:16 -06:00
Omar Sandoval
84c7afcebe block: use ktime_get_ns() instead of sched_clock() for cfq and bfq
cfq and bfq have some internal fields that use sched_clock() which can
trivially use ktime_get_ns() instead. Their timestamp fields in struct
request can also use ktime_get_ns(), which resolves the 8 year old
comment added by commit 28f4197e5d ("block: disable preemption before
using sched_clock()").

Signed-off-by: Omar Sandoval <osandov@fb.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2018-05-09 08:33:06 -06:00
Paolo Valente
52257ffbfc block, bfq: put async queues for root bfq groups too
For each pair [device for which bfq is selected as I/O scheduler,
group in blkio/io], bfq maintains a corresponding bfq group. Each such
bfq group contains a set of async queues, with each async queue
created on demand, i.e., when some I/O request arrives for it.  On
creation, an async queue gets an extra reference, to make sure that
the queue is not freed as long as its bfq group exists.  Accordingly,
to allow the queue to be freed after the group exited, this extra
reference must released on group exit.

The above holds also for a bfq root group, i.e., for the bfq group
corresponding to the root blkio/io root for a given device. Yet, by
mistake, the references to the existing async queues of a root group
are not released when the latter exits. This causes a memory leak when
the instance of bfq for a given device exits. In a similar vein,
bfqg_stats_xfer_dead is not executed for a root group.

This commit fixes bfq_pd_offline so that the latter executes the above
missing operations for a root group too.

Reported-by: Holger Hoffstätte <holger@applied-asynchrony.com>
Reported-by: Guoqing Jiang <gqjiang@suse.com>
Tested-by: Holger Hoffstätte <holger@applied-asynchrony.com>
Signed-off-by: Davide Ferrari <davideferrari8@gmail.com>
Signed-off-by: Paolo Valente <paolo.valente@linaro.org>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2018-01-09 08:45:25 -07:00
Luca Miccio
a33801e8b4 block, bfq: move debug blkio stats behind CONFIG_DEBUG_BLK_CGROUP
BFQ currently creates, and updates, its own instance of the whole
set of blkio statistics that cfq creates. Yet, from the comments
of Tejun Heo in [1], it turned out that most of these statistics
are meant/useful only for debugging. This commit makes BFQ create
the latter, debugging statistics only if the option
CONFIG_DEBUG_BLK_CGROUP is set.

By doing so, this commit also enables BFQ to enjoy a high perfomance
boost. The reason is that, if CONFIG_DEBUG_BLK_CGROUP is not set, then
BFQ has to update far fewer statistics, and, in particular, not the
heaviest to update.  To give an idea of the benefits, if
CONFIG_DEBUG_BLK_CGROUP is not set, then, on an Intel i7-4850HQ, and
with 8 threads doing random I/O in parallel on null_blk (configured
with 0 latency), the throughput of BFQ grows from 310 to 400 KIOPS
(+30%). We have measured similar or even much higher boosts with other
CPUs: e.g., +45% with an ARM CortexTM-A53 Octa-core. Our results have
been obtained and can be reproduced very easily with the script in [1].

[1] https://www.spinics.net/lists/linux-block/msg18943.html

Suggested-by: Tejun Heo <tj@kernel.org>
Suggested-by: Ulf Hansson <ulf.hansson@linaro.org>
Tested-by: Lee Tibbert <lee.tibbert@gmail.com>
Tested-by: Oleksandr Natalenko <oleksandr@natalenko.name>
Signed-off-by: Luca Miccio <lucmiccio@gmail.com>
Signed-off-by: Paolo Valente <paolo.valente@linaro.org>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2017-11-14 20:13:33 -07:00
Bart Van Assche
dfb79af546 bfq: Declare local functions static
Acked-by: Paolo Valente <paolo.valente@linaro.org>
Signed-off-by: Bart Van Assche <bart.vanassche@wdc.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2017-09-01 13:56:37 -06:00
Paolo Valente
8f9bebc33d block, bfq: access and cache blkg data only when safe
In blk-cgroup, operations on blkg objects are protected with the
request_queue lock. This is no more the lock that protects
I/O-scheduler operations in blk-mq. In fact, the latter are now
protected with a finer-grained per-scheduler-instance lock. As a
consequence, although blkg lookups are also rcu-protected, blk-mq I/O
schedulers may see inconsistent data when they access blkg and
blkg-related objects. BFQ does access these objects, and does incur
this problem, in the following case.

The blkg_lookup performed in bfq_get_queue, being protected (only)
through rcu, may happen to return the address of a copy of the
original blkg. If this is the case, then the blkg_get performed in
bfq_get_queue, to pin down the blkg, is useless: it does not prevent
blk-cgroup code from destroying both the original blkg and all objects
directly or indirectly referred by the copy of the blkg. BFQ accesses
these objects, which typically causes a crash for NULL-pointer
dereference of memory-protection violation.

Some additional protection mechanism should be added to blk-cgroup to
address this issue. In the meantime, this commit provides a quick
temporary fix for BFQ: cache (when safe) blkg data that might
disappear right after a blkg_lookup.

In particular, this commit exploits the following facts to achieve its
goal without introducing further locks.  Destroy operations on a blkg
invoke, as a first step, hooks of the scheduler associated with the
blkg. And these hooks are executed with bfqd->lock held for BFQ. As a
consequence, for any blkg associated with the request queue an
instance of BFQ is attached to, we are guaranteed that such a blkg is
not destroyed, and that all the pointers it contains are consistent,
while that instance is holding its bfqd->lock. A blkg_lookup performed
with bfqd->lock held then returns a fully consistent blkg, which
remains consistent until this lock is held. In more detail, this holds
even if the returned blkg is a copy of the original one.

Finally, also the object describing a group inside BFQ needs to be
protected from destruction on the blkg_free of the original blkg
(which invokes bfq_pd_free). This commit adds private refcounting for
this object, to let it disappear only after no bfq_queue refers to it
any longer.

This commit also removes or updates some stale comments on locking
issues related to blk-cgroup operations.

Reported-by: Tomas Konir <tomas.konir@gmail.com>
Reported-by: Lee Tibbert <lee.tibbert@gmail.com>
Reported-by: Marco Piazza <mpiazza@gmail.com>
Signed-off-by: Paolo Valente <paolo.valente@linaro.org>
Tested-by: Tomas Konir <tomas.konir@gmail.com>
Tested-by: Lee Tibbert <lee.tibbert@gmail.com>
Tested-by: Marco Piazza <mpiazza@gmail.com>
Signed-off-by: Jens Axboe <axboe@fb.com>
2017-06-08 09:51:10 -06:00
Paolo Valente
ea25da4808 block, bfq: split bfq-iosched.c into multiple source files
The BFQ I/O scheduler features an optimal fair-queuing
(proportional-share) scheduling algorithm, enriched with several
mechanisms to boost throughput and reduce latency for interactive and
real-time applications. This makes BFQ a large and complex piece of
code. This commit addresses this issue by splitting BFQ into three
main, independent components, and by moving each component into a
separate source file:
1. Main algorithm: handles the interaction with the kernel, and
decides which requests to dispatch; it uses the following two further
components to achieve its goals.
2. Scheduling engine (Hierarchical B-WF2Q+ scheduling algorithm):
computes the schedule, using weights and budgets provided by the above
component.
3. cgroups support: handles group operations (creation, destruction,
move, ...).

Signed-off-by: Paolo Valente <paolo.valente@linaro.org>
Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-19 08:48:24 -06:00