As we're about to trigger a PSCI version explosion, it doesn't
hurt to introduce a PSCI_VERSION helper that is going to be
used everywhere.
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Tested-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
As we're about to update the PSCI support, and because I'm lazy,
let's move the PSCI include file to include/kvm so that both
ARM architectures can find it.
Acked-by: Christoffer Dall <christoffer.dall@linaro.org>
Tested-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
cache objects. This is good, but still leaves a lot of kernel memory
available to be copied to/from userspace in the face of bugs. To further
restrict what memory is available for copying, this creates a way to
whitelist specific areas of a given slab cache object for copying to/from
userspace, allowing much finer granularity of access control. Slab caches
that are never exposed to userspace can declare no whitelist for their
objects, thereby keeping them unavailable to userspace via dynamic copy
operations. (Note, an implicit form of whitelisting is the use of constant
sizes in usercopy operations and get_user()/put_user(); these bypass all
hardened usercopy checks since these sizes cannot change at runtime.)
This new check is WARN-by-default, so any mistakes can be found over the
next several releases without breaking anyone's system.
The series has roughly the following sections:
- remove %p and improve reporting with offset
- prepare infrastructure and whitelist kmalloc
- update VFS subsystem with whitelists
- update SCSI subsystem with whitelists
- update network subsystem with whitelists
- update process memory with whitelists
- update per-architecture thread_struct with whitelists
- update KVM with whitelists and fix ioctl bug
- mark all other allocations as not whitelisted
- update lkdtm for more sensible test overage
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
Comment: Kees Cook <kees@outflux.net>
iQIcBAABCgAGBQJabvleAAoJEIly9N/cbcAmO1kQAJnjVPutnLSbnUteZxtsv7W4
43Cggvokfxr6l08Yh3hUowNxZVKjhF9uwMVgRRg9Nl5WdYCN+vCQbHz+ZdzGJXKq
cGqdKWgexMKX+aBdNDrK7BphUeD46sH7JWR+a/lDV/BgPxBCm9i5ZZCgXbPP89AZ
NpLBji7gz49wMsnm/x135xtNlZ3dG0oKETzi7MiR+NtKtUGvoIszSKy5JdPZ4m8q
9fnXmHqmwM6uQFuzDJPt1o+D1fusTuYnjI7EgyrJRRhQ+BB3qEFZApXnKNDRS9Dm
uB7jtcwefJCjlZVCf2+PWTOEifH2WFZXLPFlC8f44jK6iRW2Nc+wVRisJ3vSNBG1
gaRUe/FSge68eyfQj5OFiwM/2099MNkKdZ0fSOjEBeubQpiFChjgWgcOXa5Bhlrr
C4CIhFV2qg/tOuHDAF+Q5S96oZkaTy5qcEEwhBSW15ySDUaRWFSrtboNt6ZVOhug
d8JJvDCQWoNu1IQozcbv6xW/Rk7miy8c0INZ4q33YUvIZpH862+vgDWfTJ73Zy9H
jR/8eG6t3kFHKS1vWdKZzOX1bEcnd02CGElFnFYUEewKoV7ZeeLsYX7zodyUAKyi
Yp5CImsDbWWTsptBg6h9nt2TseXTxYCt2bbmpJcqzsqSCUwOQNQ4/YpuzLeG0ihc
JgOmUnQNJWCTwUUw5AS1
=tzmJ
-----END PGP SIGNATURE-----
Merge tag 'usercopy-v4.16-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/kees/linux
Pull hardened usercopy whitelisting from Kees Cook:
"Currently, hardened usercopy performs dynamic bounds checking on slab
cache objects. This is good, but still leaves a lot of kernel memory
available to be copied to/from userspace in the face of bugs.
To further restrict what memory is available for copying, this creates
a way to whitelist specific areas of a given slab cache object for
copying to/from userspace, allowing much finer granularity of access
control.
Slab caches that are never exposed to userspace can declare no
whitelist for their objects, thereby keeping them unavailable to
userspace via dynamic copy operations. (Note, an implicit form of
whitelisting is the use of constant sizes in usercopy operations and
get_user()/put_user(); these bypass all hardened usercopy checks since
these sizes cannot change at runtime.)
This new check is WARN-by-default, so any mistakes can be found over
the next several releases without breaking anyone's system.
The series has roughly the following sections:
- remove %p and improve reporting with offset
- prepare infrastructure and whitelist kmalloc
- update VFS subsystem with whitelists
- update SCSI subsystem with whitelists
- update network subsystem with whitelists
- update process memory with whitelists
- update per-architecture thread_struct with whitelists
- update KVM with whitelists and fix ioctl bug
- mark all other allocations as not whitelisted
- update lkdtm for more sensible test overage"
* tag 'usercopy-v4.16-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/kees/linux: (38 commits)
lkdtm: Update usercopy tests for whitelisting
usercopy: Restrict non-usercopy caches to size 0
kvm: x86: fix KVM_XEN_HVM_CONFIG ioctl
kvm: whitelist struct kvm_vcpu_arch
arm: Implement thread_struct whitelist for hardened usercopy
arm64: Implement thread_struct whitelist for hardened usercopy
x86: Implement thread_struct whitelist for hardened usercopy
fork: Provide usercopy whitelisting for task_struct
fork: Define usercopy region in thread_stack slab caches
fork: Define usercopy region in mm_struct slab caches
net: Restrict unwhitelisted proto caches to size 0
sctp: Copy struct sctp_sock.autoclose to userspace using put_user()
sctp: Define usercopy region in SCTP proto slab cache
caif: Define usercopy region in caif proto slab cache
ip: Define usercopy region in IP proto slab cache
net: Define usercopy region in struct proto slab cache
scsi: Define usercopy region in scsi_sense_cache slab cache
cifs: Define usercopy region in cifs_request slab cache
vxfs: Define usercopy region in vxfs_inode slab cache
ufs: Define usercopy region in ufs_inode_cache slab cache
...
Commit 4d4bbd8526 ("mm, oom_reaper: skip mm structs with mmu
notifiers") prevented the oom reaper from unmapping private anonymous
memory with the oom reaper when the oom victim mm had mmu notifiers
registered.
The rationale is that doing mmu_notifier_invalidate_range_{start,end}()
around the unmap_page_range(), which is needed, can block and the oom
killer will stall forever waiting for the victim to exit, which may not
be possible without reaping.
That concern is real, but only true for mmu notifiers that have
blockable invalidate_range_{start,end}() callbacks. This patch adds a
"flags" field to mmu notifier ops that can set a bit to indicate that
these callbacks do not block.
The implementation is steered toward an expensive slowpath, such as
after the oom reaper has grabbed mm->mmap_sem of a still alive oom
victim.
[rientjes@google.com: mmu_notifier_invalidate_range_end() can also call the invalidate_range() must not block, fix comment]
Link: http://lkml.kernel.org/r/alpine.DEB.2.10.1801091339570.240101@chino.kir.corp.google.com
[akpm@linux-foundation.org: make mm_has_blockable_invalidate_notifiers() return bool, use rwsem_is_locked()]
Link: http://lkml.kernel.org/r/alpine.DEB.2.10.1712141329500.74052@chino.kir.corp.google.com
Signed-off-by: David Rientjes <rientjes@google.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Paolo Bonzini <pbonzini@redhat.com>
Acked-by: Christian König <christian.koenig@amd.com>
Acked-by: Dimitri Sivanich <sivanich@hpe.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Oded Gabbay <oded.gabbay@gmail.com>
Cc: Alex Deucher <alexander.deucher@amd.com>
Cc: David Airlie <airlied@linux.ie>
Cc: Joerg Roedel <joro@8bytes.org>
Cc: Doug Ledford <dledford@redhat.com>
Cc: Jani Nikula <jani.nikula@linux.intel.com>
Cc: Mike Marciniszyn <mike.marciniszyn@intel.com>
Cc: Sean Hefty <sean.hefty@intel.com>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: Jérôme Glisse <jglisse@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Signed-off-by: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pull get_user_pages_fast updates from Al Viro:
"A bit more get_user_pages work"
* 'work.get_user_pages_fast' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs:
kvm: switch get_user_page_nowait() to get_user_pages_unlocked()
__get_user_pages_locked(): get rid of notify_drop argument
get_user_pages_unlocked(): pass true to __get_user_pages_locked() notify_drop
cris: switch to get_user_pages_fast()
fold __get_user_pages_unlocked() into its sole remaining caller
All d-entries for vcpu have the same, "anon_inode:kvm-vcpu". That means
it is impossible to know the mapping between fds for vcpu and vcpu
from userland.
# LC_ALL=C ls -l /proc/617/fd | grep vcpu
lrwx------. 1 qemu qemu 64 Jan 7 16:50 18 -> anon_inode:kvm-vcpu
lrwx------. 1 qemu qemu 64 Jan 7 16:50 19 -> anon_inode:kvm-vcpu
It is also impossible to know the mapping between vma for kvm_run
structure and vcpu from userland.
# LC_ALL=C grep vcpu /proc/617/maps
7f9d842d0000-7f9d842d3000 rw-s 00000000 00:0d 20393 anon_inode:kvm-vcpu
7f9d842d3000-7f9d842d6000 rw-s 00000000 00:0d 20393 anon_inode:kvm-vcpu
This change adds vcpu id to d-entries for vcpu. With this change
you can get the following output:
# LC_ALL=C ls -l /proc/617/fd | grep vcpu
lrwx------. 1 qemu qemu 64 Jan 7 16:50 18 -> anon_inode:kvm-vcpu:0
lrwx------. 1 qemu qemu 64 Jan 7 16:50 19 -> anon_inode:kvm-vcpu:1
# LC_ALL=C grep vcpu /proc/617/maps
7f9d842d0000-7f9d842d3000 rw-s 00000000 00:0d 20393 anon_inode:kvm-vcpu:0
7f9d842d3000-7f9d842d6000 rw-s 00000000 00:0d 20393 anon_inode:kvm-vcpu:1
With the mappings known from the output, a tool like strace can report more details
of qemu-kvm process activities. Here is the strace output of my local prototype:
# ./strace -KK -f -p 617 2>&1 | grep 'KVM_RUN\| K'
...
[pid 664] ioctl(18, KVM_RUN, 0) = 0 (KVM_EXIT_MMIO)
K ready_for_interrupt_injection=1, if_flag=0, flags=0, cr8=0000000000000000, apic_base=0x000000fee00d00
K phys_addr=0, len=1634035803, [33, 0, 0, 0, 0, 0, 0, 0], is_write=112
[pid 664] ioctl(18, KVM_RUN, 0) = 0 (KVM_EXIT_MMIO)
K ready_for_interrupt_injection=1, if_flag=1, flags=0, cr8=0000000000000000, apic_base=0x000000fee00d00
K phys_addr=0, len=1634035803, [33, 0, 0, 0, 0, 0, 0, 0], is_write=112
...
Signed-off-by: Masatake YAMATO <yamato@redhat.com>
Acked-by: Christian Borntraeger <borntraeger@de.ibm.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
For EPT-violations that are triggered by a read, the pages are also mapped with
write permissions (if their memory region is also writable). That would avoid
getting yet another fault on the same page when a write occurs.
This optimization only happens when you have a "struct page" backing the memory
region. So also enable it for memory regions that do not have a "struct page".
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: kvm@vger.kernel.org
Cc: linux-kernel@vger.kernel.org
Signed-off-by: KarimAllah Ahmed <karahmed@amazon.de>
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
The changes for this version include icache invalidation optimizations
(improving VM startup time), support for forwarded level-triggered
interrupts (improved performance for timers and passthrough platform
devices), a small fix for power-management notifiers, and some cosmetic
changes.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQEcBAABAgAGBQJacYnLAAoJEEtpOizt6ddyhHUH/1f/AHC4t6sNJJ4LAbWAjuve
77scB7vsVVpZqHUeA1i8d0vrWJQeqg8CEQ+iP/OVLC+bWVX0yeBtrt/pMJA8sXrV
Jbo5kQu3NyrRUAew83rcvoqsVVf67BB/NohL7C7sQDvNp2bg2cgzxhpgNJUuUXQC
WcEOhqstWo6NYJ7xYz5f+utzYQRO0YfnIzoTsoaNgDHSw/V37Ny9O0tYqTQGNYUm
zZ+cRo3nFRFywbmHhIHvXkxmS0lGdACQWTzyd+qDsgiPJ463vRT6Fc035SSuqX9x
MmS87cBdt1IK9yi0Firqhuy6CGgHZmnagHizE0arMv72Pcv/ucrkCDRqLQDhSMY=
=bZLm
-----END PGP SIGNATURE-----
Merge tag 'kvm-arm-for-v4.16' of git://git.kernel.org/pub/scm/linux/kernel/git/kvmarm/kvmarm
KVM/ARM Changes for v4.16
The changes for this version include icache invalidation optimizations
(improving VM startup time), support for forwarded level-triggered
interrupts (improved performance for timers and passthrough platform
devices), a small fix for power-management notifiers, and some cosmetic
changes.
When I introduced a static key to avoid work in the critical path for
userspace irqchips which is very rarely used, I accidentally messed up
my logic and used && where I should have used ||, because the point was
to short-circuit the evaluation in case userspace irqchips weren't even
in use.
This fixes an issue when running in-kernel irqchip VMs alongside
userspace irqchip VMs.
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Fixes: c44c232ee2d3 ("KVM: arm/arm64: Avoid work when userspace iqchips are not used")
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
We were not decrementing the static key count in the right location.
kvm_arch_vcpu_destroy() is only called to clean up after a failed
VCPU create attempt, whereas kvm_arch_vcpu_free() is called on teardown
of the VM as well. Move the static key decrement call to
kvm_arch_vcpu_free().
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
After the recently introduced support for level-triggered mapped
interrupt, I accidentally left the VCPU thread busily going back and
forward between the guest and the hypervisor whenever the guest was
blocking, because I would always incorrectly report that a timer
interrupt was pending.
This is because the timer->irq.level field is not valid for mapped
interrupts, where we offload the level state to the hardware, and as a
result this field is always true.
Luckily the problem can be relatively easily solved by not checking the
cached signal state of either timer in kvm_timer_should_fire() but
instead compute the timer state on the fly, which we do already if the
cached signal state wasn't high. In fact, the only reason for checking
the cached signal state was a tiny optimization which would only be
potentially faster when the polling loop detects a pending timer
interrupt, which is quite unlikely.
Instead of duplicating the logic from kvm_arch_timer_handler(), we
enlighten kvm_timer_should_fire() to report something valid when the
timer state is loaded onto the hardware. We can then call this from
kvm_arch_timer_handler() as well and avoid the call to
__timer_snapshot_state() in kvm_arch_timer_get_input_level().
Reported-by: Tomasz Nowicki <tn@semihalf.com>
Tested-by: Tomasz Nowicki <tn@semihalf.com>
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Pull poll annotations from Al Viro:
"This introduces a __bitwise type for POLL### bitmap, and propagates
the annotations through the tree. Most of that stuff is as simple as
'make ->poll() instances return __poll_t and do the same to local
variables used to hold the future return value'.
Some of the obvious brainos found in process are fixed (e.g. POLLIN
misspelled as POLL_IN). At that point the amount of sparse warnings is
low and most of them are for genuine bugs - e.g. ->poll() instance
deciding to return -EINVAL instead of a bitmap. I hadn't touched those
in this series - it's large enough as it is.
Another problem it has caught was eventpoll() ABI mess; select.c and
eventpoll.c assumed that corresponding POLL### and EPOLL### were
equal. That's true for some, but not all of them - EPOLL### are
arch-independent, but POLL### are not.
The last commit in this series separates userland POLL### values from
the (now arch-independent) kernel-side ones, converting between them
in the few places where they are copied to/from userland. AFAICS, this
is the least disruptive fix preserving poll(2) ABI and making epoll()
work on all architectures.
As it is, it's simply broken on sparc - try to give it EPOLLWRNORM and
it will trigger only on what would've triggered EPOLLWRBAND on other
architectures. EPOLLWRBAND and EPOLLRDHUP, OTOH, are never triggered
at all on sparc. With this patch they should work consistently on all
architectures"
* 'misc.poll' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs: (37 commits)
make kernel-side POLL... arch-independent
eventpoll: no need to mask the result of epi_item_poll() again
eventpoll: constify struct epoll_event pointers
debugging printk in sg_poll() uses %x to print POLL... bitmap
annotate poll(2) guts
9p: untangle ->poll() mess
->si_band gets POLL... bitmap stored into a user-visible long field
ring_buffer_poll_wait() return value used as return value of ->poll()
the rest of drivers/*: annotate ->poll() instances
media: annotate ->poll() instances
fs: annotate ->poll() instances
ipc, kernel, mm: annotate ->poll() instances
net: annotate ->poll() instances
apparmor: annotate ->poll() instances
tomoyo: annotate ->poll() instances
sound: annotate ->poll() instances
acpi: annotate ->poll() instances
crypto: annotate ->poll() instances
block: annotate ->poll() instances
x86: annotate ->poll() instances
...
- Security mitigations:
- variant 2: invalidating the branch predictor with a call to secure firmware
- variant 3: implementing KPTI for arm64
- 52-bit physical address support for arm64 (ARMv8.2)
- arm64 support for RAS (firmware first only) and SDEI (software
delegated exception interface; allows firmware to inject a RAS error
into the OS)
- Perf support for the ARM DynamIQ Shared Unit PMU
- CPUID and HWCAP bits updated for new floating point multiplication
instructions in ARMv8.4
- Removing some virtual memory layout printks during boot
- Fix initial page table creation to cope with larger than 32M kernel
images when 16K pages are enabled
-----BEGIN PGP SIGNATURE-----
iQIzBAABCAAdFiEE5RElWfyWxS+3PLO2a9axLQDIXvEFAlpwxDMACgkQa9axLQDI
XvF55BAAniMpxPXnYNfv6l7/4O8eKo1lJIaG1wbej4JRZ/rT3K4Z3OBXW1dKHO8d
/PTbVmZ90IqIGROkoDrE+6xyjjn9yK3uuW4ytN2zQkBa8VFaHAnHlX+zKQcuwy9f
yxwiHk+C7vK5JR7mpXTazjRknsUv1MPtlTt7DQrSdq0KRDJVDNFC+grmbew2rz0X
cjQDqZqgzuFyrKxdiQVjDmc3zH9NsNBhDo0hlGHf2jK6bGJsAPtI8M2JcLrK8ITG
Ye/dD7BJp1mWD8ff0BPaMxu24qfAMNLH8f2dpTa986/H78irVz7i/t5HG0/1+5Jh
EE4OFRTKZ59Qgyo1zWcaJvdp8YjiaX/L4PWJg8CxM5OhP9dIac9ydcFQfWzpKpUs
xyZfmK6XliGFReAkVOOf5tEqFUDhMtsqhzPYmbmU1lp61wmSYIZ8CTenpWWCJSRO
NOGyG1X2uFBvP69+iPNlfTGz1r7tg1URY5iO8fUEIhY8LrgyORkiqw4OvPEgnMXP
Ngy+dXhyvnps2AAWbSX0O4puRlTgEYLT5KaMLzH/+gWsXATT0rzUCD/aOwUQq/Y7
SWXZHkb3jpmOZZnzZsLL2MNzEIPCFBwSUE9fSv4dA9d/N6tUmlmZALJjHkfzCDpj
+mPsSmAMTj72kUYzm0b5GCtOu/iQ2kDWOZjOM1m4+v/B+f7JoEE=
=iEjP
-----END PGP SIGNATURE-----
Merge tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux
Pull arm64 updates from Catalin Marinas:
"The main theme of this pull request is security covering variants 2
and 3 for arm64. I expect to send additional patches next week
covering an improved firmware interface (requires firmware changes)
for variant 2 and way for KPTI to be disabled on unaffected CPUs
(Cavium's ThunderX doesn't work properly with KPTI enabled because of
a hardware erratum).
Summary:
- Security mitigations:
- variant 2: invalidate the branch predictor with a call to
secure firmware
- variant 3: implement KPTI for arm64
- 52-bit physical address support for arm64 (ARMv8.2)
- arm64 support for RAS (firmware first only) and SDEI (software
delegated exception interface; allows firmware to inject a RAS
error into the OS)
- perf support for the ARM DynamIQ Shared Unit PMU
- CPUID and HWCAP bits updated for new floating point multiplication
instructions in ARMv8.4
- remove some virtual memory layout printks during boot
- fix initial page table creation to cope with larger than 32M kernel
images when 16K pages are enabled"
* tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux: (104 commits)
arm64: Fix TTBR + PAN + 52-bit PA logic in cpu_do_switch_mm
arm64: Turn on KPTI only on CPUs that need it
arm64: Branch predictor hardening for Cavium ThunderX2
arm64: Run enable method for errata work arounds on late CPUs
arm64: Move BP hardening to check_and_switch_context
arm64: mm: ignore memory above supported physical address size
arm64: kpti: Fix the interaction between ASID switching and software PAN
KVM: arm64: Emulate RAS error registers and set HCR_EL2's TERR & TEA
KVM: arm64: Handle RAS SErrors from EL2 on guest exit
KVM: arm64: Handle RAS SErrors from EL1 on guest exit
KVM: arm64: Save ESR_EL2 on guest SError
KVM: arm64: Save/Restore guest DISR_EL1
KVM: arm64: Set an impdef ESR for Virtual-SError using VSESR_EL2.
KVM: arm/arm64: mask/unmask daif around VHE guests
arm64: kernel: Prepare for a DISR user
arm64: Unconditionally enable IESB on exception entry/return for firmware-first
arm64: kernel: Survive corrected RAS errors notified by SError
arm64: cpufeature: Detect CPU RAS Extentions
arm64: sysreg: Move to use definitions for all the SCTLR bits
arm64: cpufeature: __this_cpu_has_cap() shouldn't stop early
...
cpu_pm_enter() calls the pm notifier chain with CPU_PM_ENTER, then if
there is a failure: CPU_PM_ENTER_FAILED.
When KVM receives CPU_PM_ENTER it calls cpu_hyp_reset() which will
return us to the hyp-stub. If we subsequently get a CPU_PM_ENTER_FAILED,
KVM does nothing, leaving the CPU running with the hyp-stub, at odds
with kvm_arm_hardware_enabled.
Add CPU_PM_ENTER_FAILED as a fallthrough for CPU_PM_EXIT, this reloads
KVM based on kvm_arm_hardware_enabled. This is safe even if CPU_PM_ENTER
never gets as far as KVM, as cpu_hyp_reinit() calls cpu_hyp_reset()
to make sure the hyp-stub is loaded before reloading KVM.
Fixes: 67f6919766 ("arm64: kvm: allows kvm cpu hotplug")
Cc: <stable@vger.kernel.org> # v4.7+
CC: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: James Morse <james.morse@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Three more fixes for v4.15 fixing incorrect huge page mappings on systems using
the contigious hint for hugetlbfs; supporting an alternative GICv4 init
sequence; and correctly implementing the ARM SMCC for HVC and SMC handling.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQEcBAABAgAGBQJaXi9yAAoJEEtpOizt6ddymb4H/R6Q7uPSNY31d/wcMHg8qYS7
foDW76r7mKliRVmCJoq9oqLqC7BLpQszfZ8dFjPSfdLA4xVMsuZ3GG3S7jlghiuN
9+rZK+ZZX8g5uQNsqVITC3WrXmozBj+VEs/uH2Z1pu0g+siPTp7J2iv5+A5tvM3A
NCySqgEjefQyy7Zs2r7TuvM+E3p9MY7jZih9E2o8mn2TQipVKrcnHRN3IjNNtI4u
C17x70OQ1ZY7bwnmPnuPPqnX3H1fQ6+UgwtfDCu3KP7DAFVjqAz03X6wbf1nCLAB
zzKok/SnIFWpr56JUSOzMpHWG8sOFscdVXxW97a2Ova0ur0rHW2iPiucTb8jOjQ=
=gJL6
-----END PGP SIGNATURE-----
Merge tag 'kvm-arm-fixes-for-v4.15-3-v2' of git://git.kernel.org/pub/scm/linux/kernel/git/kvmarm/kvmarm
KVM/ARM Fixes for v4.15, Round 3 (v2)
Three more fixes for v4.15 fixing incorrect huge page mappings on systems using
the contigious hint for hugetlbfs; supporting an alternative GICv4 init
sequence; and correctly implementing the ARM SMCC for HVC and SMC handling.
We expect to have firmware-first handling of RAS SErrors, with errors
notified via an APEI method. For systems without firmware-first, add
some minimal handling to KVM.
There are two ways KVM can take an SError due to a guest, either may be a
RAS error: we exit the guest due to an SError routed to EL2 by HCR_EL2.AMO,
or we take an SError from EL2 when we unmask PSTATE.A from __guest_exit.
For SError that interrupt a guest and are routed to EL2 the existing
behaviour is to inject an impdef SError into the guest.
Add code to handle RAS SError based on the ESR. For uncontained and
uncategorized errors arm64_is_fatal_ras_serror() will panic(), these
errors compromise the host too. All other error types are contained:
For the fatal errors the vCPU can't make progress, so we inject a virtual
SError. We ignore contained errors where we can make progress as if
we're lucky, we may not hit them again.
If only some of the CPUs support RAS the guest will see the cpufeature
sanitised version of the id registers, but we may still take RAS SError
on this CPU. Move the SError handling out of handle_exit() into a new
handler that runs before we can be preempted. This allows us to use
this_cpu_has_cap(), via arm64_is_ras_serror().
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: James Morse <james.morse@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Non-VHE systems take an exception to EL2 in order to world-switch into the
guest. When returning from the guest KVM implicitly restores the DAIF
flags when it returns to the kernel at EL1.
With VHE none of this exception-level jumping happens, so KVMs
world-switch code is exposed to the host kernel's DAIF values, and KVM
spills the guest-exit DAIF values back into the host kernel.
On entry to a guest we have Debug and SError exceptions unmasked, KVM
has switched VBAR but isn't prepared to handle these. On guest exit
Debug exceptions are left disabled once we return to the host and will
stay this way until we enter user space.
Add a helper to mask/unmask DAIF around VHE guests. The unmask can only
happen after the hosts VBAR value has been synchronised by the isb in
__vhe_hyp_call (via kvm_call_hyp()). Masking could be as late as
setting KVMs VBAR value, but is kept here for symmetry.
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: James Morse <james.morse@arm.com>
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
On x86, ARM and s390, struct kvm_vcpu_arch has a usercopy region
that is read and written by the KVM_GET/SET_CPUID2 ioctls (x86)
or KVM_GET/SET_ONE_REG (ARM/s390). Without whitelisting the area,
KVM is completely broken on those architectures with usercopy hardening
enabled.
For now, allow writing to the entire struct on all architectures.
The KVM tree will not refine this to an architecture-specific
subset of struct kvm_vcpu_arch.
Cc: kernel-hardening@lists.openwall.com
Cc: Kees Cook <keescook@chromium.org>
Cc: Christian Borntraeger <borntraeger@redhat.com>
Cc: Christoffer Dall <cdall@linaro.org>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Acked-by: Christoffer Dall <christoffer.dall@linaro.org>
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Acked-by: Christian Borntraeger <borntraeger@de.ibm.com>
Signed-off-by: Kees Cook <keescook@chromium.org>
Commit fa2a8445b1 incorrectly masks the index of the HYP ID map pgd
entry, causing a non-VHE kernel to hang during boot. This happens when
VA_BITS=48 and the ID map text is in 52-bit physical memory. In this
case we don't need an extra table level but need more entries in the
top-level table, so we need to map into hyp_pgd and need to use
__kvm_idmap_ptrs_per_pgd to mask in the extra bits. However,
__create_hyp_mappings currently masks by PTRS_PER_PGD instead.
Fix it so that we always use __kvm_idmap_ptrs_per_pgd for the HYP ID
map. This ensures that we use the larger mask for the top-level ID map
table when it has more entries. In all other cases, PTRS_PER_PGD is used
as normal.
Fixes: fa2a8445b1 ("arm64: allow ID map to be extended to 52 bits")
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Kristina Martsenko <kristina.martsenko@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
kvm_host_cpu_state is a per-cpu allocation made from kvm_arch_init()
used to store the host EL1 registers when KVM switches to a guest.
Make it easier for ASM to generate pointers into this per-cpu memory
by making it a static allocation.
Signed-off-by: James Morse <james.morse@arm.com>
Acked-by: Christoffer Dall <cdall@linaro.org>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Commit 3d1ad640f8 ("KVM: arm/arm64: Fix GICv4 ITS initialization
issues") moved the vgic_supports_direct_msis() check in vgic_v4_init().
However when vgic_v4_init is called from vgic_its_create(), the has_its
field is not yet set. Hence vgic_supports_direct_msis returns false and
vgic_v4_init does nothing.
The gic/its init sequence is a bit messy, so let's be specific about the
prerequisite checks in the various call paths instead of relying on a
common wrapper.
Fixes: 3d1ad640f8 ("KVM: arm/arm64: Fix GICv4 ITS initialization issues")
Reported-by: Eric Auger <eric.auger@redhat.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
KVM only supports PMD hugepages at stage 2 but doesn't actually check
that the provided hugepage memory pagesize is PMD_SIZE before populating
stage 2 entries.
In cases where the backing hugepage size is smaller than PMD_SIZE (such
as when using contiguous hugepages), KVM can end up creating stage 2
mappings that extend beyond the supplied memory.
Fix this by checking for the pagesize of userspace vma before creating
PMD hugepage at stage 2.
Fixes: 66b3923a1a ("arm64: hugetlb: add support for PTE contiguous bit")
Signed-off-by: Punit Agrawal <punit.agrawal@arm.com>
Cc: Marc Zyngier <marc.zyngier@arm.com>
Cc: <stable@vger.kernel.org> # v4.5+
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Now that we have per-CPU vectors, let's plug then in the KVM/arm64 code.
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
The vcpu parameter isn't used for anything, and gets in the way of
further cleanups. Let's get rid of it.
Acked-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
So far, we loose the Exec property whenever we take permission
faults, as we always reconstruct the PTE/PMD from scratch. This
can be counter productive as we can end-up with the following
fault sequence:
X -> RO -> ROX -> RW -> RWX
Instead, we can lookup the existing PTE/PMD and clear the XN bit in the
new entry if it was already cleared in the old one, leadig to a much
nicer fault sequence:
X -> ROX -> RWX
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
The only case where we actually need to perform a dcache maintenance
is when we map the page for the first time, and subsequent permission
faults do not require cache maintenance. Let's make it conditional
on not being a permission fault (and thus a translation fault).
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
We've so far eagerly invalidated the icache, no matter how
the page was faulted in (data or prefetch abort).
But we can easily track execution by setting the XN bits
in the S2 page tables, get the prefetch abort at HYP and
perform the icache invalidation at that time only.
As for most VMs, the instruction working set is pretty
small compared to the data set, this is likely to save
some traffic (specially as the invalidation is broadcast).
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
As we're about to introduce opportunistic invalidation of the icache,
let's split dcache and icache flushing.
Acked-by: Christoffer Dall <cdall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
kvm_hyp.h has an odd dependency on kvm_mmu.h, which makes the
opposite inclusion impossible. Let's start with breaking that
useless dependency.
Acked-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
We currently check if the VM has a userspace irqchip in several places
along the critical path, and if so, we do some work which is only
required for having an irqchip in userspace. This is unfortunate, as we
could avoid doing any work entirely, if we didn't have to support
irqchip in userspace.
Realizing the userspace irqchip on ARM is mostly a developer or hobby
feature, and is unlikely to be used in servers or other scenarios where
performance is a priority, we can use a refcounted static key to only
check the irqchip configuration when we have at least one VM that uses
an irqchip in userspace.
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
The VGIC can now support the life-cycle of mapped level-triggered
interrupts, and we no longer have to read back the timer state on every
exit from the VM if we had an asserted timer interrupt signal, because
the VGIC already knows if we hit the unlikely case where the guest
disables the timer without ACKing the virtual timer interrupt.
This means we rework a bit of the code to factor out the functionality
to snapshot the timer state from vtimer_save_state(), and we can reuse
this functionality in the sync path when we have an irqchip in
userspace, and also to support our implementation of the
get_input_level() function for the timer.
This change also means that we can no longer rely on the timer's view of
the interrupt line to set the active state, because we no longer
maintain this state for mapped interrupts when exiting from the guest.
Instead, we only set the active state if the virtual interrupt is
active, and otherwise we simply let the timer fire again and raise the
virtual interrupt from the ISR.
Reviewed-by: Eric Auger <eric.auger@redhat.com>
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
For mapped IRQs (with the HW bit set in the LR) we have to follow some
rules of the architecture. One of these rules is that VM must not be
allowed to deactivate a virtual interrupt with the HW bit set unless the
physical interrupt is also active.
This works fine when injecting mapped interrupts, because we leave it up
to the injector to either set EOImode==1 or manually set the active
state of the physical interrupt.
However, the guest can set virtual interrupt to be pending or active by
writing to the virtual distributor, which could lead to deactivating a
virtual interrupt with the HW bit set without the physical interrupt
being active.
We could set the physical interrupt to active whenever we are about to
enter the VM with a HW interrupt either pending or active, but that
would be really slow, especially on GICv2. So we take the long way
around and do the hard work when needed, which is expected to be
extremely rare.
When the VM sets the pending state for a HW interrupt on the virtual
distributor we set the active state on the physical distributor, because
the virtual interrupt can become active and then the guest can
deactivate it.
When the VM clears the pending state we also clear it on the physical
side, because the injector might otherwise raise the interrupt. We also
clear the physical active state when the virtual interrupt is not
active, since otherwise a SPEND/CPEND sequence from the guest would
prevent signaling of future interrupts.
Changing the state of mapped interrupts from userspace is not supported,
and it's expected that userspace unmaps devices from VFIO before
attempting to set the interrupt state, because the interrupt state is
driven by hardware.
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Reviewed-by: Eric Auger <eric.auger@redhat.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
The GIC sometimes need to sample the physical line of a mapped
interrupt. As we know this to be notoriously slow, provide a callback
function for devices (such as the timer) which can do this much faster
than talking to the distributor, for example by comparing a few
in-memory values. Fall back to the good old method of poking the
physical GIC if no callback is provided.
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Reviewed-by: Eric Auger <eric.auger@redhat.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Level-triggered mapped IRQs are special because we only observe rising
edges as input to the VGIC, and we don't set the EOI flag and therefore
are not told when the level goes down, so that we can re-queue a new
interrupt when the level goes up.
One way to solve this problem is to side-step the logic of the VGIC and
special case the validation in the injection path, but it has the
unfortunate drawback of having to peak into the physical GIC state
whenever we want to know if the interrupt is pending on the virtual
distributor.
Instead, we can maintain the current semantics of a level triggered
interrupt by sort of treating it as an edge-triggered interrupt,
following from the fact that we only observe an asserting edge. This
requires us to be a bit careful when populating the LRs and when folding
the state back in though:
* We lower the line level when populating the LR, so that when
subsequently observing an asserting edge, the VGIC will do the right
thing.
* If the guest never acked the interrupt while running (for example if
it had masked interrupts at the CPU level while running), we have
to preserve the pending state of the LR and move it back to the
line_level field of the struct irq when folding LR state.
If the guest never acked the interrupt while running, but changed the
device state and lowered the line (again with interrupts masked) then
we need to observe this change in the line_level.
Both of the above situations are solved by sampling the physical line
and set the line level when folding the LR back.
* Finally, if the guest never acked the interrupt while running and
sampling the line reveals that the device state has changed and the
line has been lowered, we must clear the physical active state, since
we will otherwise never be told when the interrupt becomes asserted
again.
This has the added benefit of making the timer optimization patches
(https://lists.cs.columbia.edu/pipermail/kvmarm/2017-July/026343.html) a
bit simpler, because the timer code doesn't have to clear the active
state on the sync anymore. It also potentially improves the performance
of the timer implementation because the GIC knows the state or the LR
and only needs to clear the
active state when the pending bit in the LR is still set, where the
timer has to always clear it when returning from running the guest with
an injected timer interrupt.
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Reviewed-by: Eric Auger <eric.auger@redhat.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
The timer logic was designed after a strict idea of modeling an
interrupt line level in software, meaning that only transitions in the
level need to be reported to the VGIC. This works well for the timer,
because the arch timer code is in complete control of the device and can
track the transitions of the line.
However, as we are about to support using the HW bit in the VGIC not
just for the timer, but also for VFIO which cannot track transitions of
the interrupt line, we have to decide on an interface between the GIC
and other subsystems for level triggered mapped interrupts, which both
the timer and VFIO can use.
VFIO only sees an asserting transition of the physical interrupt line,
and tells the VGIC when that happens. That means that part of the
interrupt flow is offloaded to the hardware.
To use the same interface for VFIO devices and the timer, we therefore
have to change the timer (we cannot change VFIO because it doesn't know
the details of the device it is assigning to a VM).
Luckily, changing the timer is simple, we just need to stop 'caching'
the line level, but instead let the VGIC know the state of the timer
every time there is a potential change in the line level, and when the
line level should be asserted from the timer ISR. The VGIC can ignore
extra notifications using its validate mechanism.
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Reviewed-by: Andre Przywara <andre.przywara@arm.com>
Reviewed-by: Julien Thierry <julien.thierry@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
We are about to distinguish between userspace accesses and mmio traps
for a number of the mmio handlers. When the requester vcpu is NULL, it
means we are handling a userspace access.
Factor out the functionality to get the request vcpu into its own
function, mostly so we have a common place to document the semantics of
the return value.
Also take the chance to move the functionality outside of holding a
spinlock and instead explicitly disable and enable preemption. This
supports PREEMPT_RT kernels as well.
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Reviewed-by: Andre Przywara <andre.przywara@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
The __this_cpu_read() and __this_cpu_write() functions already implement
checks for the required preemption levels when using
CONFIG_DEBUG_PREEMPT which gives you nice error messages and such.
Therefore there is no need to explicitly check this using a BUG_ON() in
the code (which we don't do for other uses of per cpu variables either).
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Reviewed-by: Andre Przywara <andre.przywara@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Fix ptr_ret.cocci warnings:
virt/kvm/arm/vgic/vgic-its.c:971:1-3: WARNING: PTR_ERR_OR_ZERO can be used
Use PTR_ERR_OR_ZERO rather than if(IS_ERR(...)) + PTR_ERR
Generated by: scripts/coccinelle/api/ptr_ret.cocci
Signed-off-by: Vasyl Gomonovych <gomonovych@gmail.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Currently, when using VA_BITS < 48, if the ID map text happens to be
placed in physical memory above VA_BITS, we increase the VA size (up to
48) and create a new table level, in order to map in the ID map text.
This is okay because the system always supports 48 bits of VA.
This patch extends the code such that if the system supports 52 bits of
VA, and the ID map text is placed that high up, then we increase the VA
size accordingly, up to 52.
One difference from the current implementation is that so far the
condition of VA_BITS < 48 has meant that the top level table is always
"full", with the maximum number of entries, and an extra table level is
always needed. Now, when VA_BITS = 48 (and using 64k pages), the top
level table is not full, and we simply need to increase the number of
entries in it, instead of creating a new table level.
Tested-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Reviewed-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Tested-by: Bob Picco <bob.picco@oracle.com>
Reviewed-by: Bob Picco <bob.picco@oracle.com>
Signed-off-by: Kristina Martsenko <kristina.martsenko@arm.com>
[catalin.marinas@arm.com: reduce arguments to __create_hyp_mappings()]
[catalin.marinas@arm.com: reworked/renamed __cpu_uses_extended_idmap_level()]
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
The top 4 bits of a 52-bit physical address are positioned at bits 2..5
in the TTBR registers. Introduce a couple of macros to move the bits
there, and change all TTBR writers to use them.
Leave TTBR0 PAN code unchanged, to avoid complicating it. A system with
52-bit PA will have PAN anyway (because it's ARMv8.1 or later), and a
system without 52-bit PA can only use up to 48-bit PAs. A later patch in
this series will add a kconfig dependency to ensure PAN is configured.
In addition, when using 52-bit PA there is a special alignment
requirement on the top-level table. We don't currently have any VA_BITS
configuration that would violate the requirement, but one could be added
in the future, so add a compile-time BUG_ON to check for it.
Tested-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Reviewed-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Tested-by: Bob Picco <bob.picco@oracle.com>
Reviewed-by: Bob Picco <bob.picco@oracle.com>
Signed-off-by: Kristina Martsenko <kristina.martsenko@arm.com>
[catalin.marinas@arm.com: added TTBR_BADD_MASK_52 comment]
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Fixes:
- A bug in our handling of SPE state for non-vhe systems
- A bug that causes hyp unmapping to go off limits and crash the system on
shutdown
- Three timer fixes that were introduced as part of the timer optimizations
for v4.15
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQEcBAABAgAGBQJaN5C1AAoJEEtpOizt6ddyodkH/jN1lquFVdYJBlEO6NXiumEk
GBH6x6CmuGyiUL3J0ffx5U51x0NN2jE89TpH5d1dsnQg77CCjTCxHtQ9suHne3n1
5/r0BzHZhaCbnbY0f7+E4EL0UOTpiAwUIqin1ufLPjs4XywcFyiLa7xiWkQkDmyr
WXKOdppTc4j/FUyqb1fQBmYY8pENR5jjfgdaeZ6C6o7e6aksXgrPWqXhV/6OSRLd
MOcxA06QfwTWy+MT1x4yo1hzCTjOEvvQXT2Va09moiNxT7hVWWvO/kwJVQL+YpWW
di7t4CLCvGYUsxM5t8fHHV7X+dfd2nvpJA46TWggPye7yMYkTYXFQu1LHwPIdDU=
=c5Kt
-----END PGP SIGNATURE-----
Merge tag 'kvm-arm-fixes-for-v4.15-2' of git://git.kernel.org/pub/scm/linux/kernel/git/kvmarm/kvmarm into HEAD
KVM/ARM Fixes for v4.15, Round 2
Fixes:
- A bug in our handling of SPE state for non-vhe systems
- A bug that causes hyp unmapping to go off limits and crash the system on
shutdown
- Three timer fixes that were introduced as part of the timer optimizations
for v4.15
Reported by syzkaller:
BUG: KASAN: stack-out-of-bounds in write_mmio+0x11e/0x270 [kvm]
Read of size 8 at addr ffff8803259df7f8 by task syz-executor/32298
CPU: 6 PID: 32298 Comm: syz-executor Tainted: G OE 4.15.0-rc2+ #18
Hardware name: LENOVO ThinkCentre M8500t-N000/SHARKBAY, BIOS FBKTC1AUS 02/16/2016
Call Trace:
dump_stack+0xab/0xe1
print_address_description+0x6b/0x290
kasan_report+0x28a/0x370
write_mmio+0x11e/0x270 [kvm]
emulator_read_write_onepage+0x311/0x600 [kvm]
emulator_read_write+0xef/0x240 [kvm]
emulator_fix_hypercall+0x105/0x150 [kvm]
em_hypercall+0x2b/0x80 [kvm]
x86_emulate_insn+0x2b1/0x1640 [kvm]
x86_emulate_instruction+0x39a/0xb90 [kvm]
handle_exception+0x1b4/0x4d0 [kvm_intel]
vcpu_enter_guest+0x15a0/0x2640 [kvm]
kvm_arch_vcpu_ioctl_run+0x549/0x7d0 [kvm]
kvm_vcpu_ioctl+0x479/0x880 [kvm]
do_vfs_ioctl+0x142/0x9a0
SyS_ioctl+0x74/0x80
entry_SYSCALL_64_fastpath+0x23/0x9a
The path of patched vmmcall will patch 3 bytes opcode 0F 01 C1(vmcall)
to the guest memory, however, write_mmio tracepoint always prints 8 bytes
through *(u64 *)val since kvm splits the mmio access into 8 bytes. This
leaks 5 bytes from the kernel stack (CVE-2017-17741). This patch fixes
it by just accessing the bytes which we operate on.
Before patch:
syz-executor-5567 [007] .... 51370.561696: kvm_mmio: mmio write len 3 gpa 0x10 val 0x1ffff10077c1010f
After patch:
syz-executor-13416 [002] .... 51302.299573: kvm_mmio: mmio write len 3 gpa 0x10 val 0xc1010f
Reported-by: Dmitry Vyukov <dvyukov@google.com>
Reviewed-by: Darren Kenny <darren.kenny@oracle.com>
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Tested-by: Marc Zyngier <marc.zyngier@arm.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Marc Zyngier <marc.zyngier@arm.com>
Cc: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Wanpeng Li <wanpeng.li@hotmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
When enabling the timer on the first run, we fail to ever restore the
state and mark it as loaded. That means, that in the initial entry to
the VCPU ioctl, unless we exit to userspace for some reason such as a
pending signal, if the guest programs a timer and blocks, we will wait
forever, because we never read back the hardware state (the loaded flag
is not set), and so we think the timer is disabled, and we never
schedule a background soft timer.
The end result? The VCPU blocks forever, and the only solution is to
kill the thread.
Fixes: 4a2c4da125 ("arm/arm64: KVM: Load the timer state when enabling the timer")
Reported-by: Marc Zyngier <marc.zyngier@arm.com>
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Tested-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
The recent timer rework was assuming that once the timer was disabled,
we should no longer see any interrupts from the timer. This assumption
turns out to not be true, and instead we have to handle the case when
the timer ISR runs even after the timer has been disabled.
This requires a couple of changes:
First, we should never overwrite the cached guest state of the timer
control register when the ISR runs, because KVM may have disabled its
timers when doing vcpu_put(), even though the guest still had the timer
enabled.
Second, we shouldn't assume that the timer is actually firing just
because we see an interrupt, but we should check the actual state of the
timer in the timer control register to understand if the hardware timer
is really firing or not.
We also add an ISB to vtimer_save_state() to ensure the timer is
actually disabled once we enable interrupts, which should clarify the
intention of the implementation, and reduce the risk of unwanted
interrupts.
Fixes: b103cc3f10 ("KVM: arm/arm64: Avoid timer save/restore in vcpu entry/exit")
Reported-by: Marc Zyngier <marc.zyngier@arm.com>
Reported-by: Jia He <hejianet@gmail.com>
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Tested-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
If we don't have a usable GIC, do not try to set the vcpu affinity
as this is guaranteed to fail.
Reported-by: Andre Przywara <andre.przywara@arm.com>
Reviewed-by: Andre Przywara <andre.przywara@arm.com>
Tested-by: Andre Przywara <andre.przywara@arm.com>
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
When we unmap the HYP memory, we try to be clever and unmap one
PGD at a time. If we start with a non-PGD aligned address and try
to unmap a whole PGD, things go horribly wrong in unmap_hyp_range
(addr and end can never match, and it all goes really badly as we
keep incrementing pgd and parse random memory as page tables...).
The obvious fix is to let unmap_hyp_range do what it does best,
which is to iterate over a range.
The size of the linear mapping, which begins at PAGE_OFFSET, can be
easily calculated by subtracting PAGE_OFFSET form high_memory, because
high_memory is defined as the linear map address of the last byte of
DRAM, plus one.
The size of the vmalloc region is given trivially by VMALLOC_END -
VMALLOC_START.
Cc: stable@vger.kernel.org
Reported-by: Andre Przywara <andre.przywara@arm.com>
Tested-by: Andre Przywara <andre.przywara@arm.com>
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
After the vcpu_load/vcpu_put pushdown, the handling of asynchronous VCPU
ioctl is already much clearer in that it is obvious that they bypass
vcpu_load and vcpu_put.
However, it is still not perfect in that the different state of the VCPU
mutex is still hidden in the caller. Separate those ioctls into a new
function kvm_arch_vcpu_async_ioctl that returns -ENOIOCTLCMD for more
"traditional" synchronous ioctls.
Cc: James Hogan <jhogan@kernel.org>
Cc: Paul Mackerras <paulus@ozlabs.org>
Cc: Christian Borntraeger <borntraeger@de.ibm.com>
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Reviewed-by: Cornelia Huck <cohuck@redhat.com>
Suggested-by: Cornelia Huck <cohuck@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Move the calls to vcpu_load() and vcpu_put() in to the architecture
specific implementations of kvm_arch_vcpu_ioctl() which dispatches
further architecture-specific ioctls on to other functions.
Some architectures support asynchronous vcpu ioctls which cannot call
vcpu_load() or take the vcpu->mutex, because that would prevent
concurrent execution with a running VCPU, which is the intended purpose
of these ioctls, for example because they inject interrupts.
We repeat the separate checks for these specifics in the architecture
code for MIPS, S390 and PPC, and avoid taking the vcpu->mutex and
calling vcpu_load for these ioctls.
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Move vcpu_load() and vcpu_put() into the architecture specific
implementations of kvm_arch_vcpu_ioctl_set_fpu().
Reviewed-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Reviewed-by: Cornelia Huck <cohuck@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Move vcpu_load() and vcpu_put() into the architecture specific
implementations of kvm_arch_vcpu_ioctl_get_fpu().
Reviewed-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Reviewed-by: Cornelia Huck <cohuck@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Move vcpu_load() and vcpu_put() into the architecture specific
implementations of kvm_arch_vcpu_ioctl_set_guest_debug().
Reviewed-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Reviewed-by: Cornelia Huck <cohuck@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Move vcpu_load() and vcpu_put() into the architecture specific
implementations of kvm_arch_vcpu_ioctl_translate().
Reviewed-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Reviewed-by: Cornelia Huck <cohuck@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Move vcpu_load() and vcpu_put() into the architecture specific
implementations of kvm_arch_vcpu_ioctl_set_mpstate().
Reviewed-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Reviewed-by: Cornelia Huck <cohuck@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Move vcpu_load() and vcpu_put() into the architecture specific
implementations of kvm_arch_vcpu_ioctl_get_mpstate().
Reviewed-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Reviewed-by: Cornelia Huck <cohuck@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Move vcpu_load() and vcpu_put() into the architecture specific
implementations of kvm_arch_vcpu_ioctl_set_sregs().
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Reviewed-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Cornelia Huck <cohuck@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Move vcpu_load() and vcpu_put() into the architecture specific
implementations of kvm_arch_vcpu_ioctl_get_sregs().
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Reviewed-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Cornelia Huck <cohuck@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Move vcpu_load() and vcpu_put() into the architecture specific
implementations of kvm_arch_vcpu_ioctl_set_regs().
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Reviewed-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Cornelia Huck <cohuck@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Move vcpu_load() and vcpu_put() into the architecture specific
implementations of kvm_arch_vcpu_ioctl_get_regs().
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Reviewed-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Cornelia Huck <cohuck@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Move vcpu_load() and vcpu_put() into the architecture specific
implementations of kvm_arch_vcpu_ioctl_run().
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Reviewed-by: Christian Borntraeger <borntraeger@de.ibm.com> # s390 parts
Reviewed-by: Cornelia Huck <cohuck@redhat.com>
[Rebased. - Paolo]
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
In preparation for moving calls to vcpu_load() and vcpu_put() into the
architecture specific implementations of the KVM vcpu ioctls, move the
calls in the main kvm_vcpu_ioctl() dispatcher function to each case
of the ioctl select statement. This allows us to move the vcpu_load()
and vcpu_put() calls into architecture specific implementations of vcpu
ioctls, one by one.
Reviewed-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Reviewed-by: Cornelia Huck <cohuck@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
As we're about to call vcpu_load() from architecture-specific
implementations of the KVM vcpu ioctls, but yet we access data
structures protected by the vcpu->mutex in the generic code, factor
this logic out from vcpu_load().
x86 is the only architecture which calls vcpu_load() outside of the main
vcpu ioctl function, and these calls will no longer take the vcpu mutex
following this patch. However, with the exception of
kvm_arch_vcpu_postcreate (see below), the callers are either in the
creation or destruction path of the VCPU, which means there cannot be
any concurrent access to the data structure, because the file descriptor
is not yet accessible, or is already gone.
kvm_arch_vcpu_postcreate makes the newly created vcpu potentially
accessible by other in-kernel threads through the kvm->vcpus array, and
we therefore take the vcpu mutex in this case directly.
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Reviewed-by: Cornelia Huck <cohuck@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Add a jump target so that a bit of exception handling can be better reused
at the end of this function.
This issue was detected by using the Coccinelle software.
Signed-off-by: Markus Elfring <elfring@users.sourceforge.net>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
Implementation of the unpinned APIC page didn't update the VMCS address
cache when invalidation was done through range mmu notifiers.
This became a problem when the page notifier was removed.
Re-introduce the arch-specific helper and call it from ...range_start.
Reported-by: Fabian Grünbichler <f.gruenbichler@proxmox.com>
Fixes: 38b9917350 ("kvm: vmx: Implement set_apic_access_page_addr")
Fixes: 369ea8242c ("mm/rmap: update to new mmu_notifier semantic v2")
Cc: <stable@vger.kernel.org>
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Reviewed-by: Andrea Arcangeli <aarcange@redhat.com>
Tested-by: Wanpeng Li <wanpeng.li@hotmail.com>
Tested-by: Fabian Grünbichler <f.gruenbichler@proxmox.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
Fixes:
- A number of issues in the vgic discovered using SMATCH
- A bit one-off calculation in out stage base address mask (32-bit and
64-bit)
- Fixes to single-step debugging instructions that trap for other
reasons such as MMMIO aborts
- Printing unavailable hyp mode as error
- Potential spinlock deadlock in the vgic
- Avoid calling vgic vcpu free more than once
- Broken bit calculation for big endian systems
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQEcBAABAgAGBQJaJU3VAAoJEEtpOizt6ddyvmAH/jw+UAzN8lrcbfsYkyyulVDW
yTe+7PYMYEODQlY31R/IAlVQB23aR2KkGyMlKjb9IM6mcB13A7pUVTrFfFGMGzln
V75X20EV8CKcUBgdy8NRr9gsFwtDRHei0RIuQi8bkF0cV39QSiBgf36DW0oMCPFW
aqUP5UiFMlMr4UqpWmS+8W4E0OBqcqaJAJXIsvHoB0Wqv4j9AUTvLqoDEpQSVgOr
LzsaUc+K+zB2VOtEXEVSLZn6N4CRMmMUh3xfspC2Qv/zSLhHgl9QlOBjIpX6UYDp
a+md5qa1hMajKswGGZB7DF/yLUb76PWFcepWOn5F3DXSv9YLaxzY5DvrNSkl46w=
=tTiS
-----END PGP SIGNATURE-----
Merge tag 'kvm-arm-fixes-for-v4.15-1' of git://git.kernel.org/pub/scm/linux/kernel/git/kvmarm/kvmarm
KVM/ARM Fixes for v4.15.
Fixes:
- A number of issues in the vgic discovered using SMATCH
- A bit one-off calculation in out stage base address mask (32-bit and
64-bit)
- Fixes to single-step debugging instructions that trap for other
reasons such as MMMIO aborts
- Printing unavailable hyp mode as error
- Potential spinlock deadlock in the vgic
- Avoid calling vgic vcpu free more than once
- Broken bit calculation for big endian systems
We are incorrectly rearranging 32-bit words inside a 64-bit typed value
for big endian systems, which would result in never marking a virtual
interrupt as inactive on big endian systems (assuming 32 or fewer LRs on
the hardware). Fix this by not doing any word order manipulation for
the typed values.
Cc: <stable@vger.kernel.org>
Acked-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
kvm_vgic_vcpu_destroy already gets called from kvm_vgic_destroy for
each vcpu, so we don't have to call it from kvm_arch_vcpu_free.
Additionally the other architectures set kvm->online_vcpus to zero
after freeing them. We might as well do that for ARM too.
Signed-off-by: Andrew Jones <drjones@redhat.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
vgic_set_owner acquires the irq lock without disabling interrupts,
resulting in a lockdep splat (an interrupt could fire and result
in the same lock being taken if the same virtual irq is to be
injected).
In practice, it is almost impossible to trigger this bug, but
better safe than sorry. Convert the lock acquisition to a
spin_lock_irqsave() and keep lockdep happy.
Reported-by: James Morse <james.morse@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
* PPC bugfix: HPT guests on a POWER9 radix host
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2.0.22 (GNU/Linux)
iQEcBAABAgAGBQJaICi1AAoJEL/70l94x66DjvEIAIML/e9YX1YrJZi0rsB9cbm0
Le3o5b3wKxPrlZdnpOZQ2mVWubUQdiHMPGX6BkpgyiJWUchnbj5ql1gUf5S0i3jk
TOk6nae6DU94xBuboeqZJlmx2VfPY/fqzLWsX3HFHpnzRl4XvXL5o7cWguIxVcVO
yU6bPgbAXyXSBennLWZxC3aQ2Ojikr3uxZQpUZTAPOW5hFINpCKCpqJBMxsb67wq
rwI0cJhRl92mHpbe8qeNJhavqY5eviy9iPUaZrOW9P4yw1uqjTAjgsUc1ydiaZSV
rOHeKBOgVfY/KBaNJKyKySfuL1MJ+DLcQqm9RlGpKNpFIeB0vvSf0gtmmqIAXIk=
=kh2y
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull KVM fixes from Paolo Bonzini:
- x86 bugfixes: APIC, nested virtualization, IOAPIC
- PPC bugfix: HPT guests on a POWER9 radix host
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (26 commits)
KVM: Let KVM_SET_SIGNAL_MASK work as advertised
KVM: VMX: Fix vmx->nested freeing when no SMI handler
KVM: VMX: Fix rflags cache during vCPU reset
KVM: X86: Fix softlockup when get the current kvmclock
KVM: lapic: Fixup LDR on load in x2apic
KVM: lapic: Split out x2apic ldr calculation
KVM: PPC: Book3S HV: Fix migration and HPT resizing of HPT guests on radix hosts
KVM: vmx: use X86_CR4_UMIP and X86_FEATURE_UMIP
KVM: x86: Fix CPUID function for word 6 (80000001_ECX)
KVM: nVMX: Fix vmx_check_nested_events() return value in case an event was reinjected to L2
KVM: x86: ioapic: Preserve read-only values in the redirection table
KVM: x86: ioapic: Clear Remote IRR when entry is switched to edge-triggered
KVM: x86: ioapic: Remove redundant check for Remote IRR in ioapic_set_irq
KVM: x86: ioapic: Don't fire level irq when Remote IRR set
KVM: x86: ioapic: Fix level-triggered EOI and IOAPIC reconfigure race
KVM: x86: inject exceptions produced by x86_decode_insn
KVM: x86: Allow suppressing prints on RDMSR/WRMSR of unhandled MSRs
KVM: x86: fix em_fxstor() sleeping while in atomic
KVM: nVMX: Fix mmu context after VMLAUNCH/VMRESUME failure
KVM: nVMX: Validate the IA32_BNDCFGS on nested VM-entry
...
Since it is perfectly legal to run the kernel at EL1, it is not
actually an error if HYP mode is not available when attempting to
initialize KVM, given that KVM support cannot be built as a module.
So demote the kvm_err() to kvm_info(), which prevents the error from
appearing on an otherwise 'quiet' console.
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Acked-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
The timer optimization patches inadvertendly changed the logic to always
load the timer state as if we have a vgic, even if we don't have a vgic.
Fix this by doing the usual irqchip_in_kernel() check and call the
appropriate load function.
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
The system state of KVM when using userspace emulation is not complete
until we return into KVM_RUN. To handle mmio related updates we wait
until they have been committed and then schedule our KVM_EXIT_DEBUG.
The kvm_arm_handle_step_debug() helper tells us if we need to return
and sets up the exit_reason for us.
Signed-off-by: Alex Bennée <alex.bennee@linaro.org>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Before performing an unmap, let's check that what we have was
really mapped the first place.
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
We miss a test against NULL after allocation.
Fixes: 6d03a68f80 ("KVM: arm64: vgic-its: Turn device_id validation into generic ID validation")
Cc: stable@vger.kernel.org # 4.8
Reported-by: AKASHI Takahiro <takahiro.akashi@linaro.org>
Acked-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
The current pending table parsing code assumes that we keep the
previous read of the pending bits, but keep that variable in
the current block, making sure it is discarded on each loop.
We end-up using whatever is on the stack. Who knows, it might
just be the right thing...
Fixes: 33d3bc9556 ("KVM: arm64: vgic-its: Read initial LPI pending table")
Cc: stable@vger.kernel.org # 4.8
Reported-by: AKASHI Takahiro <takahiro.akashi@linaro.org>
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
The current pending table parsing code assumes that we keep the
previous read of the pending bits, but keep that variable in
the current block, making sure it is discarded on each loop.
We end-up using whatever is on the stack. Who knows, it might
just be the right thing...
Fixes: 280771252c ("KVM: arm64: vgic-v3: KVM_DEV_ARM_VGIC_SAVE_PENDING_TABLES")
Cc: stable@vger.kernel.org # 4.12
Reported-by: AKASHI Takahiro <takahiro.akashi@linaro.org>
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Using the size of the structure we're allocating is a good idea
and avoids any surprise... In this case, we're happilly confusing
kvm_kernel_irq_routing_entry and kvm_irq_routing_entry...
Fixes: 95b110ab9a ("KVM: arm/arm64: Enable irqchip routing")
Cc: stable@vger.kernel.org # 4.8
Reported-by: AKASHI Takahiro <takahiro.akashi@linaro.org>
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Commit f39d16cbab ("KVM: arm/arm64: Guard kvm_vgic_map_is_active against
!vgic_initialized") introduced a check whether the VGIC has been
initialized before accessing the spinlock and the VGIC data structure.
However the vgic_get_irq() call in the variable declaration sneaked
through the net, so lets make sure that this also gets called only after
we actually allocated the arrays this function accesses.
Reviewed-by: Eric Auger <eric.auger@redhat.com>
Signed-off-by: Andre Przywara <andre.przywara@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
After the timer optimization rework we accidentally end up calling
physical timer enable/disable functions on VHE systems, which is neither
needed nor correct, since the CNTHCTL_EL2 register format is
different when HCR_EL2.E2H is set.
The CNTHCTL_EL2 is initialized when CPUs become online in
kvm_timer_init_vhe() and we don't have to call these functions on VHE
systems, which also allows us to inline the non-VHE functionality.
Reported-by: Jintack Lim <jintack@cs.columbia.edu>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
__poll_t is also used as wait key in some waitqueues.
Verify that wait_..._poll() gets __poll_t as key and
provide a helper for wakeup functions to get back to
that __poll_t value.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
KVM API says for the signal mask you set via KVM_SET_SIGNAL_MASK, that
"any unblocked signal received [...] will cause KVM_RUN to return with
-EINTR" and that "the signal will only be delivered if not blocked by
the original signal mask".
This, however, is only true, when the calling task has a signal handler
registered for a signal. If not, signal evaluation is short-circuited for
SIG_IGN and SIG_DFL, and the signal is either ignored without KVM_RUN
returning or the whole process is terminated.
Make KVM_SET_SIGNAL_MASK behave as advertised by utilizing logic similar
to that in do_sigtimedwait() to avoid short-circuiting of signals.
Signed-off-by: Jan H. Schönherr <jschoenh@amazon.de>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
* GICv4 Support for KVM/ARM
All ARM patches were in next-20171113. I have postponed most x86 fixes
to 4.15-rc2 and UMIP to 4.16, but there are fixes that would be good to
have already in 4.15-rc1:
* re-introduce support for CPUs without virtual NMI (cc stable)
and allow testing of KVM without virtual NMI on available CPUs
* fix long-standing performance issues with assigned devices on AMD
(cc stable)
-----BEGIN PGP SIGNATURE-----
iQEcBAABCAAGBQJaGECGAAoJEED/6hsPKofoT08H/AuaMi8qprw2BNpVBbQxWRWM
O4WPk7yz1zB4SkdRNrPzCMBy+qoK7FcV/3BpsFPuQS4NHQ+GvQ87N/7tUbouVyl6
CuPGJMCnNzMQ8GvLOJgB1/sz+uW5W/ph3y8kv1UP3/hNCZU4fqukoUeLroOH/wr6
N3bSY8bok7ycdpgybHmbUHY0Yk4IUk3m0RXWY9U5Jl3sjoNEwCw3pWdrq9Swfs/6
W8QJRdE4Z6KHPqW5sRnPj24IpoUpCxu+IT+gPuGlDUCN/h3sfhYvMS6GgDrCjiiZ
2z1TwaIAo+wGjlBQzGmyTUjUPjbGew+f3ixBlf2BtmNutX+tX2qsVfl1NKXYTto=
=GGge
-----END PGP SIGNATURE-----
Merge tag 'kvm-4.15-2' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull KVM updates from Radim Krčmář:
"Trimmed second batch of KVM changes for Linux 4.15:
- GICv4 Support for KVM/ARM
- re-introduce support for CPUs without virtual NMI (cc stable) and
allow testing of KVM without virtual NMI on available CPUs
- fix long-standing performance issues with assigned devices on AMD
(cc stable)"
* tag 'kvm-4.15-2' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (30 commits)
kvm: vmx: Allow disabling virtual NMI support
kvm: vmx: Reinstate support for CPUs without virtual NMI
KVM: SVM: obey guest PAT
KVM: arm/arm64: Don't queue VLPIs on INV/INVALL
KVM: arm/arm64: Fix GICv4 ITS initialization issues
KVM: arm/arm64: GICv4: Theory of operations
KVM: arm/arm64: GICv4: Enable VLPI support
KVM: arm/arm64: GICv4: Prevent userspace from changing doorbell affinity
KVM: arm/arm64: GICv4: Prevent a VM using GICv4 from being saved
KVM: arm/arm64: GICv4: Enable virtual cpuif if VLPIs can be delivered
KVM: arm/arm64: GICv4: Hook vPE scheduling into vgic flush/sync
KVM: arm/arm64: GICv4: Use the doorbell interrupt as an unblocking source
KVM: arm/arm64: GICv4: Add doorbell interrupt handling
KVM: arm/arm64: GICv4: Use pending_last as a scheduling hint
KVM: arm/arm64: GICv4: Handle INVALL applied to a vPE
KVM: arm/arm64: GICv4: Propagate property updates to VLPIs
KVM: arm/arm64: GICv4: Handle MOVALL applied to a vPE
KVM: arm/arm64: GICv4: Handle CLEAR applied to a VLPI
KVM: arm/arm64: GICv4: Propagate affinity changes to the physical ITS
KVM: arm/arm64: GICv4: Unmap VLPI when freeing an LPI
...
Pull compat and uaccess updates from Al Viro:
- {get,put}_compat_sigset() series
- assorted compat ioctl stuff
- more set_fs() elimination
- a few more timespec64 conversions
- several removals of pointless access_ok() in places where it was
followed only by non-__ variants of primitives
* 'misc.compat' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs: (24 commits)
coredump: call do_unlinkat directly instead of sys_unlink
fs: expose do_unlinkat for built-in callers
ext4: take handling of EXT4_IOC_GROUP_ADD into a helper, get rid of set_fs()
ipmi: get rid of pointless access_ok()
pi433: sanitize ioctl
cxlflash: get rid of pointless access_ok()
mtdchar: get rid of pointless access_ok()
r128: switch compat ioctls to drm_ioctl_kernel()
selection: get rid of field-by-field copyin
VT_RESIZEX: get rid of field-by-field copyin
i2c compat ioctls: move to ->compat_ioctl()
sched_rr_get_interval(): move compat to native, get rid of set_fs()
mips: switch to {get,put}_compat_sigset()
sparc: switch to {get,put}_compat_sigset()
s390: switch to {get,put}_compat_sigset()
ppc: switch to {get,put}_compat_sigset()
parisc: switch to {get,put}_compat_sigset()
get_compat_sigset()
get rid of {get,put}_compat_itimerspec()
io_getevents: Use timespec64 to represent timeouts
...
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQEcBAABAgAGBQJaBYxhAAoJEEtpOizt6ddyOc4H/1qADSdnZFVVE5v15Y+E8HLv
EOXAo/yYJg26fY/TBIXo7gxSZFCd0Ah703aucPGTRFyOb8t0VqIvI07rS1u4sKPp
mxfidYIZwLMibgno8NBdWB2mFeXrNlWTmwNt/IoO0iMn7IGqQZ/FZdf3GmWEVEsG
CU/DrQRXArJqS77NuZtkhhZOKBxB0lQNv52DkVgy/QlcBagAI14hbezkLQAco4oT
NUC4GyXn9yHzpTfhuQXv5hLd4xCqg9e51OgYNSL9oC/JXSByd7edQuqpd4fmnG4Y
qoDPJ11wmkuUKEDaGbC7nZWIaiVc/TfJy2Hwj3bUVwQFbopCeYhQqCDUSKftncA=
=o4u7
-----END PGP SIGNATURE-----
Merge tag 'kvm-arm-gicv4-for-v4.15' of git://git.kernel.org/pub/scm/linux/kernel/git/kvmarm/kvmarm into HEAD
GICv4 Support for KVM/ARM for v4.15
Common:
- Python 3 support in kvm_stat
- Accounting of slabs to kmemcg
ARM:
- Optimized arch timer handling for KVM/ARM
- Improvements to the VGIC ITS code and introduction of an ITS reset
ioctl
- Unification of the 32-bit fault injection logic
- More exact external abort matching logic
PPC:
- Support for running hashed page table (HPT) MMU mode on a host that
is using the radix MMU mode; single threaded mode on POWER 9 is
added as a pre-requisite
- Resolution of merge conflicts with the last second 4.14 HPT fixes
- Fixes and cleanups
s390:
- Some initial preparation patches for exitless interrupts and crypto
- New capability for AIS migration
- Fixes
x86:
- Improved emulation of LAPIC timer mode changes, MCi_STATUS MSRs, and
after-reset state
- Refined dependencies for VMX features
- Fixes for nested SMI injection
- A lot of cleanups
-----BEGIN PGP SIGNATURE-----
iQEcBAABCAAGBQJaDayXAAoJEED/6hsPKofo/3UH/3HvlcHt+ADTkCU1/iiKAs+i
0zngIOXIxgHDnV0ww6bV+Znww0BzTYgKCAXX76z603jdpDwG/pzQQcbLDF5ZoJnD
sQtF10gZinWaRsHlfbLqjrHGL2pGDHO1UKBKLJ0bAIyORPZBxs7i+VmrY/blnr9c
0wsybJ8RbvwAxjsDL5jeX/z4NehPupmKUc4Lf0eZdSHwVOf9sjn+MP6jJ0r2JcIb
D+zddPBiLStzN97t4gZpQsrlj3LKrDS+6hY+1TjSvlh+yHKFVFh58VhLm4DuDeb5
bYOAlWJ/gAWEzfvr5Ld+Nd7SqWWn/14logPkQ4gcU4BI/neAOzk4c6hJfCHl1nk=
=593n
-----END PGP SIGNATURE-----
Merge tag 'kvm-4.15-1' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull KVM updates from Radim Krčmář:
"First batch of KVM changes for 4.15
Common:
- Python 3 support in kvm_stat
- Accounting of slabs to kmemcg
ARM:
- Optimized arch timer handling for KVM/ARM
- Improvements to the VGIC ITS code and introduction of an ITS reset
ioctl
- Unification of the 32-bit fault injection logic
- More exact external abort matching logic
PPC:
- Support for running hashed page table (HPT) MMU mode on a host that
is using the radix MMU mode; single threaded mode on POWER 9 is
added as a pre-requisite
- Resolution of merge conflicts with the last second 4.14 HPT fixes
- Fixes and cleanups
s390:
- Some initial preparation patches for exitless interrupts and crypto
- New capability for AIS migration
- Fixes
x86:
- Improved emulation of LAPIC timer mode changes, MCi_STATUS MSRs,
and after-reset state
- Refined dependencies for VMX features
- Fixes for nested SMI injection
- A lot of cleanups"
* tag 'kvm-4.15-1' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (89 commits)
KVM: s390: provide a capability for AIS state migration
KVM: s390: clear_io_irq() requests are not expected for adapter interrupts
KVM: s390: abstract conversion between isc and enum irq_types
KVM: s390: vsie: use common code functions for pinning
KVM: s390: SIE considerations for AP Queue virtualization
KVM: s390: document memory ordering for kvm_s390_vcpu_wakeup
KVM: PPC: Book3S HV: Cosmetic post-merge cleanups
KVM: arm/arm64: fix the incompatible matching for external abort
KVM: arm/arm64: Unify 32bit fault injection
KVM: arm/arm64: vgic-its: Implement KVM_DEV_ARM_ITS_CTRL_RESET
KVM: arm/arm64: Document KVM_DEV_ARM_ITS_CTRL_RESET
KVM: arm/arm64: vgic-its: Free caches when GITS_BASER Valid bit is cleared
KVM: arm/arm64: vgic-its: New helper functions to free the caches
KVM: arm/arm64: vgic-its: Remove kvm_its_unmap_device
arm/arm64: KVM: Load the timer state when enabling the timer
KVM: arm/arm64: Rework kvm_timer_should_fire
KVM: arm/arm64: Get rid of kvm_timer_flush_hwstate
KVM: arm/arm64: Avoid phys timer emulation in vcpu entry/exit
KVM: arm/arm64: Move phys_timer_emulate function
KVM: arm/arm64: Use kvm_arm_timer_set/get_reg for guest register traps
...
- Some initial preparation patches for exitless interrupts and crypto
- New capability for AIS migration
- Fixes
- merge of the sthyi tree from the base s390 team, which moves the sthyi
out of KVM into a shared function also for non-KVM
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2.0.22 (GNU/Linux)
iQIcBAABAgAGBQJaBHkvAAoJEBF7vIC1phx84nwP/AvR7yRRqdeWvpZ+T9hiwscR
p7AY5jnbVun7QtqR3yK+Z0IuZzU3gWheDNB4ZPegLLgzxN+ge4C45cZbpKJZUYXf
Fef8kdXs7Agi6oRU+xXKgYipot4g3VBdRGrfktUMiYD/LC7WpDlJybF0UW45FCKk
ECBumYXQ+6Jo5pplF3VH8XUwZb1IK3+//WaMLOToYyYuijCpcE0KfoKqCMrc39CU
GMQVq87IXnhKFeIAt4upiaXXHK/0mGBHdkOG6ILwdNMDfCDiBgynU4HALz+wf/IE
cvukxsTbHWDcgHMznBgDmnmb4DiWqahtatqGpXEpzzabgjIfkHKagYlaRb+VwwNm
vIDhm18Wq66nnmrNkpwbn1SB2OoOh7ug+YLrc3XTnGnSWWfZGNmrgOj7K9xTE9yZ
VmQReOT70KB/DYqZDVAlgNFqWA6MyQxcdxKDaLAqGWt2TN/uXrbdBd8Aa4AF1mtb
V8aFchFPauuj60cqG91NnKVVdVQ1qB+ZG7AzKo9BPa7iCH8IW5UlPL4FXz3lKdDu
/KWfL/nUFu8hPSmZijdHRKwdekXHfadHXsvGLVSsLxe/DYWaWTAgnwWceUAXUnvK
ZUDVKUT9S30dIZwbxSLoou03Bu8WZVefxd6/wOi3g2BYRrqZN+w0lhkWIQwKdMo4
VUP8fkMR9p6cAnitHh3i
=9mW5
-----END PGP SIGNATURE-----
Merge tag 'kvm-s390-next-4.15-1' of git://git.kernel.org/pub/scm/linux/kernel/git/kvms390/linux
KVM: s390: fixes and improvements for 4.15
- Some initial preparation patches for exitless interrupts and crypto
- New capability for AIS migration
- Fixes
- merge of the sthyi tree from the base s390 team, which moves the sthyi
out of KVM into a shared function also for non-KVM
Plenty of acronym soup here:
- Initial support for the Scalable Vector Extension (SVE)
- Improved handling for SError interrupts (required to handle RAS events)
- Enable GCC support for 128-bit integer types
- Remove kernel text addresses from backtraces and register dumps
- Use of WFE to implement long delay()s
- ACPI IORT updates from Lorenzo Pieralisi
- Perf PMU driver for the Statistical Profiling Extension (SPE)
- Perf PMU driver for Hisilicon's system PMUs
- Misc cleanups and non-critical fixes
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQEcBAABCgAGBQJaCcLqAAoJELescNyEwWM0JREH/2FbmD/khGzEtP8LW+o9D8iV
TBM02uWQxS1bbO1pV2vb+512YQO+iWfeQwJH9Jv2FZcrMvFv7uGRnYgAnJuXNGrl
W+LL6OhN22A24LSawC437RU3Xe7GqrtONIY/yLeJBPablfcDGzPK1eHRA0pUzcyX
VlyDruSHWX44VGBPV6JRd3x0vxpV8syeKOjbRvopRfn3Nwkbd76V3YSfEgwoTG5W
ET1sOnXLmHHdeifn/l1Am5FX1FYstpcd7usUTJ4Oto8y7e09tw3bGJCD0aMJ3vow
v1pCUWohEw7fHqoPc9rTrc1QEnkdML4vjJvMPUzwyTfPrN+7uEuMIEeJierW+qE=
=0qrg
-----END PGP SIGNATURE-----
Merge tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux
Pull arm64 updates from Will Deacon:
"The big highlight is support for the Scalable Vector Extension (SVE)
which required extensive ABI work to ensure we don't break existing
applications by blowing away their signal stack with the rather large
new vector context (<= 2 kbit per vector register). There's further
work to be done optimising things like exception return, but the ABI
is solid now.
Much of the line count comes from some new PMU drivers we have, but
they're pretty self-contained and I suspect we'll have more of them in
future.
Plenty of acronym soup here:
- initial support for the Scalable Vector Extension (SVE)
- improved handling for SError interrupts (required to handle RAS
events)
- enable GCC support for 128-bit integer types
- remove kernel text addresses from backtraces and register dumps
- use of WFE to implement long delay()s
- ACPI IORT updates from Lorenzo Pieralisi
- perf PMU driver for the Statistical Profiling Extension (SPE)
- perf PMU driver for Hisilicon's system PMUs
- misc cleanups and non-critical fixes"
* tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux: (97 commits)
arm64: Make ARMV8_DEPRECATED depend on SYSCTL
arm64: Implement __lshrti3 library function
arm64: support __int128 on gcc 5+
arm64/sve: Add documentation
arm64/sve: Detect SVE and activate runtime support
arm64/sve: KVM: Hide SVE from CPU features exposed to guests
arm64/sve: KVM: Treat guest SVE use as undefined instruction execution
arm64/sve: KVM: Prevent guests from using SVE
arm64/sve: Add sysctl to set the default vector length for new processes
arm64/sve: Add prctl controls for userspace vector length management
arm64/sve: ptrace and ELF coredump support
arm64/sve: Preserve SVE registers around EFI runtime service calls
arm64/sve: Preserve SVE registers around kernel-mode NEON use
arm64/sve: Probe SVE capabilities and usable vector lengths
arm64: cpufeature: Move sys_caps_initialised declarations
arm64/sve: Backend logic for setting the vector length
arm64/sve: Signal handling support
arm64/sve: Support vector length resetting for new processes
arm64/sve: Core task context handling
arm64/sve: Low-level CPU setup
...
Since VLPIs are injected directly by the hardware there's no need to
mark these as pending in software and queue them on the AP list.
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
We should only try to initialize GICv4 data structures on a GICv4
capable system. Move the vgic_supports_direct_msis() check inito
vgic_v4_init() so that any KVM VGIC initialization path does not fail
on non-GICv4 systems.
Also be slightly more strict in the checking of the return value in
vgic_its_create, and only error out on negative return values from the
vgic_v4_init() function. This is important because the kvm device code
only treats negative values as errors and only cleans up in this case.
Errornously treating a positive return value as an error from the
vgic_v4_init() function can lead to NULL pointer dereferences, as has
recently been observed.
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Yet another braindump so I can free some cells...
Acked-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
All it takes is the has_v4 flag to be set in gic_kvm_info
as well as "kvm-arm.vgic_v4_enable=1" being passed on the
command line for GICv4 to be enabled in KVM.
Acked-by: Christoffer Dall <cdall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
We so far allocate the doorbell interrupts without taking any
special measure regarding the affinity of these interrupts. We
simply move them around as required when the vcpu gets scheduled
on a different CPU.
But that's counting without userspace (and the evil irqbalance) that
can try and move the VPE interrupt around, causing the ITS code
to emit VMOVP commands and remap the doorbell to another redistributor.
Worse, this can happen while the vcpu is running, causing all kind
of trouble if the VPE is already resident, and we end-up in UNPRED
territory.
So let's take a definitive action and prevent userspace from messing
with us. This is just a matter of adding IRQ_NO_BALANCING to the
set of flags we already have, letting the kernel in sole control
of the affinity.
Acked-by: Christoffer Dall <christoffer.dall@linaro.org>
Reviewed-by: Eric Auger <eric.auger@redhat.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
The GICv4 architecture doesn't make it easy for save/restore to
work, as it doesn't give any guarantee that the pending state
is written into the pending table.
So let's not take any chance, and let's return an error if
we encounter any LPI that has the HW bit set. In order for
userspace to distinguish this error from other failure modes,
use -EACCES as an error code.
Reviewed-by: Eric Auger <eric.auger@redhat.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
In order for VLPIs to be delivered to the guest, we must make sure that
the virtual cpuif is always enabled, irrespective of the presence of
virtual interrupt in the LRs.
Acked-by: Christoffer Dall <cdall@linaro.org>
Reviewed-by: Eric Auger <eric.auger@redhat.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
The redistributor needs to be told which vPE is about to be run,
and tells us whether there is any pending VLPI on exit.
Let's add the scheduling calls to the vgic flush/sync functions,
allowing the VLPIs to be delivered to the guest.
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
The doorbell interrupt is only useful if the vcpu is blocked on WFI.
In all other cases, recieving a doorbell interrupt is just a waste
of cycles.
So let's only enable the doorbell if a vcpu is getting blocked,
and disable it when it is unblocked. This is very similar to
what we're doing for the background timer.
Reviewed-by: Christoffer Dall <cdall@linaro.org>
Reviewed-by: Eric Auger <eric.auger@redhat.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
When a vPE is not running, a VLPI being made pending results in a
doorbell interrupt being delivered. Let's handle this interrupt
and update the pending_last flag that indicates that VLPIs are
pending. The corresponding vcpu is also kicked into action.
Special care is taken to prevent the doorbell from being enabled
at request time (this is controlled separately), and to make
the disabling on the interrupt non-lazy.
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Reviewed-by: Eric Auger <eric.auger@redhat.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
When a vPE exits, the pending_last flag is set when there are pending
VLPIs stored in the pending table. Similarily, this flag will be set
when a doorbell interrupt fires, as it indicates the same condition.
Let's update kvm_vgic_vcpu_pending_irq() to account for that
flag as well, making a vcpu runnable when set.
Acked-by: Christoffer Dall <cdall@linaro.org>
Reviewed-by: Eric Auger <eric.auger@redhat.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>