Convert the rxrpc_local::services list to an hlist so that it can be
accessed under RCU conditions more readily.
Signed-off-by: David Howells <dhowells@redhat.com>
rxrpc calls shouldn't hold refs on the sock struct. This was done so that
the socket wouldn't go away whilst the call was in progress, such that the
call could reach the socket's queues.
However, we can mark the socket as requiring an RCU release and rely on the
RCU read lock.
To make this work, we do:
(1) rxrpc_release_call() removes the call's call user ID. This is now
only called from socket operations and not from the call processor:
rxrpc_accept_call() / rxrpc_kernel_accept_call()
rxrpc_reject_call() / rxrpc_kernel_reject_call()
rxrpc_kernel_end_call()
rxrpc_release_calls_on_socket()
rxrpc_recvmsg()
Though it is also called in the cleanup path of
rxrpc_accept_incoming_call() before we assign a user ID.
(2) Pass the socket pointer into rxrpc_release_call() rather than getting
it from the call so that we can get rid of uninitialised calls.
(3) Fix call processor queueing to pass a ref to the work queue and to
release that ref at the end of the processor function (or to pass it
back to the work queue if we have to requeue).
(4) Skip out of the call processor function asap if the call is complete
and don't requeue it if the call is complete.
(5) Clean up the call immediately that the refcount reaches 0 rather than
trying to defer it. Actual deallocation is deferred to RCU, however.
(6) Don't hold socket refs for allocated calls.
(7) Use the RCU read lock when queueing a message on a socket and treat
the call's socket pointer according to RCU rules and check it for
NULL.
We also need to use the RCU read lock when viewing a call through
procfs.
(8) Transmit the final ACK/ABORT to a client call in rxrpc_release_call()
if this hasn't been done yet so that we can then disconnect the call.
Once the call is disconnected, it won't have any access to the
connection struct and the UDP socket for the call work processor to be
able to send the ACK. Terminal retransmission will be handled by the
connection processor.
(9) Release all calls immediately on the closing of a socket rather than
trying to defer this. Incomplete calls will be aborted.
The call refcount model is much simplified. Refs are held on the call by:
(1) A socket's user ID tree.
(2) A socket's incoming call secureq and acceptq.
(3) A kernel service that has a call in progress.
(4) A queued call work processor. We have to take care to put any call
that we failed to queue.
(5) sk_buffs on a socket's receive queue. A future patch will get rid of
this.
Whilst we're at it, we can do:
(1) Get rid of the RXRPC_CALL_EV_RELEASE event. Release is now done
entirely from the socket routines and never from the call's processor.
(2) Get rid of the RXRPC_CALL_DEAD state. Calls now end in the
RXRPC_CALL_COMPLETE state.
(3) Get rid of the rxrpc_call::destroyer work item. Calls are now torn
down when their refcount reaches 0 and then handed over to RCU for
final cleanup.
(4) Get rid of the rxrpc_call::deadspan timer. Calls are cleaned up
immediately they're finished with and don't hang around.
Post-completion retransmission is handled by the connection processor
once the call is disconnected.
(5) Get rid of the dead call expiry setting as there's no longer a timer
to set.
(6) rxrpc_destroy_all_calls() can just check that the call list is empty.
Signed-off-by: David Howells <dhowells@redhat.com>
Improve the call tracking tracepoint by showing more differentiation
between some of the put and get events, including:
(1) Getting and putting refs for the socket call user ID tree.
(2) Getting and putting refs for queueing and failing to queue the call
processor work item.
Note that these aren't necessarily used in this patch, but will be taken
advantage of in future patches.
An enum is added for the event subtype numbers rather than coding them
directly as decimal numbers and a table of 3-letter strings is provided
rather than a sequence of ?: operators.
Signed-off-by: David Howells <dhowells@redhat.com>
Create a random epoch value rather than a time-based one on startup and set
the top bit to indicate that this is the case.
Also create a random starting client connection ID value. This will be
incremented from here as new client connections are created.
Signed-off-by: David Howells <dhowells@redhat.com>
Don't expose skbs to in-kernel users, such as the AFS filesystem, but
instead provide a notification hook the indicates that a call needs
attention and another that indicates that there's a new call to be
collected.
This makes the following possibilities more achievable:
(1) Call refcounting can be made simpler if skbs don't hold refs to calls.
(2) skbs referring to non-data events will be able to be freed much sooner
rather than being queued for AFS to pick up as rxrpc_kernel_recv_data
will be able to consult the call state.
(3) We can shortcut the receive phase when a call is remotely aborted
because we don't have to go through all the packets to get to the one
cancelling the operation.
(4) It makes it easier to do encryption/decryption directly between AFS's
buffers and sk_buffs.
(5) Encryption/decryption can more easily be done in the AFS's thread
contexts - usually that of the userspace process that issued a syscall
- rather than in one of rxrpc's background threads on a workqueue.
(6) AFS will be able to wait synchronously on a call inside AF_RXRPC.
To make this work, the following interface function has been added:
int rxrpc_kernel_recv_data(
struct socket *sock, struct rxrpc_call *call,
void *buffer, size_t bufsize, size_t *_offset,
bool want_more, u32 *_abort_code);
This is the recvmsg equivalent. It allows the caller to find out about the
state of a specific call and to transfer received data into a buffer
piecemeal.
afs_extract_data() and rxrpc_kernel_recv_data() now do all the extraction
logic between them. They don't wait synchronously yet because the socket
lock needs to be dealt with.
Five interface functions have been removed:
rxrpc_kernel_is_data_last()
rxrpc_kernel_get_abort_code()
rxrpc_kernel_get_error_number()
rxrpc_kernel_free_skb()
rxrpc_kernel_data_consumed()
As a temporary hack, sk_buffs going to an in-kernel call are queued on the
rxrpc_call struct (->knlrecv_queue) rather than being handed over to the
in-kernel user. To process the queue internally, a temporary function,
temp_deliver_data() has been added. This will be replaced with common code
between the rxrpc_recvmsg() path and the kernel_rxrpc_recv_data() path in a
future patch.
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Pass struct socket * to more rxrpc kernel interface functions. They should
be starting from this rather than the socket pointer in the rxrpc_call
struct if they need to access the socket.
I have left:
rxrpc_kernel_is_data_last()
rxrpc_kernel_get_abort_code()
rxrpc_kernel_get_error_number()
rxrpc_kernel_free_skb()
rxrpc_kernel_data_consumed()
unmodified as they're all about to be removed (and, in any case, don't
touch the socket).
Signed-off-by: David Howells <dhowells@redhat.com>
security initialized after alloc workqueue, so we should exit security
before destroy workqueue in the error handing.
Fixes: 648af7fca1 ("rxrpc: Absorb the rxkad security module")
Signed-off-by: Wei Yongjun <yongjun_wei@trendmicro.com.cn>
Signed-off-by: David S. Miller <davem@davemloft.net>
Add RCU destruction for connections and calls as the RCU lookup from the
transport socket data_ready handler is going to come along shortly.
Whilst we're at it, move the cleanup workqueue flushing and RCU barrierage
into the destruction code for the objects that need it (locals and
connections) and add the extra RCU barrier required for connection cleanup.
Signed-off-by: David Howells <dhowells@redhat.com>
Check that the client conns cache is empty before module removal and bug if
not, listing any offending connections that are still present. Unfortunately,
if there are connections still around, then the transport socket is still
unexpectedly open and active, so we can't just unallocate the connections.
Signed-off-by: David Howells <dhowells@redhat.com>
The rxrpc_transport struct is now redundant, given that the rxrpc_peer
struct is now per peer port rather than per peer host, so get rid of it.
Service connection lists are transferred to the rxrpc_peer struct, as is
the conn_lock. Previous patches moved the client connection handling out
of the rxrpc_transport struct and discarded the connection bundling code.
Signed-off-by: David Howells <dhowells@redhat.com>
Kill off the concept of maintaining a bundle of connections to a particular
target service to increase the number of call slots available for any
beyond four for that service (there are four call slots per connection).
This will make cleaning up the connection handling code easier and
facilitate removal of the rxrpc_transport struct. Bundling can be
reintroduced later if necessary.
Signed-off-by: David Howells <dhowells@redhat.com>
Provide refcount helper functions for connections so that the code doesn't
touch local or connection usage counts directly.
Also make it such that local and peer put functions can take a NULL
pointer.
Signed-off-by: David Howells <dhowells@redhat.com>
Validate the net address given to rxrpc_kernel_begin_call() before using
it.
Whilst this should be mostly unnecessary for in-kernel users, it does clear
the tail of the address struct in case we want to hash or compare the whole
thing.
Signed-off-by: David Howells <dhowells@redhat.com>
Use the IDR facility to allocate client connection IDs on a machine-wide
basis so that each client connection has a unique identifier. When the
connection ID space wraps, we advance the epoch by 1, thereby effectively
having a 62-bit ID space. The IDR facility is then used to look up client
connections during incoming packet routing instead of using an rbtree
rooted on the transport.
This change allows for the removal of the transport in the future and also
means that client connections can be looked up directly in the data-ready
handler by connection ID.
The ID management code is placed in a new file, conn-client.c, to which all
the client connection-specific code will eventually move.
Note that the IDR tree gets very expensive on memory if the connection IDs
are widely scattered throughout the number space, so we shall need to
retire connections that have, say, an ID more than four times the maximum
number of client conns away from the current allocation point to try and
keep the IDs concentrated. We will also need to retire connections from an
old epoch.
Also note that, for the moment, a pointer to the transport has to be passed
through into the ID allocation function so that we can take a BH lock to
prevent a locking issue against in-BH lookup of client connections. This
will go away later when RCU is used for server connections also.
Signed-off-by: David Howells <dhowells@redhat.com>
"Exclusive connections" are meant to be used for a single client call and
then scrapped. The idea is to limit the use of the negotiated security
context. The current code, however, isn't doing this: it is instead
restricting the socket to a single virtual connection and doing all the
calls over that.
This is changed such that the socket no longer maintains a special virtual
connection over which it will do all the calls, but rather gets a new one
each time a new exclusive call is made.
Further, using a socket option for this is a poor choice. It should be
done on sendmsg with a control message marker instead so that calls can be
marked exclusive individually. To that end, add RXRPC_EXCLUSIVE_CALL
which, if passed to sendmsg() as a control message element, will cause the
call to be done on an single-use connection.
The socket option (RXRPC_EXCLUSIVE_CONNECTION) still exists and, if set,
will override any lack of RXRPC_EXCLUSIVE_CALL being specified so that
programs using the setsockopt() will appear to work the same.
Signed-off-by: David Howells <dhowells@redhat.com>
Define and use a structure to hold connection parameters. This makes it
easier to pass multiple connection parameters around.
Define and use a structure to hold protocol information used to hash a
connection for lookup on incoming packet. Most of these fields will be
disposed of eventually, including the duplicate local pointer.
Whilst we're at it rename "proto" to "family" when referring to a protocol
family.
Signed-off-by: David Howells <dhowells@redhat.com>
rxrpc_lookup_peer_rcu() and rxrpc_lookup_peer() return NULL on error, never
error pointers, so IS_ERR() can't be used.
Fix three callers of those functions.
Fixes: be6e6707f6 ('rxrpc: Rework peer object handling to use hash table and RCU')
Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com>
Signed-off-by: David Howells <dhowells@redhat.com>
Rework the local RxRPC endpoint management.
Local endpoint objects are maintained in a flat list as before. This
should be okay as there shouldn't be more than one per open AF_RXRPC socket
(there can be fewer as local endpoints can be shared if their local service
ID is 0 and they share the same local transport parameters).
Changes:
(1) Local endpoints may now only be shared if they have local service ID 0
(ie. they're not being used for listening).
This prevents a scenario where process A is listening of the Cache
Manager port and process B contacts a fileserver - which may then
attempt to send CM requests back to B. But if A and B are sharing a
local endpoint, A will get the CM requests meant for B.
(2) We use a mutex to handle lookups and don't provide RCU-only lookups
since we only expect to access the list when opening a socket or
destroying an endpoint.
The local endpoint object is pointed to by the transport socket's
sk_user_data for the life of the transport socket - allowing us to
refer to it directly from the sk_data_ready and sk_error_report
callbacks.
(3) atomic_inc_not_zero() now exists and can be used to only share a local
endpoint if the last reference hasn't yet gone.
(4) We can remove rxrpc_local_lock - a spinlock that had to be taken with
BH processing disabled given that we assume sk_user_data won't change
under us.
(5) The transport socket is shut down before we clear the sk_user_data
pointer so that we can be sure that the transport socket's callbacks
won't be invoked once the RCU destruction is scheduled.
(6) Local endpoints have a work item that handles both destruction and
event processing. The means that destruction doesn't then need to
wait for event processing. The event queues can then be cleared after
the transport socket is shut down.
(7) Local endpoints are no longer available for resurrection beyond the
life of the sockets that had them open. As soon as their last ref
goes, they are scheduled for destruction and may not have their usage
count moved from 0.
Signed-off-by: David Howells <dhowells@redhat.com>
Rework peer object handling to use a hash table instead of a flat list and
to use RCU. Peer objects are no longer destroyed by passing them to a
workqueue to process, but rather are just passed to the RCU garbage
collector as kfree'able objects.
The hash function uses the local endpoint plus all the components of the
remote address, except for the RxRPC service ID. Peers thus represent a
UDP port on the remote machine as contacted by a UDP port on this machine.
The RCU read lock is used to handle non-creating lookups so that they can
be called from bottom half context in the sk_error_report handler without
having to lock the hash table against modification.
rxrpc_lookup_peer_rcu() *does* take a reference on the peer object as in
the future, this will be passed to a work item for error distribution in
the error_report path and this function will cease being used in the
data_ready path.
Creating lookups are done under spinlock rather than mutex as they might be
set up due to an external stimulus if the local endpoint is a server.
Captured network error messages (ICMP) are handled with respect to this
struct and MTU size and RTT are cached here.
Signed-off-by: David Howells <dhowells@redhat.com>
Limit the socket incoming call backlog queue size so that a remote client
can't pump in sufficient new calls that the server runs out of memory. Note
that this is partially theoretical at the moment since whilst the number of
calls is limited, the number of packets trying to set up new calls is not.
This will be addressed in a later patch.
If the caller of listen() specifies a backlog INT_MAX, then they get the
current maximum; anything else greater than max_backlog or anything
negative incurs EINVAL.
The limit on the maximum queue size can be set by:
echo N >/proc/sys/net/rxrpc/max_backlog
where 4<=N<=32.
Further, set the default backlog to 0, requiring listen() to be called
before we start actually queueing new calls. Whilst this kind of is a
change in the UAPI, the caller can't actually *accept* new calls anyway
unless they've first called listen() to put the socket into the LISTENING
state - thus the aforementioned new calls would otherwise just sit there,
eating up kernel memory. (Note that sockets that don't have a non-zero
service ID bound don't get incoming calls anyway.)
Given that the default backlog is now 0, make the AFS filesystem call
kernel_listen() to set the maximum backlog for itself.
Possible improvements include:
(1) Trimming a too-large backlog to max_backlog when listen is called.
(2) Trimming the backlog value whenever the value is used so that changes
to max_backlog are applied to an open socket automatically. Note that
the AFS filesystem opens one socket and keeps it open for extended
periods, so would miss out on changes to max_backlog.
(3) Having a separate setting for the AFS filesystem.
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Simplify the RxRPC connect() implementation. It will just note the
destination address it is given, and if a sendmsg() comes along with no
address, this will be assigned as the address. No transport struct will be
held internally, which will allow us to remove this later.
Simplify sendmsg() also. Whilst a call is active, userspace refers to it
by a private unique user ID specified in a control message. When sendmsg()
sees a user ID that doesn't map to an extant call, it creates a new call
for that user ID and attempts to add it. If, when we try to add it, the
user ID is now registered, we now reject the message with -EEXIST. We
should never see this situation unless two threads are racing, trying to
create a call with the same ID - which would be an error.
It also isn't required to provide sendmsg() with an address - provided the
control message data holds a user ID that maps to a currently active call.
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Use the more common kernel logging style and reduce object size.
The logging message prefix changes from a mixture of
"RxRPC:" and "RXRPC:" to "af_rxrpc: ".
$ size net/rxrpc/built-in.o*
text data bss dec hex filename
64172 1972 8304 74448 122d0 net/rxrpc/built-in.o.new
67512 1972 8304 77788 12fdc net/rxrpc/built-in.o.old
Miscellanea:
o Consolidate the ASSERT macros to use a single pr_err call with
decimal and hexadecimal output and a stringified #OP argument
Signed-off-by: Joe Perches <joe@perches.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Absorb the rxkad security module into the af_rxrpc module so that there's
only one module file. This avoids a circular dependency whereby rxkad pins
af_rxrpc and cached connections pin rxkad but can't be manually evicted
(they will expire eventually and cease pinning).
With this change, af_rxrpc can just be unloaded, despite having cached
connections.
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Replace all "unsigned" types with "unsigned int" types.
Reported-by: David Miller <davem@davemloft.net>
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Currently, a copy of the Rx packet header is copied into the the sk_buff
private data so that we can advance the pointer into the buffer,
potentially discarding the original. At the moment, this copy is held in
network byte order, but this means we're doing a lot of unnecessary
translations.
The reasons it was done this way are that we need the values in network
byte order occasionally and we can use the copy, slightly modified, as part
of an iov array when sending an ack or an abort packet.
However, it seems more reasonable on review that it would be better kept in
host byte order and that we make up a new header when we want to send
another packet.
To this end, rename the original header struct to rxrpc_wire_header (with
BE fields) and institute a variant called rxrpc_host_header that has host
order fields. Change the struct in the sk_buff private data into an
rxrpc_host_header and translate the values when filling it in.
This further allows us to keep values kept in various structures in host
byte order rather than network byte order and allows removal of some fields
that are byteswapped duplicates.
Signed-off-by: David Howells <dhowells@redhat.com>
The memory barrier in the helper wq_has_sleeper is needed by just
about every user of waitqueue_active. This patch generalises it
by making it take a wait_queue_head_t directly. The existing
helper is renamed to skwq_has_sleeper.
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Signed-off-by: David S. Miller <davem@davemloft.net>
In preparation for changing how struct net is refcounted
on kernel sockets pass the knowledge that we are creating
a kernel socket from sock_create_kern through to sk_alloc.
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
After TIPC doesn't depend on iocb argument in its internal
implementations of sendmsg() and recvmsg() hooks defined in proto
structure, no any user is using iocb argument in them at all now.
Then we can drop the redundant iocb argument completely from kinds of
implementations of both sendmsg() and recvmsg() in the entire
networking stack.
Cc: Christoph Hellwig <hch@lst.de>
Suggested-by: Al Viro <viro@ZenIV.linux.org.uk>
Signed-off-by: Ying Xue <ying.xue@windriver.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Add sysctls for configuring RxRPC protocol handling, specifically controls on
delays before ack generation, the delay before resending a packet, the maximum
lifetime of a call and the expiration times of calls, connections and
transports that haven't been recently used.
More info added in Documentation/networking/rxrpc.txt.
Signed-off-by: David Howells <dhowells@redhat.com>
proc_net_remove is only used to remove proc entries
that under /proc/net,it's not a general function for
removing proc entries of netns. if we want to remove
some proc entries which under /proc/net/stat/, we still
need to call remove_proc_entry.
this patch use remove_proc_entry to replace proc_net_remove.
we can remove proc_net_remove after this patch.
Signed-off-by: Gao feng <gaofeng@cn.fujitsu.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Right now, some modules such as bonding use proc_create
to create proc entries under /proc/net/, and other modules
such as ipv4 use proc_net_fops_create.
It looks a little chaos.this patch changes all of
proc_net_fops_create to proc_create. we can remove
proc_net_fops_create after this patch.
Signed-off-by: Gao feng <gaofeng@cn.fujitsu.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Use of "unsigned int" is preferred to bare "unsigned" in net tree.
Signed-off-by: Eric Dumazet <eric.dumazet@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
sk_callback_lock rwlock actually protects sk->sk_sleep pointer, so we
need two atomic operations (and associated dirtying) per incoming
packet.
RCU conversion is pretty much needed :
1) Add a new structure, called "struct socket_wq" to hold all fields
that will need rcu_read_lock() protection (currently: a
wait_queue_head_t and a struct fasync_struct pointer).
[Future patch will add a list anchor for wakeup coalescing]
2) Attach one of such structure to each "struct socket" created in
sock_alloc_inode().
3) Respect RCU grace period when freeing a "struct socket_wq"
4) Change sk_sleep pointer in "struct sock" by sk_wq, pointer to "struct
socket_wq"
5) Change sk_sleep() function to use new sk->sk_wq instead of
sk->sk_sleep
6) Change sk_has_sleeper() to wq_has_sleeper() that must be used inside
a rcu_read_lock() section.
7) Change all sk_has_sleeper() callers to :
- Use rcu_read_lock() instead of read_lock(&sk->sk_callback_lock)
- Use wq_has_sleeper() to eventually wakeup tasks.
- Use rcu_read_unlock() instead of read_unlock(&sk->sk_callback_lock)
8) sock_wake_async() is modified to use rcu protection as well.
9) Exceptions :
macvtap, drivers/net/tun.c, af_unix use integrated "struct socket_wq"
instead of dynamically allocated ones. They dont need rcu freeing.
Some cleanups or followups are probably needed, (possible
sk_callback_lock conversion to a spinlock for example...).
Signed-off-by: Eric Dumazet <eric.dumazet@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Define a new function to return the waitqueue of a "struct sock".
static inline wait_queue_head_t *sk_sleep(struct sock *sk)
{
return sk->sk_sleep;
}
Change all read occurrences of sk_sleep by a call to this function.
Needed for a future RCU conversion. sk_sleep wont be a field directly
available.
Signed-off-by: Eric Dumazet <eric.dumazet@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
percpu.h is included by sched.h and module.h and thus ends up being
included when building most .c files. percpu.h includes slab.h which
in turn includes gfp.h making everything defined by the two files
universally available and complicating inclusion dependencies.
percpu.h -> slab.h dependency is about to be removed. Prepare for
this change by updating users of gfp and slab facilities include those
headers directly instead of assuming availability. As this conversion
needs to touch large number of source files, the following script is
used as the basis of conversion.
http://userweb.kernel.org/~tj/misc/slabh-sweep.py
The script does the followings.
* Scan files for gfp and slab usages and update includes such that
only the necessary includes are there. ie. if only gfp is used,
gfp.h, if slab is used, slab.h.
* When the script inserts a new include, it looks at the include
blocks and try to put the new include such that its order conforms
to its surrounding. It's put in the include block which contains
core kernel includes, in the same order that the rest are ordered -
alphabetical, Christmas tree, rev-Xmas-tree or at the end if there
doesn't seem to be any matching order.
* If the script can't find a place to put a new include (mostly
because the file doesn't have fitting include block), it prints out
an error message indicating which .h file needs to be added to the
file.
The conversion was done in the following steps.
1. The initial automatic conversion of all .c files updated slightly
over 4000 files, deleting around 700 includes and adding ~480 gfp.h
and ~3000 slab.h inclusions. The script emitted errors for ~400
files.
2. Each error was manually checked. Some didn't need the inclusion,
some needed manual addition while adding it to implementation .h or
embedding .c file was more appropriate for others. This step added
inclusions to around 150 files.
3. The script was run again and the output was compared to the edits
from #2 to make sure no file was left behind.
4. Several build tests were done and a couple of problems were fixed.
e.g. lib/decompress_*.c used malloc/free() wrappers around slab
APIs requiring slab.h to be added manually.
5. The script was run on all .h files but without automatically
editing them as sprinkling gfp.h and slab.h inclusions around .h
files could easily lead to inclusion dependency hell. Most gfp.h
inclusion directives were ignored as stuff from gfp.h was usually
wildly available and often used in preprocessor macros. Each
slab.h inclusion directive was examined and added manually as
necessary.
6. percpu.h was updated not to include slab.h.
7. Build test were done on the following configurations and failures
were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my
distributed build env didn't work with gcov compiles) and a few
more options had to be turned off depending on archs to make things
build (like ipr on powerpc/64 which failed due to missing writeq).
* x86 and x86_64 UP and SMP allmodconfig and a custom test config.
* powerpc and powerpc64 SMP allmodconfig
* sparc and sparc64 SMP allmodconfig
* ia64 SMP allmodconfig
* s390 SMP allmodconfig
* alpha SMP allmodconfig
* um on x86_64 SMP allmodconfig
8. percpu.h modifications were reverted so that it could be applied as
a separate patch and serve as bisection point.
Given the fact that I had only a couple of failures from tests on step
6, I'm fairly confident about the coverage of this conversion patch.
If there is a breakage, it's likely to be something in one of the arch
headers which should be easily discoverable easily on most builds of
the specific arch.
Signed-off-by: Tejun Heo <tj@kernel.org>
Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
Generated with the following semantic patch
@@
struct net *n1;
struct net *n2;
@@
- n1 == n2
+ net_eq(n1, n2)
@@
struct net *n1;
struct net *n2;
@@
- n1 != n2
+ !net_eq(n1, n2)
applied over {include,net,drivers/net}.
Signed-off-by: Octavian Purdila <opurdila@ixiacom.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
The generic __sock_create function has a kern argument which allows the
security system to make decisions based on if a socket is being created by
the kernel or by userspace. This patch passes that flag to the
net_proto_family specific create function, so it can do the same thing.
Signed-off-by: Eric Paris <eparis@redhat.com>
Acked-by: Arnaldo Carvalho de Melo <acme@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
All usages of structure net_proto_ops should be declared const.
Signed-off-by: Stephen Hemminger <shemminger@vyatta.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
This provides safety against negative optlen at the type
level instead of depending upon (sometimes non-trivial)
checks against this sprinkled all over the the place, in
each and every implementation.
Based upon work done by Arjan van de Ven and feedback
from Linus Torvalds.
Signed-off-by: David S. Miller <davem@davemloft.net>
Adding memory barrier after the poll_wait function, paired with
receive callbacks. Adding fuctions sock_poll_wait and sk_has_sleeper
to wrap the memory barrier.
Without the memory barrier, following race can happen.
The race fires, when following code paths meet, and the tp->rcv_nxt
and __add_wait_queue updates stay in CPU caches.
CPU1 CPU2
sys_select receive packet
... ...
__add_wait_queue update tp->rcv_nxt
... ...
tp->rcv_nxt check sock_def_readable
... {
schedule ...
if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
wake_up_interruptible(sk->sk_sleep)
...
}
If there was no cache the code would work ok, since the wait_queue and
rcv_nxt are opposit to each other.
Meaning that once tp->rcv_nxt is updated by CPU2, the CPU1 either already
passed the tp->rcv_nxt check and sleeps, or will get the new value for
tp->rcv_nxt and will return with new data mask.
In both cases the process (CPU1) is being added to the wait queue, so the
waitqueue_active (CPU2) call cannot miss and will wake up CPU1.
The bad case is when the __add_wait_queue changes done by CPU1 stay in its
cache, and so does the tp->rcv_nxt update on CPU2 side. The CPU1 will then
endup calling schedule and sleep forever if there are no more data on the
socket.
Calls to poll_wait in following modules were ommited:
net/bluetooth/af_bluetooth.c
net/irda/af_irda.c
net/irda/irnet/irnet_ppp.c
net/mac80211/rc80211_pid_debugfs.c
net/phonet/socket.c
net/rds/af_rds.c
net/rfkill/core.c
net/sunrpc/cache.c
net/sunrpc/rpc_pipe.c
net/tipc/socket.c
Signed-off-by: Jiri Olsa <jolsa@redhat.com>
Signed-off-by: Eric Dumazet <eric.dumazet@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Fix a potential NULL dereference bug during error handling in
rxrpc_kernel_begin_call(), whereby rxrpc_put_transport() may be handed a NULL
pointer.
This was found with a code checker (http://repo.or.cz/w/smatch.git/).
Reported-by: Dan Carpenter <error27@gmail.com>
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Using NIPQUAD() with NIPQUAD_FMT, %d.%d.%d.%d or %u.%u.%u.%u
can be replaced with %pI4
Signed-off-by: Harvey Harrison <harvey.harrison@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Removes legacy reinvent-the-wheel type thing. The generic
machinery integrates much better to automated debugging aids
such as kerneloops.org (and others), and is unambiguous due to
better naming. Non-intuively BUG_TRAP() is actually equal to
WARN_ON() rather than BUG_ON() though some might actually be
promoted to BUG_ON() but I left that to future.
I could make at least one BUILD_BUG_ON conversion.
Signed-off-by: Ilpo Järvinen <ilpo.jarvinen@helsinki.fi>
Signed-off-by: David S. Miller <davem@davemloft.net>