The following NULL pointer dereference issue occurred:
BUG: kernel NULL pointer dereference, address: 0000000000000000
<...>
RIP: 0010:ccid_hc_tx_send_packet net/dccp/ccid.h:166 [inline]
RIP: 0010:dccp_write_xmit+0x49/0x140 net/dccp/output.c:356
<...>
Call Trace:
<TASK>
dccp_sendmsg+0x642/0x7e0 net/dccp/proto.c:801
inet_sendmsg+0x63/0x90 net/ipv4/af_inet.c:846
sock_sendmsg_nosec net/socket.c:730 [inline]
__sock_sendmsg+0x83/0xe0 net/socket.c:745
____sys_sendmsg+0x443/0x510 net/socket.c:2558
___sys_sendmsg+0xe5/0x150 net/socket.c:2612
__sys_sendmsg+0xa6/0x120 net/socket.c:2641
__do_sys_sendmsg net/socket.c:2650 [inline]
__se_sys_sendmsg net/socket.c:2648 [inline]
__x64_sys_sendmsg+0x45/0x50 net/socket.c:2648
do_syscall_x64 arch/x86/entry/common.c:51 [inline]
do_syscall_64+0x43/0x110 arch/x86/entry/common.c:82
entry_SYSCALL_64_after_hwframe+0x63/0x6b
sk_wait_event() returns an error (-EPIPE) if disconnect() is called on the
socket waiting for the event. However, sk_stream_wait_connect() returns
success, i.e. zero, even if sk_wait_event() returns -EPIPE, so a function
that waits for a connection with sk_stream_wait_connect() may misbehave.
In the case of the above DCCP issue, dccp_sendmsg() is waiting for the
connection. If disconnect() is called in concurrently, the above issue
occurs.
This patch fixes the issue by returning error from sk_stream_wait_connect()
if sk_wait_event() fails.
Fixes: 419ce133ab ("tcp: allow again tcp_disconnect() when threads are waiting")
Signed-off-by: Shigeru Yoshida <syoshida@redhat.com>
Reviewed-by: Kuniyuki Iwashima <kuniyu@amazon.com>
Reported-by: syzbot+c71bc336c5061153b502@syzkaller.appspotmail.com
Reviewed-by: Eric Dumazet <edumazet@google.com>
Reported-by: syzbot <syzkaller@googlegroups.com>
Reported-by: syzkaller <syzkaller@googlegroups.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
As reported by Tom, .NET and applications build on top of it rely
on connect(AF_UNSPEC) to async cancel pending I/O operations on TCP
socket.
The blamed commit below caused a regression, as such cancellation
can now fail.
As suggested by Eric, this change addresses the problem explicitly
causing blocking I/O operation to terminate immediately (with an error)
when a concurrent disconnect() is executed.
Instead of tracking the number of threads blocked on a given socket,
track the number of disconnect() issued on such socket. If such counter
changes after a blocking operation releasing and re-acquiring the socket
lock, error out the current operation.
Fixes: 4faeee0cf8 ("tcp: deny tcp_disconnect() when threads are waiting")
Reported-by: Tom Deseyn <tdeseyn@redhat.com>
Closes: https://bugzilla.redhat.com/show_bug.cgi?id=1886305
Suggested-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: Paolo Abeni <pabeni@redhat.com>
Reviewed-by: Eric Dumazet <edumazet@google.com>
Link: https://lore.kernel.org/r/f3b95e47e3dbed840960548aebaa8d954372db41.1697008693.git.pabeni@redhat.com
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
__condition is evaluated twice in sk_wait_event() macro.
First invocation is lockless, and reads can race with writes,
as spotted by syzbot.
BUG: KCSAN: data-race in sk_stream_wait_connect / tcp_disconnect
write to 0xffff88812d83d6a0 of 4 bytes by task 9065 on cpu 1:
tcp_disconnect+0x2cd/0xdb0
inet_shutdown+0x19e/0x1f0 net/ipv4/af_inet.c:911
__sys_shutdown_sock net/socket.c:2343 [inline]
__sys_shutdown net/socket.c:2355 [inline]
__do_sys_shutdown net/socket.c:2363 [inline]
__se_sys_shutdown+0xf8/0x140 net/socket.c:2361
__x64_sys_shutdown+0x31/0x40 net/socket.c:2361
do_syscall_x64 arch/x86/entry/common.c:50 [inline]
do_syscall_64+0x41/0xc0 arch/x86/entry/common.c:80
entry_SYSCALL_64_after_hwframe+0x63/0xcd
read to 0xffff88812d83d6a0 of 4 bytes by task 9040 on cpu 0:
sk_stream_wait_connect+0x1de/0x3a0 net/core/stream.c:75
tcp_sendmsg_locked+0x2e4/0x2120 net/ipv4/tcp.c:1266
tcp_sendmsg+0x30/0x50 net/ipv4/tcp.c:1484
inet6_sendmsg+0x63/0x80 net/ipv6/af_inet6.c:651
sock_sendmsg_nosec net/socket.c:724 [inline]
sock_sendmsg net/socket.c:747 [inline]
__sys_sendto+0x246/0x300 net/socket.c:2142
__do_sys_sendto net/socket.c:2154 [inline]
__se_sys_sendto net/socket.c:2150 [inline]
__x64_sys_sendto+0x78/0x90 net/socket.c:2150
do_syscall_x64 arch/x86/entry/common.c:50 [inline]
do_syscall_64+0x41/0xc0 arch/x86/entry/common.c:80
entry_SYSCALL_64_after_hwframe+0x63/0xcd
value changed: 0x00000000 -> 0x00000068
Fixes: 1da177e4c3 ("Linux-2.6.12-rc2")
Reported-by: syzbot <syzkaller@googlegroups.com>
Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Changheon Lee reported TCP socket leaks, with a nice repro.
It seems we leak TCP sockets with the following sequence:
1) SOF_TIMESTAMPING_TX_ACK is enabled on the socket.
Each ACK will cook an skb put in error queue, from __skb_tstamp_tx().
__skb_tstamp_tx() is using skb_clone(), unless
SOF_TIMESTAMPING_OPT_TSONLY was also requested.
2) If the application is also using MSG_ZEROCOPY, then we put in the
error queue cloned skbs that had a struct ubuf_info attached to them.
Whenever an struct ubuf_info is allocated, sock_zerocopy_alloc()
does a sock_hold().
As long as the cloned skbs are still in sk_error_queue,
socket refcount is kept elevated.
3) Application closes the socket, while error queue is not empty.
Since tcp_close() no longer purges the socket error queue,
we might end up with a TCP socket with at least one skb in
error queue keeping the socket alive forever.
This bug can be (ab)used to consume all kernel memory
and freeze the host.
We need to purge the error queue, with proper synchronization
against concurrent writers.
Fixes: 24bcbe1cc6 ("net: stream: don't purge sk_error_queue in sk_stream_kill_queues()")
Reported-by: Changheon Lee <darklight2357@icloud.com>
Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
This is a simple mechanical transformation done by:
@@
expression E;
@@
- prandom_u32_max
+ get_random_u32_below
(E)
Reviewed-by: Kees Cook <keescook@chromium.org>
Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Acked-by: Darrick J. Wong <djwong@kernel.org> # for xfs
Reviewed-by: SeongJae Park <sj@kernel.org> # for damon
Reviewed-by: Jason Gunthorpe <jgg@nvidia.com> # for infiniband
Reviewed-by: Russell King (Oracle) <rmk+kernel@armlinux.org.uk> # for arm
Acked-by: Ulf Hansson <ulf.hansson@linaro.org> # for mmc
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Rather than incurring a division or requesting too many random bytes for
the given range, use the prandom_u32_max() function, which only takes
the minimum required bytes from the RNG and avoids divisions. This was
done mechanically with this coccinelle script:
@basic@
expression E;
type T;
identifier get_random_u32 =~ "get_random_int|prandom_u32|get_random_u32";
typedef u64;
@@
(
- ((T)get_random_u32() % (E))
+ prandom_u32_max(E)
|
- ((T)get_random_u32() & ((E) - 1))
+ prandom_u32_max(E * XXX_MAKE_SURE_E_IS_POW2)
|
- ((u64)(E) * get_random_u32() >> 32)
+ prandom_u32_max(E)
|
- ((T)get_random_u32() & ~PAGE_MASK)
+ prandom_u32_max(PAGE_SIZE)
)
@multi_line@
identifier get_random_u32 =~ "get_random_int|prandom_u32|get_random_u32";
identifier RAND;
expression E;
@@
- RAND = get_random_u32();
... when != RAND
- RAND %= (E);
+ RAND = prandom_u32_max(E);
// Find a potential literal
@literal_mask@
expression LITERAL;
type T;
identifier get_random_u32 =~ "get_random_int|prandom_u32|get_random_u32";
position p;
@@
((T)get_random_u32()@p & (LITERAL))
// Add one to the literal.
@script:python add_one@
literal << literal_mask.LITERAL;
RESULT;
@@
value = None
if literal.startswith('0x'):
value = int(literal, 16)
elif literal[0] in '123456789':
value = int(literal, 10)
if value is None:
print("I don't know how to handle %s" % (literal))
cocci.include_match(False)
elif value == 2**32 - 1 or value == 2**31 - 1 or value == 2**24 - 1 or value == 2**16 - 1 or value == 2**8 - 1:
print("Skipping 0x%x for cleanup elsewhere" % (value))
cocci.include_match(False)
elif value & (value + 1) != 0:
print("Skipping 0x%x because it's not a power of two minus one" % (value))
cocci.include_match(False)
elif literal.startswith('0x'):
coccinelle.RESULT = cocci.make_expr("0x%x" % (value + 1))
else:
coccinelle.RESULT = cocci.make_expr("%d" % (value + 1))
// Replace the literal mask with the calculated result.
@plus_one@
expression literal_mask.LITERAL;
position literal_mask.p;
expression add_one.RESULT;
identifier FUNC;
@@
- (FUNC()@p & (LITERAL))
+ prandom_u32_max(RESULT)
@collapse_ret@
type T;
identifier VAR;
expression E;
@@
{
- T VAR;
- VAR = (E);
- return VAR;
+ return E;
}
@drop_var@
type T;
identifier VAR;
@@
{
- T VAR;
... when != VAR
}
Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Reviewed-by: Kees Cook <keescook@chromium.org>
Reviewed-by: Yury Norov <yury.norov@gmail.com>
Reviewed-by: KP Singh <kpsingh@kernel.org>
Reviewed-by: Jan Kara <jack@suse.cz> # for ext4 and sbitmap
Reviewed-by: Christoph Böhmwalder <christoph.boehmwalder@linbit.com> # for drbd
Acked-by: Jakub Kicinski <kuba@kernel.org>
Acked-by: Heiko Carstens <hca@linux.ibm.com> # for s390
Acked-by: Ulf Hansson <ulf.hansson@linaro.org> # for mmc
Acked-by: Darrick J. Wong <djwong@kernel.org> # for xfs
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
sk_stream_kill_queues() has three checks which have been
useful to detect kernel bugs in the past.
However they are potentially a problem because they
could flood the syslog.
Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
sk_stream_kill_queues() can be called on close when there are
still outstanding skbs to transmit. Those skbs may try to queue
notifications to the error queue (e.g. timestamps).
If sk_stream_kill_queues() purges the queue without taking
its lock the queue may get corrupted, and skbs leaked.
This shows up as a warning about an rmem leak:
WARNING: CPU: 24 PID: 0 at net/ipv4/af_inet.c:154 inet_sock_destruct+0x...
The leak is always a multiple of 0x300 bytes (the value is in
%rax on my builds, so RAX: 0000000000000300). 0x300 is truesize of
an empty sk_buff. Indeed if we dump the socket state at the time
of the warning the sk_error_queue is often (but not always)
corrupted. The ->next pointer points back at the list head,
but not the ->prev pointer. Indeed we can find the leaked skb
by scanning the kernel memory for something that looks like
an skb with ->sk = socket in question, and ->truesize = 0x300.
The contents of ->cb[] of the skb confirms the suspicion that
it is indeed a timestamp notification (as generated in
__skb_complete_tx_timestamp()).
Removing purging of sk_error_queue should be okay, since
inet_sock_destruct() does it again once all socket refs
are gone. Eric suggests this may cause sockets that go
thru disconnect() to maintain notifications from the
previous incarnations of the socket, but that should be
okay since the race was there anyway, and disconnect()
is not exactly dependable.
Thanks to Jonathan Lemon and Omar Sandoval for help at various
stages of tracing the issue.
Fixes: cb9eff0978 ("net: new user space API for time stamping of incoming and outgoing packets")
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
Reviewed-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
This socket option provides a mechanism for users to reserve a certain
amount of memory for the socket to use. When this option is set, kernel
charges the user specified amount of memory to memcg, as well as
sk_forward_alloc. This amount of memory is not reclaimable and is
available in sk_forward_alloc for this socket.
With this socket option set, the networking stack spends less cycles
doing forward alloc and reclaim, which should lead to better system
performance, with the cost of an amount of pre-allocated and
unreclaimable memory, even under memory pressure.
Note:
This socket option is only available when memory cgroup is enabled and we
require this reserved memory to be charged to the user's memcg. We hope
this could avoid mis-behaving users to abused this feature to reserve a
large amount on certain sockets and cause unfairness for others.
Signed-off-by: Wei Wang <weiwan@google.com>
Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
As Jason Baron explained in commit 790ba4566c ("tcp: set SOCK_NOSPACE
under memory pressure"), it is crucial we properly set SOCK_NOSPACE
when needed.
However, Jason patch had a bug, because the 'nonblocking' status
as far as sk_stream_wait_memory() is concerned is governed
by MSG_DONTWAIT flag passed at sendmsg() time :
long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
So it is very possible that tcp sendmsg() calls sk_stream_wait_memory(),
and that sk_stream_wait_memory() returns -EAGAIN with SOCK_NOSPACE
cleared, if sk->sk_sndtimeo has been set to a small (but not zero)
value.
This patch removes the 'noblock' variable since we must always
set SOCK_NOSPACE if -EAGAIN is returned.
It also renames the do_nonblock label since we might reach this
code path even if we were in blocking mode.
Fixes: 790ba4566c ("tcp: set SOCK_NOSPACE under memory pressure")
Signed-off-by: Eric Dumazet <edumazet@google.com>
Cc: Jason Baron <jbaron@akamai.com>
Reported-by: Vladimir Rutsky <rutsky@google.com>
Acked-by: Soheil Hassas Yeganeh <soheil@google.com>
Acked-by: Neal Cardwell <ncardwell@google.com>
Acked-by: Jason Baron <jbaron@akamai.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
TCP_NOTSENT_LOWAT socket option or sysctl was added in linux-3.12
as a step to enable bigger tcp sndbuf limits.
It works reasonably well, but the following happens :
Once the limit is reached, TCP stack generates
an [E]POLLOUT event for every incoming ACK packet.
This causes a high number of context switches.
This patch implements the strategy David Miller added
in sock_def_write_space() :
- If TCP socket has a notsent_lowat constraint of X bytes,
allow sendmsg() to fill up to X bytes, but send [E]POLLOUT
only if number of notsent bytes is below X/2
This considerably reduces TCP_NOTSENT_LOWAT overhead,
while allowing to keep the pipe full.
Tested:
100 ms RTT netem testbed between A and B, 100 concurrent TCP_STREAM
A:/# cat /proc/sys/net/ipv4/tcp_wmem
4096 262144 64000000
A:/# super_netperf 100 -H B -l 1000 -- -K bbr &
A:/# grep TCP /proc/net/sockstat
TCP: inuse 203 orphan 0 tw 19 alloc 414 mem 1364904 # This is about 54 MB of memory per flow :/
A:/# vmstat 5 5
procs -----------memory---------- ---swap-- -----io---- -system-- ------cpu-----
r b swpd free buff cache si so bi bo in cs us sy id wa st
0 0 0 256220672 13532 694976 0 0 10 0 28 14 0 1 99 0 0
2 0 0 256320016 13532 698480 0 0 512 0 715901 5927 0 10 90 0 0
0 0 0 256197232 13532 700992 0 0 735 13 771161 5849 0 11 89 0 0
1 0 0 256233824 13532 703320 0 0 512 23 719650 6635 0 11 89 0 0
2 0 0 256226880 13532 705780 0 0 642 4 775650 6009 0 12 88 0 0
A:/# echo 2097152 >/proc/sys/net/ipv4/tcp_notsent_lowat
A:/# grep TCP /proc/net/sockstat
TCP: inuse 203 orphan 0 tw 19 alloc 414 mem 86411 # 3.5 MB per flow
A:/# vmstat 5 5 # check that context switches have not inflated too much.
procs -----------memory---------- ---swap-- -----io---- -system-- ------cpu-----
r b swpd free buff cache si so bi bo in cs us sy id wa st
2 0 0 260386512 13592 662148 0 0 10 0 17 14 0 1 99 0 0
0 0 0 260519680 13592 604184 0 0 512 13 726843 12424 0 10 90 0 0
1 1 0 260435424 13592 598360 0 0 512 25 764645 12925 0 10 90 0 0
1 0 0 260855392 13592 578380 0 0 512 7 722943 13624 0 11 88 0 0
1 0 0 260445008 13592 601176 0 0 614 34 772288 14317 0 10 90 0 0
Signed-off-by: Eric Dumazet <edumazet@google.com>
Acked-by: Soheil Hassas Yeganeh <soheil@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
This is the mindless scripted replacement of kernel use of POLL*
variables as described by Al, done by this script:
for V in IN OUT PRI ERR RDNORM RDBAND WRNORM WRBAND HUP RDHUP NVAL MSG; do
L=`git grep -l -w POLL$V | grep -v '^t' | grep -v /um/ | grep -v '^sa' | grep -v '/poll.h$'|grep -v '^D'`
for f in $L; do sed -i "-es/^\([^\"]*\)\(\<POLL$V\>\)/\\1E\\2/" $f; done
done
with de-mangling cleanups yet to come.
NOTE! On almost all architectures, the EPOLL* constants have the same
values as the POLL* constants do. But they keyword here is "almost".
For various bad reasons they aren't the same, and epoll() doesn't
actually work quite correctly in some cases due to this on Sparc et al.
The next patch from Al will sort out the final differences, and we
should be all done.
Scripted-by: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Many source files in the tree are missing licensing information, which
makes it harder for compliance tools to determine the correct license.
By default all files without license information are under the default
license of the kernel, which is GPL version 2.
Update the files which contain no license information with the 'GPL-2.0'
SPDX license identifier. The SPDX identifier is a legally binding
shorthand, which can be used instead of the full boiler plate text.
This patch is based on work done by Thomas Gleixner and Kate Stewart and
Philippe Ombredanne.
How this work was done:
Patches were generated and checked against linux-4.14-rc6 for a subset of
the use cases:
- file had no licensing information it it.
- file was a */uapi/* one with no licensing information in it,
- file was a */uapi/* one with existing licensing information,
Further patches will be generated in subsequent months to fix up cases
where non-standard license headers were used, and references to license
had to be inferred by heuristics based on keywords.
The analysis to determine which SPDX License Identifier to be applied to
a file was done in a spreadsheet of side by side results from of the
output of two independent scanners (ScanCode & Windriver) producing SPDX
tag:value files created by Philippe Ombredanne. Philippe prepared the
base worksheet, and did an initial spot review of a few 1000 files.
The 4.13 kernel was the starting point of the analysis with 60,537 files
assessed. Kate Stewart did a file by file comparison of the scanner
results in the spreadsheet to determine which SPDX license identifier(s)
to be applied to the file. She confirmed any determination that was not
immediately clear with lawyers working with the Linux Foundation.
Criteria used to select files for SPDX license identifier tagging was:
- Files considered eligible had to be source code files.
- Make and config files were included as candidates if they contained >5
lines of source
- File already had some variant of a license header in it (even if <5
lines).
All documentation files were explicitly excluded.
The following heuristics were used to determine which SPDX license
identifiers to apply.
- when both scanners couldn't find any license traces, file was
considered to have no license information in it, and the top level
COPYING file license applied.
For non */uapi/* files that summary was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 11139
and resulted in the first patch in this series.
If that file was a */uapi/* path one, it was "GPL-2.0 WITH
Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 WITH Linux-syscall-note 930
and resulted in the second patch in this series.
- if a file had some form of licensing information in it, and was one
of the */uapi/* ones, it was denoted with the Linux-syscall-note if
any GPL family license was found in the file or had no licensing in
it (per prior point). Results summary:
SPDX license identifier # files
---------------------------------------------------|------
GPL-2.0 WITH Linux-syscall-note 270
GPL-2.0+ WITH Linux-syscall-note 169
((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21
((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17
LGPL-2.1+ WITH Linux-syscall-note 15
GPL-1.0+ WITH Linux-syscall-note 14
((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5
LGPL-2.0+ WITH Linux-syscall-note 4
LGPL-2.1 WITH Linux-syscall-note 3
((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3
((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1
and that resulted in the third patch in this series.
- when the two scanners agreed on the detected license(s), that became
the concluded license(s).
- when there was disagreement between the two scanners (one detected a
license but the other didn't, or they both detected different
licenses) a manual inspection of the file occurred.
- In most cases a manual inspection of the information in the file
resulted in a clear resolution of the license that should apply (and
which scanner probably needed to revisit its heuristics).
- When it was not immediately clear, the license identifier was
confirmed with lawyers working with the Linux Foundation.
- If there was any question as to the appropriate license identifier,
the file was flagged for further research and to be revisited later
in time.
In total, over 70 hours of logged manual review was done on the
spreadsheet to determine the SPDX license identifiers to apply to the
source files by Kate, Philippe, Thomas and, in some cases, confirmation
by lawyers working with the Linux Foundation.
Kate also obtained a third independent scan of the 4.13 code base from
FOSSology, and compared selected files where the other two scanners
disagreed against that SPDX file, to see if there was new insights. The
Windriver scanner is based on an older version of FOSSology in part, so
they are related.
Thomas did random spot checks in about 500 files from the spreadsheets
for the uapi headers and agreed with SPDX license identifier in the
files he inspected. For the non-uapi files Thomas did random spot checks
in about 15000 files.
In initial set of patches against 4.14-rc6, 3 files were found to have
copy/paste license identifier errors, and have been fixed to reflect the
correct identifier.
Additionally Philippe spent 10 hours this week doing a detailed manual
inspection and review of the 12,461 patched files from the initial patch
version early this week with:
- a full scancode scan run, collecting the matched texts, detected
license ids and scores
- reviewing anything where there was a license detected (about 500+
files) to ensure that the applied SPDX license was correct
- reviewing anything where there was no detection but the patch license
was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied
SPDX license was correct
This produced a worksheet with 20 files needing minor correction. This
worksheet was then exported into 3 different .csv files for the
different types of files to be modified.
These .csv files were then reviewed by Greg. Thomas wrote a script to
parse the csv files and add the proper SPDX tag to the file, in the
format that the file expected. This script was further refined by Greg
based on the output to detect more types of files automatically and to
distinguish between header and source .c files (which need different
comment types.) Finally Greg ran the script using the .csv files to
generate the patches.
Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
We are going to split <linux/sched/signal.h> out of <linux/sched.h>, which
will have to be picked up from other headers and a couple of .c files.
Create a trivial placeholder <linux/sched/signal.h> file that just
maps to <linux/sched.h> to make this patch obviously correct and
bisectable.
Include the new header in the files that are going to need it.
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Similar to commit 14135f30e3 ("inet: fix sleeping inside inet_wait_for_connect()"),
sk_wait_event() needs to fix too, because release_sock() is blocking,
it changes the process state back to running after sleep, which breaks
the previous prepare_to_wait().
Switch to the new wait API.
Cc: Eric Dumazet <eric.dumazet@gmail.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Cong Wang <xiyou.wangcong@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Since commit 900f65d361 ("tcp: move duplicate code from
tcp_v4_init_sock()/tcp_v6_init_sock()") we no longer need
to export sk_stream_write_space()
From: Eric Dumazet <edumazet@google.com>
Cc: Neal Cardwell <ncardwell@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Conflicts:
drivers/net/ethernet/renesas/ravb_main.c
kernel/bpf/syscall.c
net/ipv4/ipmr.c
All three conflicts were cases of overlapping changes.
Signed-off-by: David S. Miller <davem@davemloft.net>
Dmitry provided a syzkaller (http://github.com/google/syzkaller)
triggering a fault in sock_wake_async() when async IO is requested.
Said program stressed af_unix sockets, but the issue is generic
and should be addressed in core networking stack.
The problem is that by the time sock_wake_async() is called,
we should not access the @flags field of 'struct socket',
as the inode containing this socket might be freed without
further notice, and without RCU grace period.
We already maintain an RCU protected structure, "struct socket_wq"
so moving SOCKWQ_ASYNC_NOSPACE & SOCKWQ_ASYNC_WAITDATA into it
is the safe route.
It also reduces number of cache lines needing dirtying, so might
provide a performance improvement anyway.
In followup patches, we might move remaining flags (SOCK_NOSPACE,
SOCK_PASSCRED, SOCK_PASSSEC) to save 8 bytes and let 'struct socket'
being mostly read and let it being shared between cpus.
Reported-by: Dmitry Vyukov <dvyukov@google.com>
Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
This patch is a cleanup to make following patch easier to
review.
Goal is to move SOCK_ASYNC_NOSPACE and SOCK_ASYNC_WAITDATA
from (struct socket)->flags to a (struct socket_wq)->flags
to benefit from RCU protection in sock_wake_async()
To ease backports, we rename both constants.
Two new helpers, sk_set_bit(int nr, struct sock *sk)
and sk_clear_bit(int net, struct sock *sk) are added so that
following patch can change their implementation.
Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
The memory barrier in the helper wq_has_sleeper is needed by just
about every user of waitqueue_active. This patch generalises it
by making it take a wait_queue_head_t directly. The existing
helper is renamed to skwq_has_sleeper.
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Signed-off-by: David S. Miller <davem@davemloft.net>
Under tcp memory pressure, calling epoll_wait() in edge triggered
mode after -EAGAIN, can result in an indefinite hang in epoll_wait(),
even when there is sufficient memory available to continue making
progress. The problem is that when __sk_mem_schedule() returns 0
under memory pressure, we do not set the SOCK_NOSPACE flag in the
tcp write paths (tcp_sendmsg() or do_tcp_sendpages()). Then, since
SOCK_NOSPACE is used to trigger wakeups when incoming acks create
sufficient new space in the write queue, all outstanding packets
are acked, but we never wake up with the the EPOLLOUT that we are
expecting from epoll_wait().
This issue is currently limited to epoll() when used in edge trigger
mode, since 'tcp_poll()', does in fact currently set SOCK_NOSPACE.
This is sufficient for poll()/select() and epoll() in level trigger
mode. However, in edge trigger mode, epoll() is relying on the write
path to set SOCK_NOSPACE. EPOLL(7) says that in edge-trigger mode we
can only call epoll_wait() after read/write return -EAGAIN. Thus, in
the case of the socket write, we are relying on the fact that
tcp_sendmsg()/network write paths are going to issue a wakeup for
us at some point in the future when we get -EAGAIN.
Normally, epoll() edge trigger works fine when we've exceeded the
sk->sndbuf because in that case we do set SOCK_NOSPACE. However, when
we return -EAGAIN from the write path b/c we are over the tcp memory
limits and not b/c we are over the sndbuf, we are never going to get
another wakeup.
I can reproduce this issue, using SO_SNDBUF, since __sk_mem_schedule()
will return 0, or failure more readily with SO_SNDBUF:
1) create socket and set SO_SNDBUF to N
2) add socket as edge trigger
3) write to socket and block in epoll on -EAGAIN
4) cause tcp mem pressure via: echo "<small val>" > net.ipv4.tcp_mem
The fix here is simply to set SOCK_NOSPACE in sk_stream_wait_memory()
when the socket is non-blocking. Note that SOCK_NOSPACE, in addition
to waking up outstanding waiters is also used to expand the size of
the sk->sndbuf. However, we will not expand it by setting it in this
case because tcp_should_expand_sndbuf(), ensures that no expansion
occurs when we are under tcp memory pressure.
Note that we could still hang if sk->sk_wmem_queue is 0, when we get
the -EAGAIN. In this case the SOCK_NOSPACE bit will not help, since we
are waiting for and event that will never happen. I believe
that this case is harder to hit (and did not hit in my testing),
in that over the tcp 'soft' memory limits, we continue to guarantee a
minimum write buffer size. Perhaps, we could return -ENOSPC in this
case, or maybe we simply issue a wakeup in this case, such that we
keep retrying the write. Note that this case is not specific to
epoll() ET, but rather would affect blocking sockets as well. So I
view this patch as bringing epoll() edge-trigger into sync with the
current poll()/select()/epoll() level trigger and blocking sockets
behavior.
Signed-off-by: Jason Baron <jbaron@akamai.com>
Acked-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
This patch removes the net_random and net_srandom macros and replaces
them with direct calls to the prandom ones. As new commits only seem to
use prandom_u32 there is no use to keep them around.
This change makes it easier to grep for users of prandom_u32.
Signed-off-by: Aruna-Hewapathirane <aruna.hewapathirane@gmail.com>
Suggested-by: Hannes Frederic Sowa <hannes@stressinduktion.org>
Acked-by: Hannes Frederic Sowa <hannes@stressinduktion.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
Several call sites use the hardcoded following condition :
sk_stream_wspace(sk) >= sk_stream_min_wspace(sk)
Lets use a helper because TCP_NOTSENT_LOWAT support will change this
condition for TCP sockets.
Signed-off-by: Eric Dumazet <edumazet@google.com>
Cc: Neal Cardwell <ncardwell@google.com>
Cc: Yuchung Cheng <ycheng@google.com>
Acked-by: Neal Cardwell <ncardwell@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
This patch fixes the condition (3rd arg) passed to sk_wait_event() in
sk_stream_wait_memory(). The incorrect check in sk_stream_wait_memory()
causes the following soft lockup in tcp_sendmsg() when the global tcp
memory pool has exhausted.
>>> snip <<<
localhost kernel: BUG: soft lockup - CPU#3 stuck for 11s! [sshd:6429]
localhost kernel: CPU 3:
localhost kernel: RIP: 0010:[sk_stream_wait_memory+0xcd/0x200] [sk_stream_wait_memory+0xcd/0x200] sk_stream_wait_memory+0xcd/0x200
localhost kernel:
localhost kernel: Call Trace:
localhost kernel: [sk_stream_wait_memory+0x1b1/0x200] sk_stream_wait_memory+0x1b1/0x200
localhost kernel: [<ffffffff802557c0>] autoremove_wake_function+0x0/0x40
localhost kernel: [ipv6:tcp_sendmsg+0x6e6/0xe90] tcp_sendmsg+0x6e6/0xce0
localhost kernel: [sock_aio_write+0x126/0x140] sock_aio_write+0x126/0x140
localhost kernel: [xfs:do_sync_write+0xf1/0x130] do_sync_write+0xf1/0x130
localhost kernel: [<ffffffff802557c0>] autoremove_wake_function+0x0/0x40
localhost kernel: [hrtimer_start+0xe3/0x170] hrtimer_start+0xe3/0x170
localhost kernel: [vfs_write+0x185/0x190] vfs_write+0x185/0x190
localhost kernel: [sys_write+0x50/0x90] sys_write+0x50/0x90
localhost kernel: [system_call+0x7e/0x83] system_call+0x7e/0x83
>>> snip <<<
What is happening is, that the sk_wait_event() condition passed from
sk_stream_wait_memory() evaluates to true for the case of tcp global memory
exhaustion. This is because both sk_stream_memory_free() and vm_wait are true
which causes sk_wait_event() to *not* call schedule_timeout().
Hence sk_stream_wait_memory() returns immediately to the caller w/o sleeping.
This causes the caller to again try allocation, which again fails and again
calls sk_stream_wait_memory(), and so on.
[ Bug introduced by commit c1cbe4b7ad
("[NET]: Avoid atomic xchg() for non-error case") -DaveM ]
Signed-off-by: Nagendra Singh Tomar <tomer_iisc@yahoo.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
CodingStyle cleanups
EXPORT_SYMBOL should immediately follow the symbol declaration.
Signed-off-by: Eric Dumazet <eric.dumazet@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
sk_callback_lock rwlock actually protects sk->sk_sleep pointer, so we
need two atomic operations (and associated dirtying) per incoming
packet.
RCU conversion is pretty much needed :
1) Add a new structure, called "struct socket_wq" to hold all fields
that will need rcu_read_lock() protection (currently: a
wait_queue_head_t and a struct fasync_struct pointer).
[Future patch will add a list anchor for wakeup coalescing]
2) Attach one of such structure to each "struct socket" created in
sock_alloc_inode().
3) Respect RCU grace period when freeing a "struct socket_wq"
4) Change sk_sleep pointer in "struct sock" by sk_wq, pointer to "struct
socket_wq"
5) Change sk_sleep() function to use new sk->sk_wq instead of
sk->sk_sleep
6) Change sk_has_sleeper() to wq_has_sleeper() that must be used inside
a rcu_read_lock() section.
7) Change all sk_has_sleeper() callers to :
- Use rcu_read_lock() instead of read_lock(&sk->sk_callback_lock)
- Use wq_has_sleeper() to eventually wakeup tasks.
- Use rcu_read_unlock() instead of read_unlock(&sk->sk_callback_lock)
8) sock_wake_async() is modified to use rcu protection as well.
9) Exceptions :
macvtap, drivers/net/tun.c, af_unix use integrated "struct socket_wq"
instead of dynamically allocated ones. They dont need rcu freeing.
Some cleanups or followups are probably needed, (possible
sk_callback_lock conversion to a spinlock for example...).
Signed-off-by: Eric Dumazet <eric.dumazet@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Define a new function to return the waitqueue of a "struct sock".
static inline wait_queue_head_t *sk_sleep(struct sock *sk)
{
return sk->sk_sleep;
}
Change all read occurrences of sk_sleep by a call to this function.
Needed for a future RCU conversion. sk_sleep wont be a field directly
available.
Signed-off-by: Eric Dumazet <eric.dumazet@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
When TCP frees up write buffer space, avoid waking up tasks that have
done a poll() or select() on the same socket specifying read-side
events.
This is an extension of a read-side patch by Eric Dumazet.
Signed-off-by: John Dykstra <john.dykstra1@gmail.com>
Acked-by: Eric Dumazet <dada1@cosmosbay.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Clean up the various different email addresses of mine listed in the code
to a single current and valid address. As Dave says his network merges
for 2.6.28 are now done this seems a good point to send them in where
they won't risk disrupting real changes.
Signed-off-by: Alan Cox <alan@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Removes legacy reinvent-the-wheel type thing. The generic
machinery integrates much better to automated debugging aids
such as kerneloops.org (and others), and is unambiguous due to
better naming. Non-intuively BUG_TRAP() is actually equal to
WARN_ON() rather than BUG_ON() though some might actually be
promoted to BUG_ON() but I left that to future.
I could make at least one BUILD_BUG_ON conversion.
Signed-off-by: Ilpo Järvinen <ilpo.jarvinen@helsinki.fi>
Signed-off-by: David S. Miller <davem@davemloft.net>
This patch introduces new memory accounting functions for each network
protocol. Most of them are renamed from memory accounting functions
for stream protocols. At the same time, some stream memory accounting
functions are removed since other functions do same thing.
Renaming:
sk_stream_free_skb() -> sk_wmem_free_skb()
__sk_stream_mem_reclaim() -> __sk_mem_reclaim()
sk_stream_mem_reclaim() -> sk_mem_reclaim()
sk_stream_mem_schedule -> __sk_mem_schedule()
sk_stream_pages() -> sk_mem_pages()
sk_stream_rmem_schedule() -> sk_rmem_schedule()
sk_stream_wmem_schedule() -> sk_wmem_schedule()
sk_charge_skb() -> sk_mem_charge()
Removeing
sk_stream_rfree(): consolidates into sock_rfree()
sk_stream_set_owner_r(): consolidates into skb_set_owner_r()
sk_stream_mem_schedule()
The following functions are added.
sk_has_account(): check if the protocol supports accounting
sk_mem_uncharge(): do the opposite of sk_mem_charge()
In addition, to achieve consolidation, updating sk_wmem_queued is
removed from sk_mem_charge().
Next, to consolidate memory accounting functions, this patch adds
memory accounting calls to network core functions. Moreover, present
memory accounting call is renamed to new accounting call.
Finally we replace present memory accounting calls with new interface
in TCP and SCTP.
Signed-off-by: Takahiro Yasui <tyasui@redhat.com>
Signed-off-by: Hideo Aoki <haoki@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
sk_forward_alloc being signed, we should take care of divides by
SK_STREAM_MEM_QUANTUM we do in sk_stream_pages() and
__sk_stream_mem_reclaim()
This patchs introduces SK_STREAM_MEM_QUANTUM_SHIFT, defined
as ilog2(SK_STREAM_MEM_QUANTUM), to be able to use right
shifts instead of plain divides.
This should help compiler to choose right shifts instead of
expensive divides (as seen with CONFIG_CC_OPTIMIZE_FOR_SIZE=y on x86)
Signed-off-by: Eric Dumazet <dada1@cosmosbay.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
The sock_wake_async() performs a bit different actions
depending on "how" argument. Unfortunately this argument
ony has numerical magic values.
I propose to give names to their constants to help people
reading this function callers understand what's going on
without looking into this function all the time.
I suppose this is 2.6.25 material, but if it's not (or the
naming seems poor/bad/awful), I can rework it against the
current net-2.6 tree.
Signed-off-by: Pavel Emelyanov <xemul@openvz.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Signed-off-by: David S. Miller <davem@davemloft.net>
This function references sk->sk_prot->xxx for many times.
It turned out, that there's so many code in it, that gcc
cannot always optimize access to sk->sk_prot's fields.
After saving the sk->sk_prot on the stack and comparing
disassembled code, it turned out that the function became
~10 bytes shorter and made less dereferences (on i386 and
x86_64). Stack consumption didn't grow.
Besides, this patch drives most of this function into the
80 columns limit.
Signed-off-by: Pavel Emelyanov <xemul@openvz.org>
Acked-by: Arnaldo Carvalho de Melo <acme@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
__sk_stream_mem_reclaim is only called by sk_stream_mem_reclaim.
As such the check on sk->sk_forward_alloc is not needed and can be
removed.
Signed-off-by: Ian McDonald <ian.mcdonald@jandi.co.nz>
Acked-by: Herbert Xu <herbert@gondor.apana.org.au>
Signed-off-by: David S. Miller <davem@davemloft.net>
Add some sanity checking. truesize should be at least sizeof(struct
sk_buff) plus the current packet length. If not, then truesize is
seriously mangled and deserves a kernel log message.
Currently we'll do the check for release of stream socket buffers.
But we can add checks to more spots over time.
Incorporating ideas from Herbert Xu.
Signed-off-by: David S. Miller <davem@davemloft.net>
It also looks like there were 2 places where the test on sk_err was
missing from the event wait logic (in sk_stream_wait_connect and
sk_stream_wait_memory), while the rest of the sock_error() users look
to be doing the right thing. This version of the patch fixes those,
and cleans up a few places that were testing ->sk_err directly.
Signed-off-by: Benjamin LaHaise <benjamin.c.lahaise@intel.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
When sk_stream_wait_connect detects a state transition to ESTABLISHED
or CLOSE_WAIT prior to it going to sleep, it will return without
calling finish_wait and decrementing sk_write_pending.
This may result in crashes and other unintended behaviour.
The fix is to always call finish_wait and update sk_write_pending since
it is safe to do so even if the wait entry is no longer on the queue.
This bug was tracked down with the help of Alex Sidorenko and the
fix is also based on his suggestion.
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Signed-off-by: Arnaldo Carvalho de Melo <acme@mandriva.com>
I have recompiled Linux kernel 2.6.11.5 documentation for me and our
university students again. The documentation could be extended for more
sources which are equipped by structured comments for recent 2.6 kernels. I
have tried to proceed with that task. I have done that more times from 2.6.0
time and it gets boring to do same changes again and again. Linux kernel
compiles after changes for i386 and ARM targets. I have added references to
some more files into kernel-api book, I have added some section names as well.
So please, check that changes do not break something and that categories are
not too much skewed.
I have changed kernel-doc to accept "fastcall" and "asmlinkage" words reserved
by kernel convention. Most of the other changes are modifications in the
comments to make kernel-doc happy, accept some parameters description and do
not bail out on errors. Changed <pid> to @pid in the description, moved some
#ifdef before comments to correct function to comments bindings, etc.
You can see result of the modified documentation build at
http://cmp.felk.cvut.cz/~pisa/linux/lkdb-2.6.11.tar.gz
Some more sources are ready to be included into kernel-doc generated
documentation. Sources has been added into kernel-api for now. Some more
section names added and probably some more chaos introduced as result of quick
cleanup work.
Signed-off-by: Pavel Pisa <pisa@cmp.felk.cvut.cz>
Signed-off-by: Martin Waitz <tali@admingilde.org>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Initial git repository build. I'm not bothering with the full history,
even though we have it. We can create a separate "historical" git
archive of that later if we want to, and in the meantime it's about
3.2GB when imported into git - space that would just make the early
git days unnecessarily complicated, when we don't have a lot of good
infrastructure for it.
Let it rip!