mirror of
https://github.com/torvalds/linux.git
synced 2024-11-11 06:31:49 +00:00
d6a71648db
306 Commits
Author | SHA1 | Message | Date | |
---|---|---|---|---|
Linus Torvalds
|
6614a3c316 |
- The usual batches of cleanups from Baoquan He, Muchun Song, Miaohe
Lin, Yang Shi, Anshuman Khandual and Mike Rapoport - Some kmemleak fixes from Patrick Wang and Waiman Long - DAMON updates from SeongJae Park - memcg debug/visibility work from Roman Gushchin - vmalloc speedup from Uladzislau Rezki - more folio conversion work from Matthew Wilcox - enhancements for coherent device memory mapping from Alex Sierra - addition of shared pages tracking and CoW support for fsdax, from Shiyang Ruan - hugetlb optimizations from Mike Kravetz - Mel Gorman has contributed some pagealloc changes to improve latency and realtime behaviour. - mprotect soft-dirty checking has been improved by Peter Xu - Many other singleton patches all over the place -----BEGIN PGP SIGNATURE----- iHUEABYKAB0WIQTTMBEPP41GrTpTJgfdBJ7gKXxAjgUCYuravgAKCRDdBJ7gKXxA jpqSAQDrXSdII+ht9kSHlaCVYjqRFQz/rRvURQrWQV74f6aeiAD+NHHeDPwZn11/ SPktqEUrF1pxnGQxqLh1kUFUhsVZQgE= =w/UH -----END PGP SIGNATURE----- Merge tag 'mm-stable-2022-08-03' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm Pull MM updates from Andrew Morton: "Most of the MM queue. A few things are still pending. Liam's maple tree rework didn't make it. This has resulted in a few other minor patch series being held over for next time. Multi-gen LRU still isn't merged as we were waiting for mapletree to stabilize. The current plan is to merge MGLRU into -mm soon and to later reintroduce mapletree, with a view to hopefully getting both into 6.1-rc1. Summary: - The usual batches of cleanups from Baoquan He, Muchun Song, Miaohe Lin, Yang Shi, Anshuman Khandual and Mike Rapoport - Some kmemleak fixes from Patrick Wang and Waiman Long - DAMON updates from SeongJae Park - memcg debug/visibility work from Roman Gushchin - vmalloc speedup from Uladzislau Rezki - more folio conversion work from Matthew Wilcox - enhancements for coherent device memory mapping from Alex Sierra - addition of shared pages tracking and CoW support for fsdax, from Shiyang Ruan - hugetlb optimizations from Mike Kravetz - Mel Gorman has contributed some pagealloc changes to improve latency and realtime behaviour. - mprotect soft-dirty checking has been improved by Peter Xu - Many other singleton patches all over the place" [ XFS merge from hell as per Darrick Wong in https://lore.kernel.org/all/YshKnxb4VwXycPO8@magnolia/ ] * tag 'mm-stable-2022-08-03' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (282 commits) tools/testing/selftests/vm/hmm-tests.c: fix build mm: Kconfig: fix typo mm: memory-failure: convert to pr_fmt() mm: use is_zone_movable_page() helper hugetlbfs: fix inaccurate comment in hugetlbfs_statfs() hugetlbfs: cleanup some comments in inode.c hugetlbfs: remove unneeded header file hugetlbfs: remove unneeded hugetlbfs_ops forward declaration hugetlbfs: use helper macro SZ_1{K,M} mm: cleanup is_highmem() mm/hmm: add a test for cross device private faults selftests: add soft-dirty into run_vmtests.sh selftests: soft-dirty: add test for mprotect mm/mprotect: fix soft-dirty check in can_change_pte_writable() mm: memcontrol: fix potential oom_lock recursion deadlock mm/gup.c: fix formatting in check_and_migrate_movable_page() xfs: fail dax mount if reflink is enabled on a partition mm/memcontrol.c: remove the redundant updating of stats_flush_threshold userfaultfd: don't fail on unrecognized features hugetlb_cgroup: fix wrong hugetlb cgroup numa stat ... |
||
Peter Xu
|
76aefad628 |
mm/mprotect: fix soft-dirty check in can_change_pte_writable()
Patch series "mm/mprotect: Fix soft-dirty checks", v4. This patch (of 3): The check wanted to make sure when soft-dirty tracking is enabled we won't grant write bit by accident, as a page fault is needed for dirty tracking. The intention is correct but we didn't check it right because VM_SOFTDIRTY set actually means soft-dirty tracking disabled. Fix it. There's another thing tricky about soft-dirty is that, we can't check the vma flag !(vma_flags & VM_SOFTDIRTY) directly but only check it after we checked CONFIG_MEM_SOFT_DIRTY because otherwise VM_SOFTDIRTY will be defined as zero, and !(vma_flags & VM_SOFTDIRTY) will constantly return true. To avoid misuse, introduce a helper for checking whether vma has soft-dirty tracking enabled. We can easily verify this with any exclusive anonymous page, like program below: =======8<====== #include <stdio.h> #include <unistd.h> #include <stdlib.h> #include <assert.h> #include <inttypes.h> #include <stdint.h> #include <sys/types.h> #include <sys/mman.h> #include <sys/types.h> #include <sys/stat.h> #include <unistd.h> #include <fcntl.h> #include <stdbool.h> #define BIT_ULL(nr) (1ULL << (nr)) #define PM_SOFT_DIRTY BIT_ULL(55) unsigned int psize; char *page; uint64_t pagemap_read_vaddr(int fd, void *vaddr) { uint64_t value; int ret; ret = pread(fd, &value, sizeof(uint64_t), ((uint64_t)vaddr >> 12) * sizeof(uint64_t)); assert(ret == sizeof(uint64_t)); return value; } void clear_refs_write(void) { int fd = open("/proc/self/clear_refs", O_RDWR); assert(fd >= 0); write(fd, "4", 2); close(fd); } #define check_soft_dirty(str, expect) do { \ bool dirty = pagemap_read_vaddr(fd, page) & PM_SOFT_DIRTY; \ if (dirty != expect) { \ printf("ERROR: %s, soft-dirty=%d (expect: %d) ", str, dirty, expect); \ exit(-1); \ } \ } while (0) int main(void) { int fd = open("/proc/self/pagemap", O_RDONLY); assert(fd >= 0); psize = getpagesize(); page = mmap(NULL, psize, PROT_READ|PROT_WRITE, MAP_ANONYMOUS|MAP_PRIVATE, -1, 0); assert(page != MAP_FAILED); *page = 1; check_soft_dirty("Just faulted in page", 1); clear_refs_write(); check_soft_dirty("Clear_refs written", 0); mprotect(page, psize, PROT_READ); check_soft_dirty("Marked RO", 0); mprotect(page, psize, PROT_READ|PROT_WRITE); check_soft_dirty("Marked RW", 0); *page = 2; check_soft_dirty("Wrote page again", 1); munmap(page, psize); close(fd); printf("Test passed. "); return 0; } =======8<====== Here we attach a Fixes to commit |
||
Alistair Popple
|
b05a79d437 |
mm/gup: migrate device coherent pages when pinning instead of failing
Currently any attempts to pin a device coherent page will fail. This is because device coherent pages need to be managed by a device driver, and pinning them would prevent a driver from migrating them off the device. However this is no reason to fail pinning of these pages. These are coherent and accessible from the CPU so can be migrated just like pinning ZONE_MOVABLE pages. So instead of failing all attempts to pin them first try migrating them out of ZONE_DEVICE. [hch@lst.de: rebased to the split device memory checks, moved migrate_device_page to migrate_device.c] Link: https://lkml.kernel.org/r/20220715150521.18165-7-alex.sierra@amd.com Signed-off-by: Alistair Popple <apopple@nvidia.com> Signed-off-by: Christoph Hellwig <hch@lst.de> Acked-by: Felix Kuehling <Felix.Kuehling@amd.com> Cc: David Hildenbrand <david@redhat.com> Cc: Jason Gunthorpe <jgg@nvidia.com> Cc: Jerome Glisse <jglisse@redhat.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Ralph Campbell <rcampbell@nvidia.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Ma Wupeng
|
902c2d9158 |
memblock: Disable mirror feature if kernelcore is not specified
If system have some mirrored memory and mirrored feature is not specified in boot parameter, the basic mirrored feature will be enabled and this will lead to the following situations: - memblock memory allocation prefers mirrored region. This may have some unexpected influence on numa affinity. - contiguous memory will be split into several parts if parts of them is mirrored memory via memblock_mark_mirror(). To fix this, variable mirrored_kernelcore will be checked in memblock_mark_mirror(). Mark mirrored memory with flag MEMBLOCK_MIRROR iff kernelcore=mirror is added in the kernel parameters. Signed-off-by: Ma Wupeng <mawupeng1@huawei.com> Acked-by: Ard Biesheuvel <ardb@kernel.org> Link: https://lore.kernel.org/r/20220614092156.1972846-6-mawupeng1@huawei.com Acked-by: Mike Rapoport <rppt@linux.ibm.com> Signed-off-by: Ard Biesheuvel <ardb@kernel.org> |
||
Zi Yan
|
86d28b0709 |
mm: split free page with properly free memory accounting and without race
In isolate_single_pageblock(), free pages are checked without holding zone
lock, but they can go away in split_free_page() when zone lock is held.
Check the free page and its order again in split_free_page() when zone lock
is held. Recheck the page if the free page is gone under zone lock.
In addition, in split_free_page(), the free page was deleted from the page
list without changing free page accounting. Add the missing free page
accounting code.
Fix the type of order parameter in split_free_page().
Link: https://lore.kernel.org/lkml/20220525103621.987185e2ca0079f7b97b856d@linux-foundation.org/
Link: https://lkml.kernel.org/r/20220526231531.2404977-2-zi.yan@sent.com
Fixes:
|
||
Qi Zheng
|
3f913fc5f9 |
mm: fix missing handler for __GFP_NOWARN
We expect no warnings to be issued when we specify __GFP_NOWARN, but currently in paths like alloc_pages() and kmalloc(), there are still some warnings printed, fix it. But for some warnings that report usage problems, we don't deal with them. If such warnings are printed, then we should fix the usage problems. Such as the following case: WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1)); [zhengqi.arch@bytedance.com: v2] Link: https://lkml.kernel.org/r/20220511061951.1114-1-zhengqi.arch@bytedance.com Link: https://lkml.kernel.org/r/20220510113809.80626-1-zhengqi.arch@bytedance.com Signed-off-by: Qi Zheng <zhengqi.arch@bytedance.com> Cc: Akinobu Mita <akinobu.mita@gmail.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Jiri Slaby <jirislaby@kernel.org> Cc: Steven Rostedt (Google) <rostedt@goodmis.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
zhenwei pi
|
60f272f6b0 |
mm/memory-failure.c: move clear_hwpoisoned_pages
Patch series "memory-failure: fix hwpoison_filter", v2. As well known, the memory failure mechanism handles memory corrupted event, and try to send SIGBUS to the user process which uses this corrupted page. For the virtualization case, QEMU catches SIGBUS and tries to inject MCE into the guest, and the guest handles memory failure again. Thus the guest gets the minimal effect from hardware memory corruption. The further step I'm working on: 1, try to modify code to decrease poisoned pages in a single place (mm/memofy-failure.c: simplify num_poisoned_pages_dec in this series). 2, try to use page_handle_poison() to handle SetPageHWPoison() and num_poisoned_pages_inc() together. It would be best to call num_poisoned_pages_inc() in a single place too. 3, introduce memory failure notifier list in memory-failure.c: notify the corrupted PFN to someone who registers this list. If I can complete [1] and [2] part, [3] will be quite easy(just call notifier list after increasing poisoned page). 4, introduce memory recover VQ for memory balloon device, and registers memory failure notifier list. During the guest kernel handles memory failure, balloon device gets notified by memory failure notifier list, and tells the host to recover the corrupted PFN(GPA) by the new VQ. 5, host side remaps the corrupted page(HVA), and tells the guest side to unpoison the PFN(GPA). Then the guest fixes the corrupted page(GPA) dynamically. This patch (of 5): clear_hwpoisoned_pages() clears HWPoison flag and decreases the number of poisoned pages, this actually works as part of memory failure. Move this function from sparse.c to memory-failure.c, finally there is no CONFIG_MEMORY_FAILURE in sparse.c. Link: https://lkml.kernel.org/r/20220509105641.491313-1-pizhenwei@bytedance.com Link: https://lkml.kernel.org/r/20220509105641.491313-2-pizhenwei@bytedance.com Signed-off-by: zhenwei pi <pizhenwei@bytedance.com> Acked-by: Naoya Horiguchi <naoya.horiguchi@nec.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Zi Yan
|
b2c9e2fbba |
mm: make alloc_contig_range work at pageblock granularity
alloc_contig_range() worked at MAX_ORDER_NR_PAGES granularity to avoid merging pageblocks with different migratetypes. It might unnecessarily convert extra pageblocks at the beginning and at the end of the range. Change alloc_contig_range() to work at pageblock granularity. Special handling is needed for free pages and in-use pages across the boundaries of the range specified by alloc_contig_range(). Because these= Partially isolated pages causes free page accounting issues. The free pages will be split and freed into separate migratetype lists; the in-use= Pages will be migrated then the freed pages will be handled in the aforementioned way. [ziy@nvidia.com: fix deadlock/crash] Link: https://lkml.kernel.org/r/23A7297E-6C84-4138-A9FE-3598234004E6@nvidia.com Link: https://lkml.kernel.org/r/20220425143118.2850746-4-zi.yan@sent.com Signed-off-by: Zi Yan <ziy@nvidia.com> Reported-by: kernel test robot <lkp@intel.com> Cc: Christophe Leroy <christophe.leroy@csgroup.eu> Cc: David Hildenbrand <david@redhat.com> Cc: Eric Ren <renzhengeek@gmail.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Mike Rapoport <rppt@linux.ibm.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Oscar Salvador <osalvador@suse.de> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Miaohe Lin
|
d56c15845a |
mm: compaction: clean up comment for sched contention
Since commit
|
||
Muchun Song
|
6a8e0596f0 |
mm: rmap: introduce pfn_mkclean_range() to cleans PTEs
The page_mkclean_one() is supposed to be used with the pfn that has a associated struct page, but not all the pfns (e.g. DAX) have a struct page. Introduce a new function pfn_mkclean_range() to cleans the PTEs (including PMDs) mapped with range of pfns which has no struct page associated with them. This helper will be used by DAX device in the next patch to make pfns clean. Link: https://lkml.kernel.org/r/20220403053957.10770-4-songmuchun@bytedance.com Signed-off-by: Muchun Song <songmuchun@bytedance.com> Cc: Alistair Popple <apopple@nvidia.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Christoph Hellwig <hch@lst.de> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Hugh Dickins <hughd@google.com> Cc: Jan Kara <jack@suse.cz> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Ralph Campbell <rcampbell@nvidia.com> Cc: Ross Zwisler <zwisler@kernel.org> Cc: Xiongchun Duan <duanxiongchun@bytedance.com> Cc: Xiyu Yang <xiyuyang19@fudan.edu.cn> Cc: Yang Shi <shy828301@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Zi Yan
|
8170ac4700 |
mm: wrap __find_buddy_pfn() with a necessary buddy page validation
Whenever the buddy of a page is found from __find_buddy_pfn(), page_is_buddy() should be used to check its validity. Add a helper function find_buddy_page_pfn() to find the buddy page and do the check together. [ziy@nvidia.com: updates per David] Link: https://lkml.kernel.org/r/20220401230804.1658207-2-zi.yan@sent.com Link: https://lore.kernel.org/linux-mm/CAHk-=wji_AmYygZMTsPMdJ7XksMt7kOur8oDfDdniBRMjm4VkQ@mail.gmail.com/ Link: https://lkml.kernel.org/r/7236E7CA-B5F1-4C04-AB85-E86FA3E9A54B@nvidia.com Suggested-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Zi Yan <ziy@nvidia.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: David Hildenbrand <david@redhat.com> Cc: Steven Rostedt (Google) <rostedt@goodmis.org> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Mike Rapoport <rppt@kernel.org> Cc: Oscar Salvador <osalvador@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Sebastian Andrzej Siewior
|
adb11e78c5 |
mm/munlock: protect the per-CPU pagevec by a local_lock_t
The access to mlock_pvec is protected by disabling preemption via get_cpu_var() or implicit by having preemption disabled by the caller (in mlock_page_drain() case). This breaks on PREEMPT_RT since folio_lruvec_lock_irq() acquires a sleeping lock in this section. Create struct mlock_pvec which consits of the local_lock_t and the pagevec. Acquire the local_lock() before accessing the per-CPU pagevec. Replace mlock_page_drain() with a _local() version which is invoked on the local CPU and acquires the local_lock_t and a _remote() version which uses the pagevec from a remote CPU which offline. Link: https://lkml.kernel.org/r/YjizWi9IY0mpvIfb@linutronix.de Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Acked-by: Hugh Dickins <hughd@google.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Matthew Wilcox <willy@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Linus Torvalds
|
9030fb0bb9 |
Folio changes for 5.18
- Rewrite how munlock works to massively reduce the contention on i_mmap_rwsem (Hugh Dickins): https://lore.kernel.org/linux-mm/8e4356d-9622-a7f0-b2c-f116b5f2efea@google.com/ - Sort out the page refcount mess for ZONE_DEVICE pages (Christoph Hellwig): https://lore.kernel.org/linux-mm/20220210072828.2930359-1-hch@lst.de/ - Convert GUP to use folios and make pincount available for order-1 pages. (Matthew Wilcox) - Convert a few more truncation functions to use folios (Matthew Wilcox) - Convert page_vma_mapped_walk to use PFNs instead of pages (Matthew Wilcox) - Convert rmap_walk to use folios (Matthew Wilcox) - Convert most of shrink_page_list() to use a folio (Matthew Wilcox) - Add support for creating large folios in readahead (Matthew Wilcox) -----BEGIN PGP SIGNATURE----- iQEzBAABCgAdFiEEejHryeLBw/spnjHrDpNsjXcpgj4FAmI4ucgACgkQDpNsjXcp gj69Wgf6AwqwmO5Tmy+fLScDPqWxmXJofbocae1kyoGHf7Ui91OK4U2j6IpvAr+g P/vLIK+JAAcTQcrSCjymuEkf4HkGZOR03QQn7maPIEe4eLrZRQDEsmHC1L9gpeJp s/GMvDWiGE0Tnxu0EOzfVi/yT+qjIl/S8VvqtCoJv1HdzxitZ7+1RDuqImaMC5MM Qi3uHag78vLmCltLXpIOdpgZhdZexCdL2Y/1npf+b6FVkAJRRNUnA0gRbS7YpoVp CbxEJcmAl9cpJLuj5i5kIfS9trr+/QcvbUlzRxh4ggC58iqnmF2V09l2MJ7YU3XL v1O/Elq4lRhXninZFQEm9zjrri7LDQ== =n9Ad -----END PGP SIGNATURE----- Merge tag 'folio-5.18c' of git://git.infradead.org/users/willy/pagecache Pull folio updates from Matthew Wilcox: - Rewrite how munlock works to massively reduce the contention on i_mmap_rwsem (Hugh Dickins): https://lore.kernel.org/linux-mm/8e4356d-9622-a7f0-b2c-f116b5f2efea@google.com/ - Sort out the page refcount mess for ZONE_DEVICE pages (Christoph Hellwig): https://lore.kernel.org/linux-mm/20220210072828.2930359-1-hch@lst.de/ - Convert GUP to use folios and make pincount available for order-1 pages. (Matthew Wilcox) - Convert a few more truncation functions to use folios (Matthew Wilcox) - Convert page_vma_mapped_walk to use PFNs instead of pages (Matthew Wilcox) - Convert rmap_walk to use folios (Matthew Wilcox) - Convert most of shrink_page_list() to use a folio (Matthew Wilcox) - Add support for creating large folios in readahead (Matthew Wilcox) * tag 'folio-5.18c' of git://git.infradead.org/users/willy/pagecache: (114 commits) mm/damon: minor cleanup for damon_pa_young selftests/vm/transhuge-stress: Support file-backed PMD folios mm/filemap: Support VM_HUGEPAGE for file mappings mm/readahead: Switch to page_cache_ra_order mm/readahead: Align file mappings for non-DAX mm/readahead: Add large folio readahead mm: Support arbitrary THP sizes mm: Make large folios depend on THP mm: Fix READ_ONLY_THP warning mm/filemap: Allow large folios to be added to the page cache mm: Turn can_split_huge_page() into can_split_folio() mm/vmscan: Convert pageout() to take a folio mm/vmscan: Turn page_check_references() into folio_check_references() mm/vmscan: Account large folios correctly mm/vmscan: Optimise shrink_page_list for non-PMD-sized folios mm/vmscan: Free non-shmem folios without splitting them mm/rmap: Constify the rmap_walk_control argument mm/rmap: Convert rmap_walk() to take a folio mm: Turn page_anon_vma() into folio_anon_vma() mm/rmap: Turn page_lock_anon_vma_read() into folio_lock_anon_vma_read() ... |
||
Vlastimil Babka
|
be4893d92b |
mm/early_ioremap: declare early_memremap_pgprot_adjust()
The mm/ directory can almost fully be built with W=1, which would help in local development. One remaining issue is missing prototype for early_memremap_pgprot_adjust(). Thus add a declaration for this function. Use mm/internal.h instead of asm/early_ioremap.h to avoid missing type definitions and unnecessary exposure. Link: https://lkml.kernel.org/r/20220314165724.16071-2-vbabka@suse.cz Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Matthew Wilcox <willy@infradead.org> Cc: David Hildenbrand <david@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Michal Hocko
|
09f49dca57 |
mm: handle uninitialized numa nodes gracefully
We have had several reports [1][2][3] that page allocator blows up when an allocation from a possible node is requested. The underlying reason is that NODE_DATA for the specific node is not allocated. NUMA specific initialization is arch specific and it can vary a lot. E.g. x86 tries to initialize all nodes that have some cpu affinity (see init_cpu_to_node) but this can be insufficient because the node might be cpuless for example. One way to address this problem would be to check for !node_online nodes when trying to get a zonelist and silently fall back to another node. That is unfortunately adding a branch into allocator hot path and it doesn't handle any other potential NODE_DATA users. This patch takes a different approach (following a lead of [3]) and it pre allocates pgdat for all possible nodes in an arch indipendent code - free_area_init. All uninitialized nodes are treated as memoryless nodes. node_state of the node is not changed because that would lead to other side effects - e.g. sysfs representation of such a node and from past discussions [4] it is known that some tools might have problems digesting that. Newly allocated pgdat only gets a minimal initialization and the rest of the work is expected to be done by the memory hotplug - hotadd_new_pgdat (renamed to hotadd_init_pgdat). generic_alloc_nodedata is changed to use the memblock allocator because neither page nor slab allocators are available at the stage when all pgdats are allocated. Hotplug doesn't allocate pgdat anymore so we can use the early boot allocator. The only arch specific implementation is ia64 and that is changed to use the early allocator as well. [1] http://lkml.kernel.org/r/20211101201312.11589-1-amakhalov@vmware.com [2] http://lkml.kernel.org/r/20211207224013.880775-1-npache@redhat.com [3] http://lkml.kernel.org/r/20190114082416.30939-1-mhocko@kernel.org [4] http://lkml.kernel.org/r/20200428093836.27190-1-srikar@linux.vnet.ibm.com [akpm@linux-foundation.org: replace comment, per Mike] Link: https://lkml.kernel.org/r/Yfe7RBeLCijnWBON@dhcp22.suse.cz Reported-by: Alexey Makhalov <amakhalov@vmware.com> Tested-by: Alexey Makhalov <amakhalov@vmware.com> Reported-by: Nico Pache <npache@redhat.com> Acked-by: Rafael Aquini <raquini@redhat.com> Tested-by: Rafael Aquini <raquini@redhat.com> Acked-by: David Hildenbrand <david@redhat.com> Reviewed-by: Oscar Salvador <osalvador@suse.de> Acked-by: Mike Rapoport <rppt@linux.ibm.com> Signed-off-by: Michal Hocko <mhocko@suse.com> Cc: Christoph Lameter <cl@linux.com> Cc: Dennis Zhou <dennis@kernel.org> Cc: Eric Dumazet <eric.dumazet@gmail.com> Cc: Tejun Heo <tj@kernel.org> Cc: Wei Yang <richard.weiyang@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Miaohe Lin
|
c7878534a1 |
mm/sparse: make mminit_validate_memmodel_limits() static
It's only used in the sparse.c now. So we can make it static and further clean up the relevant code. Link: https://lkml.kernel.org/r/20220127093221.63524-1-linmiaohe@huawei.com Signed-off-by: Miaohe Lin <linmiaohe@huawei.com> Reviewed-by: Mike Rapoport <rppt@linux.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Matthew Wilcox (Oracle)
|
56a4d67c26 |
mm/readahead: Switch to page_cache_ra_order
do_page_cache_ra() was being exposed for the benefit of do_sync_mmap_readahead(). Switch it over to page_cache_ra_order() partly because it's a better interface but mostly for the benefit of the next patch. Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org> |
||
Matthew Wilcox (Oracle)
|
e05b34539d |
mm: Turn page_anon_vma() into folio_anon_vma()
Move the prototype from mm.h to mm/internal.h and convert all callers to pass a folio. Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org> |
||
Matthew Wilcox (Oracle)
|
dcc5d337c5 |
mm/mlock: Add mlock_vma_folio()
Convert mlock_page() into mlock_folio() and convert the callers. Keep mlock_vma_page() as a wrapper. Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org> |
||
Matthew Wilcox (Oracle)
|
2aff7a4755 |
mm: Convert page_vma_mapped_walk to work on PFNs
page_mapped_in_vma() really just wants to walk one page, but as the code stands, if passed the head page of a compound page, it will walk every page in the compound page. Extract pfn/nr_pages/pgoff from the struct page early, so they can be overridden by page_mapped_in_vma(). Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org> |
||
Matthew Wilcox (Oracle)
|
c56109dd35 |
mm/truncate: Combine invalidate_mapping_pagevec() and __invalidate_mapping_pages()
We can save a function call by combining these two functions, which are identical except for the return value. Also move the prototype to mm/internal.h. Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Miaohe Lin <linmiaohe@huawei.com> |
||
Matthew Wilcox (Oracle)
|
261b6840ed |
mm: Turn deactivate_file_page() into deactivate_file_folio()
This function has one caller which already has a reference to the page, so we don't need to use get_page_unless_zero(). Also move the prototype to mm/internal.h. Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Miaohe Lin <linmiaohe@huawei.com> |
||
Matthew Wilcox (Oracle)
|
d6c75dc22c |
mm/truncate: Split invalidate_inode_page() into mapping_evict_folio()
Some of the callers already have the address_space and can avoid calling folio_mapping() and checking if the folio was already truncated. Also add kernel-doc and fix the return type (in case we ever support folios larger than 4TB). Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Miaohe Lin <linmiaohe@huawei.com> |
||
Matthew Wilcox (Oracle)
|
ca6d60f3f1 |
mm: Turn putback_lru_page() into folio_putback_lru()
Add a putback_lru_page() wrapper. Removes a couple of compound_head() calls. Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org> Reviewed-by: Christoph Hellwig <hch@lst.de> |
||
Matthew Wilcox (Oracle)
|
d1d8a3b4d0 |
mm: Turn isolate_lru_page() into folio_isolate_lru()
Add isolate_lru_page() as a wrapper around isolate_lru_folio(). TestClearPageLRU() would have always failed on a tail page, so returning -EBUSY is the same behaviour. Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: John Hubbard <jhubbard@nvidia.com> Reviewed-by: Jason Gunthorpe <jgg@nvidia.com> Reviewed-by: William Kucharski <william.kucharski@oracle.com> |
||
Matthew Wilcox (Oracle)
|
ece1ed7bfa |
mm/gup: Add try_get_folio() and try_grab_folio()
Convert try_get_compound_head() into try_get_folio() and convert try_grab_compound_head() into try_grab_folio(). Add a temporary try_grab_compound_head() wrapper around try_grab_folio() to let us convert callers individually. Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: John Hubbard <jhubbard@nvidia.com> Reviewed-by: Jason Gunthorpe <jgg@nvidia.com> Reviewed-by: William Kucharski <william.kucharski@oracle.com> |
||
Christoph Hellwig
|
27674ef6c7 |
mm: remove the extra ZONE_DEVICE struct page refcount
ZONE_DEVICE struct pages have an extra reference count that complicates the code for put_page() and several places in the kernel that need to check the reference count to see that a page is not being used (gup, compaction, migration, etc.). Clean up the code so the reference count doesn't need to be treated specially for ZONE_DEVICE pages. Note that this excludes the special idle page wakeup for fsdax pages, which still happens at refcount 1. This is a separate issue and will be sorted out later. Given that only fsdax pages require the notifiacation when the refcount hits 1 now, the PAGEMAP_OPS Kconfig symbol can go away and be replaced with a FS_DAX check for this hook in the put_page fastpath. Based on an earlier patch from Ralph Campbell <rcampbell@nvidia.com>. Link: https://lkml.kernel.org/r/20220210072828.2930359-8-hch@lst.de Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Logan Gunthorpe <logang@deltatee.com> Reviewed-by: Ralph Campbell <rcampbell@nvidia.com> Reviewed-by: Jason Gunthorpe <jgg@nvidia.com> Reviewed-by: Dan Williams <dan.j.williams@intel.com> Acked-by: Felix Kuehling <Felix.Kuehling@amd.com> Tested-by: "Sierra Guiza, Alejandro (Alex)" <alex.sierra@amd.com> Cc: Alex Deucher <alexander.deucher@amd.com> Cc: Alistair Popple <apopple@nvidia.com> Cc: Ben Skeggs <bskeggs@redhat.com> Cc: Chaitanya Kulkarni <kch@nvidia.com> Cc: Christian Knig <christian.koenig@amd.com> Cc: Karol Herbst <kherbst@redhat.com> Cc: Lyude Paul <lyude@redhat.com> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Muchun Song <songmuchun@bytedance.com> Cc: "Pan, Xinhui" <Xinhui.Pan@amd.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org> |
||
Hugh Dickins
|
c8263bd605 |
mm/munlock: mlock_vma_page() check against VM_SPECIAL
Although mmap_region() and mlock_fixup() take care that VM_LOCKED is never left set on a VM_SPECIAL vma, there is an interval while file->f_op->mmap() is using vm_insert_page(s), when VM_LOCKED may still be set while VM_SPECIAL bits are added: so mlock_vma_page() should ignore VM_LOCKED while any VM_SPECIAL bits are set. This showed up as a "Bad page" still mlocked, when vfree()ing pages which had been vm_inserted by remap_vmalloc_range_partial(): while release_pages() and __page_cache_release(), and so put_page(), catch pages still mlocked when freeing (and clear_page_mlock() caught them when unmapping), the vfree() path is unprepared for them: fix it? but these pages should not have been mlocked in the first place. I assume that an mlockall(MCL_FUTURE) had been done in the past; or maybe the user got to specify MAP_LOCKED on a vmalloc'ing driver mmap. Signed-off-by: Hugh Dickins <hughd@google.com> Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org> |
||
Hugh Dickins
|
2fbb0c10d1 |
mm/munlock: mlock_page() munlock_page() batch by pagevec
A weakness of the page->mlock_count approach is the need for lruvec lock while holding page table lock. That is not an overhead we would allow on normal pages, but I think acceptable just for pages in an mlocked area. But let's try to amortize the extra cost by gathering on per-cpu pagevec before acquiring the lruvec lock. I have an unverified conjecture that the mlock pagevec might work out well for delaying the mlock processing of new file pages until they have got off lru_cache_add()'s pagevec and on to LRU. The initialization of page->mlock_count is subject to races and awkward: 0 or !!PageMlocked or 1? Was it wrong even in the implementation before this commit, which just widens the window? I haven't gone back to think it through. Maybe someone can point out a better way to initialize it. Bringing lru_cache_add_inactive_or_unevictable()'s mlock initialization into mm/mlock.c has helped: mlock_new_page(), using the mlock pagevec, rather than lru_cache_add()'s pagevec. Experimented with various orderings: the right thing seems to be for mlock_page() and mlock_new_page() to TestSetPageMlocked before adding to pagevec, but munlock_page() to leave TestClearPageMlocked to the later pagevec processing. Dropped the VM_BUG_ON_PAGE(PageTail)s this time around: they have made their point, and the thp_nr_page()s already contain a VM_BUG_ON_PGFLAGS() for that. This still leaves acquiring lruvec locks under page table lock each time the pagevec fills (or a THP is added): which I suppose is rather silly, since they sit on pagevec waiting to be processed long after page table lock has been dropped; but I'm disinclined to uglify the calling sequence until some load shows an actual problem with it (nothing wrong with taking lruvec lock under page table lock, just "nicer" to do it less). Signed-off-by: Hugh Dickins <hughd@google.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org> |
||
Hugh Dickins
|
34b6792380 |
mm/munlock: mlock_pte_range() when mlocking or munlocking
Fill in missing pieces: reimplementation of munlock_vma_pages_range(), required to lower the mlock_counts when munlocking without munmapping; and its complement, implementation of mlock_vma_pages_range(), required to raise the mlock_counts on pages already there when a range is mlocked. Combine them into just the one function mlock_vma_pages_range(), using walk_page_range() to run mlock_pte_range(). This approach fixes the "Very slow unlockall()" of unpopulated PROT_NONE areas, reported in https://lore.kernel.org/linux-mm/70885d37-62b7-748b-29df-9e94f3291736@gmail.com/ Munlock clears VM_LOCKED at the start, under exclusive mmap_lock; but if a racing truncate or holepunch (depending on i_mmap_rwsem) gets to the pte first, it will not try to munlock the page: leaving release_pages() to correct it when the last reference to the page is gone - that's okay, a page is not evictable anyway while it is held by an extra reference. Mlock sets VM_LOCKED at the start, under exclusive mmap_lock; but if a racing remove_migration_pte() or try_to_unmap_one() (depending on i_mmap_rwsem) gets to the pte first, it will try to mlock the page, then mlock_pte_range() mlock it a second time. This is harder to reproduce, but a more serious race because it could leave the page unevictable indefinitely though the area is munlocked afterwards. Guard against it by setting the (inappropriate) VM_IO flag, and modifying mlock_vma_page() to decline such vmas. Signed-off-by: Hugh Dickins <hughd@google.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org> |
||
Hugh Dickins
|
b109b87050 |
mm/munlock: replace clear_page_mlock() by final clearance
Placing munlock_vma_page() at the end of page_remove_rmap() shifts most of the munlocking to clear_page_mlock(), since PageMlocked is typically still set when mapcount has fallen to 0. That is not what we want: we want /proc/vmstat's unevictable_pgs_cleared to remain as a useful check on the integrity of of the mlock/munlock protocol - small numbers are not surprising, but big numbers mean the protocol is not working. That could be easily fixed by placing munlock_vma_page() at the start of page_remove_rmap(); but later in the series we shall want to batch the munlocking, and that too would tend to leave PageMlocked still set at the point when it is checked. So delete clear_page_mlock() now: leave it instead to release_pages() (and __page_cache_release()) to do this backstop clearing of Mlocked, when page refcount has fallen to 0. If a pinned page occasionally gets counted as Mlocked and Unevictable until it is unpinned, that's okay. A slightly regrettable side-effect of this change is that, since release_pages() and __page_cache_release() may be called at interrupt time, those places which update NR_MLOCK with interrupts enabled had better use mod_zone_page_state() than __mod_zone_page_state() (but holding the lruvec lock always has interrupts disabled). This change, forcing Mlocked off when refcount 0 instead of earlier when mapcount 0, is not fundamental: it can be reversed if performance or something else is found to suffer; but this is the easiest way to separate the stats - let's not complicate that without good reason. Signed-off-by: Hugh Dickins <hughd@google.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org> |
||
Hugh Dickins
|
cea86fe246 |
mm/munlock: rmap call mlock_vma_page() munlock_vma_page()
Add vma argument to mlock_vma_page() and munlock_vma_page(), make them inline functions which check (vma->vm_flags & VM_LOCKED) before calling mlock_page() and munlock_page() in mm/mlock.c. Add bool compound to mlock_vma_page() and munlock_vma_page(): this is because we have understandable difficulty in accounting pte maps of THPs, and if passed a PageHead page, mlock_page() and munlock_page() cannot tell whether it's a pmd map to be counted or a pte map to be ignored. Add vma arg to page_add_file_rmap() and page_remove_rmap(), like the others, and use that to call mlock_vma_page() at the end of the page adds, and munlock_vma_page() at the end of page_remove_rmap() (end or beginning? unimportant, but end was easier for assertions in testing). No page lock is required (although almost all adds happen to hold it): delete the "Serialize with page migration" BUG_ON(!PageLocked(page))s. Certainly page lock did serialize with page migration, but I'm having difficulty explaining why that was ever important. Mlock accounting on THPs has been hard to define, differed between anon and file, involved PageDoubleMap in some places and not others, required clear_page_mlock() at some points. Keep it simple now: just count the pmds and ignore the ptes, there is no reason for ptes to undo pmd mlocks. page_add_new_anon_rmap() callers unchanged: they have long been calling lru_cache_add_inactive_or_unevictable(), which does its own VM_LOCKED handling (it also checks for not VM_SPECIAL: I think that's overcautious, and inconsistent with other checks, that mmap_region() already prevents VM_LOCKED on VM_SPECIAL; but haven't quite convinced myself to change it). Signed-off-by: Hugh Dickins <hughd@google.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org> |
||
Hugh Dickins
|
a213e5cf71 |
mm/munlock: delete munlock_vma_pages_all(), allow oomreap
munlock_vma_pages_range() will still be required, when munlocking but not munmapping a set of pages; but when unmapping a pte, the mlock count will be maintained in much the same way as it will be maintained when mapping in the pte. Which removes the need for munlock_vma_pages_all() on mlocked vmas when munmapping or exiting: eliminating the catastrophic contention on i_mmap_rwsem, and the need for page lock on the pages. There is still a need to update locked_vm accounting according to the munmapped vmas when munmapping: do that in detach_vmas_to_be_unmapped(). exit_mmap() does not need locked_vm updates, so delete unlock_range(). And wasn't I the one who forbade the OOM reaper to attack mlocked vmas, because of the uncertainty in blocking on all those page locks? No fear of that now, so permit the OOM reaper on mlocked vmas. Signed-off-by: Hugh Dickins <hughd@google.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org> |
||
Hugh Dickins
|
ebcbc6ea7d |
mm/munlock: delete page_mlock() and all its works
We have recommended some applications to mlock their userspace, but that turns out to be counter-productive: when many processes mlock the same file, contention on rmap's i_mmap_rwsem can become intolerable at exit: it is needed for write, to remove any vma mapping that file from rmap's tree; but hogged for read by those with mlocks calling page_mlock() (formerly known as try_to_munlock()) on *each* page mapped from the file (the purpose being to find out whether another process has the page mlocked, so therefore it should not be unmlocked yet). Several optimizations have been made in the past: one is to skip page_mlock() when mapcount tells that nothing else has this page mapped; but that doesn't help at all when others do have it mapped. This time around, I initially intended to add a preliminary search of the rmap tree for overlapping VM_LOCKED ranges; but that gets messy with locking order, when in doubt whether a page is actually present; and risks adding even more contention on the i_mmap_rwsem. A solution would be much easier, if only there were space in struct page for an mlock_count... but actually, most of the time, there is space for it - an mlocked page spends most of its life on an unevictable LRU, but since 3.18 removed the scan_unevictable_pages sysctl, that "LRU" has been redundant. Let's try to reuse its page->lru. But leave that until a later patch: in this patch, clear the ground by removing page_mlock(), and all the infrastructure that has gathered around it - which mostly hinders understanding, and will make reviewing new additions harder. Don't mind those old comments about THPs, they date from before 4.5's refcounting rework: splitting is not a risk here. Just keep a minimal version of munlock_vma_page(), as reminder of what it should attend to (in particular, the odd way PGSTRANDED is counted out of PGMUNLOCKED), and likewise a stub for munlock_vma_pages_range(). Move unchanged __mlock_posix_error_return() out of the way, down to above its caller: this series then makes no further change after mlock_fixup(). After this and each following commit, the kernel builds, boots and runs; but with deficiencies which may show up in testing of mlock and munlock. The system calls succeed or fail as before, and mlock remains effective in preventing page reclaim; but meminfo's Unevictable and Mlocked amounts may be shown too low after mlock, grow, then stay too high after munlock: with previously mlocked pages remaining unevictable for too long, until finally unmapped and freed and counts corrected. Normal service will be resumed in "mm/munlock: mlock_pte_range() when mlocking or munlocking". Signed-off-by: Hugh Dickins <hughd@google.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org> |
||
Linus Torvalds
|
f56caedaf9 |
Merge branch 'akpm' (patches from Andrew)
Merge misc updates from Andrew Morton: "146 patches. Subsystems affected by this patch series: kthread, ia64, scripts, ntfs, squashfs, ocfs2, vfs, and mm (slab-generic, slab, kmemleak, dax, kasan, debug, pagecache, gup, shmem, frontswap, memremap, memcg, selftests, pagemap, dma, vmalloc, memory-failure, hugetlb, userfaultfd, vmscan, mempolicy, oom-kill, hugetlbfs, migration, thp, ksm, page-poison, percpu, rmap, zswap, zram, cleanups, hmm, and damon)" * emailed patches from Andrew Morton <akpm@linux-foundation.org>: (146 commits) mm/damon: hide kernel pointer from tracepoint event mm/damon/vaddr: hide kernel pointer from damon_va_three_regions() failure log mm/damon/vaddr: use pr_debug() for damon_va_three_regions() failure logging mm/damon/dbgfs: remove an unnecessary variable mm/damon: move the implementation of damon_insert_region to damon.h mm/damon: add access checking for hugetlb pages Docs/admin-guide/mm/damon/usage: update for schemes statistics mm/damon/dbgfs: support all DAMOS stats Docs/admin-guide/mm/damon/reclaim: document statistics parameters mm/damon/reclaim: provide reclamation statistics mm/damon/schemes: account how many times quota limit has exceeded mm/damon/schemes: account scheme actions that successfully applied mm/damon: remove a mistakenly added comment for a future feature Docs/admin-guide/mm/damon/usage: update for kdamond_pid and (mk|rm)_contexts Docs/admin-guide/mm/damon/usage: mention tracepoint at the beginning Docs/admin-guide/mm/damon/usage: remove redundant information Docs/admin-guide/mm/damon/usage: update for scheme quotas and watermarks mm/damon: convert macro functions to static inline functions mm/damon: modify damon_rand() macro to static inline function mm/damon: move damon_rand() definition into damon.h ... |
||
Michal Hocko
|
704687deaa |
mm: make slab and vmalloc allocators __GFP_NOLOCKDEP aware
sl?b and vmalloc allocators reduce the given gfp mask for their internal needs. For that they use GFP_RECLAIM_MASK to preserve the reclaim behavior and constrains. __GFP_NOLOCKDEP is not a part of that mask because it doesn't really control the reclaim behavior strictly speaking. On the other hand it tells the underlying page allocator to disable reclaim recursion detection so arguably it should be part of the mask. Having __GFP_NOLOCKDEP in the mask will not alter the behavior in any form so this change is safe pretty much by definition. It also adds a support for this flag to SL?B and vmalloc allocators which will in turn allow its use to kvmalloc as well. A lack of the support has been noticed recently in http://lkml.kernel.org/r/20211119225435.GZ449541@dread.disaster.area Link: https://lkml.kernel.org/r/YZ9XtLY4AEjVuiEI@dhcp22.suse.cz Signed-off-by: Michal Hocko <mhocko@suse.com> Reported-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Acked-by: Dave Chinner <dchinner@redhat.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Christoph Hellwig <hch@lst.de> Cc: Dave Chinner <david@fromorbit.com> Cc: Ilya Dryomov <idryomov@gmail.com> Cc: Jeff Layton <jlayton@kernel.org> Cc: Neil Brown <neilb@suse.de> Cc: Uladzislau Rezki (Sony) <urezki@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Muchun Song
|
17c1736775 |
mm: memcontrol: make cgroup_memory_nokmem static
Commit
|
||
Matthew Wilcox (Oracle)
|
b9a8a4195c |
truncate,shmem: Handle truncates that split large folios
Handle folio splitting in the parts of the truncation functions which already handle partial pages. Factor all that code out into a new function called truncate_inode_partial_folio(). Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org> Reviewed-by: Jan Kara <jack@suse.cz> Reviewed-by: William Kucharski <william.kucharski@oracle.com> |
||
Matthew Wilcox (Oracle)
|
51dcbdac28 |
mm: Convert find_lock_entries() to use a folio_batch
find_lock_entries() already only returned the head page of folios, so convert it to return a folio_batch instead of a pagevec. That cascades through converting truncate_inode_pages_range() to delete_from_page_cache_batch() and page_cache_delete_batch(). Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: William Kucharski <william.kucharski@oracle.com> |
||
Matthew Wilcox (Oracle)
|
0e499ed3d7 |
filemap: Return only folios from find_get_entries()
The callers have all been converted to work on folios, so convert find_get_entries() to return a batch of folios instead of pages. We also now return multiple large folios in a single call. Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org> Reviewed-by: Jan Kara <jack@suse.cz> Reviewed-by: William Kucharski <william.kucharski@oracle.com> Reviewed-by: Christoph Hellwig <hch@lst.de> |
||
Matthew Wilcox (Oracle)
|
78f426608f |
truncate: Add invalidate_complete_folio2()
Convert invalidate_complete_page2() to invalidate_complete_folio2(). Use filemap_free_folio() to free the page instead of calling ->freepage manually. Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: William Kucharski <william.kucharski@oracle.com> |
||
Matthew Wilcox (Oracle)
|
1e84a3d997 |
truncate,shmem: Add truncate_inode_folio()
Convert all callers of truncate_inode_page() to call truncate_inode_folio() instead, and move the declaration to mm/internal.h. Move the assertion that the caller is not passing in a tail page to generic_error_remove_page(). We can't entirely remove the struct page from the callers yet because the page pointer in the pvec might be a shadow/dax/swap entry instead of actually a page. Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: William Kucharski <william.kucharski@oracle.com> |
||
Matthew Wilcox (Oracle)
|
3506659e18 |
mm: Add unmap_mapping_folio()
Convert both callers of unmap_mapping_page() to call unmap_mapping_folio() instead. Also move zap_details from linux/mm.h to mm/memory.c Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org> Reviewed-by: William Kucharski <william.kucharski@oracle.com> |
||
Linus Torvalds
|
512b7931ad |
Merge branch 'akpm' (patches from Andrew)
Merge misc updates from Andrew Morton: "257 patches. Subsystems affected by this patch series: scripts, ocfs2, vfs, and mm (slab-generic, slab, slub, kconfig, dax, kasan, debug, pagecache, gup, swap, memcg, pagemap, mprotect, mremap, iomap, tracing, vmalloc, pagealloc, memory-failure, hugetlb, userfaultfd, vmscan, tools, memblock, oom-kill, hugetlbfs, migration, thp, readahead, nommu, ksm, vmstat, madvise, memory-hotplug, rmap, zsmalloc, highmem, zram, cleanups, kfence, and damon)" * emailed patches from Andrew Morton <akpm@linux-foundation.org>: (257 commits) mm/damon: remove return value from before_terminate callback mm/damon: fix a few spelling mistakes in comments and a pr_debug message mm/damon: simplify stop mechanism Docs/admin-guide/mm/pagemap: wordsmith page flags descriptions Docs/admin-guide/mm/damon/start: simplify the content Docs/admin-guide/mm/damon/start: fix a wrong link Docs/admin-guide/mm/damon/start: fix wrong example commands mm/damon/dbgfs: add adaptive_targets list check before enable monitor_on mm/damon: remove unnecessary variable initialization Documentation/admin-guide/mm/damon: add a document for DAMON_RECLAIM mm/damon: introduce DAMON-based Reclamation (DAMON_RECLAIM) selftests/damon: support watermarks mm/damon/dbgfs: support watermarks mm/damon/schemes: activate schemes based on a watermarks mechanism tools/selftests/damon: update for regions prioritization of schemes mm/damon/dbgfs: support prioritization weights mm/damon/vaddr,paddr: support pageout prioritization mm/damon/schemes: prioritize regions within the quotas mm/damon/selftests: support schemes quotas mm/damon/dbgfs: support quotas of schemes ... |
||
Mel Gorman
|
c3f4a9a2b0 |
mm/vmscan: centralise timeout values for reclaim_throttle
Neil Brown raised concerns about callers of reclaim_throttle specifying a timeout value. The original timeout values to congestion_wait() were probably pulled out of thin air or copy&pasted from somewhere else. This patch centralises the timeout values and selects a timeout based on the reason for reclaim throttling. These figures are also pulled out of the same thin air but better values may be derived Running a workload that is throttling for inappropriate periods and tracing mm_vmscan_throttled can be used to pick a more appropriate value. Excessive throttling would pick a lower timeout where as excessive CPU usage in reclaim context would select a larger timeout. Ideally a large value would always be used and the wakeups would occur before a timeout but that requires careful testing. Link: https://lkml.kernel.org/r/20211022144651.19914-7-mgorman@techsingularity.net Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Andreas Dilger <adilger.kernel@dilger.ca> Cc: "Darrick J . Wong" <djwong@kernel.org> Cc: Dave Chinner <david@fromorbit.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Matthew Wilcox <willy@infradead.org> Cc: Michal Hocko <mhocko@suse.com> Cc: NeilBrown <neilb@suse.de> Cc: Rik van Riel <riel@surriel.com> Cc: "Theodore Ts'o" <tytso@mit.edu> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Mel Gorman
|
d818fca1ca |
mm/vmscan: throttle reclaim and compaction when too may pages are isolated
Page reclaim throttles on congestion if too many parallel reclaim instances have isolated too many pages. This makes no sense, excessive parallelisation has nothing to do with writeback or congestion. This patch creates an additional workqueue to sleep on when too many pages are isolated. The throttled tasks are woken when the number of isolated pages is reduced or a timeout occurs. There may be some false positive wakeups for GFP_NOIO/GFP_NOFS callers but the tasks will throttle again if necessary. [shy828301@gmail.com: Wake up from compaction context] [vbabka@suse.cz: Account number of throttled tasks only for writeback] Link: https://lkml.kernel.org/r/20211022144651.19914-3-mgorman@techsingularity.net Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Andreas Dilger <adilger.kernel@dilger.ca> Cc: "Darrick J . Wong" <djwong@kernel.org> Cc: Dave Chinner <david@fromorbit.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Matthew Wilcox <willy@infradead.org> Cc: Michal Hocko <mhocko@suse.com> Cc: NeilBrown <neilb@suse.de> Cc: Rik van Riel <riel@surriel.com> Cc: "Theodore Ts'o" <tytso@mit.edu> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Mel Gorman
|
8cd7c588de |
mm/vmscan: throttle reclaim until some writeback completes if congested
Patch series "Remove dependency on congestion_wait in mm/", v5. This series that removes all calls to congestion_wait in mm/ and deletes wait_iff_congested. It's not a clever implementation but congestion_wait has been broken for a long time [1]. Even if congestion throttling worked, it was never a great idea. While excessive dirty/writeback pages at the tail of the LRU is one possibility that reclaim may be slow, there is also the problem of too many pages being isolated and reclaim failing for other reasons (elevated references, too many pages isolated, excessive LRU contention etc). This series replaces the "congestion" throttling with 3 different types. - If there are too many dirty/writeback pages, sleep until a timeout or enough pages get cleaned - If too many pages are isolated, sleep until enough isolated pages are either reclaimed or put back on the LRU - If no progress is being made, direct reclaim tasks sleep until another task makes progress with acceptable efficiency. This was initially tested with a mix of workloads that used to trigger corner cases that no longer work. A new test case was created called "stutterp" (pagereclaim-stutterp-noreaders in mmtests) using a freshly created XFS filesystem. Note that it may be necessary to increase the timeout of ssh if executing remotely as ssh itself can get throttled and the connection may timeout. stutterp varies the number of "worker" processes from 4 up to NR_CPUS*4 to check the impact as the number of direct reclaimers increase. It has four types of worker. - One "anon latency" worker creates small mappings with mmap() and times how long it takes to fault the mapping reading it 4K at a time - X file writers which is fio randomly writing X files where the total size of the files add up to the allowed dirty_ratio. fio is allowed to run for a warmup period to allow some file-backed pages to accumulate. The duration of the warmup is based on the best-case linear write speed of the storage. - Y file readers which is fio randomly reading small files - Z anon memory hogs which continually map (100-dirty_ratio)% of memory - Total estimated WSS = (100+dirty_ration) percentage of memory X+Y+Z+1 == NR_WORKERS varying from 4 up to NR_CPUS*4 The intent is to maximise the total WSS with a mix of file and anon memory where some anonymous memory must be swapped and there is a high likelihood of dirty/writeback pages reaching the end of the LRU. The test can be configured to have no background readers to stress dirty/writeback pages. The results below are based on having zero readers. The short summary of the results is that the series works and stalls until some event occurs but the timeouts may need adjustment. The test results are not broken down by patch as the series should be treated as one block that replaces a broken throttling mechanism with a working one. Finally, three machines were tested but I'm reporting the worst set of results. The other two machines had much better latencies for example. First the results of the "anon latency" latency stutterp 5.15.0-rc1 5.15.0-rc1 vanilla mm-reclaimcongest-v5r4 Amean mmap-4 31.4003 ( 0.00%) 2661.0198 (-8374.52%) Amean mmap-7 38.1641 ( 0.00%) 149.2891 (-291.18%) Amean mmap-12 60.0981 ( 0.00%) 187.8105 (-212.51%) Amean mmap-21 161.2699 ( 0.00%) 213.9107 ( -32.64%) Amean mmap-30 174.5589 ( 0.00%) 377.7548 (-116.41%) Amean mmap-48 8106.8160 ( 0.00%) 1070.5616 ( 86.79%) Stddev mmap-4 41.3455 ( 0.00%) 27573.9676 (-66591.66%) Stddev mmap-7 53.5556 ( 0.00%) 4608.5860 (-8505.23%) Stddev mmap-12 171.3897 ( 0.00%) 5559.4542 (-3143.75%) Stddev mmap-21 1506.6752 ( 0.00%) 5746.2507 (-281.39%) Stddev mmap-30 557.5806 ( 0.00%) 7678.1624 (-1277.05%) Stddev mmap-48 61681.5718 ( 0.00%) 14507.2830 ( 76.48%) Max-90 mmap-4 31.4243 ( 0.00%) 83.1457 (-164.59%) Max-90 mmap-7 41.0410 ( 0.00%) 41.0720 ( -0.08%) Max-90 mmap-12 66.5255 ( 0.00%) 53.9073 ( 18.97%) Max-90 mmap-21 146.7479 ( 0.00%) 105.9540 ( 27.80%) Max-90 mmap-30 193.9513 ( 0.00%) 64.3067 ( 66.84%) Max-90 mmap-48 277.9137 ( 0.00%) 591.0594 (-112.68%) Max mmap-4 1913.8009 ( 0.00%) 299623.9695 (-15555.96%) Max mmap-7 2423.9665 ( 0.00%) 204453.1708 (-8334.65%) Max mmap-12 6845.6573 ( 0.00%) 221090.3366 (-3129.64%) Max mmap-21 56278.6508 ( 0.00%) 213877.3496 (-280.03%) Max mmap-30 19716.2990 ( 0.00%) 216287.6229 (-997.00%) Max mmap-48 477923.9400 ( 0.00%) 245414.8238 ( 48.65%) For most thread counts, the time to mmap() is unfortunately increased. In earlier versions of the series, this was lower but a large number of throttling events were reaching their timeout increasing the amount of inefficient scanning of the LRU. There is no prioritisation of reclaim tasks making progress based on each tasks rate of page allocation versus progress of reclaim. The variance is also impacted for high worker counts but in all cases, the differences in latency are not statistically significant due to very large maximum outliers. Max-90 shows that 90% of the stalls are comparable but the Max results show the massive outliers which are increased to to stalling. It is expected that this will be very machine dependant. Due to the test design, reclaim is difficult so allocations stall and there are variances depending on whether THPs can be allocated or not. The amount of memory will affect exactly how bad the corner cases are and how often they trigger. The warmup period calculation is not ideal as it's based on linear writes where as fio is randomly writing multiple files from multiple tasks so the start state of the test is variable. For example, these are the latencies on a single-socket machine that had more memory Amean mmap-4 42.2287 ( 0.00%) 49.6838 * -17.65%* Amean mmap-7 216.4326 ( 0.00%) 47.4451 * 78.08%* Amean mmap-12 2412.0588 ( 0.00%) 51.7497 ( 97.85%) Amean mmap-21 5546.2548 ( 0.00%) 51.8862 ( 99.06%) Amean mmap-30 1085.3121 ( 0.00%) 72.1004 ( 93.36%) The overall system CPU usage and elapsed time is as follows 5.15.0-rc3 5.15.0-rc3 vanilla mm-reclaimcongest-v5r4 Duration User 6989.03 983.42 Duration System 7308.12 799.68 Duration Elapsed 2277.67 2092.98 The patches reduce system CPU usage by 89% as the vanilla kernel is rarely stalling. The high-level /proc/vmstats show 5.15.0-rc1 5.15.0-rc1 vanilla mm-reclaimcongest-v5r2 Ops Direct pages scanned 1056608451.00 503594991.00 Ops Kswapd pages scanned 109795048.00 147289810.00 Ops Kswapd pages reclaimed 63269243.00 31036005.00 Ops Direct pages reclaimed 10803973.00 6328887.00 Ops Kswapd efficiency % 57.62 21.07 Ops Kswapd velocity 48204.98 57572.86 Ops Direct efficiency % 1.02 1.26 Ops Direct velocity 463898.83 196845.97 Kswapd scanned less pages but the detailed pattern is different. The vanilla kernel scans slowly over time where as the patches exhibits burst patterns of scan activity. Direct reclaim scanning is reduced by 52% due to stalling. The pattern for stealing pages is also slightly different. Both kernels exhibit spikes but the vanilla kernel when reclaiming shows pages being reclaimed over a period of time where as the patches tend to reclaim in spikes. The difference is that vanilla is not throttling and instead scanning constantly finding some pages over time where as the patched kernel throttles and reclaims in spikes. Ops Percentage direct scans 90.59 77.37 For direct reclaim, vanilla scanned 90.59% of pages where as with the patches, 77.37% were direct reclaim due to throttling Ops Page writes by reclaim 2613590.00 1687131.00 Page writes from reclaim context are reduced. Ops Page writes anon 2932752.00 1917048.00 And there is less swapping. Ops Page reclaim immediate 996248528.00 107664764.00 The number of pages encountered at the tail of the LRU tagged for immediate reclaim but still dirty/writeback is reduced by 89%. Ops Slabs scanned 164284.00 153608.00 Slab scan activity is similar. ftrace was used to gather stall activity Vanilla ------- 1 writeback_wait_iff_congested: usec_timeout=100000 usec_delayed=16000 2 writeback_wait_iff_congested: usec_timeout=100000 usec_delayed=12000 8 writeback_wait_iff_congested: usec_timeout=100000 usec_delayed=8000 29 writeback_wait_iff_congested: usec_timeout=100000 usec_delayed=4000 82394 writeback_wait_iff_congested: usec_timeout=100000 usec_delayed=0 The fast majority of wait_iff_congested calls do not stall at all. What is likely happening is that cond_resched() reschedules the task for a short period when the BDI is not registering congestion (which it never will in this test setup). 1 writeback_congestion_wait: usec_timeout=100000 usec_delayed=120000 2 writeback_congestion_wait: usec_timeout=100000 usec_delayed=132000 4 writeback_congestion_wait: usec_timeout=100000 usec_delayed=112000 380 writeback_congestion_wait: usec_timeout=100000 usec_delayed=108000 778 writeback_congestion_wait: usec_timeout=100000 usec_delayed=104000 congestion_wait if called always exceeds the timeout as there is no trigger to wake it up. Bottom line: Vanilla will throttle but it's not effective. Patch series ------------ Kswapd throttle activity was always due to scanning pages tagged for immediate reclaim at the tail of the LRU 1 usec_timeout=100000 usect_delayed=72000 reason=VMSCAN_THROTTLE_WRITEBACK 4 usec_timeout=100000 usect_delayed=20000 reason=VMSCAN_THROTTLE_WRITEBACK 5 usec_timeout=100000 usect_delayed=12000 reason=VMSCAN_THROTTLE_WRITEBACK 6 usec_timeout=100000 usect_delayed=16000 reason=VMSCAN_THROTTLE_WRITEBACK 11 usec_timeout=100000 usect_delayed=100000 reason=VMSCAN_THROTTLE_WRITEBACK 11 usec_timeout=100000 usect_delayed=8000 reason=VMSCAN_THROTTLE_WRITEBACK 94 usec_timeout=100000 usect_delayed=0 reason=VMSCAN_THROTTLE_WRITEBACK 112 usec_timeout=100000 usect_delayed=4000 reason=VMSCAN_THROTTLE_WRITEBACK The majority of events did not stall or stalled for a short period. Roughly 16% of stalls reached the timeout before expiry. For direct reclaim, the number of times stalled for each reason were 6624 reason=VMSCAN_THROTTLE_ISOLATED 93246 reason=VMSCAN_THROTTLE_NOPROGRESS 96934 reason=VMSCAN_THROTTLE_WRITEBACK The most common reason to stall was due to excessive pages tagged for immediate reclaim at the tail of the LRU followed by a failure to make forward. A relatively small number were due to too many pages isolated from the LRU by parallel threads For VMSCAN_THROTTLE_ISOLATED, the breakdown of delays was 9 usec_timeout=20000 usect_delayed=4000 reason=VMSCAN_THROTTLE_ISOLATED 12 usec_timeout=20000 usect_delayed=16000 reason=VMSCAN_THROTTLE_ISOLATED 83 usec_timeout=20000 usect_delayed=20000 reason=VMSCAN_THROTTLE_ISOLATED 6520 usec_timeout=20000 usect_delayed=0 reason=VMSCAN_THROTTLE_ISOLATED Most did not stall at all. A small number reached the timeout. For VMSCAN_THROTTLE_NOPROGRESS, the breakdown of stalls were all over the map 1 usec_timeout=500000 usect_delayed=324000 reason=VMSCAN_THROTTLE_NOPROGRESS 1 usec_timeout=500000 usect_delayed=332000 reason=VMSCAN_THROTTLE_NOPROGRESS 1 usec_timeout=500000 usect_delayed=348000 reason=VMSCAN_THROTTLE_NOPROGRESS 1 usec_timeout=500000 usect_delayed=360000 reason=VMSCAN_THROTTLE_NOPROGRESS 2 usec_timeout=500000 usect_delayed=228000 reason=VMSCAN_THROTTLE_NOPROGRESS 2 usec_timeout=500000 usect_delayed=260000 reason=VMSCAN_THROTTLE_NOPROGRESS 2 usec_timeout=500000 usect_delayed=340000 reason=VMSCAN_THROTTLE_NOPROGRESS 2 usec_timeout=500000 usect_delayed=364000 reason=VMSCAN_THROTTLE_NOPROGRESS 2 usec_timeout=500000 usect_delayed=372000 reason=VMSCAN_THROTTLE_NOPROGRESS 2 usec_timeout=500000 usect_delayed=428000 reason=VMSCAN_THROTTLE_NOPROGRESS 2 usec_timeout=500000 usect_delayed=460000 reason=VMSCAN_THROTTLE_NOPROGRESS 2 usec_timeout=500000 usect_delayed=464000 reason=VMSCAN_THROTTLE_NOPROGRESS 3 usec_timeout=500000 usect_delayed=244000 reason=VMSCAN_THROTTLE_NOPROGRESS 3 usec_timeout=500000 usect_delayed=252000 reason=VMSCAN_THROTTLE_NOPROGRESS 3 usec_timeout=500000 usect_delayed=272000 reason=VMSCAN_THROTTLE_NOPROGRESS 4 usec_timeout=500000 usect_delayed=188000 reason=VMSCAN_THROTTLE_NOPROGRESS 4 usec_timeout=500000 usect_delayed=268000 reason=VMSCAN_THROTTLE_NOPROGRESS 4 usec_timeout=500000 usect_delayed=328000 reason=VMSCAN_THROTTLE_NOPROGRESS 4 usec_timeout=500000 usect_delayed=380000 reason=VMSCAN_THROTTLE_NOPROGRESS 4 usec_timeout=500000 usect_delayed=392000 reason=VMSCAN_THROTTLE_NOPROGRESS 4 usec_timeout=500000 usect_delayed=432000 reason=VMSCAN_THROTTLE_NOPROGRESS 5 usec_timeout=500000 usect_delayed=204000 reason=VMSCAN_THROTTLE_NOPROGRESS 5 usec_timeout=500000 usect_delayed=220000 reason=VMSCAN_THROTTLE_NOPROGRESS 5 usec_timeout=500000 usect_delayed=412000 reason=VMSCAN_THROTTLE_NOPROGRESS 5 usec_timeout=500000 usect_delayed=436000 reason=VMSCAN_THROTTLE_NOPROGRESS 6 usec_timeout=500000 usect_delayed=488000 reason=VMSCAN_THROTTLE_NOPROGRESS 7 usec_timeout=500000 usect_delayed=212000 reason=VMSCAN_THROTTLE_NOPROGRESS 7 usec_timeout=500000 usect_delayed=300000 reason=VMSCAN_THROTTLE_NOPROGRESS 7 usec_timeout=500000 usect_delayed=316000 reason=VMSCAN_THROTTLE_NOPROGRESS 7 usec_timeout=500000 usect_delayed=472000 reason=VMSCAN_THROTTLE_NOPROGRESS 8 usec_timeout=500000 usect_delayed=248000 reason=VMSCAN_THROTTLE_NOPROGRESS 8 usec_timeout=500000 usect_delayed=356000 reason=VMSCAN_THROTTLE_NOPROGRESS 8 usec_timeout=500000 usect_delayed=456000 reason=VMSCAN_THROTTLE_NOPROGRESS 9 usec_timeout=500000 usect_delayed=124000 reason=VMSCAN_THROTTLE_NOPROGRESS 9 usec_timeout=500000 usect_delayed=376000 reason=VMSCAN_THROTTLE_NOPROGRESS 9 usec_timeout=500000 usect_delayed=484000 reason=VMSCAN_THROTTLE_NOPROGRESS 10 usec_timeout=500000 usect_delayed=172000 reason=VMSCAN_THROTTLE_NOPROGRESS 10 usec_timeout=500000 usect_delayed=420000 reason=VMSCAN_THROTTLE_NOPROGRESS 10 usec_timeout=500000 usect_delayed=452000 reason=VMSCAN_THROTTLE_NOPROGRESS 11 usec_timeout=500000 usect_delayed=256000 reason=VMSCAN_THROTTLE_NOPROGRESS 12 usec_timeout=500000 usect_delayed=112000 reason=VMSCAN_THROTTLE_NOPROGRESS 12 usec_timeout=500000 usect_delayed=116000 reason=VMSCAN_THROTTLE_NOPROGRESS 12 usec_timeout=500000 usect_delayed=144000 reason=VMSCAN_THROTTLE_NOPROGRESS 12 usec_timeout=500000 usect_delayed=152000 reason=VMSCAN_THROTTLE_NOPROGRESS 12 usec_timeout=500000 usect_delayed=264000 reason=VMSCAN_THROTTLE_NOPROGRESS 12 usec_timeout=500000 usect_delayed=384000 reason=VMSCAN_THROTTLE_NOPROGRESS 12 usec_timeout=500000 usect_delayed=424000 reason=VMSCAN_THROTTLE_NOPROGRESS 12 usec_timeout=500000 usect_delayed=492000 reason=VMSCAN_THROTTLE_NOPROGRESS 13 usec_timeout=500000 usect_delayed=184000 reason=VMSCAN_THROTTLE_NOPROGRESS 13 usec_timeout=500000 usect_delayed=444000 reason=VMSCAN_THROTTLE_NOPROGRESS 14 usec_timeout=500000 usect_delayed=308000 reason=VMSCAN_THROTTLE_NOPROGRESS 14 usec_timeout=500000 usect_delayed=440000 reason=VMSCAN_THROTTLE_NOPROGRESS 14 usec_timeout=500000 usect_delayed=476000 reason=VMSCAN_THROTTLE_NOPROGRESS 16 usec_timeout=500000 usect_delayed=140000 reason=VMSCAN_THROTTLE_NOPROGRESS 17 usec_timeout=500000 usect_delayed=232000 reason=VMSCAN_THROTTLE_NOPROGRESS 17 usec_timeout=500000 usect_delayed=240000 reason=VMSCAN_THROTTLE_NOPROGRESS 17 usec_timeout=500000 usect_delayed=280000 reason=VMSCAN_THROTTLE_NOPROGRESS 18 usec_timeout=500000 usect_delayed=404000 reason=VMSCAN_THROTTLE_NOPROGRESS 20 usec_timeout=500000 usect_delayed=148000 reason=VMSCAN_THROTTLE_NOPROGRESS 20 usec_timeout=500000 usect_delayed=216000 reason=VMSCAN_THROTTLE_NOPROGRESS 20 usec_timeout=500000 usect_delayed=468000 reason=VMSCAN_THROTTLE_NOPROGRESS 21 usec_timeout=500000 usect_delayed=448000 reason=VMSCAN_THROTTLE_NOPROGRESS 23 usec_timeout=500000 usect_delayed=168000 reason=VMSCAN_THROTTLE_NOPROGRESS 23 usec_timeout=500000 usect_delayed=296000 reason=VMSCAN_THROTTLE_NOPROGRESS 25 usec_timeout=500000 usect_delayed=132000 reason=VMSCAN_THROTTLE_NOPROGRESS 25 usec_timeout=500000 usect_delayed=352000 reason=VMSCAN_THROTTLE_NOPROGRESS 26 usec_timeout=500000 usect_delayed=180000 reason=VMSCAN_THROTTLE_NOPROGRESS 27 usec_timeout=500000 usect_delayed=284000 reason=VMSCAN_THROTTLE_NOPROGRESS 28 usec_timeout=500000 usect_delayed=164000 reason=VMSCAN_THROTTLE_NOPROGRESS 29 usec_timeout=500000 usect_delayed=136000 reason=VMSCAN_THROTTLE_NOPROGRESS 30 usec_timeout=500000 usect_delayed=200000 reason=VMSCAN_THROTTLE_NOPROGRESS 30 usec_timeout=500000 usect_delayed=400000 reason=VMSCAN_THROTTLE_NOPROGRESS 31 usec_timeout=500000 usect_delayed=196000 reason=VMSCAN_THROTTLE_NOPROGRESS 32 usec_timeout=500000 usect_delayed=156000 reason=VMSCAN_THROTTLE_NOPROGRESS 33 usec_timeout=500000 usect_delayed=224000 reason=VMSCAN_THROTTLE_NOPROGRESS 35 usec_timeout=500000 usect_delayed=128000 reason=VMSCAN_THROTTLE_NOPROGRESS 35 usec_timeout=500000 usect_delayed=176000 reason=VMSCAN_THROTTLE_NOPROGRESS 36 usec_timeout=500000 usect_delayed=368000 reason=VMSCAN_THROTTLE_NOPROGRESS 36 usec_timeout=500000 usect_delayed=496000 reason=VMSCAN_THROTTLE_NOPROGRESS 37 usec_timeout=500000 usect_delayed=312000 reason=VMSCAN_THROTTLE_NOPROGRESS 38 usec_timeout=500000 usect_delayed=304000 reason=VMSCAN_THROTTLE_NOPROGRESS 40 usec_timeout=500000 usect_delayed=288000 reason=VMSCAN_THROTTLE_NOPROGRESS 43 usec_timeout=500000 usect_delayed=408000 reason=VMSCAN_THROTTLE_NOPROGRESS 55 usec_timeout=500000 usect_delayed=416000 reason=VMSCAN_THROTTLE_NOPROGRESS 56 usec_timeout=500000 usect_delayed=76000 reason=VMSCAN_THROTTLE_NOPROGRESS 58 usec_timeout=500000 usect_delayed=120000 reason=VMSCAN_THROTTLE_NOPROGRESS 59 usec_timeout=500000 usect_delayed=208000 reason=VMSCAN_THROTTLE_NOPROGRESS 61 usec_timeout=500000 usect_delayed=68000 reason=VMSCAN_THROTTLE_NOPROGRESS 71 usec_timeout=500000 usect_delayed=192000 reason=VMSCAN_THROTTLE_NOPROGRESS 71 usec_timeout=500000 usect_delayed=480000 reason=VMSCAN_THROTTLE_NOPROGRESS 79 usec_timeout=500000 usect_delayed=60000 reason=VMSCAN_THROTTLE_NOPROGRESS 82 usec_timeout=500000 usect_delayed=320000 reason=VMSCAN_THROTTLE_NOPROGRESS 82 usec_timeout=500000 usect_delayed=92000 reason=VMSCAN_THROTTLE_NOPROGRESS 85 usec_timeout=500000 usect_delayed=64000 reason=VMSCAN_THROTTLE_NOPROGRESS 85 usec_timeout=500000 usect_delayed=80000 reason=VMSCAN_THROTTLE_NOPROGRESS 88 usec_timeout=500000 usect_delayed=84000 reason=VMSCAN_THROTTLE_NOPROGRESS 90 usec_timeout=500000 usect_delayed=160000 reason=VMSCAN_THROTTLE_NOPROGRESS 90 usec_timeout=500000 usect_delayed=292000 reason=VMSCAN_THROTTLE_NOPROGRESS 94 usec_timeout=500000 usect_delayed=56000 reason=VMSCAN_THROTTLE_NOPROGRESS 118 usec_timeout=500000 usect_delayed=88000 reason=VMSCAN_THROTTLE_NOPROGRESS 119 usec_timeout=500000 usect_delayed=72000 reason=VMSCAN_THROTTLE_NOPROGRESS 126 usec_timeout=500000 usect_delayed=108000 reason=VMSCAN_THROTTLE_NOPROGRESS 146 usec_timeout=500000 usect_delayed=52000 reason=VMSCAN_THROTTLE_NOPROGRESS 148 usec_timeout=500000 usect_delayed=36000 reason=VMSCAN_THROTTLE_NOPROGRESS 148 usec_timeout=500000 usect_delayed=48000 reason=VMSCAN_THROTTLE_NOPROGRESS 159 usec_timeout=500000 usect_delayed=28000 reason=VMSCAN_THROTTLE_NOPROGRESS 178 usec_timeout=500000 usect_delayed=44000 reason=VMSCAN_THROTTLE_NOPROGRESS 183 usec_timeout=500000 usect_delayed=40000 reason=VMSCAN_THROTTLE_NOPROGRESS 237 usec_timeout=500000 usect_delayed=100000 reason=VMSCAN_THROTTLE_NOPROGRESS 266 usec_timeout=500000 usect_delayed=32000 reason=VMSCAN_THROTTLE_NOPROGRESS 313 usec_timeout=500000 usect_delayed=24000 reason=VMSCAN_THROTTLE_NOPROGRESS 347 usec_timeout=500000 usect_delayed=96000 reason=VMSCAN_THROTTLE_NOPROGRESS 470 usec_timeout=500000 usect_delayed=20000 reason=VMSCAN_THROTTLE_NOPROGRESS 559 usec_timeout=500000 usect_delayed=16000 reason=VMSCAN_THROTTLE_NOPROGRESS 964 usec_timeout=500000 usect_delayed=12000 reason=VMSCAN_THROTTLE_NOPROGRESS 2001 usec_timeout=500000 usect_delayed=104000 reason=VMSCAN_THROTTLE_NOPROGRESS 2447 usec_timeout=500000 usect_delayed=8000 reason=VMSCAN_THROTTLE_NOPROGRESS 7888 usec_timeout=500000 usect_delayed=4000 reason=VMSCAN_THROTTLE_NOPROGRESS 22727 usec_timeout=500000 usect_delayed=0 reason=VMSCAN_THROTTLE_NOPROGRESS 51305 usec_timeout=500000 usect_delayed=500000 reason=VMSCAN_THROTTLE_NOPROGRESS The full timeout is often hit but a large number also do not stall at all. The remainder slept a little allowing other reclaim tasks to make progress. While this timeout could be further increased, it could also negatively impact worst-case behaviour when there is no prioritisation of what task should make progress. For VMSCAN_THROTTLE_WRITEBACK, the breakdown was 1 usec_timeout=100000 usect_delayed=44000 reason=VMSCAN_THROTTLE_WRITEBACK 2 usec_timeout=100000 usect_delayed=76000 reason=VMSCAN_THROTTLE_WRITEBACK 3 usec_timeout=100000 usect_delayed=80000 reason=VMSCAN_THROTTLE_WRITEBACK 5 usec_timeout=100000 usect_delayed=48000 reason=VMSCAN_THROTTLE_WRITEBACK 5 usec_timeout=100000 usect_delayed=84000 reason=VMSCAN_THROTTLE_WRITEBACK 6 usec_timeout=100000 usect_delayed=72000 reason=VMSCAN_THROTTLE_WRITEBACK 7 usec_timeout=100000 usect_delayed=88000 reason=VMSCAN_THROTTLE_WRITEBACK 11 usec_timeout=100000 usect_delayed=56000 reason=VMSCAN_THROTTLE_WRITEBACK 12 usec_timeout=100000 usect_delayed=64000 reason=VMSCAN_THROTTLE_WRITEBACK 16 usec_timeout=100000 usect_delayed=92000 reason=VMSCAN_THROTTLE_WRITEBACK 24 usec_timeout=100000 usect_delayed=68000 reason=VMSCAN_THROTTLE_WRITEBACK 28 usec_timeout=100000 usect_delayed=32000 reason=VMSCAN_THROTTLE_WRITEBACK 30 usec_timeout=100000 usect_delayed=60000 reason=VMSCAN_THROTTLE_WRITEBACK 30 usec_timeout=100000 usect_delayed=96000 reason=VMSCAN_THROTTLE_WRITEBACK 32 usec_timeout=100000 usect_delayed=52000 reason=VMSCAN_THROTTLE_WRITEBACK 42 usec_timeout=100000 usect_delayed=40000 reason=VMSCAN_THROTTLE_WRITEBACK 77 usec_timeout=100000 usect_delayed=28000 reason=VMSCAN_THROTTLE_WRITEBACK 99 usec_timeout=100000 usect_delayed=36000 reason=VMSCAN_THROTTLE_WRITEBACK 137 usec_timeout=100000 usect_delayed=24000 reason=VMSCAN_THROTTLE_WRITEBACK 190 usec_timeout=100000 usect_delayed=20000 reason=VMSCAN_THROTTLE_WRITEBACK 339 usec_timeout=100000 usect_delayed=16000 reason=VMSCAN_THROTTLE_WRITEBACK 518 usec_timeout=100000 usect_delayed=12000 reason=VMSCAN_THROTTLE_WRITEBACK 852 usec_timeout=100000 usect_delayed=8000 reason=VMSCAN_THROTTLE_WRITEBACK 3359 usec_timeout=100000 usect_delayed=4000 reason=VMSCAN_THROTTLE_WRITEBACK 7147 usec_timeout=100000 usect_delayed=0 reason=VMSCAN_THROTTLE_WRITEBACK 83962 usec_timeout=100000 usect_delayed=100000 reason=VMSCAN_THROTTLE_WRITEBACK The majority hit the timeout in direct reclaim context although a sizable number did not stall at all. This is very different to kswapd where only a tiny percentage of stalls due to writeback reached the timeout. Bottom line, the throttling appears to work and the wakeup events may limit worst case stalls. There might be some grounds for adjusting timeouts but it's likely futile as the worst-case scenarios depend on the workload, memory size and the speed of the storage. A better approach to improve the series further would be to prioritise tasks based on their rate of allocation with the caveat that it may be very expensive to track. This patch (of 5): Page reclaim throttles on wait_iff_congested under the following conditions: - kswapd is encountering pages under writeback and marked for immediate reclaim implying that pages are cycling through the LRU faster than pages can be cleaned. - Direct reclaim will stall if all dirty pages are backed by congested inodes. wait_iff_congested is almost completely broken with few exceptions. This patch adds a new node-based workqueue and tracks the number of throttled tasks and pages written back since throttling started. If enough pages belonging to the node are written back then the throttled tasks will wake early. If not, the throttled tasks sleeps until the timeout expires. [neilb@suse.de: Uninterruptible sleep and simpler wakeups] [hdanton@sina.com: Avoid race when reclaim starts] [vbabka@suse.cz: vmstat irq-safe api, clarifications] Link: https://lore.kernel.org/linux-mm/45d8b7a6-8548-65f5-cccf-9f451d4ae3d4@kernel.dk/ [1] Link: https://lkml.kernel.org/r/20211022144651.19914-1-mgorman@techsingularity.net Link: https://lkml.kernel.org/r/20211022144651.19914-2-mgorman@techsingularity.net Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: NeilBrown <neilb@suse.de> Cc: "Theodore Ts'o" <tytso@mit.edu> Cc: Andreas Dilger <adilger.kernel@dilger.ca> Cc: "Darrick J . Wong" <djwong@kernel.org> Cc: Matthew Wilcox <willy@infradead.org> Cc: Michal Hocko <mhocko@suse.com> Cc: Dave Chinner <david@fromorbit.com> Cc: Rik van Riel <riel@surriel.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Jonathan Corbet <corbet@lwn.net> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Qi Zheng
|
03c4f20454 |
mm: introduce pmd_install() helper
Patch series "Do some code cleanups related to mm", v3. This patch (of 2): Currently we have three times the same few lines repeated in the code. Deduplicate them by newly introduced pmd_install() helper. Link: https://lkml.kernel.org/r/20210901102722.47686-1-zhengqi.arch@bytedance.com Link: https://lkml.kernel.org/r/20210901102722.47686-2-zhengqi.arch@bytedance.com Signed-off-by: Qi Zheng <zhengqi.arch@bytedance.com> Reviewed-by: David Hildenbrand <david@redhat.com> Reviewed-by: Muchun Song <songmuchun@bytedance.com> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Mika Penttila <mika.penttila@nextfour.com> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Matthew Wilcox (Oracle)
|
3eed3ef55c |
mm: Add folio_evictable()
This is the folio equivalent of page_evictable(). Unfortunately, it's different from !folio_test_unevictable(), but I think it's used in places where you have to be a VM expert and can reasonably be expected to know the difference. Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org> Reviewed-by: Christoph Hellwig <hch@lst.de> Acked-by: Vlastimil Babka <vbabka@suse.cz> |
||
Matthew Wilcox (Oracle)
|
269ccca389 |
mm/writeback: Add __folio_end_writeback()
test_clear_page_writeback() is actually an mm-internal function, although it's named as if it's a pagecache function. Move it to mm/internal.h, rename it to __folio_end_writeback() and change the return type to bool. The conversion from page to folio is mostly about accounting the number of pages being written back, although it does eliminate a couple of calls to compound_head(). Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: David Howells <dhowells@redhat.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> |