Commit Graph

2709 Commits

Author SHA1 Message Date
Mykyta Yatsenko
7b30c296af libbpbpf: Check bpf_map/bpf_program fd validity
libbpf creates bpf_program/bpf_map structs for each program/map that
user defines, but it allows to disable creating/loading those objects in
kernel, in that case they won't have associated file descriptor
(fd < 0). Such functionality is used for backward compatibility
with some older kernels.

Nothing prevents users from passing these maps or programs with no
kernel counterpart to libbpf APIs. This change introduces explicit
checks for kernel objects existence, aiming to improve visibility of
those edge cases and provide meaningful warnings to users.

Signed-off-by: Mykyta Yatsenko <yatsenko@meta.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/bpf/20240318131808.95959-1-yatsenko@meta.com
2024-03-18 13:45:11 -07:00
Alexei Starovoitov
10ebe835c9 libbpf, selftests/bpf: Adjust libbpf, bpftool, selftests to match LLVM
The selftests use
to tell LLVM about special pointers. For LLVM there is nothing "arena"
about them. They are simply pointers in a different address space.
Hence LLVM diff https://github.com/llvm/llvm-project/pull/85161 renamed:
. macro __BPF_FEATURE_ARENA_CAST -> __BPF_FEATURE_ADDR_SPACE_CAST
. global variables in __attribute__((address_space(N))) are now
  placed in section named ".addr_space.N" instead of ".arena.N".

Adjust libbpf, bpftool, and selftests to match LLVM.

Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: Stanislav Fomichev <sdf@google.com>
Link: https://lore.kernel.org/bpf/20240315021834.62988-3-alexei.starovoitov@gmail.com
2024-03-15 14:24:00 -07:00
Linus Torvalds
1bbeaf83dd perf tools changes for v6.9
perf stat
 ---------
 * Support new 'cluster' aggregation mode for shared resources depending on the
   hardware configuration.
 
     $ sudo perf stat -a --per-cluster -e cycles,instructions sleep 1
 
      Performance counter stats for 'system wide':
 
     S0-D0-CLS0    2         85,051,822      cycles
     S0-D0-CLS0    2         73,909,908      instructions      #    0.87  insn per cycle
     S0-D0-CLS2    2         93,365,918      cycles
     S0-D0-CLS2    2         83,006,158      instructions      #    0.89  insn per cycle
     S0-D0-CLS4    2        104,157,523      cycles
     S0-D0-CLS4    2         53,234,396      instructions      #    0.51  insn per cycle
     S0-D0-CLS6    2         65,891,079      cycles
     S0-D0-CLS6    2         41,478,273      instructions      #    0.63  insn per cycle
 
            1.002407989 seconds time elapsed
 
 * Various fixes and cleanups for event metrics including NaN handling.
 
 perf script
 -----------
 * Use libcapstone if available to disassemble the instructions.  This enables
   'perf script -F disasm' and 'perf script --insn-trace=disasm' (for Intel-PT).
 
     $ perf script -F event,ip,disasm
     cycles:P:  ffffffffa988d428             wrmsr
     cycles:P:  ffffffffa9839d25             movq %rax, %r14
     cycles:P:  ffffffffa9cdcaf0             endbr64
     cycles:P:  ffffffffa988d428             wrmsr
     cycles:P:  ffffffffa988d428             wrmsr
     cycles:P:  ffffffffaa401f86             iretq
     cycles:P:  ffffffffa99c4de5             movq 0x30(%rcx), %r8
     cycles:P:  ffffffffa988d428             wrmsr
     cycles:P:  ffffffffaa401f86             iretq
     cycles:P:  ffffffffa9907983             movl 0x68(%rbx), %eax
     cycles:P:  ffffffffa988d428             wrmsr
 
 * Expose sample ID / stream ID to python scripts
 
 perf test
 ---------
 * Add more perf test cases from Redhat internal test suites.  This time it adds
   the base infra and a few perf probe tests.  More to come. :)
 
 * Add 'perf test -p' for parallel execution and fix some issues found by the
   parallel test.
 
 * Support symbol test to print symbols in given (active) module:
 
     $ perf test -F -v Symbols --dso /lib/modules/$(uname -r)/kernel/fs/ext4/ext4.ko
     --- start ---
     Testing /lib/modules/6.5.13-1rodete2-amd64/kernel/fs/ext4/ext4.ko
     Overlapping symbols:
      7a990-7a9a0 l __pfx_ext4_exit_fs
      7a990-7a9a0 g __pfx_cleanup_module
     Overlapping symbols:
      7a9a0-7aa1c l ext4_exit_fs
      7a9a0-7aa1c g cleanup_module
     ...
 
 JSON metric updates
 -------------------
 * A new round of Intel metric updates.
 
 * Support Power11 PVR (compatible to Power10).
 
 * Fix cache latency events on Zen 4 to set SliceId properly.
 
 Internal
 --------
 * Fix reference counting for 'map' data structure, tireless work from Ian!
 
 * More memory optimization for struct thread and annotate histogram.  Now,
   'perf report' (TUI) and 'perf annotate' should be much lighter-weight in
   terms of memory footprint.
 
 * Support cross-arch perf register access.  Clean up the build configuration
   so that it can detect arch-register support at runtime.  This can allow to
   parse register data in sample which was recorded in a different arch.
 
 Others
 ------
 * Sync task state in 'perf sched' to kernel using trace event fields.  The
   task states have been changed so tools cannot assume a fixed encoding.
 
 * Clean up 'perf mem' to generalize the arch-specific events.
 
 * Add support for local and global variables to data type profiling.  This
   would increase the success rate of type resolution with DWARF.
 
 * Add short option -H for --hierarchy in 'perf report' and 'perf top'.
 
 Signed-off-by: Namhyung Kim <namhyung@kernel.org>
 -----BEGIN PGP SIGNATURE-----
 
 iIoEABYIADIWIQSo2x5BnqMqsoHtzsmMstVUGiXMgwUCZfHmfhQcbmFtaHl1bmdA
 a2VybmVsLm9yZwAKCRCMstVUGiXMg5krAP9Es5KEhAHvTHo6y4OX9ktrNGB3j/FB
 YgakrWSuJxJ+UAD8D49wUloO3yVDVOe6MxJrZrHcEDGDV6qVSr0aPwDpyw4=
 =gPPl
 -----END PGP SIGNATURE-----

Merge tag 'perf-tools-for-v6.9-2024-03-13' of git://git.kernel.org/pub/scm/linux/kernel/git/perf/perf-tools

Pull perf tools updates from Namhyung Kim:
 "perf stat:

   - Support new 'cluster' aggregation mode for shared resources
     depending on the hardware configuration:

        $ sudo perf stat -a --per-cluster -e cycles,instructions sleep 1

         Performance counter stats for 'system wide':

        S0-D0-CLS0    2         85,051,822      cycles
        S0-D0-CLS0    2         73,909,908      instructions      #    0.87  insn per cycle
        S0-D0-CLS2    2         93,365,918      cycles
        S0-D0-CLS2    2         83,006,158      instructions      #    0.89  insn per cycle
        S0-D0-CLS4    2        104,157,523      cycles
        S0-D0-CLS4    2         53,234,396      instructions      #    0.51  insn per cycle
        S0-D0-CLS6    2         65,891,079      cycles
        S0-D0-CLS6    2         41,478,273      instructions      #    0.63  insn per cycle

               1.002407989 seconds time elapsed

   - Various fixes and cleanups for event metrics including NaN handling

  perf script:

   - Use libcapstone if available to disassemble the instructions. This
     enables 'perf script -F disasm' and 'perf script --insn-trace=disasm'
     (for Intel-PT):

        $ perf script -F event,ip,disasm
        cycles:P:  ffffffffa988d428             wrmsr
        cycles:P:  ffffffffa9839d25             movq %rax, %r14
        cycles:P:  ffffffffa9cdcaf0             endbr64
        cycles:P:  ffffffffa988d428             wrmsr
        cycles:P:  ffffffffa988d428             wrmsr
        cycles:P:  ffffffffaa401f86             iretq
        cycles:P:  ffffffffa99c4de5             movq 0x30(%rcx), %r8
        cycles:P:  ffffffffa988d428             wrmsr
        cycles:P:  ffffffffaa401f86             iretq
        cycles:P:  ffffffffa9907983             movl 0x68(%rbx), %eax
        cycles:P:  ffffffffa988d428             wrmsr

   - Expose sample ID / stream ID to python scripts

  perf test:

   - Add more perf test cases from Redhat internal test suites. This
     time it adds the base infra and a few perf probe tests. More to
     come. :)

   - Add 'perf test -p' for parallel execution and fix some issues found
     by the parallel test

   - Support symbol test to print symbols in given (active) module:

        $ perf test -F -v Symbols --dso /lib/modules/$(uname -r)/kernel/fs/ext4/ext4.ko
        --- start ---
        Testing /lib/modules/6.5.13-1rodete2-amd64/kernel/fs/ext4/ext4.ko
        Overlapping symbols:
         7a990-7a9a0 l __pfx_ext4_exit_fs
         7a990-7a9a0 g __pfx_cleanup_module
        Overlapping symbols:
         7a9a0-7aa1c l ext4_exit_fs
         7a9a0-7aa1c g cleanup_module
        ...

  JSON metric updates:

   - A new round of Intel metric updates

   - Support Power11 PVR (compatible to Power10)

   - Fix cache latency events on Zen 4 to set SliceId properly

  Internal:

   - Fix reference counting for 'map' data structure, tireless work from
     Ian!

   - More memory optimization for struct thread and annotate histogram.
     Now, 'perf report' (TUI) and 'perf annotate' should be much
     lighter-weight in terms of memory footprint

   - Support cross-arch perf register access. Clean up the build
     configuration so that it can detect arch-register support at
     runtime. This can allow to parse register data in sample which was
     recorded in a different arch

  Others:

   - Sync task state in 'perf sched' to kernel using trace event fields.
     The task states have been changed so tools cannot assume a fixed
     encoding

   - Clean up 'perf mem' to generalize the arch-specific events

   - Add support for local and global variables to data type profiling.
     This would increase the success rate of type resolution with DWARF

   - Add short option -H for --hierarchy in 'perf report' and 'perf top'"

* tag 'perf-tools-for-v6.9-2024-03-13' of git://git.kernel.org/pub/scm/linux/kernel/git/perf/perf-tools: (154 commits)
  perf annotate: Add comments in the data structures
  perf annotate: Remove sym_hist.addr[] array
  perf annotate: Calculate instruction overhead using hashmap
  perf annotate: Add a hashmap for symbol histogram
  perf threads: Reduce table size from 256 to 8
  perf threads: Switch from rbtree to hashmap
  perf threads: Move threads to its own files
  perf machine: Move machine's threads into its own abstraction
  perf machine: Move fprintf to for_each loop and a callback
  perf trace: Ignore thread hashing in summary
  perf report: Sort child tasks by tid
  perf vendor events amd: Fix Zen 4 cache latency events
  perf version: Display availability of OpenCSD support
  perf vendor events intel: Add umasks/occ_sel to PCU events.
  perf map: Fix map reference count issues
  libperf evlist: Avoid out-of-bounds access
  perf lock contention: Account contending locks too
  perf metrics: Fix segv for metrics with no events
  perf metrics: Fix metric matching
  perf pmu: Fix a potential memory leak in perf_pmu__lookup()
  ...
2024-03-14 16:31:23 -07:00
Kui-Feng Lee
c911fc61a7 libbpf: Skip zeroed or null fields if not found in the kernel type.
Accept additional fields of a struct_ops type with all zero values even if
these fields are not in the corresponding type in the kernel. This provides
a way to be backward compatible. User space programs can use the same map
on a machine running an old kernel by clearing fields that do not exist in
the kernel.

Signed-off-by: Kui-Feng Lee <thinker.li@gmail.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/bpf/20240313214139.685112-2-thinker.li@gmail.com
2024-03-14 13:47:05 -07:00
Quentin Monnet
9bf48fa19a libbpf: Prevent null-pointer dereference when prog to load has no BTF
In bpf_objec_load_prog(), there's no guarantee that obj->btf is non-NULL
when passing it to btf__fd(), and this function does not perform any
check before dereferencing its argument (as bpf_object__btf_fd() used to
do). As a consequence, we get segmentation fault errors in bpftool (for
example) when trying to load programs that come without BTF information.

v2: Keep btf__fd() in the fix instead of reverting to bpf_object__btf_fd().

Fixes: df7c3f7d3a ("libbpf: make uniform use of btf__fd() accessor inside libbpf")
Suggested-by: Andrii Nakryiko <andrii@kernel.org>
Signed-off-by: Quentin Monnet <qmo@kernel.org>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/bpf/20240314150438.232462-1-qmo@kernel.org
2024-03-14 13:41:17 -07:00
Andrii Nakryiko
2e7ba4f8fd libbpf: Recognize __arena global variables.
LLVM automatically places __arena variables into ".arena.1" ELF section.
In order to use such global variables bpf program must include definition
of arena map in ".maps" section, like:
struct {
       __uint(type, BPF_MAP_TYPE_ARENA);
       __uint(map_flags, BPF_F_MMAPABLE);
       __uint(max_entries, 1000);         /* number of pages */
       __ulong(map_extra, 2ull << 44);    /* start of mmap() region */
} arena SEC(".maps");

libbpf recognizes both uses of arena and creates single `struct bpf_map *`
instance in libbpf APIs.
".arena.1" ELF section data is used as initial data image, which is exposed
through skeleton and bpf_map__initial_value() to the user, if they need to tune
it before the load phase. During load phase, this initial image is copied over
into mmap()'ed region corresponding to arena, and discarded.

Few small checks here and there had to be added to make sure this
approach works with bpf_map__initial_value(), mostly due to hard-coded
assumption that map->mmaped is set up with mmap() syscall and should be
munmap()'ed. For arena, .arena.1 can be (much) smaller than maximum
arena size, so this smaller data size has to be tracked separately.
Given it is enforced that there is only one arena for entire bpf_object
instance, we just keep it in a separate field. This can be generalized
if necessary later.

All global variables from ".arena.1" section are accessible from user space
via skel->arena->name_of_var.

For bss/data/rodata the skeleton/libbpf perform the following sequence:
1. addr = mmap(MAP_ANONYMOUS)
2. user space optionally modifies global vars
3. map_fd = bpf_create_map()
4. bpf_update_map_elem(map_fd, addr) // to store values into the kernel
5. mmap(addr, MAP_FIXED, map_fd)
after step 5 user spaces see the values it wrote at step 2 at the same addresses

arena doesn't support update_map_elem. Hence skeleton/libbpf do:
1. addr = malloc(sizeof SEC ".arena.1")
2. user space optionally modifies global vars
3. map_fd = bpf_create_map(MAP_TYPE_ARENA)
4. real_addr = mmap(map->map_extra, MAP_SHARED | MAP_FIXED, map_fd)
5. memcpy(real_addr, addr) // this will fault-in and allocate pages

At the end look and feel of global data vs __arena global data is the same from
bpf prog pov.

Another complication is:
struct {
  __uint(type, BPF_MAP_TYPE_ARENA);
} arena SEC(".maps");

int __arena foo;
int bar;

  ptr1 = &foo;   // relocation against ".arena.1" section
  ptr2 = &arena; // relocation against ".maps" section
  ptr3 = &bar;   // relocation against ".bss" section

Fo the kernel ptr1 and ptr2 has point to the same arena's map_fd
while ptr3 points to a different global array's map_fd.
For the verifier:
ptr1->type == unknown_scalar
ptr2->type == const_ptr_to_map
ptr3->type == ptr_to_map_value

After verification, from JIT pov all 3 ptr-s are normal ld_imm64 insns.

Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: Quentin Monnet <quentin@isovalent.com>
Link: https://lore.kernel.org/bpf/20240308010812.89848-11-alexei.starovoitov@gmail.com
2024-03-11 15:43:35 -07:00
Alexei Starovoitov
79ff13e991 libbpf: Add support for bpf_arena.
mmap() bpf_arena right after creation, since the kernel needs to
remember the address returned from mmap. This is user_vm_start.
LLVM will generate bpf_arena_cast_user() instructions where
necessary and JIT will add upper 32-bit of user_vm_start
to such pointers.

Fix up bpf_map_mmap_sz() to compute mmap size as
map->value_size * map->max_entries for arrays and
PAGE_SIZE * map->max_entries for arena.

Don't set BTF at arena creation time, since it doesn't support it.

Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/bpf/20240308010812.89848-9-alexei.starovoitov@gmail.com
2024-03-11 15:37:24 -07:00
Alexei Starovoitov
4d2b56081c libbpf: Add __arg_arena to bpf_helpers.h
Add __arg_arena to bpf_helpers.h

Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/bpf/20240308010812.89848-8-alexei.starovoitov@gmail.com
2024-03-11 15:37:24 -07:00
Masahiro Yamada
e2bad142bb kbuild: unexport abs_srctree and abs_objtree
Commit 25b146c5b8 ("kbuild: allow Kbuild to start from any directory")
exported abs_srctree and abs_objtree to avoid recomputation after the
sub-make. However, this approach turned out to be fragile.

Commit 5fa94ceb79 ("kbuild: set correct abs_srctree and abs_objtree
for package builds") moved them above "ifneq ($(sub_make_done),1)",
eliminating the need for exporting them.

These are only needed in the top Makefile. If an absolute path is
required in sub-directories, you can use $(abspath ) or $(realpath )
as needed.

Signed-off-by: Masahiro Yamada <masahiroy@kernel.org>
Reviewed-by: Nicolas Schier <nicolas@fjasle.eu>
2024-03-10 17:27:17 +09:00
Alexei Starovoitov
d147357e2e libbpf: Allow specifying 64-bit integers in map BTF.
__uint() macro that is used to specify map attributes like:
  __uint(type, BPF_MAP_TYPE_ARRAY);
  __uint(map_flags, BPF_F_MMAPABLE);
It is limited to 32-bit, since BTF_KIND_ARRAY has u32 "number of elements"
field in "struct btf_array".

Introduce __ulong() macro that allows specifying values bigger than 32-bit.
In map definition "map_extra" is the only u64 field, so far.

Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/r/20240307031228.42896-5-alexei.starovoitov@gmail.com
Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org>
2024-03-07 14:58:48 -08:00
Eduard Zingerman
6ebaa3fb88 libbpf: Rewrite btf datasec names starting from '?'
Optional struct_ops maps are defined using question mark at the start
of the section name, e.g.:

    SEC("?.struct_ops")
    struct test_ops optional_map = { ... };

This commit teaches libbpf to detect if kernel allows '?' prefix
in datasec names, and if it doesn't then to rewrite such names
by replacing '?' with '_', e.g.:

    DATASEC ?.struct_ops -> DATASEC _.struct_ops

Signed-off-by: Eduard Zingerman <eddyz87@gmail.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/bpf/20240306104529.6453-13-eddyz87@gmail.com
2024-03-06 15:18:16 -08:00
Eduard Zingerman
5ad0ecbe05 libbpf: Struct_ops in SEC("?.struct_ops") / SEC("?.struct_ops.link")
Allow using two new section names for struct_ops maps:
- SEC("?.struct_ops")
- SEC("?.struct_ops.link")

To specify maps that have bpf_map->autocreate == false after open.

Signed-off-by: Eduard Zingerman <eddyz87@gmail.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/bpf/20240306104529.6453-12-eddyz87@gmail.com
2024-03-06 15:18:16 -08:00
Eduard Zingerman
240bf8a516 libbpf: Replace elf_state->st_ops_* fields with SEC_ST_OPS sec_type
The next patch would add two new section names for struct_ops maps.
To make working with multiple struct_ops sections more convenient:
- remove fields like elf_state->st_ops_{shndx,link_shndx};
- mark section descriptions hosting struct_ops as
  elf_sec_desc->sec_type == SEC_ST_OPS;

After these changes struct_ops sections could be processed uniformly
by iterating bpf_object->efile.secs entries.

Signed-off-by: Eduard Zingerman <eddyz87@gmail.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/bpf/20240306104529.6453-11-eddyz87@gmail.com
2024-03-06 15:18:15 -08:00
Eduard Zingerman
fe9d049c3d libbpf: Sync progs autoload with maps autocreate for struct_ops maps
Automatically select which struct_ops programs to load depending on
which struct_ops maps are selected for automatic creation.
E.g. for the BPF code below:

    SEC("struct_ops/test_1") int BPF_PROG(foo) { ... }
    SEC("struct_ops/test_2") int BPF_PROG(bar) { ... }

    SEC(".struct_ops.link")
    struct test_ops___v1 A = {
        .foo = (void *)foo
    };

    SEC(".struct_ops.link")
    struct test_ops___v2 B = {
        .foo = (void *)foo,
        .bar = (void *)bar,
    };

And the following libbpf API calls:

    bpf_map__set_autocreate(skel->maps.A, true);
    bpf_map__set_autocreate(skel->maps.B, false);

The autoload would be enabled for program 'foo' and disabled for
program 'bar'.

During load, for each struct_ops program P, referenced from some
struct_ops map M:
- set P.autoload = true if M.autocreate is true for some M;
- set P.autoload = false if M.autocreate is false for all M;
- don't change P.autoload, if P is not referenced from any map.

Do this after bpf_object__init_kern_struct_ops_maps()
to make sure that shadow vars assignment is done.

Signed-off-by: Eduard Zingerman <eddyz87@gmail.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/bpf/20240306104529.6453-9-eddyz87@gmail.com
2024-03-06 15:18:15 -08:00
Eduard Zingerman
8db052615a libbpf: Honor autocreate flag for struct_ops maps
Skip load steps for struct_ops maps not marked for automatic creation.
This should allow to load bpf object in situations like below:

    SEC("struct_ops/foo") int BPF_PROG(foo) { ... }
    SEC("struct_ops/bar") int BPF_PROG(bar) { ... }

    struct test_ops___v1 {
    	int (*foo)(void);
    };

    struct test_ops___v2 {
    	int (*foo)(void);
    	int (*does_not_exist)(void);
    };

    SEC(".struct_ops.link")
    struct test_ops___v1 map_for_old = {
    	.test_1 = (void *)foo
    };

    SEC(".struct_ops.link")
    struct test_ops___v2 map_for_new = {
    	.test_1 = (void *)foo,
    	.does_not_exist = (void *)bar
    };

Suppose program is loaded on old kernel that does not have definition
for 'does_not_exist' struct_ops member. After this commit it would be
possible to load such object file after the following tweaks:

    bpf_program__set_autoload(skel->progs.bar, false);
    bpf_map__set_autocreate(skel->maps.map_for_new, false);

Signed-off-by: Eduard Zingerman <eddyz87@gmail.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: David Vernet <void@manifault.com>
Link: https://lore.kernel.org/bpf/20240306104529.6453-4-eddyz87@gmail.com
2024-03-06 15:18:15 -08:00
Eduard Zingerman
d9ab2f76ef libbpf: Tie struct_ops programs to kernel BTF ids, not to local ids
Enforce the following existing limitation on struct_ops programs based
on kernel BTF id instead of program-local BTF id:

    struct_ops BPF prog can be re-used between multiple .struct_ops &
    .struct_ops.link as long as it's the same struct_ops struct
    definition and the same function pointer field

This allows reusing same BPF program for versioned struct_ops map
definitions, e.g.:

    SEC("struct_ops/test")
    int BPF_PROG(foo) { ... }

    struct some_ops___v1 { int (*test)(void); };
    struct some_ops___v2 { int (*test)(void); };

    SEC(".struct_ops.link") struct some_ops___v1 a = { .test = foo }
    SEC(".struct_ops.link") struct some_ops___v2 b = { .test = foo }

Signed-off-by: Eduard Zingerman <eddyz87@gmail.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/bpf/20240306104529.6453-3-eddyz87@gmail.com
2024-03-06 15:18:15 -08:00
Eduard Zingerman
a2a5172cf1 libbpf: Allow version suffixes (___smth) for struct_ops types
E.g. allow the following struct_ops definitions:

    struct bpf_testmod_ops___v1 { int (*test)(void); };
    struct bpf_testmod_ops___v2 { int (*test)(void); };

    SEC(".struct_ops.link")
    struct bpf_testmod_ops___v1 a = { .test = ... }
    SEC(".struct_ops.link")
    struct bpf_testmod_ops___v2 b = { .test = ... }

Where both bpf_testmod_ops__v1 and bpf_testmod_ops__v2 would be
resolved as 'struct bpf_testmod_ops' from kernel BTF.

Signed-off-by: Eduard Zingerman <eddyz87@gmail.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: David Vernet <void@manifault.com>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/bpf/20240306104529.6453-2-eddyz87@gmail.com
2024-03-06 15:18:15 -08:00
Chen Shen
25703adf45 libbpf: Correct debug message in btf__load_vmlinux_btf
In the function btf__load_vmlinux_btf, the debug message incorrectly
refers to 'path' instead of 'sysfs_btf_path'.

Signed-off-by: Chen Shen <peterchenshen@gmail.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Yonghong Song <yonghong.song@linux.dev>
Link: https://lore.kernel.org/bpf/20240302062218.3587-1-peterchenshen@gmail.com
2024-03-04 14:33:51 +01:00
Kui-Feng Lee
69e4a9d2b3 libbpf: Convert st_ops->data to shadow type.
Convert st_ops->data to the shadow type of the struct_ops map. The shadow
type of a struct_ops type is a variant of the original struct type
providing a way to access/change the values in the maps of the struct_ops
type.

bpf_map__initial_value() will return st_ops->data for struct_ops types. The
skeleton is going to use it as the pointer to the shadow type of the
original struct type.

One of the main differences between the original struct type and the shadow
type is that all function pointers of the shadow type are converted to
pointers of struct bpf_program. Users can replace these bpf_program
pointers with other BPF programs. The st_ops->progs[] will be updated
before updating the value of a map to reflect the changes made by users.

Signed-off-by: Kui-Feng Lee <thinker.li@gmail.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/bpf/20240229064523.2091270-3-thinker.li@gmail.com
2024-02-29 14:23:52 -08:00
Kui-Feng Lee
3644d28546 libbpf: Set btf_value_type_id of struct bpf_map for struct_ops.
For a struct_ops map, btf_value_type_id is the type ID of it's struct
type. This value is required by bpftool to generate skeleton including
pointers of shadow types. The code generator gets the type ID from
bpf_map__btf_value_type_id() in order to get the type information of the
struct type of a map.

Signed-off-by: Kui-Feng Lee <thinker.li@gmail.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/bpf/20240229064523.2091270-2-thinker.li@gmail.com
2024-02-29 14:23:52 -08:00
Ian Rogers
1947b92464 libperf evlist: Avoid out-of-bounds access
Parallel testing appears to show a race between allocating and setting
evsel ids. As there is a bounds check on the xyarray it yields a segv
like:

```
AddressSanitizer:DEADLYSIGNAL

=================================================================

==484408==ERROR: AddressSanitizer: SEGV on unknown address 0x000000000010

==484408==The signal is caused by a WRITE memory access.

==484408==Hint: address points to the zero page.

    #0 0x55cef5d4eff4 in perf_evlist__id_hash tools/lib/perf/evlist.c:256
    #1 0x55cef5d4f132 in perf_evlist__id_add tools/lib/perf/evlist.c:274
    #2 0x55cef5d4f545 in perf_evlist__id_add_fd tools/lib/perf/evlist.c:315
    #3 0x55cef5a1923f in store_evsel_ids util/evsel.c:3130
    #4 0x55cef5a19400 in evsel__store_ids util/evsel.c:3147
    #5 0x55cef5888204 in __run_perf_stat tools/perf/builtin-stat.c:832
    #6 0x55cef5888c06 in run_perf_stat tools/perf/builtin-stat.c:960
    #7 0x55cef58932db in cmd_stat tools/perf/builtin-stat.c:2878
...
```

Avoid this crash by early exiting the perf_evlist__id_add_fd and
perf_evlist__id_add is the access is out-of-bounds.

Signed-off-by: Ian Rogers <irogers@google.com>
Cc: Yang Jihong <yangjihong1@huawei.com>
Signed-off-by: Namhyung Kim <namhyung@kernel.org>
Link: https://lore.kernel.org/r/20240229070757.796244-1-irogers@google.com
2024-02-29 13:57:02 -08:00
Martin Kelly
58fd62e0aa bpf: Clarify batch lookup/lookup_and_delete semantics
The batch lookup and lookup_and_delete APIs have two parameters,
in_batch and out_batch, to facilitate iterative
lookup/lookup_and_deletion operations for supported maps. Except NULL
for in_batch at the start of these two batch operations, both parameters
need to point to memory equal or larger than the respective map key
size, except for various hashmaps (hash, percpu_hash, lru_hash,
lru_percpu_hash) where the in_batch/out_batch memory size should be
at least 4 bytes.

Document these semantics to clarify the API.

Signed-off-by: Martin Kelly <martin.kelly@crowdstrike.com>
Acked-by: Yonghong Song <yonghong.song@linux.dev>
Link: https://lore.kernel.org/r/20240221211838.1241578-1-martin.kelly@crowdstrike.com
Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org>
2024-02-22 10:24:38 -08:00
Ian Rogers
1a562c0d44 tools subcmd: Add a no exec function call option
Tools like perf fork tests in case they crash, but they don't want to
exec a full binary. Add an option to call a function rather than do an
exec. The child process exits with the result of the function call and
is passed the struct of the run_command, things like container_of can
then allow the child process function to determine additional
arguments.

Signed-off-by: Ian Rogers <irogers@google.com>
Cc: James Clark <james.clark@arm.com>
Cc: Justin Stitt <justinstitt@google.com>
Cc: Bill Wendling <morbo@google.com>
Cc: Nick Desaulniers <ndesaulniers@google.com>
Cc: Yang Jihong <yangjihong1@huawei.com>
Cc: Nathan Chancellor <nathan@kernel.org>
Cc: Kan Liang <kan.liang@linux.intel.com>
Cc: Athira Jajeev <atrajeev@linux.vnet.ibm.com>
Cc: llvm@lists.linux.dev
Signed-off-by: Namhyung Kim <namhyung@kernel.org>
Link: https://lore.kernel.org/r/20240221034155.1500118-5-irogers@google.com
2024-02-22 09:12:25 -08:00
Matt Bobrowski
1159d27852 libbpf: Make remark about zero-initializing bpf_*_info structs
In some situations, if you fail to zero-initialize the
bpf_{prog,map,btf,link}_info structs supplied to the set of LIBBPF
helpers bpf_{prog,map,btf,link}_get_info_by_fd(), you can expect the
helper to return an error. This can possibly leave people in a
situation where they're scratching their heads for an unnnecessary
amount of time. Make an explicit remark about the requirement of
zero-initializing the supplied bpf_{prog,map,btf,link}_info structs
for the respective LIBBPF helpers.

Internally, LIBBPF helpers bpf_{prog,map,btf,link}_get_info_by_fd()
call into bpf_obj_get_info_by_fd() where the bpf(2)
BPF_OBJ_GET_INFO_BY_FD command is used. This specific command is
effectively backed by restrictions enforced by the
bpf_check_uarg_tail_zero() helper. This function ensures that if the
size of the supplied bpf_{prog,map,btf,link}_info structs are larger
than what the kernel can handle, trailing bits are zeroed. This can be
a problem when compiling against UAPI headers that don't necessarily
match the sizes of the same underlying types known to the kernel.

Signed-off-by: Matt Bobrowski <mattbobrowski@google.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: Jiri Olsa <jolsa@kernel.org>
Link: https://lore.kernel.org/bpf/ZcyEb8x4VbhieWsL@google.com
2024-02-14 09:48:46 -08:00
Cupertino Miranda
12bbcf8e84 libbpf: Add support to GCC in CORE macro definitions
Due to internal differences between LLVM and GCC the current
implementation for the CO-RE macros does not fit GCC parser, as it will
optimize those expressions even before those would be accessible by the
BPF backend.

As examples, the following would be optimized out with the original
definitions:
  - As enums are converted to their integer representation during
  parsing, the IR would not know how to distinguish an integer
  constant from an actual enum value.
  - Types need to be kept as temporary variables, as the existing type
  casts of the 0 address (as expanded for LLVM), are optimized away by
  the GCC C parser, never really reaching GCCs IR.

Although, the macros appear to add extra complexity, the expanded code
is removed from the compilation flow very early in the compilation
process, not really affecting the quality of the generated assembly.

Signed-off-by: Cupertino Miranda <cupertino.miranda@oracle.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/bpf/20240213173543.1397708-1-cupertino.miranda@oracle.com
2024-02-13 11:28:12 -08:00
Toke Høiland-Jørgensen
92a871ab9f libbpf: Use OPTS_SET() macro in bpf_xdp_query()
When the feature_flags and xdp_zc_max_segs fields were added to the libbpf
bpf_xdp_query_opts, the code writing them did not use the OPTS_SET() macro.
This causes libbpf to write to those fields unconditionally, which means
that programs compiled against an older version of libbpf (with a smaller
size of the bpf_xdp_query_opts struct) will have its stack corrupted by
libbpf writing out of bounds.

The patch adding the feature_flags field has an early bail out if the
feature_flags field is not part of the opts struct (via the OPTS_HAS)
macro, but the patch adding xdp_zc_max_segs does not. For consistency, this
fix just changes the assignments to both fields to use the OPTS_SET()
macro.

Fixes: 13ce2daa25 ("xsk: add new netlink attribute dedicated for ZC max frags")
Signed-off-by: Toke Høiland-Jørgensen <toke@redhat.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/bpf/20240206125922.1992815-1-toke@redhat.com
2024-02-06 09:51:26 -08:00
Andrii Nakryiko
d7bc416aa5 libbpf: fix return value for PERF_EVENT __arg_ctx type fix up check
If PERF_EVENT program has __arg_ctx argument with matching
architecture-specific pt_regs/user_pt_regs/user_regs_struct pointer
type, libbpf should still perform type rewrite for old kernels, but not
emit the warning. Fix copy/paste from kernel code where 0 is meant to
signify "no error" condition. For libbpf we need to return "true" to
proceed with type rewrite (which for PERF_EVENT program will be
a canonical `struct bpf_perf_event_data *` type).

Fixes: 9eea8fafe3 ("libbpf: fix __arg_ctx type enforcement for perf_event programs")
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20240206002243.1439450-1-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2024-02-05 20:01:46 -08:00
Andrii Nakryiko
b9551da8cf libbpf: Add missed btf_ext__raw_data() API
Another API that was declared in libbpf.map but actual implementation
was missing. btf_ext__get_raw_data() was intended as a discouraged alias
to consistently-named btf_ext__raw_data(), so make this an actuality.

Fixes: 20eccf29e2 ("libbpf: hide and discourage inconsistently named getters")
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Eduard Zingerman <eddyz87@gmail.com>
Link: https://lore.kernel.org/bpf/20240201172027.604869-5-andrii@kernel.org
2024-02-01 22:16:12 +01:00
Andrii Nakryiko
c81a8ab196 libbpf: Add btf__new_split() API that was declared but not implemented
Seems like original commit adding split BTF support intended to add
btf__new_split() API, and even declared it in libbpf.map, but never
added (trivial) implementation. Fix this.

Fixes: ba451366bf ("libbpf: Implement basic split BTF support")
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Eduard Zingerman <eddyz87@gmail.com>
Link: https://lore.kernel.org/bpf/20240201172027.604869-4-andrii@kernel.org
2024-02-01 22:16:12 +01:00
Andrii Nakryiko
93ee1eb85e libbpf: Add missing LIBBPF_API annotation to libbpf_set_memlock_rlim API
LIBBPF_API annotation seems missing on libbpf_set_memlock_rlim API, so
add it to make this API callable from libbpf's shared library version.

Fixes: e542f2c4cd ("libbpf: Auto-bump RLIMIT_MEMLOCK if kernel needs it for BPF")
Fixes: ab9a5a05dc ("libbpf: fix up few libbpf.map problems")
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Eduard Zingerman <eddyz87@gmail.com>
Link: https://lore.kernel.org/bpf/20240201172027.604869-3-andrii@kernel.org
2024-02-01 22:16:11 +01:00
Andrii Nakryiko
9fa5e1a180 libbpf: Call memfd_create() syscall directly
Some versions of Android do not implement memfd_create() wrapper in
their libc implementation, leading to build failures ([0]). On the other
hand, memfd_create() is available as a syscall on quite old kernels
(3.17+, while bpf() syscall itself is available since 3.18+), so it is
ok to assume that syscall availability and call into it with syscall()
helper to avoid Android-specific workarounds.

Validated in libbpf-bootstrap's CI ([1]).

  [0] https://github.com/libbpf/libbpf-bootstrap/actions/runs/7701003207/job/20986080319#step:5:83
  [1] https://github.com/libbpf/libbpf-bootstrap/actions/runs/7715988887/job/21031767212?pr=253

Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Eduard Zingerman <eddyz87@gmail.com>
Link: https://lore.kernel.org/bpf/20240201172027.604869-2-andrii@kernel.org
2024-02-01 22:16:11 +01:00
Eduard Zingerman
8263b3382d libbpf: Remove unnecessary null check in kernel_supports()
After recent changes, Coverity complained about inconsistent null checks
in kernel_supports() function:

    kernel_supports(const struct bpf_object *obj, ...)
    [...]
    // var_compare_op: Comparing obj to null implies that obj might be null
    if (obj && obj->gen_loader)
        return true;

    // var_deref_op: Dereferencing null pointer obj
    if (obj->token_fd)
        return feat_supported(obj->feat_cache, feat_id);
    [...]

- The original null check was introduced by commit [0], which introduced
  a call `kernel_supports(NULL, ...)` in function bump_rlimit_memlock();
- This call was refactored to use `feat_supported(NULL, ...)` in commit [1].

Looking at all places where kernel_supports() is called:

- There is either `obj->...` access before the call;
- Or `obj` comes from `prog->obj` expression, where `prog` comes from
  enumeration of programs in `obj`;
- Or `obj` comes from `prog->obj`, where `prog` is a parameter to one
  of the API functions:
  - bpf_program__attach_kprobe_opts;
  - bpf_program__attach_kprobe;
  - bpf_program__attach_ksyscall.

Assuming correct API usage, it appears that `obj` can never be null when
passed to kernel_supports(). Silence the Coverity warning by removing
redundant null check.

  [0] e542f2c4cd ("libbpf: Auto-bump RLIMIT_MEMLOCK if kernel needs it for BPF")
  [1] d6dd1d4936 ("libbpf: Further decouple feature checking logic from bpf_object")

Signed-off-by: Eduard Zingerman <eddyz87@gmail.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Link: https://lore.kernel.org/bpf/20240131212615.20112-1-eddyz87@gmail.com
2024-02-01 11:13:45 +01:00
Andrii Nakryiko
20d59ee551 libbpf: add bpf_core_cast() macro
Add bpf_core_cast() macro that wraps bpf_rdonly_cast() kfunc. It's more
ergonomic than kfunc, as it automatically extracts btf_id with
bpf_core_type_id_kernel(), and works with type names. It also casts result
to (T *) pointer. See the definition of the macro, it's self-explanatory.

libbpf declares bpf_rdonly_cast() extern as __weak __ksym and should be
safe to not conflict with other possible declarations in user code.

But we do have a conflict with current BPF selftests that declare their
externs with first argument as `void *obj`, while libbpf opts into more
permissive `const void *obj`. This causes conflict, so we fix up BPF
selftests uses in the same patch.

Acked-by: Eduard Zingerman <eddyz87@gmail.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20240130212023.183765-2-andrii@kernel.org
Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org>
2024-01-30 15:55:50 -08:00
Andrii Nakryiko
d28bb1a86e libbpf: add __arg_trusted and __arg_nullable tag macros
Add __arg_trusted to annotate global func args that accept trusted
PTR_TO_BTF_ID arguments.

Also add __arg_nullable to combine with __arg_trusted (and maybe other
tags in the future) to force global subprog itself (i.e., callee) to do
NULL checks, as opposed to default non-NULL semantics (and thus caller's
responsibility to ensure non-NULL values).

Acked-by: Eduard Zingerman <eddyz87@gmail.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20240130000648.2144827-4-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2024-01-30 09:41:50 -08:00
Ian Rogers
f2e4040c82 libbpf: Add some details for BTF parsing failures
As CONFIG_DEBUG_INFO_BTF is default off the existing "failed to find
valid kernel BTF" message makes diagnosing the kernel build issue somewhat
cryptic. Add a little more detail with the hope of helping users.

Before:
```
libbpf: failed to find valid kernel BTF
libbpf: Error loading vmlinux BTF: -3
```

After not accessible:
```
libbpf: kernel BTF is missing at '/sys/kernel/btf/vmlinux', was CONFIG_DEBUG_INFO_BTF enabled?
libbpf: failed to find valid kernel BTF
libbpf: Error loading vmlinux BTF: -3
```

After not readable:
```
libbpf: failed to read kernel BTF from (/sys/kernel/btf/vmlinux): -1
```

Closes: https://lore.kernel.org/bpf/CAP-5=fU+DN_+Y=Y4gtELUsJxKNDDCOvJzPHvjUVaUoeFAzNnig@mail.gmail.com/

Signed-off-by: Ian Rogers <irogers@google.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/bpf/20240125231840.1647951-1-irogers@google.com
2024-01-29 16:42:42 -08:00
Andrii Nakryiko
9eea8fafe3 libbpf: fix __arg_ctx type enforcement for perf_event programs
Adjust PERF_EVENT type enforcement around __arg_ctx to match exactly
what kernel is doing.

Fixes: 76ec90a996 ("libbpf: warn on unexpected __arg_ctx type when rewriting BTF")
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20240125205510.3642094-3-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2024-01-29 12:34:13 -08:00
Andrii Nakryiko
0e6d0a9d23 libbpf: integrate __arg_ctx feature detector into kernel_supports()
Now that feature detection code is in bpf-next tree, integrate __arg_ctx
kernel-side support into kernel_supports() framework.

Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20240125205510.3642094-2-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2024-01-29 12:34:13 -08:00
Andrii Nakryiko
ad57654053 libbpf: Fix faccessat() usage on Android
Android implementation of libc errors out with -EINVAL in faccessat() if
passed AT_EACCESS ([0]), this leads to ridiculous issue with libbpf
refusing to load /sys/kernel/btf/vmlinux on Androids ([1]). Fix by
detecting Android and redefining AT_EACCESS to 0, it's equivalent on
Android.

  [0] https://android.googlesource.com/platform/bionic/+/refs/heads/android13-release/libc/bionic/faccessat.cpp#50
  [1] https://github.com/libbpf/libbpf-bootstrap/issues/250#issuecomment-1911324250

Fixes: 6a4ab8869d ("libbpf: Fix the case of running as non-root with capabilities")
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Jiri Olsa <jolsa@kernel.org>
Link: https://lore.kernel.org/bpf/20240126220944.2497665-1-andrii@kernel.org
2024-01-29 16:17:44 +01:00
Jakub Kicinski
92046e83c0 bpf-next-for-netdev
-----BEGIN PGP SIGNATURE-----
 
 iHUEABYIAB0WIQTFp0I1jqZrAX+hPRXbK58LschIgwUCZbQV+gAKCRDbK58LschI
 g2OeAP0VvhZS9SPiS+/AMAFuw2W1BkMrFNbfBTc3nzRnyJSmNAD+NG4CLLJvsKI9
 olu7VC20B8pLTGLUGIUSwqnjOC+Kkgc=
 =wVMl
 -----END PGP SIGNATURE-----

Merge tag 'for-netdev' of https://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf-next

Daniel Borkmann says:

====================
pull-request: bpf-next 2024-01-26

We've added 107 non-merge commits during the last 4 day(s) which contain
a total of 101 files changed, 6009 insertions(+), 1260 deletions(-).

The main changes are:

1) Add BPF token support to delegate a subset of BPF subsystem
   functionality from privileged system-wide daemons such as systemd
   through special mount options for userns-bound BPF fs to a trusted
   & unprivileged application. With addressed changes from Christian
   and Linus' reviews, from Andrii Nakryiko.

2) Support registration of struct_ops types from modules which helps
   projects like fuse-bpf that seeks to implement a new struct_ops type,
   from Kui-Feng Lee.

3) Add support for retrieval of cookies for perf/kprobe multi links,
   from Jiri Olsa.

4) Bigger batch of prep-work for the BPF verifier to eventually support
   preserving boundaries and tracking scalars on narrowing fills,
   from Maxim Mikityanskiy.

5) Extend the tc BPF flavor to support arbitrary TCP SYN cookies to help
   with the scenario of SYN floods, from Kuniyuki Iwashima.

6) Add code generation to inline the bpf_kptr_xchg() helper which
   improves performance when stashing/popping the allocated BPF objects,
   from Hou Tao.

7) Extend BPF verifier to track aligned ST stores as imprecise spilled
   registers, from Yonghong Song.

8) Several fixes to BPF selftests around inline asm constraints and
   unsupported VLA code generation, from Jose E. Marchesi.

9) Various updates to the BPF IETF instruction set draft document such
   as the introduction of conformance groups for instructions,
   from Dave Thaler.

10) Fix BPF verifier to make infinite loop detection in is_state_visited()
    exact to catch some too lax spill/fill corner cases,
    from Eduard Zingerman.

11) Refactor the BPF verifier pointer ALU check to allow ALU explicitly
    instead of implicitly for various register types, from Hao Sun.

12) Fix the flaky tc_redirect_dtime BPF selftest due to slowness
    in neighbor advertisement at setup time, from Martin KaFai Lau.

13) Change BPF selftests to skip callback tests for the case when the
    JIT is disabled, from Tiezhu Yang.

14) Add a small extension to libbpf which allows to auto create
    a map-in-map's inner map, from Andrey Grafin.

* tag 'for-netdev' of https://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf-next: (107 commits)
  selftests/bpf: Add missing line break in test_verifier
  bpf, docs: Clarify definitions of various instructions
  bpf: Fix error checks against bpf_get_btf_vmlinux().
  bpf: One more maintainer for libbpf and BPF selftests
  selftests/bpf: Incorporate LSM policy to token-based tests
  selftests/bpf: Add tests for LIBBPF_BPF_TOKEN_PATH envvar
  libbpf: Support BPF token path setting through LIBBPF_BPF_TOKEN_PATH envvar
  selftests/bpf: Add tests for BPF object load with implicit token
  selftests/bpf: Add BPF object loading tests with explicit token passing
  libbpf: Wire up BPF token support at BPF object level
  libbpf: Wire up token_fd into feature probing logic
  libbpf: Move feature detection code into its own file
  libbpf: Further decouple feature checking logic from bpf_object
  libbpf: Split feature detectors definitions from cached results
  selftests/bpf: Utilize string values for delegate_xxx mount options
  bpf: Support symbolic BPF FS delegation mount options
  bpf: Fail BPF_TOKEN_CREATE if no delegation option was set on BPF FS
  bpf,selinux: Allocate bpf_security_struct per BPF token
  selftests/bpf: Add BPF token-enabled tests
  libbpf: Add BPF token support to bpf_prog_load() API
  ...
====================

Link: https://lore.kernel.org/r/20240126215710.19855-1-daniel@iogearbox.net
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2024-01-26 21:08:22 -08:00
Andrii Nakryiko
cac270ad79 libbpf: Support BPF token path setting through LIBBPF_BPF_TOKEN_PATH envvar
To allow external admin authority to override default BPF FS location
(/sys/fs/bpf) for implicit BPF token creation, teach libbpf to recognize
LIBBPF_BPF_TOKEN_PATH envvar. If it is specified and user application
didn't explicitly specify bpf_token_path option, it will be treated
exactly like bpf_token_path option, overriding default /sys/fs/bpf
location and making BPF token mandatory.

Suggested-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20240124022127.2379740-29-andrii@kernel.org
2024-01-24 16:21:03 -08:00
Andrii Nakryiko
6b434b61b4 libbpf: Wire up BPF token support at BPF object level
Add BPF token support to BPF object-level functionality.

BPF token is supported by BPF object logic either as an explicitly
provided BPF token from outside (through BPF FS path), or implicitly
(unless prevented through bpf_object_open_opts).

Implicit mode is assumed to be the most common one for user namespaced
unprivileged workloads. The assumption is that privileged container
manager sets up default BPF FS mount point at /sys/fs/bpf with BPF token
delegation options (delegate_{cmds,maps,progs,attachs} mount options).
BPF object during loading will attempt to create BPF token from
/sys/fs/bpf location, and pass it for all relevant operations
(currently, map creation, BTF load, and program load).

In this implicit mode, if BPF token creation fails due to whatever
reason (BPF FS is not mounted, or kernel doesn't support BPF token,
etc), this is not considered an error. BPF object loading sequence will
proceed with no BPF token.

In explicit BPF token mode, user provides explicitly custom BPF FS mount
point path. In such case, BPF object will attempt to create BPF token
from provided BPF FS location. If BPF token creation fails, that is
considered a critical error and BPF object load fails with an error.

Libbpf provides a way to disable implicit BPF token creation, if it
causes any troubles (BPF token is designed to be completely optional and
shouldn't cause any problems even if provided, but in the world of BPF
LSM, custom security logic can be installed that might change outcome
depending on the presence of BPF token). To disable libbpf's default BPF
token creation behavior user should provide either invalid BPF token FD
(negative), or empty bpf_token_path option.

BPF token presence can influence libbpf's feature probing, so if BPF
object has associated BPF token, feature probing is instructed to use
BPF object-specific feature detection cache and token FD.

Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20240124022127.2379740-26-andrii@kernel.org
2024-01-24 16:21:02 -08:00
Andrii Nakryiko
f3dcee938f libbpf: Wire up token_fd into feature probing logic
Adjust feature probing callbacks to take into account optional token_fd.
In unprivileged contexts, some feature detectors would fail to detect
kernel support just because BPF program, BPF map, or BTF object can't be
loaded due to privileged nature of those operations. So when BPF object
is loaded with BPF token, this token should be used for feature probing.

This patch is setting support for this scenario, but we don't yet pass
non-zero token FD. This will be added in the next patch.

We also switched BPF cookie detector from using kprobe program to
tracepoint one, as tracepoint is somewhat less dangerous BPF program
type and has higher likelihood of being allowed through BPF token in the
future. This change has no effect on detection behavior.

Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: John Fastabend <john.fastabend@gmail.com>
Link: https://lore.kernel.org/bpf/20240124022127.2379740-25-andrii@kernel.org
2024-01-24 16:21:02 -08:00
Andrii Nakryiko
05f9cdd55d libbpf: Move feature detection code into its own file
It's quite a lot of well isolated code, so it seems like a good
candidate to move it out of libbpf.c to reduce its size.

Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: John Fastabend <john.fastabend@gmail.com>
Link: https://lore.kernel.org/bpf/20240124022127.2379740-24-andrii@kernel.org
2024-01-24 16:21:02 -08:00
Andrii Nakryiko
d6dd1d4936 libbpf: Further decouple feature checking logic from bpf_object
Add feat_supported() helper that accepts feature cache instead of
bpf_object. This allows low-level code in bpf.c to not know or care
about higher-level concept of bpf_object, yet it will be able to utilize
custom feature checking in cases where BPF token might influence the
outcome.

Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: John Fastabend <john.fastabend@gmail.com>
Link: https://lore.kernel.org/bpf/20240124022127.2379740-23-andrii@kernel.org
2024-01-24 16:21:02 -08:00
Andrii Nakryiko
ea4d587354 libbpf: Split feature detectors definitions from cached results
Split a list of supported feature detectors with their corresponding
callbacks from actual cached supported/missing values. This will allow
to have more flexible per-token or per-object feature detectors in
subsequent refactorings.

Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: John Fastabend <john.fastabend@gmail.com>
Link: https://lore.kernel.org/bpf/20240124022127.2379740-22-andrii@kernel.org
2024-01-24 16:21:02 -08:00
Andrii Nakryiko
404cbc149c libbpf: Add BPF token support to bpf_prog_load() API
Wire through token_fd into bpf_prog_load().

Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20240124022127.2379740-16-andrii@kernel.org
2024-01-24 16:21:02 -08:00
Andrii Nakryiko
a3d63e8525 libbpf: Add BPF token support to bpf_btf_load() API
Allow user to specify token_fd for bpf_btf_load() API that wraps
kernel's BPF_BTF_LOAD command. This allows loading BTF from unprivileged
process as long as it has BPF token allowing BPF_BTF_LOAD command, which
can be created and delegated by privileged process.

Wire through new btf_flags as well, so that user can provide
BPF_F_TOKEN_FD flag, if necessary.

Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20240124022127.2379740-15-andrii@kernel.org
2024-01-24 16:21:02 -08:00
Andrii Nakryiko
364f848375 libbpf: Add BPF token support to bpf_map_create() API
Add ability to provide token_fd for BPF_MAP_CREATE command through
bpf_map_create() API.

Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20240124022127.2379740-14-andrii@kernel.org
2024-01-24 16:21:01 -08:00
Andrii Nakryiko
639ecd7d62 libbpf: Add bpf_token_create() API
Add low-level wrapper API for BPF_TOKEN_CREATE command in bpf() syscall.

Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20240124022127.2379740-13-andrii@kernel.org
2024-01-24 16:21:01 -08:00
Martin KaFai Lau
c9f1155645 libbpf: Ensure undefined bpf_attr field stays 0
The commit 9e926acda0 ("libbpf: Find correct module BTFs for struct_ops maps and progs.")
sets a newly added field (value_type_btf_obj_fd) to -1 in libbpf when
the caller of the libbpf's bpf_map_create did not define this field by
passing a NULL "opts" or passing in a "opts" that does not cover this
new field. OPT_HAS(opts, field) is used to decide if the field is
defined or not:

	((opts) && opts->sz >= offsetofend(typeof(*(opts)), field))

Once OPTS_HAS decided the field is not defined, that field should
be set to 0. For this particular new field (value_type_btf_obj_fd),
its corresponding map_flags "BPF_F_VTYPE_BTF_OBJ_FD" is not set.
Thus, the kernel does not treat it as an fd field.

Fixes: 9e926acda0 ("libbpf: Find correct module BTFs for struct_ops maps and progs.")
Reported-by: Andrii Nakryiko <andrii@kernel.org>
Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/bpf/20240124224418.2905133-1-martin.lau@linux.dev
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2024-01-24 16:19:39 -08:00
Dima Tisnek
d47b9f68d2 libbpf: Correct bpf_core_read.h comment wrt bpf_core_relo struct
Past commit ([0]) removed the last vestiges of struct bpf_field_reloc,
it's called struct bpf_core_relo now.

  [0] 28b93c6449 ("libbpf: Clean up and improve CO-RE reloc logging")

Signed-off-by: Dima Tisnek <dimaqq@gmail.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: Yonghong Song <yonghong.song@linux.dev>
Link: https://lore.kernel.org/bpf/20240121060126.15650-1-dimaqq@gmail.com
2024-01-23 20:29:57 -08:00
Kui-Feng Lee
9e926acda0 libbpf: Find correct module BTFs for struct_ops maps and progs.
Locate the module BTFs for struct_ops maps and progs and pass them to the
kernel. This ensures that the kernel correctly resolves type IDs from the
appropriate module BTFs.

For the map of a struct_ops object, the FD of the module BTF is set to
bpf_map to keep a reference to the module BTF. The FD is passed to the
kernel as value_type_btf_obj_fd when the struct_ops object is loaded.

For a bpf_struct_ops prog, attach_btf_obj_fd of bpf_prog is the FD of a
module BTF in the kernel.

Signed-off-by: Kui-Feng Lee <thinker.li@gmail.com>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20240119225005.668602-13-thinker.li@gmail.com
Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org>
2024-01-23 17:12:52 -08:00
Andrii Nakryiko
bc308d011a libbpf: call dup2() syscall directly
We've ran into issues with using dup2() API in production setting, where
libbpf is linked into large production environment and ends up calling
unintended custom implementations of dup2(). These custom implementations
don't provide atomic FD replacement guarantees of dup2() syscall,
leading to subtle and hard to debug issues.

To prevent this in the future and guarantee that no libc implementation
will do their own custom non-atomic dup2() implementation, call dup2()
syscall directly with syscall(SYS_dup2).

Note that some architectures don't seem to provide dup2 and have dup3
instead. Try to detect and pick best syscall.

Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: Song Liu <song@kernel.org>
Acked-by: Yonghong Song <yonghong.song@linux.dev>
Link: https://lore.kernel.org/r/20240119210201.1295511-1-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2024-01-23 15:13:47 -08:00
Andrey Grafin
f04deb90e5 libbpf: Apply map_set_def_max_entries() for inner_maps on creation
This patch allows to auto create BPF_MAP_TYPE_ARRAY_OF_MAPS and
BPF_MAP_TYPE_HASH_OF_MAPS with values of BPF_MAP_TYPE_PERF_EVENT_ARRAY
by bpf_object__load().

Previous behaviour created a zero filled btf_map_def for inner maps and
tried to use it for a map creation but the linux kernel forbids to create
a BPF_MAP_TYPE_PERF_EVENT_ARRAY map with max_entries=0.

Fixes: 646f02ffdd ("libbpf: Add BTF-defined map-in-map support")
Signed-off-by: Andrey Grafin <conquistador@yandex-team.ru>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: Yonghong Song <yonghong.song@linux.dev>
Acked-by: Hou Tao <houtao1@huawei.com>
Link: https://lore.kernel.org/bpf/20240117130619.9403-1-conquistador@yandex-team.ru
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2024-01-23 14:43:12 -08:00
Linus Torvalds
9d64bf433c perf tools improvements and fixes for v6.8:
- Add Namhyung Kim as tools/perf/ co-maintainer, we're taking turns processing
   patches, switching roles from perf-tools to perf-tools-next at each Linux
   release.
 
 Data profiling:
 
 - Associate samples that identify loads and stores with data structures. This
   uses events available on Intel, AMD and others and DWARF info:
 
     # To get memory access samples in kernel for 1 second (on Intel)
     $ perf mem record -a -K --ldlat=4 -- sleep 1
 
     # Similar for the AMD (but it requires 6.3+ kernel for BPF filters)
     $ perf mem record -a --filter 'mem_op == load || mem_op == store, ip > 0x8000000000000000' -- sleep 1
 
   Then, amongst several modes of post processing, one can do things like:
 
     $ perf report -s type,typeoff --hierarchy --group --stdio
     ...
     #
     # Samples: 10K of events 'cpu/mem-loads,ldlat=4/P, cpu/mem-stores/P, dummy:u'
     # Event count (approx.): 602758064
     #
     #                    Overhead  Data Type / Data Type Offset
     # ...........................  ............................
     #
         26.09%   3.28%   0.00%     long unsigned int
            26.09%   3.28%   0.00%     long unsigned int +0 (no field)
         18.48%   0.73%   0.00%     struct page
            10.83%   0.02%   0.00%     struct page +8 (lru.next)
             3.90%   0.28%   0.00%     struct page +0 (flags)
             3.45%   0.06%   0.00%     struct page +24 (mapping)
             0.25%   0.28%   0.00%     struct page +48 (_mapcount.counter)
             0.02%   0.06%   0.00%     struct page +32 (index)
             0.02%   0.00%   0.00%     struct page +52 (_refcount.counter)
             0.02%   0.01%   0.00%     struct page +56 (memcg_data)
             0.00%   0.01%   0.00%     struct page +16 (lru.prev)
         15.37%  17.54%   0.00%     (stack operation)
            15.37%  17.54%   0.00%     (stack operation) +0 (no field)
         11.71%  50.27%   0.00%     (unknown)
            11.71%  50.27%   0.00%     (unknown) +0 (no field)
 
     $ perf annotate --data-type
     ...
     Annotate type: 'struct cfs_rq' in [kernel.kallsyms] (13 samples):
     ============================================================================
         samples     offset       size  field
              13          0        640  struct cfs_rq         {
               2          0         16      struct load_weight       load {
               2          0          8          unsigned long        weight;
               0          8          4          u32  inv_weight;
                                            };
               0         16          8      unsigned long    runnable_weight;
               0         24          4      unsigned int     nr_running;
               1         28          4      unsigned int     h_nr_running;
     ...
 
     $ perf annotate --data-type=page --group
     Annotate type: 'struct page' in [kernel.kallsyms] (480 samples):
      event[0] = cpu/mem-loads,ldlat=4/P
      event[1] = cpu/mem-stores/P
      event[2] = dummy:u
     ===================================================================================
              samples  offset  size  field
     447  33        0       0    64  struct page     {
     108   8        0       0     8	 long unsigned int  flags;
     319  13        0       8    40	 union       {
     319  13        0       8    40          struct          {
     236   2        0       8    16              union       {
     236   2        0       8    16                  struct list_head       lru {
     236   1        0       8     8                      struct list_head*  next;
       0   1        0      16     8                      struct list_head*  prev;
                                                     };
     236   2        0       8    16                  struct          {
     236   1        0       8     8                      void*      __filler;
       0   1        0      16     4                      unsigned int       mlock_count;
                                                     };
     236   2        0       8    16                  struct list_head       buddy_list {
     236   1        0       8     8                      struct list_head*  next;
       0   1        0      16     8                      struct list_head*  prev;
                                                     };
     236   2        0       8    16                  struct list_head       pcp_list {
     236   1        0       8     8                      struct list_head*  next;
       0   1        0      16     8                      struct list_head*  prev;
                                                     };
                                                 };
      82   4        0      24     8              struct address_space*      mapping;
       1   7        0      32     8              union       {
       1   7        0      32     8                  long unsigned int      index;
       1   7        0      32     8                  long unsigned int      share;
                                                 };
       0   0        0      40     8              long unsigned int  private;
                                                               };
 
   This uses the existing annotate code, calling objdump to do the disassembly,
   with improvements to avoid having this take too long, but longer term a
   switch to a disassembler library, possibly reusing code in the kernel will
   be pursued.
 
   This is the initial implementation, please use it and report impressions and
   bugs. Make sure the kernel-debuginfo packages match the running kernel. The
   'perf report' phase for non short perf.data files may take a while.
 
   There is a great article about it on LWN:
 
   https://lwn.net/Articles/955709/ - "Data-type profiling for perf"
 
   One last test I did while writing this text, on a AMD Ryzen 5950X, using a distro
   kernel, while doing a simple 'find /' on an otherwise idle system resulted in:
 
   # uname -r
   6.6.9-100.fc38.x86_64
   # perf -vv | grep BPF_
                    bpf: [ on  ]  # HAVE_LIBBPF_SUPPORT
          bpf_skeletons: [ on  ]  # HAVE_BPF_SKEL
   # rpm -qa | grep kernel-debuginfo
   kernel-debuginfo-common-x86_64-6.6.9-100.fc38.x86_64
   kernel-debuginfo-6.6.9-100.fc38.x86_64
   #
   # perf mem record -a --filter 'mem_op == load || mem_op == store, ip > 0x8000000000000000'
   ^C[ perf record: Woken up 1 times to write data ]
   [ perf record: Captured and wrote 2.199 MB perf.data (2913 samples) ]
   #
   # ls -la perf.data
   -rw-------. 1 root root 2346486 Jan  9 18:36 perf.data
   # perf evlist
   ibs_op//
   dummy:u
   # perf evlist -v
   ibs_op//: type: 11, size: 136, config: 0, { sample_period, sample_freq }: 4000, sample_type: IP|TID|TIME|ADDR|CPU|PERIOD|IDENTIFIER|DATA_SRC|WEIGHT, read_format: ID, disabled: 1, inherit: 1, freq: 1, sample_id_all: 1
   dummy:u: type: 1 (PERF_TYPE_SOFTWARE), size: 136, config: 0x9 (PERF_COUNT_SW_DUMMY), { sample_period, sample_freq }: 1, sample_type: IP|TID|TIME|ADDR|CPU|IDENTIFIER|DATA_SRC|WEIGHT, read_format: ID, inherit: 1, exclude_kernel: 1, exclude_hv: 1, mmap: 1, comm: 1, task: 1, mmap_data: 1, sample_id_all: 1, exclude_guest: 1, mmap2: 1, comm_exec: 1, ksymbol: 1, bpf_event: 1
   #
   # perf report -s type,typeoff --hierarchy --group --stdio
   # Total Lost Samples: 0
   #
   # Samples: 2K of events 'ibs_op//, dummy:u'
   # Event count (approx.): 1904553038
   #
   #            Overhead  Data Type / Data Type Offset
   # ...................  ............................
   #
       73.70%   0.00%     (unknown)
          73.70%   0.00%     (unknown) +0 (no field)
        3.01%   0.00%     long unsigned int
           3.00%   0.00%     long unsigned int +0 (no field)
           0.01%   0.00%     long unsigned int +2 (no field)
        2.73%   0.00%     struct task_struct
           1.71%   0.00%     struct task_struct +52 (on_cpu)
           0.38%   0.00%     struct task_struct +2104 (rcu_read_unlock_special.b.blocked)
           0.23%   0.00%     struct task_struct +2100 (rcu_read_lock_nesting)
           0.14%   0.00%     struct task_struct +2384 ()
           0.06%   0.00%     struct task_struct +3096 (signal)
           0.05%   0.00%     struct task_struct +3616 (cgroups)
           0.05%   0.00%     struct task_struct +2344 (active_mm)
           0.02%   0.00%     struct task_struct +46 (flags)
           0.02%   0.00%     struct task_struct +2096 (migration_disabled)
           0.01%   0.00%     struct task_struct +24 (__state)
           0.01%   0.00%     struct task_struct +3956 (mm_cid_active)
           0.01%   0.00%     struct task_struct +1048 (cpus_ptr)
           0.01%   0.00%     struct task_struct +184 (se.group_node.next)
           0.01%   0.00%     struct task_struct +20 (thread_info.cpu)
           0.00%   0.00%     struct task_struct +104 (on_rq)
           0.00%   0.00%     struct task_struct +2456 (pid)
        1.36%   0.00%     struct module
           0.59%   0.00%     struct module +952 (kallsyms)
           0.42%   0.00%     struct module +0 (state)
           0.23%   0.00%     struct module +8 (list.next)
           0.12%   0.00%     struct module +216 (syms)
        0.95%   0.00%     struct inode
           0.41%   0.00%     struct inode +40 (i_sb)
           0.22%   0.00%     struct inode +0 (i_mode)
           0.06%   0.00%     struct inode +76 (i_rdev)
           0.06%   0.00%     struct inode +56 (i_security)
   <SNIP>
 
 perf top/report:
 
 - Don't ignore job control, allowing control+Z + bg to work.
 
 - Add s390 raw data interpretation for PAI (Processor Activity Instrumentation)
   counters.
 
 perf archive:
 
 - Add new option '--all' to pack perf.data with DSOs.
 
 - Add new option '--unpack' to expand tarballs.
 
 Initialization speedups:
 
 - Lazily initialize zstd streams to save memory when not using it.
 
 - Lazily allocate/size mmap event copy.
 
 - Lazy load kernel symbols in 'perf record'.
 
 - Be lazier in allocating lost samples buffer in 'perf record'.
 
 - Don't synthesize BPF events when disabled via the command line (perf record --no-bpf-event).
 
 Assorted improvements:
 
 - Show note on AMD systems that the :p, :pp, :ppp and :P are all the same, as
   IBS (Instruction Based Sampling) is used and it is inherentely precise, not
   having levels of precision like in Intel systems.
 
 - When 'cycles' isn't available, fall back to the "task-clock" event when not
   system wide, not to 'cpu-clock'.
 
 - Add --debug-file option to redirect debug output, e.g.:
 
     $ perf --debug-file /tmp/perf.log record -v true
 
 - Shrink 'struct map' to under one cacheline by avoiding function pointers for
   selecting if addresses are identity or DSO relative, and using just a byte for
   some boolean struct members.
 
 - Resolve the arch specific strerrno just once to use in perf_env__arch_strerrno().
 
 - Reduce memory for recording PERF_RECORD_LOST_SAMPLES event.
 
 Assorted fixes:
 
 - Fix the default 'perf top' usage on Intel hybrid systems, now it starts with
   a browser showing the number of samples for Efficiency (cpu_atom/cycles/P) and
   Performance (cpu_core/cycles/P). This behaviour is similar on ARM64, with its
   respective set of big.LITTLE processors.
 
 - Fix segfault on build_mem_topology() error path.
 
 - Fix 'perf mem' error on hybrid related to availability of mem event in a PMU.
 
 - Fix missing reference count gets (map, maps) in the db-export code.
 
 - Avoid recursively taking env->bpf_progs.lock in the 'perf_env' code.
 
 - Use the newly introduced maps__for_each_map() to add missing locking around
   iteration of 'struct map' entries.
 
 - Parse NOTE segments until the build id is found, don't stop on the first one,
   ELF files may have several such NOTE segments.
 
 - Remove 'egrep' usage, its deprecated, use 'grep -E' instead.
 
 - Warn first about missing libelf, not libbpf, that depends on libelf.
 
 - Use alternative to 'find ... -printf' as this isn't supported in busybox.
 
 - Address python 3.6 DeprecationWarning for string scapes.
 
 - Fix memory leak in uniq() in libsubcmd.
 
 - Fix man page formatting for 'perf lock'
 
 - Fix some spelling mistakes.
 
 perf tests:
 
 - Fail shell tests that needs some symbol in perf itself if it is stripped.
   These tests check if a symbol is resolved, if some hot function is indeed
   detected by profiling, etc.
 
 - The 'perf test sigtrap' test is currently failing on PREEMPT_RT, skip it if
   sleeping spinlocks are detected (using BTF) and point to the mailing list
   discussion about it. This test is also being skipped on several architectures
   (powerpc, s390x, arm and aarch64) due to other pending issues with intruction
   breakpoints.
 
 - Adjust test case perf record offcpu profiling tests for s390.
 
 - Fix 'Setup struct perf_event_attr' fails on s390 on z/VM guest, addressing
   issues caused by the fallback from cycles to task-clock done in this release.
 
 - Fix mask for VG register in the user-regs test.
 
 - Use shellcheck on 'perf test' shell scripts automatically to make sure changes
   don't introduce things it flags as problematic.
 
 - Add option to change objdump binary and allow it to be set via 'perf config'.
 
 - Add basic 'perf script', 'perf list --json" and 'perf diff' tests.
 
 - Basic branch counter support.
 
 - Make DSO tests a suite rather than individual.
 
 - Remove atomics from test_loop to avoid test failures.
 
 - Fix call chain match on powerpc for the record+probe_libc_inet_pton test.
 
 - Improve Intel hybrid tests.
 
 Vendor event files (JSON):
 
 powerpc:
 
 - Update datasource event name to fix duplicate events on IBM's Power10.
 
 - Add PVN for HX-C2000 CPU with Power8 Architecture.
 
 Intel:
 
 - Alderlake/rocketlake metric fixes.
 
 - Update emeraldrapids events to v1.02.
 
 - Update icelakex events to v1.23.
 
 - Update sapphirerapids events to v1.17.
 
 - Add skx, clx, icx and spr upi bandwidth metric.
 
 AMD:
 
 - Add Zen 4 memory controller events.
 
 RISC-V:
 
 - Add StarFive Dubhe-80 and Dubhe-90 JSON files.
   https://www.starfivetech.com/en/site/cpu-u
 
 - Add T-HEAD C9xx JSON file.
   https://github.com/riscv-software-src/opensbi/blob/master/docs/platform/thead-c9xx.md
 
 ARM64:
 
 - Remove UTF-8 characters from cmn.json, that were causing build failure in some
   distros.
 
 - Add core PMU events and metrics for Ampere One X.
 
 - Rename Ampere One's BPU_FLUSH_MEM_FAULT to GPC_FLUSH_MEM_FAULT
 
 libperf:
 
 - Rename several perf_cpu_map constructor names to clarify what they really do.
 
 - Ditto for some other methods, coping with some issues in their semantics,
   like perf_cpu_map__empty() -> perf_cpu_map__has_any_cpu_or_is_empty().
 
 - Document perf_cpu_map__nr()'s behavior
 
 perf stat:
 
 - Exit if parse groups fails.
 
 - Combine the -A/--no-aggr and --no-merge options.
 
 - Fix help message for --metric-no-threshold option.
 
 Hardware tracing:
 
 ARM64 CoreSight:
 
 - Bump minimum OpenCSD version to ensure a bugfix is present.
 
 - Add 'T' itrace option for timestamp trace
 
 - Set start vm addr of exectable file to 0 and don't ignore first sample on the
   arm-cs-trace-disasm.py 'perf script'.
 
 Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
 -----BEGIN PGP SIGNATURE-----
 
 iHUEABYKAB0WIQR2GiIUctdOfX2qHhGyPKLppCJ+JwUCZZ3FpgAKCRCyPKLppCJ+
 Jz21AQDB93J4X05bwHJlRloN3KuA3LuwzvAQkwFoJSfFFMDnzgEAgbAMF1sANirP
 5UcGxVgqoXWdrp9pkMcGlcFc7jsz5gA=
 =SM26
 -----END PGP SIGNATURE-----

Merge tag 'perf-tools-for-v6.8-1-2024-01-09' of git://git.kernel.org/pub/scm/linux/kernel/git/perf/perf-tools

Pull perf tools updates from Arnaldo Carvalho de Melo:
 "Add Namhyung Kim as tools/perf/ co-maintainer, we're taking turns
  processing patches, switching roles from perf-tools to perf-tools-next
  at each Linux release.

  Data profiling:

   - Associate samples that identify loads and stores with data
     structures. This uses events available on Intel, AMD and others and
     DWARF info:

       # To get memory access samples in kernel for 1 second (on Intel)
       $ perf mem record -a -K --ldlat=4 -- sleep 1

       # Similar for the AMD (but it requires 6.3+ kernel for BPF filters)
       $ perf mem record -a --filter 'mem_op == load || mem_op == store, ip > 0x8000000000000000' -- sleep 1

     Then, amongst several modes of post processing, one can do things like:

       $ perf report -s type,typeoff --hierarchy --group --stdio
       ...
       #
       # Samples: 10K of events 'cpu/mem-loads,ldlat=4/P, cpu/mem-stores/P, dummy:u'
       # Event count (approx.): 602758064
       #
       #                    Overhead  Data Type / Data Type Offset
       # ...........................  ............................
       #
           26.09%   3.28%   0.00%     long unsigned int
              26.09%   3.28%   0.00%     long unsigned int +0 (no field)
           18.48%   0.73%   0.00%     struct page
              10.83%   0.02%   0.00%     struct page +8 (lru.next)
               3.90%   0.28%   0.00%     struct page +0 (flags)
               3.45%   0.06%   0.00%     struct page +24 (mapping)
               0.25%   0.28%   0.00%     struct page +48 (_mapcount.counter)
               0.02%   0.06%   0.00%     struct page +32 (index)
               0.02%   0.00%   0.00%     struct page +52 (_refcount.counter)
               0.02%   0.01%   0.00%     struct page +56 (memcg_data)
               0.00%   0.01%   0.00%     struct page +16 (lru.prev)
           15.37%  17.54%   0.00%     (stack operation)
              15.37%  17.54%   0.00%     (stack operation) +0 (no field)
           11.71%  50.27%   0.00%     (unknown)
              11.71%  50.27%   0.00%     (unknown) +0 (no field)

       $ perf annotate --data-type
       ...
       Annotate type: 'struct cfs_rq' in [kernel.kallsyms] (13 samples):
       ============================================================================
           samples     offset       size  field
                13          0        640  struct cfs_rq         {
                 2          0         16      struct load_weight       load {
                 2          0          8          unsigned long        weight;
                 0          8          4          u32  inv_weight;
                                              };
                 0         16          8      unsigned long    runnable_weight;
                 0         24          4      unsigned int     nr_running;
                 1         28          4      unsigned int     h_nr_running;
       ...

       $ perf annotate --data-type=page --group
       Annotate type: 'struct page' in [kernel.kallsyms] (480 samples):
        event[0] = cpu/mem-loads,ldlat=4/P
        event[1] = cpu/mem-stores/P
        event[2] = dummy:u
       ===================================================================================
                samples  offset  size  field
       447  33        0       0    64  struct page     {
       108   8        0       0     8	 long unsigned int  flags;
       319  13        0       8    40	 union       {
       319  13        0       8    40          struct          {
       236   2        0       8    16              union       {
       236   2        0       8    16                  struct list_head       lru {
       236   1        0       8     8                      struct list_head*  next;
         0   1        0      16     8                      struct list_head*  prev;
                                                       };
       236   2        0       8    16                  struct          {
       236   1        0       8     8                      void*      __filler;
         0   1        0      16     4                      unsigned int       mlock_count;
                                                       };
       236   2        0       8    16                  struct list_head       buddy_list {
       236   1        0       8     8                      struct list_head*  next;
         0   1        0      16     8                      struct list_head*  prev;
                                                       };
       236   2        0       8    16                  struct list_head       pcp_list {
       236   1        0       8     8                      struct list_head*  next;
         0   1        0      16     8                      struct list_head*  prev;
                                                       };
                                                   };
        82   4        0      24     8              struct address_space*      mapping;
         1   7        0      32     8              union       {
         1   7        0      32     8                  long unsigned int      index;
         1   7        0      32     8                  long unsigned int      share;
                                                   };
         0   0        0      40     8              long unsigned int  private;
                                                                 };

     This uses the existing annotate code, calling objdump to do the
     disassembly, with improvements to avoid having this take too long,
     but longer term a switch to a disassembler library, possibly
     reusing code in the kernel will be pursued.

     This is the initial implementation, please use it and report
     impressions and bugs. Make sure the kernel-debuginfo packages match
     the running kernel. The 'perf report' phase for non short perf.data
     files may take a while.

     There is a great article about it on LWN:

       https://lwn.net/Articles/955709/ - "Data-type profiling for perf"

     One last test I did while writing this text, on a AMD Ryzen 5950X,
     using a distro kernel, while doing a simple 'find /' on an
     otherwise idle system resulted in:

     # uname -r
     6.6.9-100.fc38.x86_64
     # perf -vv | grep BPF_
                      bpf: [ on  ]  # HAVE_LIBBPF_SUPPORT
            bpf_skeletons: [ on  ]  # HAVE_BPF_SKEL
     # rpm -qa | grep kernel-debuginfo
     kernel-debuginfo-common-x86_64-6.6.9-100.fc38.x86_64
     kernel-debuginfo-6.6.9-100.fc38.x86_64
     #
     # perf mem record -a --filter 'mem_op == load || mem_op == store, ip > 0x8000000000000000'
     ^C[ perf record: Woken up 1 times to write data ]
     [ perf record: Captured and wrote 2.199 MB perf.data (2913 samples) ]
     #
     # ls -la perf.data
     -rw-------. 1 root root 2346486 Jan  9 18:36 perf.data
     # perf evlist
     ibs_op//
     dummy:u
     # perf evlist -v
     ibs_op//: type: 11, size: 136, config: 0, { sample_period, sample_freq }: 4000, sample_type: IP|TID|TIME|ADDR|CPU|PERIOD|IDENTIFIER|DATA_SRC|WEIGHT, read_format: ID, disabled: 1, inherit: 1, freq: 1, sample_id_all: 1
     dummy:u: type: 1 (PERF_TYPE_SOFTWARE), size: 136, config: 0x9 (PERF_COUNT_SW_DUMMY), { sample_period, sample_freq }: 1, sample_type: IP|TID|TIME|ADDR|CPU|IDENTIFIER|DATA_SRC|WEIGHT, read_format: ID, inherit: 1, exclude_kernel: 1, exclude_hv: 1, mmap: 1, comm: 1, task: 1, mmap_data: 1, sample_id_all: 1, exclude_guest: 1, mmap2: 1, comm_exec: 1, ksymbol: 1, bpf_event: 1
     #
     # perf report -s type,typeoff --hierarchy --group --stdio
     # Total Lost Samples: 0
     #
     # Samples: 2K of events 'ibs_op//, dummy:u'
     # Event count (approx.): 1904553038
     #
     #            Overhead  Data Type / Data Type Offset
     # ...................  ............................
     #
         73.70%   0.00%     (unknown)
            73.70%   0.00%     (unknown) +0 (no field)
          3.01%   0.00%     long unsigned int
             3.00%   0.00%     long unsigned int +0 (no field)
             0.01%   0.00%     long unsigned int +2 (no field)
          2.73%   0.00%     struct task_struct
             1.71%   0.00%     struct task_struct +52 (on_cpu)
             0.38%   0.00%     struct task_struct +2104 (rcu_read_unlock_special.b.blocked)
             0.23%   0.00%     struct task_struct +2100 (rcu_read_lock_nesting)
             0.14%   0.00%     struct task_struct +2384 ()
             0.06%   0.00%     struct task_struct +3096 (signal)
             0.05%   0.00%     struct task_struct +3616 (cgroups)
             0.05%   0.00%     struct task_struct +2344 (active_mm)
             0.02%   0.00%     struct task_struct +46 (flags)
             0.02%   0.00%     struct task_struct +2096 (migration_disabled)
             0.01%   0.00%     struct task_struct +24 (__state)
             0.01%   0.00%     struct task_struct +3956 (mm_cid_active)
             0.01%   0.00%     struct task_struct +1048 (cpus_ptr)
             0.01%   0.00%     struct task_struct +184 (se.group_node.next)
             0.01%   0.00%     struct task_struct +20 (thread_info.cpu)
             0.00%   0.00%     struct task_struct +104 (on_rq)
             0.00%   0.00%     struct task_struct +2456 (pid)
          1.36%   0.00%     struct module
             0.59%   0.00%     struct module +952 (kallsyms)
             0.42%   0.00%     struct module +0 (state)
             0.23%   0.00%     struct module +8 (list.next)
             0.12%   0.00%     struct module +216 (syms)
          0.95%   0.00%     struct inode
             0.41%   0.00%     struct inode +40 (i_sb)
             0.22%   0.00%     struct inode +0 (i_mode)
             0.06%   0.00%     struct inode +76 (i_rdev)
             0.06%   0.00%     struct inode +56 (i_security)
     <SNIP>

  perf top/report:

   - Don't ignore job control, allowing control+Z + bg to work.

   - Add s390 raw data interpretation for PAI (Processor Activity
     Instrumentation) counters.

  perf archive:

   - Add new option '--all' to pack perf.data with DSOs.

   - Add new option '--unpack' to expand tarballs.

  Initialization speedups:

   - Lazily initialize zstd streams to save memory when not using it.

   - Lazily allocate/size mmap event copy.

   - Lazy load kernel symbols in 'perf record'.

   - Be lazier in allocating lost samples buffer in 'perf record'.

   - Don't synthesize BPF events when disabled via the command line
     (perf record --no-bpf-event).

  Assorted improvements:

   - Show note on AMD systems that the :p, :pp, :ppp and :P are all the
     same, as IBS (Instruction Based Sampling) is used and it is
     inherentely precise, not having levels of precision like in Intel
     systems.

   - When 'cycles' isn't available, fall back to the "task-clock" event
     when not system wide, not to 'cpu-clock'.

   - Add --debug-file option to redirect debug output, e.g.:

       $ perf --debug-file /tmp/perf.log record -v true

   - Shrink 'struct map' to under one cacheline by avoiding function
     pointers for selecting if addresses are identity or DSO relative,
     and using just a byte for some boolean struct members.

   - Resolve the arch specific strerrno just once to use in
     perf_env__arch_strerrno().

   - Reduce memory for recording PERF_RECORD_LOST_SAMPLES event.

  Assorted fixes:

   - Fix the default 'perf top' usage on Intel hybrid systems, now it
     starts with a browser showing the number of samples for Efficiency
     (cpu_atom/cycles/P) and Performance (cpu_core/cycles/P). This
     behaviour is similar on ARM64, with its respective set of
     big.LITTLE processors.

   - Fix segfault on build_mem_topology() error path.

   - Fix 'perf mem' error on hybrid related to availability of mem event
     in a PMU.

   - Fix missing reference count gets (map, maps) in the db-export code.

   - Avoid recursively taking env->bpf_progs.lock in the 'perf_env'
     code.

   - Use the newly introduced maps__for_each_map() to add missing
     locking around iteration of 'struct map' entries.

   - Parse NOTE segments until the build id is found, don't stop on the
     first one, ELF files may have several such NOTE segments.

   - Remove 'egrep' usage, its deprecated, use 'grep -E' instead.

   - Warn first about missing libelf, not libbpf, that depends on
     libelf.

   - Use alternative to 'find ... -printf' as this isn't supported in
     busybox.

   - Address python 3.6 DeprecationWarning for string scapes.

   - Fix memory leak in uniq() in libsubcmd.

   - Fix man page formatting for 'perf lock'

   - Fix some spelling mistakes.

  perf tests:

   - Fail shell tests that needs some symbol in perf itself if it is
     stripped. These tests check if a symbol is resolved, if some hot
     function is indeed detected by profiling, etc.

   - The 'perf test sigtrap' test is currently failing on PREEMPT_RT,
     skip it if sleeping spinlocks are detected (using BTF) and point to
     the mailing list discussion about it. This test is also being
     skipped on several architectures (powerpc, s390x, arm and aarch64)
     due to other pending issues with intruction breakpoints.

   - Adjust test case perf record offcpu profiling tests for s390.

   - Fix 'Setup struct perf_event_attr' fails on s390 on z/VM guest,
     addressing issues caused by the fallback from cycles to task-clock
     done in this release.

   - Fix mask for VG register in the user-regs test.

   - Use shellcheck on 'perf test' shell scripts automatically to make
     sure changes don't introduce things it flags as problematic.

   - Add option to change objdump binary and allow it to be set via
     'perf config'.

   - Add basic 'perf script', 'perf list --json" and 'perf diff' tests.

   - Basic branch counter support.

   - Make DSO tests a suite rather than individual.

   - Remove atomics from test_loop to avoid test failures.

   - Fix call chain match on powerpc for the record+probe_libc_inet_pton
     test.

   - Improve Intel hybrid tests.

  Vendor event files (JSON):

  powerpc:

   - Update datasource event name to fix duplicate events on IBM's
     Power10.

   - Add PVN for HX-C2000 CPU with Power8 Architecture.

  Intel:

   - Alderlake/rocketlake metric fixes.

   - Update emeraldrapids events to v1.02.

   - Update icelakex events to v1.23.

   - Update sapphirerapids events to v1.17.

   - Add skx, clx, icx and spr upi bandwidth metric.

  AMD:

   - Add Zen 4 memory controller events.

  RISC-V:

   - Add StarFive Dubhe-80 and Dubhe-90 JSON files.
       https://www.starfivetech.com/en/site/cpu-u

   - Add T-HEAD C9xx JSON file.
       https://github.com/riscv-software-src/opensbi/blob/master/docs/platform/thead-c9xx.md

  ARM64:

   - Remove UTF-8 characters from cmn.json, that were causing build
     failure in some distros.

   - Add core PMU events and metrics for Ampere One X.

   - Rename Ampere One's BPU_FLUSH_MEM_FAULT to GPC_FLUSH_MEM_FAULT

  libperf:

   - Rename several perf_cpu_map constructor names to clarify what they
     really do.

   - Ditto for some other methods, coping with some issues in their
     semantics, like perf_cpu_map__empty() ->
     perf_cpu_map__has_any_cpu_or_is_empty().

   - Document perf_cpu_map__nr()'s behavior

  perf stat:

   - Exit if parse groups fails.

   - Combine the -A/--no-aggr and --no-merge options.

   - Fix help message for --metric-no-threshold option.

  Hardware tracing:

  ARM64 CoreSight:

   - Bump minimum OpenCSD version to ensure a bugfix is present.

   - Add 'T' itrace option for timestamp trace

   - Set start vm addr of exectable file to 0 and don't ignore first
     sample on the arm-cs-trace-disasm.py 'perf script'"

* tag 'perf-tools-for-v6.8-1-2024-01-09' of git://git.kernel.org/pub/scm/linux/kernel/git/perf/perf-tools: (179 commits)
  MAINTAINERS: Add Namhyung as tools/perf/ co-maintainer
  perf test: test case 'Setup struct perf_event_attr' fails on s390 on z/vm
  perf db-export: Fix missing reference count get in call_path_from_sample()
  perf tests: Add perf script test
  libsubcmd: Fix memory leak in uniq()
  perf TUI: Don't ignore job control
  perf vendor events intel: Update sapphirerapids events to v1.17
  perf vendor events intel: Update icelakex events to v1.23
  perf vendor events intel: Update emeraldrapids events to v1.02
  perf vendor events intel: Alderlake/rocketlake metric fixes
  perf x86 test: Add hybrid test for conflicting legacy/sysfs event
  perf x86 test: Update hybrid expectations
  perf vendor events amd: Add Zen 4 memory controller events
  perf stat: Fix hard coded LL miss units
  perf record: Reduce memory for recording PERF_RECORD_LOST_SAMPLES event
  perf env: Avoid recursively taking env->bpf_progs.lock
  perf annotate: Add --insn-stat option for debugging
  perf annotate: Add --type-stat option for debugging
  perf annotate: Support event group display
  perf annotate: Add --data-type option
  ...
2024-01-19 14:25:23 -08:00
Andrii Nakryiko
76ec90a996 libbpf: warn on unexpected __arg_ctx type when rewriting BTF
On kernel that don't support arg:ctx tag, before adjusting global
subprog BTF information to match kernel's expected canonical type names,
make sure that types used by user are meaningful, and if not, warn and
don't do BTF adjustments.

This is similar to checks that kernel performs, but narrower in scope,
as only a small subset of BPF program types can be accommodated by
libbpf using canonical type names.

Libbpf unconditionally allows `struct pt_regs *` for perf_event program
types, unlike kernel, which supports that conditionally on architecture.
This is done to keep things simple and not cause unnecessary false
positives. This seems like a minor and harmless deviation, which in
real-world programs will be caught by kernels with arg:ctx tag support
anyways. So KISS principle.

This logic is hard to test (especially on latest kernels), so manual
testing was performed instead. Libbpf emitted the following warning for
perf_event program with wrong context argument type:

  libbpf: prog 'arg_tag_ctx_perf': subprog 'subprog_ctx_tag' arg#0 is expected to be of `struct bpf_perf_event_data *` type

Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20240118033143.3384355-6-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2024-01-17 20:20:06 -08:00
Andrii Nakryiko
01b55f4f0c libbpf: feature-detect arg:ctx tag support in kernel
Add feature detector of kernel-side arg:ctx (__arg_ctx) tag support. If
this is detected, libbpf will avoid doing any __arg_ctx-related BTF
rewriting and checks in favor of letting kernel handle this completely.

test_global_funcs/ctx_arg_rewrite subtest is adjusted to do the same
feature detection (albeit in much simpler, though round-about and
inefficient, way), and skip the tests. This is done to still be able to
execute this test on older kernels (like in libbpf CI).

Note, BPF token series ([0]) does a major refactor and code moving of
libbpf-internal feature detection "framework", so to avoid unnecessary
conflicts we keep newly added feature detection stand-alone with ad-hoc
result caching. Once things settle, there will be a small follow up to
re-integrate everything back and move code into its final place in
newly-added (by BPF token series) features.c file.

  [0] https://patchwork.kernel.org/project/netdevbpf/list/?series=814209&state=*

Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20240118033143.3384355-2-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2024-01-17 20:20:05 -08:00
Ian Rogers
ad30469a84 libsubcmd: Fix memory leak in uniq()
uniq() will write one command name over another causing the overwritten
string to be leaked. Fix by doing a pass that removes duplicates and a
second that removes the holes.

Signed-off-by: Ian Rogers <irogers@google.com>
Cc: Adrian Hunter <adrian.hunter@intel.com>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Chenyuan Mi <cymi20@fudan.edu.cn>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jiri Olsa <jolsa@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Link: https://lore.kernel.org/r/20231208000515.1693746-1-irogers@google.com
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2024-01-04 18:29:17 -03:00
Andrii Nakryiko
2f38fe6894 libbpf: implement __arg_ctx fallback logic
Out of all special global func arg tag annotations, __arg_ctx is
practically is the most immediately useful and most critical to have
working across multitude kernel version, if possible. This would allow
end users to write much simpler code if __arg_ctx semantics worked for
older kernels that don't natively understand btf_decl_tag("arg:ctx") in
verifier logic.

Luckily, it is possible to ensure __arg_ctx works on old kernels through
a bit of extra work done by libbpf, at least in a lot of common cases.

To explain the overall idea, we need to go back at how context argument
was supported in global funcs before __arg_ctx support was added. This
was done based on special struct name checks in kernel. E.g., for
BPF_PROG_TYPE_PERF_EVENT the expectation is that argument type `struct
bpf_perf_event_data *` mark that argument as PTR_TO_CTX. This is all
good as long as global function is used from the same BPF program types
only, which is often not the case. If the same subprog has to be called
from, say, kprobe and perf_event program types, there is no single
definition that would satisfy BPF verifier. Subprog will have context
argument either for kprobe (if using bpf_user_pt_regs_t struct name) or
perf_event (with bpf_perf_event_data struct name), but not both.

This limitation was the reason to add btf_decl_tag("arg:ctx"), making
the actual argument type not important, so that user can just define
"generic" signature:

  __noinline int global_subprog(void *ctx __arg_ctx) { ... }

I won't belabor how libbpf is implementing subprograms, see a huge
comment next to bpf_object_relocate_calls() function. The idea is that
each main/entry BPF program gets its own copy of global_subprog's code
appended.

This per-program copy of global subprog code *and* associated func_info
.BTF.ext information, pointing to FUNC -> FUNC_PROTO BTF type chain
allows libbpf to simulate __arg_ctx behavior transparently, even if the
kernel doesn't yet support __arg_ctx annotation natively.

The idea is straightforward: each time we append global subprog's code
and func_info information, we adjust its FUNC -> FUNC_PROTO type
information, if necessary (that is, libbpf can detect the presence of
btf_decl_tag("arg:ctx") just like BPF verifier would do it).

The rest is just mechanical and somewhat painful BTF manipulation code.
It's painful because we need to clone FUNC -> FUNC_PROTO, instead of
reusing it, as same FUNC -> FUNC_PROTO chain might be used by another
main BPF program within the same BPF object, so we can't just modify it
in-place (and cloning BTF types within the same struct btf object is
painful due to constant memory invalidation, see comments in code).
Uploaded BPF object's BTF information has to work for all BPF
programs at the same time.

Once we have FUNC -> FUNC_PROTO clones, we make sure that instead of
using some `void *ctx` parameter definition, we have an expected `struct
bpf_perf_event_data *ctx` definition (as far as BPF verifier and kernel
is concerned), which will mark it as context for BPF verifier. Same
global subprog relocated and copied into another main BPF program will
get different type information according to main program's type. It all
works out in the end in a completely transparent way for end user.

Libbpf maintains internal program type -> expected context struct name
mapping internally. Note, not all BPF program types have named context
struct, so this approach won't work for such programs (just like it
didn't before __arg_ctx). So native __arg_ctx is still important to have
in kernel to have generic context support across all BPF program types.

Acked-by: Jiri Olsa <jolsa@kernel.org>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20240104013847.3875810-8-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2024-01-03 21:22:49 -08:00
Andrii Nakryiko
1004742d7f libbpf: move BTF loading step after relocation step
With all the preparations in previous patches done we are ready to
postpone BTF loading and sanitization step until after all the
relocations are performed.

Acked-by: Jiri Olsa <jolsa@kernel.org>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20240104013847.3875810-7-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2024-01-03 21:22:49 -08:00
Andrii Nakryiko
fb03be7c4a libbpf: move exception callbacks assignment logic into relocation step
Move the logic of finding and assigning exception callback indices from
BTF sanitization step to program relocations step, which seems more
logical and will unblock moving BTF loading to after relocation step.

Exception callbacks discovery and assignment has no dependency on BTF
being loaded into the kernel, it only uses BTF information. It does need
to happen before subprogram relocations happen, though. Which is why the
split.

No functional changes.

Acked-by: Jiri Olsa <jolsa@kernel.org>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20240104013847.3875810-6-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2024-01-03 21:22:49 -08:00
Andrii Nakryiko
dac645b950 libbpf: use stable map placeholder FDs
Move map creation to later during BPF object loading by pre-creating
stable placeholder FDs (utilizing memfd_create()). Use dup2()
syscall to then atomically make those placeholder FDs point to real
kernel BPF map objects.

This change allows to delay BPF map creation to after all the BPF
program relocations. That, in turn, allows to delay BTF finalization and
loading into kernel to after all the relocations as well. We'll take
advantage of the latter in subsequent patches to allow libbpf to adjust
BTF in a way that helps with BPF global function usage.

Clean up a few places where we close map->fd, which now shouldn't
happen, because map->fd should be a valid FD regardless of whether map
was created or not. Surprisingly and nicely it simplifies a bunch of
error handling code. If this change doesn't backfire, I'm tempted to
pre-create such stable FDs for other entities (progs, maybe even BTF).
We previously did some manipulations to make gen_loader work with fake
map FDs, with stable map FDs this hack is not necessary for maps (we
still have it for BTF, but I left it as is for now).

Acked-by: Jiri Olsa <jolsa@kernel.org>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20240104013847.3875810-5-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2024-01-03 21:22:49 -08:00
Andrii Nakryiko
f08c18e083 libbpf: don't rely on map->fd as an indicator of map being created
With the upcoming switch to preallocated placeholder FDs for maps,
switch various getters/setter away from checking map->fd. Use
map_is_created() helper that detect whether BPF map can be modified based
on map->obj->loaded state, with special provision for maps set up with
bpf_map__reuse_fd().

For backwards compatibility, we take map_is_created() into account in
bpf_map__fd() getter as well. This way before bpf_object__load() phase
bpf_map__fd() will always return -1, just as before the changes in
subsequent patches adding stable map->fd placeholders.

We also get rid of all internal uses of bpf_map__fd() getter, as it's
more oriented for uses external to libbpf. The above map_is_created()
check actually interferes with some of the internal uses, if map FD is
fetched through bpf_map__fd().

Acked-by: Jiri Olsa <jolsa@kernel.org>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20240104013847.3875810-4-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2024-01-03 21:22:49 -08:00
Andrii Nakryiko
fa98b54bff libbpf: use explicit map reuse flag to skip map creation steps
Instead of inferring whether map already point to previously
created/pinned BPF map (which user can specify with bpf_map__reuse_fd()) API),
use explicit map->reused flag that is set in such case.

Acked-by: Jiri Olsa <jolsa@kernel.org>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20240104013847.3875810-3-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2024-01-03 21:22:49 -08:00
Andrii Nakryiko
df7c3f7d3a libbpf: make uniform use of btf__fd() accessor inside libbpf
It makes future grepping and code analysis a bit easier.

Acked-by: Jiri Olsa <jolsa@kernel.org>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20240104013847.3875810-2-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2024-01-03 21:22:48 -08:00
Mingyi Zhang
fc3a5534e2 libbpf: Fix NULL pointer dereference in bpf_object__collect_prog_relos
An issue occurred while reading an ELF file in libbpf.c during fuzzing:

	Program received signal SIGSEGV, Segmentation fault.
	0x0000000000958e97 in bpf_object.collect_prog_relos () at libbpf.c:4206
	4206 in libbpf.c
	(gdb) bt
	#0 0x0000000000958e97 in bpf_object.collect_prog_relos () at libbpf.c:4206
	#1 0x000000000094f9d6 in bpf_object.collect_relos () at libbpf.c:6706
	#2 0x000000000092bef3 in bpf_object_open () at libbpf.c:7437
	#3 0x000000000092c046 in bpf_object.open_mem () at libbpf.c:7497
	#4 0x0000000000924afa in LLVMFuzzerTestOneInput () at fuzz/bpf-object-fuzzer.c:16
	#5 0x000000000060be11 in testblitz_engine::fuzzer::Fuzzer::run_one ()
	#6 0x000000000087ad92 in tracing::span::Span::in_scope ()
	#7 0x00000000006078aa in testblitz_engine::fuzzer::util::walkdir ()
	#8 0x00000000005f3217 in testblitz_engine::entrypoint::main::{{closure}} ()
	#9 0x00000000005f2601 in main ()
	(gdb)

scn_data was null at this code(tools/lib/bpf/src/libbpf.c):

	if (rel->r_offset % BPF_INSN_SZ || rel->r_offset >= scn_data->d_size) {

The scn_data is derived from the code above:

	scn = elf_sec_by_idx(obj, sec_idx);
	scn_data = elf_sec_data(obj, scn);

	relo_sec_name = elf_sec_str(obj, shdr->sh_name);
	sec_name = elf_sec_name(obj, scn);
	if (!relo_sec_name || !sec_name)// don't check whether scn_data is NULL
		return -EINVAL;

In certain special scenarios, such as reading a malformed ELF file,
it is possible that scn_data may be a null pointer

Signed-off-by: Mingyi Zhang <zhangmingyi5@huawei.com>
Signed-off-by: Xin Liu <liuxin350@huawei.com>
Signed-off-by: Changye Wu <wuchangye@huawei.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Link: https://lore.kernel.org/bpf/20231221033947.154564-1-liuxin350@huawei.com
2023-12-21 10:05:42 +01:00
Alyssa Ross
812d8bf876 libbpf: Skip DWARF sections in linker sanity check
clang can generate (with -g -Wa,--compress-debug-sections) 4-byte
aligned DWARF sections that declare themselves to be 8-byte aligned in
the section header.  Since DWARF sections are dropped during linking
anyway, just skip running the sanity checks on them.

Reported-by: Sergei Trofimovich <slyich@gmail.com>
Suggested-by: Andrii Nakryiko <andrii.nakryiko@gmail.com>
Signed-off-by: Alyssa Ross <hi@alyssa.is>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Closes: https://lore.kernel.org/bpf/ZXcFRJVKbKxtEL5t@nz.home/
Link: https://lore.kernel.org/bpf/20231219110324.8989-1-hi@alyssa.is
2023-12-21 10:05:15 +01:00
Andrii Nakryiko
aae9c25dda libbpf: add __arg_xxx macros for annotating global func args
Add a set of __arg_xxx macros which can be used to augment BPF global
subprogs/functions with extra information for use by BPF verifier.

Acked-by: Eduard Zingerman <eddyz87@gmail.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20231215011334.2307144-9-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2023-12-19 18:06:47 -08:00
Andrii Nakryiko
d17aff807f Revert BPF token-related functionality
This patch includes the following revert (one  conflicting BPF FS
patch and three token patch sets, represented by merge commits):
  - revert 0f5d5454c7 "Merge branch 'bpf-fs-mount-options-parsing-follow-ups'";
  - revert 750e785796 "bpf: Support uid and gid when mounting bpffs";
  - revert 733763285a "Merge branch 'bpf-token-support-in-libbpf-s-bpf-object'";
  - revert c35919dcce "Merge branch 'bpf-token-and-bpf-fs-based-delegation'".

Link: https://lore.kernel.org/bpf/CAHk-=wg7JuFYwGy=GOMbRCtOL+jwSQsdUaBsRWkDVYbxipbM5A@mail.gmail.com
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
2023-12-19 08:23:03 -08:00
Arnaldo Carvalho de Melo
ab1c247094 Merge remote-tracking branch 'torvalds/master' into perf-tools-next
To pick up fixes that went thru perf-tools for v6.7 and to get in sync
with upstream to check for drift in the copies of headers, etc.

Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2023-12-18 21:37:07 -03:00
Ian Rogers
67bc993446 libperf cpumap: Document perf_cpu_map__nr()'s behavior
perf_cpu_map__nr()'s behavior around an empty CPU map is strange as it
returns that there is 1 CPU. Changing code that may rely on this
behavior is hard, we can at least document the behavior.

Reviewed-by: James Clark <james.clark@arm.com>
Signed-off-by: Ian Rogers <irogers@google.com>
Acked-by: Adrian Hunter <adrian.hunter@intel.com>
Acked-by: Namhyung Kim <namhyung@kernel.org>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Alexandre Ghiti <alexghiti@rivosinc.com>
Cc: Andrew Jones <ajones@ventanamicro.com>
Cc: André Almeida <andrealmeid@igalia.com>
Cc: Athira Rajeev <atrajeev@linux.vnet.ibm.com>
Cc: Atish Patra <atishp@rivosinc.com>
Cc: Changbin Du <changbin.du@huawei.com>
Cc: Darren Hart <dvhart@infradead.org>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Huacai Chen <chenhuacai@kernel.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jiri Olsa <jolsa@kernel.org>
Cc: John Garry <john.g.garry@oracle.com>
Cc: K Prateek Nayak <kprateek.nayak@amd.com>
Cc: Kajol Jain <kjain@linux.ibm.com>
Cc: Kan Liang <kan.liang@linux.intel.com>
Cc: Leo Yan <leo.yan@linaro.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Mike Leach <mike.leach@linaro.org>
Cc: Nick Desaulniers <ndesaulniers@google.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Paran Lee <p4ranlee@gmail.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Ravi Bangoria <ravi.bangoria@amd.com>
Cc: Sandipan Das <sandipan.das@amd.com>
Cc: Sean Christopherson <seanjc@google.com>
Cc: Steinar H. Gunderson <sesse@google.com>
Cc: Suzuki Poulouse <suzuki.poulose@arm.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Will Deacon <will@kernel.org>
Cc: Yang Jihong <yangjihong1@huawei.com>
Cc: Yang Li <yang.lee@linux.alibaba.com>
Cc: Yanteng Si <siyanteng@loongson.cn>
Link: https://lore.kernel.org/r/20231129060211.1890454-15-irogers@google.com
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2023-12-18 21:34:46 -03:00
Andrii Nakryiko
ed54124b88 libbpf: support BPF token path setting through LIBBPF_BPF_TOKEN_PATH envvar
To allow external admin authority to override default BPF FS location
(/sys/fs/bpf) for implicit BPF token creation, teach libbpf to recognize
LIBBPF_BPF_TOKEN_PATH envvar. If it is specified and user application
didn't explicitly specify neither bpf_token_path nor bpf_token_fd
option, it will be treated exactly like bpf_token_path option,
overriding default /sys/fs/bpf location and making BPF token mandatory.

Suggested-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20231213190842.3844987-10-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2023-12-13 15:47:05 -08:00
Andrii Nakryiko
1d0dd6ea2e libbpf: wire up BPF token support at BPF object level
Add BPF token support to BPF object-level functionality.

BPF token is supported by BPF object logic either as an explicitly
provided BPF token from outside (through BPF FS path or explicit BPF
token FD), or implicitly (unless prevented through
bpf_object_open_opts).

Implicit mode is assumed to be the most common one for user namespaced
unprivileged workloads. The assumption is that privileged container
manager sets up default BPF FS mount point at /sys/fs/bpf with BPF token
delegation options (delegate_{cmds,maps,progs,attachs} mount options).
BPF object during loading will attempt to create BPF token from
/sys/fs/bpf location, and pass it for all relevant operations
(currently, map creation, BTF load, and program load).

In this implicit mode, if BPF token creation fails due to whatever
reason (BPF FS is not mounted, or kernel doesn't support BPF token,
etc), this is not considered an error. BPF object loading sequence will
proceed with no BPF token.

In explicit BPF token mode, user provides explicitly either custom BPF
FS mount point path or creates BPF token on their own and just passes
token FD directly. In such case, BPF object will either dup() token FD
(to not require caller to hold onto it for entire duration of BPF object
lifetime) or will attempt to create BPF token from provided BPF FS
location. If BPF token creation fails, that is considered a critical
error and BPF object load fails with an error.

Libbpf provides a way to disable implicit BPF token creation, if it
causes any troubles (BPF token is designed to be completely optional and
shouldn't cause any problems even if provided, but in the world of BPF
LSM, custom security logic can be installed that might change outcome
dependin on the presence of BPF token). To disable libbpf's default BPF
token creation behavior user should provide either invalid BPF token FD
(negative), or empty bpf_token_path option.

BPF token presence can influence libbpf's feature probing, so if BPF
object has associated BPF token, feature probing is instructed to use
BPF object-specific feature detection cache and token FD.

Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20231213190842.3844987-7-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2023-12-13 15:47:05 -08:00
Andrii Nakryiko
a75bb6a165 libbpf: wire up token_fd into feature probing logic
Adjust feature probing callbacks to take into account optional token_fd.
In unprivileged contexts, some feature detectors would fail to detect
kernel support just because BPF program, BPF map, or BTF object can't be
loaded due to privileged nature of those operations. So when BPF object
is loaded with BPF token, this token should be used for feature probing.

This patch is setting support for this scenario, but we don't yet pass
non-zero token FD. This will be added in the next patch.

We also switched BPF cookie detector from using kprobe program to
tracepoint one, as tracepoint is somewhat less dangerous BPF program
type and has higher likelihood of being allowed through BPF token in the
future. This change has no effect on detection behavior.

Acked-by: John Fastabend <john.fastabend@gmail.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20231213190842.3844987-6-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2023-12-13 15:47:05 -08:00
Andrii Nakryiko
ab8fc393b2 libbpf: move feature detection code into its own file
It's quite a lot of well isolated code, so it seems like a good
candidate to move it out of libbpf.c to reduce its size.

Acked-by: John Fastabend <john.fastabend@gmail.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20231213190842.3844987-5-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2023-12-13 15:47:05 -08:00
Andrii Nakryiko
29c302a2e2 libbpf: further decouple feature checking logic from bpf_object
Add feat_supported() helper that accepts feature cache instead of
bpf_object. This allows low-level code in bpf.c to not know or care
about higher-level concept of bpf_object, yet it will be able to utilize
custom feature checking in cases where BPF token might influence the
outcome.

Acked-by: John Fastabend <john.fastabend@gmail.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20231213190842.3844987-4-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2023-12-13 15:47:05 -08:00
Andrii Nakryiko
c6c5be3eee libbpf: split feature detectors definitions from cached results
Split a list of supported feature detectors with their corresponding
callbacks from actual cached supported/missing values. This will allow
to have more flexible per-token or per-object feature detectors in
subsequent refactorings.

Acked-by: John Fastabend <john.fastabend@gmail.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20231213190842.3844987-3-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2023-12-13 15:47:04 -08:00
Daniel Xu
2f70803532 libbpf: Add BPF_CORE_WRITE_BITFIELD() macro
=== Motivation ===

Similar to reading from CO-RE bitfields, we need a CO-RE aware bitfield
writing wrapper to make the verifier happy.

Two alternatives to this approach are:

1. Use the upcoming `preserve_static_offset` [0] attribute to disable
   CO-RE on specific structs.
2. Use broader byte-sized writes to write to bitfields.

(1) is a bit hard to use. It requires specific and not-very-obvious
annotations to bpftool generated vmlinux.h. It's also not generally
available in released LLVM versions yet.

(2) makes the code quite hard to read and write. And especially if
BPF_CORE_READ_BITFIELD() is already being used, it makes more sense to
to have an inverse helper for writing.

=== Implementation details ===

Since the logic is a bit non-obvious, I thought it would be helpful
to explain exactly what's going on.

To start, it helps by explaining what LSHIFT_U64 (lshift) and RSHIFT_U64
(rshift) is designed to mean. Consider the core of the
BPF_CORE_READ_BITFIELD() algorithm:

        val <<= __CORE_RELO(s, field, LSHIFT_U64);
        val = val >> __CORE_RELO(s, field, RSHIFT_U64);

Basically what happens is we lshift to clear the non-relevant (blank)
higher order bits. Then we rshift to bring the relevant bits (bitfield)
down to LSB position (while also clearing blank lower order bits). To
illustrate:

        Start:    ........XXX......
        Lshift:   XXX......00000000
        Rshift:   00000000000000XXX

where `.` means blank bit, `0` means 0 bit, and `X` means bitfield bit.

After the two operations, the bitfield is ready to be interpreted as a
regular integer.

Next, we want to build an alternative (but more helpful) mental model
on lshift and rshift. That is, to consider:

* rshift as the total number of blank bits in the u64
* lshift as number of blank bits left of the bitfield in the u64

Take a moment to consider why that is true by consulting the above
diagram.

With this insight, we can now define the following relationship:

              bitfield
                 _
                | |
        0.....00XXX0...00
        |      |   |    |
        |______|   |    |
         lshift    |    |
                   |____|
              (rshift - lshift)

That is, we know the number of higher order blank bits is just lshift.
And the number of lower order blank bits is (rshift - lshift).

Finally, we can examine the core of the write side algorithm:

        mask = (~0ULL << rshift) >> lshift;              // 1
        val = (val & ~mask) | ((nval << rpad) & mask);   // 2

1. Compute a mask where the set bits are the bitfield bits. The first
   left shift zeros out exactly the number of blank bits, leaving a
   bitfield sized set of 1s. The subsequent right shift inserts the
   correct amount of higher order blank bits.

2. On the left of the `|`, mask out the bitfield bits. This creates
   0s where the new bitfield bits will go. On the right of the `|`,
   bring nval into the correct bit position and mask out any bits
   that fall outside of the bitfield. Finally, by bor'ing the two
   halves, we get the final set of bits to write back.

[0]: https://reviews.llvm.org/D133361
Co-developed-by: Eduard Zingerman <eddyz87@gmail.com>
Signed-off-by: Eduard Zingerman <eddyz87@gmail.com>
Co-developed-by: Jonathan Lemon <jlemon@aviatrix.com>
Signed-off-by: Jonathan Lemon <jlemon@aviatrix.com>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Signed-off-by: Daniel Xu <dxu@dxuuu.xyz>
Link: https://lore.kernel.org/r/4d3dd215a4fd57d980733886f9c11a45e1a9adf3.1702325874.git.dxu@dxuuu.xyz
Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org>
2023-12-13 15:42:19 -08:00
Ian Rogers
5805c82513 libperf cpumap: Add for_each_cpu() that skips the "any CPU" case
When iterating CPUs in a CPU map it is often desirable to skip the "any
CPU" (aka dummy) case. Add a helper for this and use in builtin-record.

Reviewed-by: James Clark <james.clark@arm.com>
Signed-off-by: Ian Rogers <irogers@google.com>
Cc: Adrian Hunter <adrian.hunter@intel.com>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Alexandre Ghiti <alexghiti@rivosinc.com>
Cc: Andrew Jones <ajones@ventanamicro.com>
Cc: André Almeida <andrealmeid@igalia.com>
Cc: Athira Jajeev <atrajeev@linux.vnet.ibm.com>
Cc: Atish Patra <atishp@rivosinc.com>
Cc: Changbin Du <changbin.du@huawei.com>
Cc: Darren Hart <dvhart@infradead.org>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Huacai Chen <chenhuacai@kernel.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jiri Olsa <jolsa@kernel.org>
Cc: John Garry <john.g.garry@oracle.com>
Cc: K Prateek Nayak <kprateek.nayak@amd.com>
Cc: Kajol Jain <kjain@linux.ibm.com>
Cc: Kan Liang <kan.liang@linux.intel.com>
Cc: Leo Yan <leo.yan@linaro.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Mike Leach <mike.leach@linaro.org>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Nick Desaulniers <ndesaulniers@google.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Paran Lee <p4ranlee@gmail.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Ravi Bangoria <ravi.bangoria@amd.com>
Cc: Sandipan Das <sandipan.das@amd.com>
Cc: Sean Christopherson <seanjc@google.com>
Cc: Steinar H. Gunderson <sesse@google.com>
Cc: Suzuki Poulouse <suzuki.poulose@arm.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Will Deacon <will@kernel.org>
Cc: Yang Jihong <yangjihong1@huawei.com>
Cc: Yang Li <yang.lee@linux.alibaba.com>
Cc: Yanteng Si <siyanteng@loongson.cn>
Cc: bpf@vger.kernel.org
Cc: coresight@lists.linaro.org
Cc: linux-arm-kernel@lists.infradead.org
Link: https://lore.kernel.org/r/20231129060211.1890454-6-irogers@google.com
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2023-12-12 14:55:13 -03:00
Ian Rogers
effe957c6b libperf cpumap: Replace usage of perf_cpu_map__new(NULL) with perf_cpu_map__new_online_cpus()
Passing NULL to perf_cpu_map__new() performs
perf_cpu_map__new_online_cpus(), just directly call
perf_cpu_map__new_online_cpus() to be more intention revealing.

Reviewed-by: James Clark <james.clark@arm.com>
Signed-off-by: Ian Rogers <irogers@google.com>
Cc: Adrian Hunter <adrian.hunter@intel.com>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Alexandre Ghiti <alexghiti@rivosinc.com>
Cc: Andrew Jones <ajones@ventanamicro.com>
Cc: André Almeida <andrealmeid@igalia.com>
Cc: Athira Jajeev <atrajeev@linux.vnet.ibm.com>
Cc: Atish Patra <atishp@rivosinc.com>
Cc: Changbin Du <changbin.du@huawei.com>
Cc: Darren Hart <dvhart@infradead.org>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Huacai Chen <chenhuacai@kernel.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jiri Olsa <jolsa@kernel.org>
Cc: John Garry <john.g.garry@oracle.com>
Cc: K Prateek Nayak <kprateek.nayak@amd.com>
Cc: Kajol Jain <kjain@linux.ibm.com>
Cc: Kan Liang <kan.liang@linux.intel.com>
Cc: Leo Yan <leo.yan@linaro.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Mike Leach <mike.leach@linaro.org>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Nick Desaulniers <ndesaulniers@google.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Paran Lee <p4ranlee@gmail.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Ravi Bangoria <ravi.bangoria@amd.com>
Cc: Sandipan Das <sandipan.das@amd.com>
Cc: Sean Christopherson <seanjc@google.com>
Cc: Steinar H. Gunderson <sesse@google.com>
Cc: Suzuki Poulouse <suzuki.poulose@arm.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Will Deacon <will@kernel.org>
Cc: Yang Jihong <yangjihong1@huawei.com>
Cc: Yang Li <yang.lee@linux.alibaba.com>
Cc: Yanteng Si <siyanteng@loongson.cn>
Cc: bpf@vger.kernel.org
Cc: coresight@lists.linaro.org
Cc: linux-arm-kernel@lists.infradead.org
Link: https://lore.kernel.org/r/20231129060211.1890454-5-irogers@google.com
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2023-12-12 14:55:13 -03:00
Ian Rogers
923ca62a7b libperf cpumap: Rename perf_cpu_map__empty() to perf_cpu_map__has_any_cpu_or_is_empty()
The name perf_cpu_map_empty is misleading as true is also returned
when the map contains an "any" CPU (aka dummy) map.

Rename to perf_cpu_map__has_any_cpu_or_is_empty(), later changes will
(re)introduce perf_cpu_map__empty() and perf_cpu_map__has_any_cpu().

Reviewed-by: James Clark <james.clark@arm.com>
Signed-off-by: Ian Rogers <irogers@google.com>
Cc: Adrian Hunter <adrian.hunter@intel.com>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Alexandre Ghiti <alexghiti@rivosinc.com>
Cc: Andrew Jones <ajones@ventanamicro.com>
Cc: André Almeida <andrealmeid@igalia.com>
Cc: Athira Jajeev <atrajeev@linux.vnet.ibm.com>
Cc: Atish Patra <atishp@rivosinc.com>
Cc: Changbin Du <changbin.du@huawei.com>
Cc: Darren Hart <dvhart@infradead.org>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Huacai Chen <chenhuacai@kernel.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jiri Olsa <jolsa@kernel.org>
Cc: John Garry <john.g.garry@oracle.com>
Cc: K Prateek Nayak <kprateek.nayak@amd.com>
Cc: Kajol Jain <kjain@linux.ibm.com>
Cc: Kan Liang <kan.liang@linux.intel.com>
Cc: Leo Yan <leo.yan@linaro.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Mike Leach <mike.leach@linaro.org>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Nick Desaulniers <ndesaulniers@google.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Paran Lee <p4ranlee@gmail.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Ravi Bangoria <ravi.bangoria@amd.com>
Cc: Sandipan Das <sandipan.das@amd.com>
Cc: Sean Christopherson <seanjc@google.com>
Cc: Steinar H. Gunderson <sesse@google.com>
Cc: Suzuki Poulouse <suzuki.poulose@arm.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Will Deacon <will@kernel.org>
Cc: Yang Jihong <yangjihong1@huawei.com>
Cc: Yang Li <yang.lee@linux.alibaba.com>
Cc: Yanteng Si <siyanteng@loongson.cn>
Cc: bpf@vger.kernel.org
Cc: coresight@lists.linaro.org
Cc: linux-arm-kernel@lists.infradead.org
Link: https://lore.kernel.org/r/20231129060211.1890454-4-irogers@google.com
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2023-12-12 14:55:13 -03:00
Ian Rogers
8f60f870a9 libperf cpumap: Rename perf_cpu_map__default_new() to perf_cpu_map__new_online_cpus() and prefer sysfs
Rename perf_cpu_map__default_new() to perf_cpu_map__new_online_cpus() to
better indicate what the implementation does.

Read the online CPUs from /sys/devices/system/cpu/online first before
using sysconf() as it can't accurately configure holes in the CPU map.

If sysconf() is used, warn when the configured and online processors
disagree.

When reading from a file, if the read doesn't yield a CPU map then
return an empty map rather than the default online. This avoids
recursion but also better yields being able to detect failures.

Add more comments.

Reviewed-by: James Clark <james.clark@arm.com>
Signed-off-by: Ian Rogers <irogers@google.com>
Cc: Adrian Hunter <adrian.hunter@intel.com>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Alexandre Ghiti <alexghiti@rivosinc.com>
Cc: Andrew Jones <ajones@ventanamicro.com>
Cc: André Almeida <andrealmeid@igalia.com>
Cc: Athira Jajeev <atrajeev@linux.vnet.ibm.com>
Cc: Atish Patra <atishp@rivosinc.com>
Cc: Changbin Du <changbin.du@huawei.com>
Cc: Darren Hart <dvhart@infradead.org>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Huacai Chen <chenhuacai@kernel.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jiri Olsa <jolsa@kernel.org>
Cc: John Garry <john.g.garry@oracle.com>
Cc: K Prateek Nayak <kprateek.nayak@amd.com>
Cc: Kajol Jain <kjain@linux.ibm.com>
Cc: Kan Liang <kan.liang@linux.intel.com>
Cc: Leo Yan <leo.yan@linaro.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Mike Leach <mike.leach@linaro.org>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Nick Desaulniers <ndesaulniers@google.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Paran Lee <p4ranlee@gmail.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Ravi Bangoria <ravi.bangoria@amd.com>
Cc: Sandipan Das <sandipan.das@amd.com>
Cc: Sean Christopherson <seanjc@google.com>
Cc: Steinar H. Gunderson <sesse@google.com>
Cc: Suzuki Poulouse <suzuki.poulose@arm.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Will Deacon <will@kernel.org>
Cc: Yang Jihong <yangjihong1@huawei.com>
Cc: Yang Li <yang.lee@linux.alibaba.com>
Cc: Yanteng Si <siyanteng@loongson.cn>
Cc: bpf@vger.kernel.org
Cc: coresight@lists.linaro.org
Cc: linux-arm-kernel@lists.infradead.org
Link: https://lore.kernel.org/r/20231129060211.1890454-3-irogers@google.com
[ s/syfs/sysfs/g typo ]
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2023-12-12 14:54:51 -03:00
Ian Rogers
48219b089d libperf cpumap: Rename perf_cpu_map__dummy_new() to perf_cpu_map__new_any_cpu()
Rename perf_cpu_map__dummy_new() to perf_cpu_map__new_any_cpu() to
better indicate this is creating a CPU map for the perf_event_open "any"
CPU case.

Reviewed-by: James Clark <james.clark@arm.com>
Signed-off-by: Ian Rogers <irogers@google.com>
Cc: Adrian Hunter <adrian.hunter@intel.com>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Alexandre Ghiti <alexghiti@rivosinc.com>
Cc: Andrew Jones <ajones@ventanamicro.com>
Cc: André Almeida <andrealmeid@igalia.com>
Cc: Athira Jajeev <atrajeev@linux.vnet.ibm.com>
Cc: Atish Patra <atishp@rivosinc.com>
Cc: Changbin Du <changbin.du@huawei.com>
Cc: Darren Hart <dvhart@infradead.org>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Huacai Chen <chenhuacai@kernel.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jiri Olsa <jolsa@kernel.org>
Cc: John Garry <john.g.garry@oracle.com>
Cc: K Prateek Nayak <kprateek.nayak@amd.com>
Cc: Kajol Jain <kjain@linux.ibm.com>
Cc: Kan Liang <kan.liang@linux.intel.com>
Cc: Leo Yan <leo.yan@linaro.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Mike Leach <mike.leach@linaro.org>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Nick Desaulniers <ndesaulniers@google.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Paran Lee <p4ranlee@gmail.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Ravi Bangoria <ravi.bangoria@amd.com>
Cc: Sandipan Das <sandipan.das@amd.com>
Cc: Sean Christopherson <seanjc@google.com>
Cc: Steinar H. Gunderson <sesse@google.com>
Cc: Suzuki Poulouse <suzuki.poulose@arm.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Will Deacon <will@kernel.org>
Cc: Yang Jihong <yangjihong1@huawei.com>
Cc: Yang Li <yang.lee@linux.alibaba.com>
Cc: Yanteng Si <siyanteng@loongson.cn>
Cc: bpf@vger.kernel.org
Cc: coresight@lists.linaro.org
Cc: linux-arm-kernel@lists.infradead.org
Link: https://lore.kernel.org/r/20231129060211.1890454-2-irogers@google.com
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2023-12-12 14:01:47 -03:00
Sergei Trofimovich
32fa058398 libbpf: Add pr_warn() for EINVAL cases in linker_sanity_check_elf
Before the change on `i686-linux` `systemd` build failed as:

    $ bpftool gen object src/core/bpf/socket_bind/socket-bind.bpf.o src/core/bpf/socket_bind/socket-bind.bpf.unstripped.o
    Error: failed to link 'src/core/bpf/socket_bind/socket-bind.bpf.unstripped.o': Invalid argument (22)

After the change it fails as:

    $ bpftool gen object src/core/bpf/socket_bind/socket-bind.bpf.o src/core/bpf/socket_bind/socket-bind.bpf.unstripped.o
    libbpf: ELF section #9 has inconsistent alignment addr=8 != d=4 in src/core/bpf/socket_bind/socket-bind.bpf.unstripped.o
    Error: failed to link 'src/core/bpf/socket_bind/socket-bind.bpf.unstripped.o': Invalid argument (22)

Now it's slightly easier to figure out what is wrong with an ELF file.

Signed-off-by: Sergei Trofimovich <slyich@gmail.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: Eduard Zingerman <eddyz87@gmail.com>
Link: https://lore.kernel.org/bpf/20231208215100.435876-1-slyich@gmail.com
2023-12-08 17:11:18 -08:00
David Vernet
8b7b0e5fe4 bpf: Load vmlinux btf for any struct_ops map
In libbpf, when determining whether we need to load vmlinux btf, we're
currently (among other things) checking whether there is any struct_ops
program present in the object. This works for most realistic struct_ops
maps, as a struct_ops map is of course typically composed of one or more
struct_ops programs. However, that technically need not be the case. A
struct_ops interface could be defined which allows a map to be specified
which one or more non-prog fields, and which provides default behavior
if no struct_ops progs is actually provided otherwise. For sched_ext,
for example, you technically only need to specify the name of the
scheduler in the struct_ops map, with the core scheduler logic providing
default behavior if no prog is actually specified.

If we were to define and try to load such a struct_ops map, we would
crash in libbpf when initializing it as obj->btf_vmlinux will be NULL:

Reading symbols from minimal...
(gdb) r
Starting program: minimal_example
[Thread debugging using libthread_db enabled]
Using host libthread_db library "/usr/lib/libthread_db.so.1".

Program received signal SIGSEGV, Segmentation fault.
0x000055555558308c in btf__type_cnt (btf=0x0) at btf.c:612
612             return btf->start_id + btf->nr_types;
(gdb) bt
    type_name=0x5555555d99e3 "sched_ext_ops", kind=4) at btf.c:914
    kind=4) at btf.c:942
    type=0x7fffffffe558, type_id=0x7fffffffe548, ...
    data_member=0x7fffffffe568) at libbpf.c:948
    kern_btf=0x0) at libbpf.c:1017
    at libbpf.c:8059

So as to account for such bare-bones struct_ops maps, let's update
obj_needs_vmlinux_btf() to also iterate over an obj's maps and check
whether any of them are struct_ops maps.

Signed-off-by: David Vernet <void@manifault.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Reviewed-by: Alan Maguire <alan.maguire@oracle.com>
Link: https://lore.kernel.org/bpf/20231208061704.400463-1-void@manifault.com
2023-12-08 09:38:59 -08:00
Andrii Nakryiko
1571740a9b libbpf: add BPF token support to bpf_prog_load() API
Wire through token_fd into bpf_prog_load().

Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20231130185229.2688956-16-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2023-12-06 10:03:00 -08:00
Andrii Nakryiko
1a8df7fa00 libbpf: add BPF token support to bpf_btf_load() API
Allow user to specify token_fd for bpf_btf_load() API that wraps
kernel's BPF_BTF_LOAD command. This allows loading BTF from unprivileged
process as long as it has BPF token allowing BPF_BTF_LOAD command, which
can be created and delegated by privileged process.

Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20231130185229.2688956-15-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2023-12-06 10:03:00 -08:00
Andrii Nakryiko
37891cea66 libbpf: add BPF token support to bpf_map_create() API
Add ability to provide token_fd for BPF_MAP_CREATE command through
bpf_map_create() API.

Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20231130185229.2688956-14-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2023-12-06 10:03:00 -08:00
Andrii Nakryiko
ecd435143e libbpf: add bpf_token_create() API
Add low-level wrapper API for BPF_TOKEN_CREATE command in bpf() syscall.

Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20231130185229.2688956-13-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2023-12-06 10:03:00 -08:00
Ian Rogers
f8846a1a3c tools api fs: Avoid reading whole file for a 1 byte bool
sysfs__read_bool() used the first byte from a fully read file into a
string. It then looked at the first byte's value. Avoid doing this and
just read the first byte.

Signed-off-by: Ian Rogers <irogers@google.com>
Acked-by: Namhyung Kim <namhyung@kernel.org>
Cc: Adrian Hunter <adrian.hunter@intel.com>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Athira Jajeev <atrajeev@linux.vnet.ibm.com>
Cc: Changbin Du <changbin.du@huawei.com>
Cc: Colin Ian King <colin.i.king@gmail.com>
Cc: Dmitrii Dolgov <9erthalion6@gmail.com>
Cc: German Gomez <german.gomez@arm.com>
Cc: Guilherme Amadio <amadio@gentoo.org>
Cc: Huacai Chen <chenhuacai@kernel.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: James Clark <james.clark@arm.com>
Cc: Jiri Olsa <jolsa@kernel.org>
Cc: K Prateek Nayak <kprateek.nayak@amd.com>
Cc: Kajol Jain <kjain@linux.ibm.com>
Cc: Kan Liang <kan.liang@linux.intel.com>
Cc: Leo Yan <leo.yan@linaro.org>
Cc: Li Dong <lidong@vivo.com>
Cc: Liam Howlett <liam.howlett@oracle.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Cc: Miguel Ojeda <ojeda@kernel.org>
Cc: Ming Wang <wangming01@loongson.cn>
Cc: Nick Terrell <terrelln@fb.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Ravi Bangoria <ravi.bangoria@amd.com>
Cc: Sandipan Das <sandipan.das@amd.com>
Cc: Sean Christopherson <seanjc@google.com>
Cc: Steinar H. Gunderson <sesse@google.com>
Cc: Vincent Whitchurch <vincent.whitchurch@axis.com>
Cc: Wenyu Liu <liuwenyu7@huawei.com>
Cc: Yang Jihong <yangjihong1@huawei.com>
Link: https://lore.kernel.org/r/20231127220902.1315692-6-irogers@google.com
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2023-11-30 19:25:19 -03:00
Ian Rogers
b6a15269ce tools api fs: Switch filename__read_str to use io.h
filename__read_str() has its own string reading code that allocates
memory before reading into it. The memory allocated is sized at BUFSIZ
that is 8kb. Most strings are short and so most of this 8kb is wasted.

Refactor io__getline(), as io__getdelim(), so that the newline character
can be configurable and ignored in the case of filename__read_str().

Code like build_caches_for_cpu() in perf's header.c will read many strings
and hold them in a data structure, in this case multiple strings per
cache level per CPU.

Using io.h's io__getline() avoids the wasted memory as strings are
temporarily read into a buffer on the stack before being copied to a
buffer that grows 128 bytes at a time and is never sized larger than the
string.

For a 16 hyperthread system the memory consumption of "perf record
true" is reduced by 180kb, primarily through saving memory when
reading the cache information.

Signed-off-by: Ian Rogers <irogers@google.com>
Acked-by: Namhyung Kim <namhyung@kernel.org>
Cc: Adrian Hunter <adrian.hunter@intel.com>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Athira Jajeev <atrajeev@linux.vnet.ibm.com>
Cc: Changbin Du <changbin.du@huawei.com>
Cc: Colin Ian King <colin.i.king@gmail.com>
Cc: Dmitrii Dolgov <9erthalion6@gmail.com>
Cc: German Gomez <german.gomez@arm.com>
Cc: Guilherme Amadio <amadio@gentoo.org>
Cc: Huacai Chen <chenhuacai@kernel.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: James Clark <james.clark@arm.com>
Cc: Jiri Olsa <jolsa@kernel.org>
Cc: K Prateek Nayak <kprateek.nayak@amd.com>
Cc: Kajol Jain <kjain@linux.ibm.com>
Cc: Kan Liang <kan.liang@linux.intel.com>
Cc: Leo Yan <leo.yan@linaro.org>
Cc: Li Dong <lidong@vivo.com>
Cc: Liam Howlett <liam.howlett@oracle.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Cc: Miguel Ojeda <ojeda@kernel.org>
Cc: Ming Wang <wangming01@loongson.cn>
Cc: Nick Terrell <terrelln@fb.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Ravi Bangoria <ravi.bangoria@amd.com>
Cc: Sandipan Das <sandipan.das@amd.com>
Cc: Sean Christopherson <seanjc@google.com>
Cc: Steinar H. Gunderson <sesse@google.com>
Cc: Vincent Whitchurch <vincent.whitchurch@axis.com>
Cc: Wenyu Liu <liuwenyu7@huawei.com>
Cc: Yang Jihong <yangjihong1@huawei.com>
Link: https://lore.kernel.org/r/20231127220902.1315692-5-irogers@google.com
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2023-11-30 19:25:19 -03:00
Ian Rogers
366efbff58 libperf: Lazily allocate/size mmap event copy
The event copy in the mmap is used to have storage to read an event. Not
all users of mmaps read the events, such as perf record. The amount of
buffer was also statically set to PERF_SAMPLE_MAX_SIZE rather than the
amount necessary from the header's event size.

Switch to a model where the event_copy is reallocated if too small to
the event's size. This adds the potential for the event to move, so if a
copy of the event pointer were stored it could be broken. All the
current users do:

  while(event = perf_mmap__read_event()) { ... }

and so they would be broken due to the event being overwritten if they
had stored the pointer. Manual inspection and address sanitizer testing
also shows the event pointer not being stored.

Signed-off-by: Ian Rogers <irogers@google.com>
Acked-by: Namhyung Kim <namhyung@kernel.org>
Cc: Adrian Hunter <adrian.hunter@intel.com>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Athira Jajeev <atrajeev@linux.vnet.ibm.com>
Cc: Changbin Du <changbin.du@huawei.com>
Cc: Colin Ian King <colin.i.king@gmail.com>
Cc: Dmitrii Dolgov <9erthalion6@gmail.com>
Cc: German Gomez <german.gomez@arm.com>
Cc: Guilherme Amadio <amadio@gentoo.org>
Cc: Huacai Chen <chenhuacai@kernel.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: James Clark <james.clark@arm.com>
Cc: Jiri Olsa <jolsa@kernel.org>
Cc: K Prateek Nayak <kprateek.nayak@amd.com>
Cc: Kajol Jain <kjain@linux.ibm.com>
Cc: Kan Liang <kan.liang@linux.intel.com>
Cc: Leo Yan <leo.yan@linaro.org>
Cc: Li Dong <lidong@vivo.com>
Cc: Liam Howlett <liam.howlett@oracle.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Cc: Miguel Ojeda <ojeda@kernel.org>
Cc: Ming Wang <wangming01@loongson.cn>
Cc: Nick Terrell <terrelln@fb.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Ravi Bangoria <ravi.bangoria@amd.com>
Cc: Sandipan Das <sandipan.das@amd.com>
Cc: Sean Christopherson <seanjc@google.com>
Cc: Steinar H. Gunderson <sesse@google.com>
Cc: Vincent Whitchurch <vincent.whitchurch@axis.com>
Cc: Wenyu Liu <liuwenyu7@huawei.com>
Cc: Yang Jihong <yangjihong1@huawei.com>
Link: https://lore.kernel.org/r/20231127220902.1315692-3-irogers@google.com
[ Replace two lines with equivalent zfree(&map->event_copy) ]
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2023-11-30 19:25:19 -03:00
Arnaldo Carvalho de Melo
af76b2dec0 libapi: Add missing linux/types.h header to get the __u64 type on io.h
There are functions using __u64, so we need to have the linux/types.h
header otherwise we'll break when its not included before api/io.h.

Fixes: e95770af4c ("tools api: Add a lightweight buffered reading api")
Reviewed-by: Ian Rogers <irogers@google.com>
Cc: Adrian Hunter <adrian.hunter@intel.com>
Cc: Jiri Olsa <jolsa@kernel.org>
Cc: Namhyung Kim <namhyung@kernel.org>
Link: https://lore.kernel.org/lkml/ZWjDPL+IzPPsuC3X@kernel.org
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2023-11-30 19:24:59 -03:00
Jiri Olsa
48f0dfd8d3 libbpf: Add st_type argument to elf_resolve_syms_offsets function
We need to get offsets for static variables in following changes,
so making elf_resolve_syms_offsets to take st_type value as argument
and passing it to elf_sym_iter_new.

Signed-off-by: Jiri Olsa <jolsa@kernel.org>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: Song Liu <song@kernel.org>
Link: https://lore.kernel.org/bpf/20231125193130.834322-2-jolsa@kernel.org
2023-11-28 21:50:09 -08:00
Eduard Zingerman
b8d78cb2e2 libbpf: Start v1.4 development cycle
Bump libbpf.map to v1.4.0 to start a new libbpf version cycle.

Signed-off-by: Eduard Zingerman <eddyz87@gmail.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Link: https://lore.kernel.org/bpf/20231123000439.12025-1-eddyz87@gmail.com
2023-11-23 22:49:41 +01:00
Yonghong Song
7f7c43693c libbpf: Fix potential uninitialized tail padding with LIBBPF_OPTS_RESET
Martin reported that there is a libbpf complaining of non-zero-value tail
padding with LIBBPF_OPTS_RESET macro if struct bpf_netkit_opts is modified
to have a 4-byte tail padding. This only happens to clang compiler.
The commend line is: ./test_progs -t tc_netkit_multi_links
Martin and I did some investigation and found this indeed the case and
the following are the investigation details.

Clang:
  clang version 18.0.0
  <I tried clang15/16/17 and they all have similar results>

tools/lib/bpf/libbpf_common.h:
  #define LIBBPF_OPTS_RESET(NAME, ...)                                      \
        do {                                                                \
                memset(&NAME, 0, sizeof(NAME));                             \
                NAME = (typeof(NAME)) {                                     \
                        .sz = sizeof(NAME),                                 \
                        __VA_ARGS__                                         \
                };                                                          \
        } while (0)

  #endif

tools/lib/bpf/libbpf.h:
  struct bpf_netkit_opts {
        /* size of this struct, for forward/backward compatibility */
        size_t sz;
        __u32 flags;
        __u32 relative_fd;
        __u32 relative_id;
        __u64 expected_revision;
        size_t :0;
  };
  #define bpf_netkit_opts__last_field expected_revision
In the above struct bpf_netkit_opts, there is no tail padding.

prog_tests/tc_netkit.c:
  static void serial_test_tc_netkit_multi_links_target(int mode, int target)
  {
        ...
        LIBBPF_OPTS(bpf_netkit_opts, optl);
        ...
        LIBBPF_OPTS_RESET(optl,
                .flags = BPF_F_BEFORE,
                .relative_fd = bpf_program__fd(skel->progs.tc1),
        );
        ...
  }

Let us make the following source change, note that we have a 4-byte
tailing padding now.
  diff --git a/tools/lib/bpf/libbpf.h b/tools/lib/bpf/libbpf.h
  index 6cd9c501624f..0dd83910ae9a 100644
  --- a/tools/lib/bpf/libbpf.h
  +++ b/tools/lib/bpf/libbpf.h
  @@ -803,13 +803,13 @@ bpf_program__attach_tcx(const struct bpf_program *prog, int ifindex,
   struct bpf_netkit_opts {
        /* size of this struct, for forward/backward compatibility */
        size_t sz;
  -       __u32 flags;
        __u32 relative_fd;
        __u32 relative_id;
        __u64 expected_revision;
  +       __u32 flags;
        size_t :0;
   };
  -#define bpf_netkit_opts__last_field expected_revision
  +#define bpf_netkit_opts__last_field flags

The clang 18 generated asm code looks like below:
    ;       LIBBPF_OPTS_RESET(optl,
    55e3: 48 8d 7d 98                   leaq    -0x68(%rbp), %rdi
    55e7: 31 f6                         xorl    %esi, %esi
    55e9: ba 20 00 00 00                movl    $0x20, %edx
    55ee: e8 00 00 00 00                callq   0x55f3 <serial_test_tc_netkit_multi_links_target+0x18d3>
    55f3: 48 c7 85 10 fd ff ff 20 00 00 00      movq    $0x20, -0x2f0(%rbp)
    55fe: 48 8b 85 68 ff ff ff          movq    -0x98(%rbp), %rax
    5605: 48 8b 78 18                   movq    0x18(%rax), %rdi
    5609: e8 00 00 00 00                callq   0x560e <serial_test_tc_netkit_multi_links_target+0x18ee>
    560e: 89 85 18 fd ff ff             movl    %eax, -0x2e8(%rbp)
    5614: c7 85 1c fd ff ff 00 00 00 00 movl    $0x0, -0x2e4(%rbp)
    561e: 48 c7 85 20 fd ff ff 00 00 00 00      movq    $0x0, -0x2e0(%rbp)
    5629: c7 85 28 fd ff ff 08 00 00 00 movl    $0x8, -0x2d8(%rbp)
    5633: 48 8b 85 10 fd ff ff          movq    -0x2f0(%rbp), %rax
    563a: 48 89 45 98                   movq    %rax, -0x68(%rbp)
    563e: 48 8b 85 18 fd ff ff          movq    -0x2e8(%rbp), %rax
    5645: 48 89 45 a0                   movq    %rax, -0x60(%rbp)
    5649: 48 8b 85 20 fd ff ff          movq    -0x2e0(%rbp), %rax
    5650: 48 89 45 a8                   movq    %rax, -0x58(%rbp)
    5654: 48 8b 85 28 fd ff ff          movq    -0x2d8(%rbp), %rax
    565b: 48 89 45 b0                   movq    %rax, -0x50(%rbp)
    ;       link = bpf_program__attach_netkit(skel->progs.tc2, ifindex, &optl);

At -O0 level, the clang compiler creates an intermediate copy.
We have below to store 'flags' with 4-byte store and leave another 4 byte
in the same 8-byte-aligned storage undefined,
    5629: c7 85 28 fd ff ff 08 00 00 00 movl    $0x8, -0x2d8(%rbp)
and later we store 8-byte to the original zero'ed buffer
    5654: 48 8b 85 28 fd ff ff          movq    -0x2d8(%rbp), %rax
    565b: 48 89 45 b0                   movq    %rax, -0x50(%rbp)

This caused a problem as the 4-byte value at [%rbp-0x2dc, %rbp-0x2e0)
may be garbage.

gcc (gcc 11.4) does not have this issue as it does zeroing struct first before
doing assignments:
  ;       LIBBPF_OPTS_RESET(optl,
    50fd: 48 8d 85 40 fc ff ff          leaq    -0x3c0(%rbp), %rax
    5104: ba 20 00 00 00                movl    $0x20, %edx
    5109: be 00 00 00 00                movl    $0x0, %esi
    510e: 48 89 c7                      movq    %rax, %rdi
    5111: e8 00 00 00 00                callq   0x5116 <serial_test_tc_netkit_multi_links_target+0x1522>
    5116: 48 8b 45 f0                   movq    -0x10(%rbp), %rax
    511a: 48 8b 40 18                   movq    0x18(%rax), %rax
    511e: 48 89 c7                      movq    %rax, %rdi
    5121: e8 00 00 00 00                callq   0x5126 <serial_test_tc_netkit_multi_links_target+0x1532>
    5126: 48 c7 85 40 fc ff ff 00 00 00 00      movq    $0x0, -0x3c0(%rbp)
    5131: 48 c7 85 48 fc ff ff 00 00 00 00      movq    $0x0, -0x3b8(%rbp)
    513c: 48 c7 85 50 fc ff ff 00 00 00 00      movq    $0x0, -0x3b0(%rbp)
    5147: 48 c7 85 58 fc ff ff 00 00 00 00      movq    $0x0, -0x3a8(%rbp)
    5152: 48 c7 85 40 fc ff ff 20 00 00 00      movq    $0x20, -0x3c0(%rbp)
    515d: 89 85 48 fc ff ff             movl    %eax, -0x3b8(%rbp)
    5163: c7 85 58 fc ff ff 08 00 00 00 movl    $0x8, -0x3a8(%rbp)
  ;       link = bpf_program__attach_netkit(skel->progs.tc2, ifindex, &optl);

It is not clear how to resolve the compiler code generation as the compiler
generates correct code w.r.t. how to handle unnamed padding in C standard.
So this patch changed LIBBPF_OPTS_RESET macro to avoid uninitialized tail
padding. We already knows LIBBPF_OPTS macro works on both gcc and clang,
even with tail padding. So LIBBPF_OPTS_RESET is changed to be a
LIBBPF_OPTS followed by a memcpy(), thus avoiding uninitialized tail padding.

The below is asm code generated with this patch and with clang compiler:
    ;       LIBBPF_OPTS_RESET(optl,
    55e3: 48 8d bd 10 fd ff ff          leaq    -0x2f0(%rbp), %rdi
    55ea: 31 f6                         xorl    %esi, %esi
    55ec: ba 20 00 00 00                movl    $0x20, %edx
    55f1: e8 00 00 00 00                callq   0x55f6 <serial_test_tc_netkit_multi_links_target+0x18d6>
    55f6: 48 c7 85 10 fd ff ff 20 00 00 00      movq    $0x20, -0x2f0(%rbp)
    5601: 48 8b 85 68 ff ff ff          movq    -0x98(%rbp), %rax
    5608: 48 8b 78 18                   movq    0x18(%rax), %rdi
    560c: e8 00 00 00 00                callq   0x5611 <serial_test_tc_netkit_multi_links_target+0x18f1>
    5611: 89 85 18 fd ff ff             movl    %eax, -0x2e8(%rbp)
    5617: c7 85 1c fd ff ff 00 00 00 00 movl    $0x0, -0x2e4(%rbp)
    5621: 48 c7 85 20 fd ff ff 00 00 00 00      movq    $0x0, -0x2e0(%rbp)
    562c: c7 85 28 fd ff ff 08 00 00 00 movl    $0x8, -0x2d8(%rbp)
    5636: 48 8b 85 10 fd ff ff          movq    -0x2f0(%rbp), %rax
    563d: 48 89 45 98                   movq    %rax, -0x68(%rbp)
    5641: 48 8b 85 18 fd ff ff          movq    -0x2e8(%rbp), %rax
    5648: 48 89 45 a0                   movq    %rax, -0x60(%rbp)
    564c: 48 8b 85 20 fd ff ff          movq    -0x2e0(%rbp), %rax
    5653: 48 89 45 a8                   movq    %rax, -0x58(%rbp)
    5657: 48 8b 85 28 fd ff ff          movq    -0x2d8(%rbp), %rax
    565e: 48 89 45 b0                   movq    %rax, -0x50(%rbp)
    ;       link = bpf_program__attach_netkit(skel->progs.tc2, ifindex, &optl);

In the above code, a temporary buffer is zeroed and then has proper value assigned.
Finally, values in temporary buffer are copied to the original variable buffer,
hence tail padding is guaranteed to be 0.

Signed-off-by: Yonghong Song <yonghong.song@linux.dev>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Tested-by: Martin KaFai Lau <martin.lau@kernel.org>
Link: https://lore.kernel.org/bpf/20231107201511.2548645-1-yonghong.song@linux.dev
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2023-11-09 19:07:51 -08:00
Linus Torvalds
7ab89417ed perf tools changes for v6.7
Build
 -----
 * Compile BPF programs by default if clang (>= 12.0.1) is available to
   enable more features like kernel lock contention, off-cpu profiling,
   kwork, sample filtering and so on.  It can be disabled by passing
   BUILD_BPF_SKEL=0 to make.
 
 * Produce better error messages for bison on debug build (make DEBUG=1)
   by defining YYDEBUG symbol internally.
 
 perf record
 -----------
 * Track sideband events (like FORK/MMAP) from all CPUs even if perf record
   targets a subset of CPUs only (using -C option).  Otherwise it may lose
   some information happened on a CPU out of the target list.
 
 * Fix checking raw sched_switch tracepoint argument using system BTF.
   This affects off-cpu profiling which attaches a BPF program to the raw
   tracepoint.
 
 perf lock contention
 --------------------
 * Add --lock-cgroup option to see contention by cgroups.  This should be
   used with BPF only (using -b option).
 
     $ sudo perf lock con -ab --lock-cgroup -- sleep 1
      contended   total wait     max wait     avg wait   cgroup
 
            835     14.06 ms     41.19 us     16.83 us   /system.slice/led.service
             25    122.38 us     13.77 us      4.89 us   /
             44     23.73 us      3.87 us       539 ns   /user.slice/user-657345.slice/session-c4.scope
              1       491 ns       491 ns       491 ns   /system.slice/connectd.service
 
 * Add -G/--cgroup-filter option to see contention only for given cgroups.
   This can be useful when you identified a cgroup in the above command and
   want to investigate more on it.  It also works with other output options
   like -t/--threads and -l/--lock-addr.
 
     $ sudo perf lock con -ab -G /user.slice/user-657345.slice/session-c4.scope -- sleep 1
      contended   total wait     max wait     avg wait         type   caller
 
              8     77.11 us     17.98 us      9.64 us     spinlock   futex_wake+0xc8
              2     24.56 us     14.66 us     12.28 us     spinlock   tick_do_update_jiffies64+0x25
              1      4.97 us      4.97 us      4.97 us     spinlock   futex_q_lock+0x2a
 
 * Use per-cpu array for better spinlock tracking.  This is to improve
   performance of the BPF program and to avoid nested contention on a lock
   in the BPF hash map.
 
 * Update callstack check for PowerPC.  To find a representative caller of a
   lock, it needs to look up the call stacks.  It ends the lookup when it sees
   0 in the call stack buffer.  However, PowerPC call stacks can have 0 values
   in the beginning so skip them when it expects valid call stacks after.
 
 perf kwork
 ----------
 * Support 'sched' class (for -k option) so that it can see task scheduling
   event (using sched_switch tracepoint) as well as irq and workqueue items.
 
 * Add perf kwork top subcommand to show more accurate cpu utilization with
   sched class above.  It works both with a recorded data (using perf kwork
   record command) and BPF (using -b option).  Unlike perf top command, it
   does not support interactive mode (yet).
 
     $ sudo perf kwork top -b -k sched
     Starting trace, Hit <Ctrl+C> to stop and report
     ^C
     Total  : 160702.425 ms, 8 cpus
     %Cpu(s):  36.00% id,   0.00% hi,   0.00% si
     %Cpu0   [||||||||||||||||||              61.66%]
     %Cpu1   [||||||||||||||||||              61.27%]
     %Cpu2   [|||||||||||||||||||             66.40%]
     %Cpu3   [||||||||||||||||||              61.28%]
     %Cpu4   [||||||||||||||||||              61.82%]
     %Cpu5   [|||||||||||||||||||||||         77.41%]
     %Cpu6   [||||||||||||||||||              61.73%]
     %Cpu7   [||||||||||||||||||              63.25%]
 
           PID     SPID    %CPU           RUNTIME  COMMMAND
       -------------------------------------------------------------
             0        0   38.72       8089.463 ms  [swapper/1]
             0        0   38.71       8084.547 ms  [swapper/3]
             0        0   38.33       8007.532 ms  [swapper/0]
             0        0   38.26       7992.985 ms  [swapper/6]
             0        0   38.17       7971.865 ms  [swapper/4]
             0        0   36.74       7447.765 ms  [swapper/7]
             0        0   33.59       6486.942 ms  [swapper/2]
             0        0   22.58       3771.268 ms  [swapper/5]
          9545     9351    2.48        447.136 ms  sched-messaging
          9574     9351    2.09        418.583 ms  sched-messaging
          9724     9351    2.05        372.407 ms  sched-messaging
          9531     9351    2.01        368.804 ms  sched-messaging
          9512     9351    2.00        362.250 ms  sched-messaging
          9514     9351    1.95        357.767 ms  sched-messaging
          9538     9351    1.86        384.476 ms  sched-messaging
          9712     9351    1.84        386.490 ms  sched-messaging
          9723     9351    1.83        380.021 ms  sched-messaging
          9722     9351    1.82        382.738 ms  sched-messaging
          9517     9351    1.81        354.794 ms  sched-messaging
          9559     9351    1.79        344.305 ms  sched-messaging
          9725     9351    1.77        365.315 ms  sched-messaging
     <SNIP>
 
 * Add hard/soft-irq statistics to perf kwork top.  This will show the
   total CPU utilization with IRQ stats like below:
 
     $ sudo perf kwork top -b -k sched,irq,softirq
     Starting trace, Hit <Ctrl+C> to stop and report
     ^C
     Total  :  12554.889 ms, 8 cpus
     %Cpu(s):  96.23% id,   0.10% hi,   0.19% si      <---- here
     %Cpu0   [|                                4.60%]
     %Cpu1   [|                                4.59%]
     %Cpu2   [                                 2.73%]
     %Cpu3   [|                                3.81%]
     <SNIP>
 
 perf bench
 ----------
 * Add -G/--cgroups option to perf bench sched pipe.  The pipe bench is
   good to measure context switch overhead.  With this option, it puts
   the reader and writer tasks in separate cgroups to enforce context
   switch between two different cgroups.
 
   Also it needs to set CPU affinity of the tasks in a CPU to accurately
   measure the impact of cgroup context switches.
 
     $ sudo perf stat -e context-switches,cgroup-switches -- \
     > taskset -c 0 perf bench sched pipe -l 100000
     # Running 'sched/pipe' benchmark:
     # Executed 100000 pipe operations between two processes
 
          Total time: 0.307 [sec]
 
            3.078180 usecs/op
              324867 ops/sec
 
      Performance counter stats for 'taskset -c 0 perf bench sched pipe -l 100000':
 
                200,026      context-switches
                     63      cgroup-switches
 
            0.321637922 seconds time elapsed
 
   You can see small number of cgroup-switches because both write and read
   tasks are in the same cgroup.
 
     $ sudo mkdir /sys/fs/cgroup/{AAA,BBB}
 
     $ sudo perf stat -e context-switches,cgroup-switches -- \
     > taskset -c 0 perf bench sched pipe -l 100000 -G AAA,BBB
     # Running 'sched/pipe' benchmark:
     # Executed 100000 pipe operations between two processes
 
          Total time: 0.351 [sec]
 
            3.512990 usecs/op
              284657 ops/sec
 
      Performance counter stats for 'taskset -c 0 perf bench sched pipe -l 100000 -G AAA,BBB':
 
                200,020      context-switches
                200,019      cgroup-switches
 
            0.365034567 seconds time elapsed
 
   Now context-switches and cgroup-switches are almost same.  And you can
   see the pipe operation took little more.
 
 * Kill child processes when perf bench sched messaging exited abnormally.
   Otherwise it'd leave the child doing unnecessary work.
 
 perf test
 ---------
 * Fix various shellcheck issues on the tests written in shell script.
 
 * Skip tests when condition is not satisfied:
   - object code reading test for non-text section addresses.
   - CoreSight test if cs_etm// event is not available.
   - lock contention test if not enough CPUs.
 
 Event parsing
 -------------
 * Make PMU alias name loading lazy to reduce the startup time in the
   event parsing code for perf record, stat and others in the general
   case.
 
 * Lazily compute PMU default config.  In the same sense, delay PMU
   initialization until it's really needed to reduce the startup cost.
 
 * Fix event term values that are raw events.  The event specification
   can have several terms including event name.  But sometimes it clashes
   with raw event encoding which starts with 'r' and has hex-digits.
 
   For example, an event named 'read' should be processed as a normal
   event but it was mis-treated as a raw encoding and caused a failure.
 
     $ perf stat -e 'uncore_imc_free_running/event=read/' -a sleep 1
     event syntax error: '..nning/event=read/'
                                       \___ parser error
     Run 'perf list' for a list of valid events
 
      Usage: perf stat [<options>] [<command>]
 
         -e, --event <event> event selector. use 'perf list' to list available events
 
 Event metrics
 -------------
 * Add "Compat" regex to match event with multiple identifiers.
 
 * Usual updates for Intel, Power10, Arm telemetry/CMN and AmpereOne.
 
 Misc
 ----
 * Assorted memory leak fixes and footprint reduction.
 
 * Add "bpf_skeletons" to perf version --build-options so that users can
   check whether their perf tools have BPF support easily.
 
 * Fix unaligned access in Intel-PT packet decoder found by undefined-behavior
   sanitizer.
 
 * Avoid frequency mode for the dummy event.  Surprisingly it'd impact
   kernel timer tick handler performance by force iterating all PMU events.
 
 * Update bash shell completion for events and metrics.
 
 Signed-off-by: Namhyung Kim <namhyung@kernel.org>
 -----BEGIN PGP SIGNATURE-----
 
 iHUEABYIAB0WIQSo2x5BnqMqsoHtzsmMstVUGiXMgwUCZUMg7wAKCRCMstVUGiXM
 g8FvAQC9KED6H8rlH7UTvxE6fM947EJbldwGrNA1zGx++Ucd3gD/ewA2A6SUcIh6
 Tua/XovmYOQbuDYOwlRHe+sdDag0sgg=
 =GrCE
 -----END PGP SIGNATURE-----

Merge tag 'perf-tools-for-v6.7-1-2023-11-01' of git://git.kernel.org/pub/scm/linux/kernel/git/perf/perf-tools

Pull perf tools updates from Namhyung Kim:
 "Build:

   - Compile BPF programs by default if clang (>= 12.0.1) is available
     to enable more features like kernel lock contention, off-cpu
     profiling, kwork, sample filtering and so on.

     This can be disabled by passing BUILD_BPF_SKEL=0 to make.

   - Produce better error messages for bison on debug build (make
     DEBUG=1) by defining YYDEBUG symbol internally.

  perf record:

   - Track sideband events (like FORK/MMAP) from all CPUs even if perf
     record targets a subset of CPUs only (using -C option). Otherwise
     it may lose some information happened on a CPU out of the target
     list.

   - Fix checking raw sched_switch tracepoint argument using system BTF.
     This affects off-cpu profiling which attaches a BPF program to the
     raw tracepoint.

  perf lock contention:

   - Add --lock-cgroup option to see contention by cgroups. This should
     be used with BPF only (using -b option).

       $ sudo perf lock con -ab --lock-cgroup -- sleep 1
        contended   total wait     max wait     avg wait   cgroup

              835     14.06 ms     41.19 us     16.83 us   /system.slice/led.service
               25    122.38 us     13.77 us      4.89 us   /
               44     23.73 us      3.87 us       539 ns   /user.slice/user-657345.slice/session-c4.scope
                1       491 ns       491 ns       491 ns   /system.slice/connectd.service

   - Add -G/--cgroup-filter option to see contention only for given
     cgroups.

     This can be useful when you identified a cgroup in the above
     command and want to investigate more on it. It also works with
     other output options like -t/--threads and -l/--lock-addr.

       $ sudo perf lock con -ab -G /user.slice/user-657345.slice/session-c4.scope -- sleep 1
        contended   total wait     max wait     avg wait         type   caller

                8     77.11 us     17.98 us      9.64 us     spinlock   futex_wake+0xc8
                2     24.56 us     14.66 us     12.28 us     spinlock   tick_do_update_jiffies64+0x25
                1      4.97 us      4.97 us      4.97 us     spinlock   futex_q_lock+0x2a

   - Use per-cpu array for better spinlock tracking. This is to improve
     performance of the BPF program and to avoid nested contention on a
     lock in the BPF hash map.

   - Update callstack check for PowerPC. To find a representative caller
     of a lock, it needs to look up the call stacks. It ends the lookup
     when it sees 0 in the call stack buffer. However, PowerPC call
     stacks can have 0 values in the beginning so skip them when it
     expects valid call stacks after.

  perf kwork:

   - Support 'sched' class (for -k option) so that it can see task
     scheduling event (using sched_switch tracepoint) as well as irq and
     workqueue items.

   - Add perf kwork top subcommand to show more accurate cpu utilization
     with sched class above. It works both with a recorded data (using
     perf kwork record command) and BPF (using -b option). Unlike perf
     top command, it does not support interactive mode (yet).

       $ sudo perf kwork top -b -k sched
       Starting trace, Hit <Ctrl+C> to stop and report
       ^C
       Total  : 160702.425 ms, 8 cpus
       %Cpu(s):  36.00% id,   0.00% hi,   0.00% si
       %Cpu0   [||||||||||||||||||              61.66%]
       %Cpu1   [||||||||||||||||||              61.27%]
       %Cpu2   [|||||||||||||||||||             66.40%]
       %Cpu3   [||||||||||||||||||              61.28%]
       %Cpu4   [||||||||||||||||||              61.82%]
       %Cpu5   [|||||||||||||||||||||||         77.41%]
       %Cpu6   [||||||||||||||||||              61.73%]
       %Cpu7   [||||||||||||||||||              63.25%]

             PID     SPID    %CPU           RUNTIME  COMMMAND
         -------------------------------------------------------------
               0        0   38.72       8089.463 ms  [swapper/1]
               0        0   38.71       8084.547 ms  [swapper/3]
               0        0   38.33       8007.532 ms  [swapper/0]
               0        0   38.26       7992.985 ms  [swapper/6]
               0        0   38.17       7971.865 ms  [swapper/4]
               0        0   36.74       7447.765 ms  [swapper/7]
               0        0   33.59       6486.942 ms  [swapper/2]
               0        0   22.58       3771.268 ms  [swapper/5]
            9545     9351    2.48        447.136 ms  sched-messaging
            9574     9351    2.09        418.583 ms  sched-messaging
            9724     9351    2.05        372.407 ms  sched-messaging
            9531     9351    2.01        368.804 ms  sched-messaging
            9512     9351    2.00        362.250 ms  sched-messaging
            9514     9351    1.95        357.767 ms  sched-messaging
            9538     9351    1.86        384.476 ms  sched-messaging
            9712     9351    1.84        386.490 ms  sched-messaging
            9723     9351    1.83        380.021 ms  sched-messaging
            9722     9351    1.82        382.738 ms  sched-messaging
            9517     9351    1.81        354.794 ms  sched-messaging
            9559     9351    1.79        344.305 ms  sched-messaging
            9725     9351    1.77        365.315 ms  sched-messaging
       <SNIP>

   - Add hard/soft-irq statistics to perf kwork top. This will show the
     total CPU utilization with IRQ stats like below:

       $ sudo perf kwork top -b -k sched,irq,softirq
       Starting trace, Hit <Ctrl+C> to stop and report
       ^C
       Total  :  12554.889 ms, 8 cpus
       %Cpu(s):  96.23% id,   0.10% hi,   0.19% si      <---- here
       %Cpu0   [|                                4.60%]
       %Cpu1   [|                                4.59%]
       %Cpu2   [                                 2.73%]
       %Cpu3   [|                                3.81%]
       <SNIP>

  perf bench:

   - Add -G/--cgroups option to perf bench sched pipe. The pipe bench is
     good to measure context switch overhead. With this option, it puts
     the reader and writer tasks in separate cgroups to enforce context
     switch between two different cgroups.

     Also it needs to set CPU affinity of the tasks in a CPU to
     accurately measure the impact of cgroup context switches.

       $ sudo perf stat -e context-switches,cgroup-switches -- \
       > taskset -c 0 perf bench sched pipe -l 100000
       # Running 'sched/pipe' benchmark:
       # Executed 100000 pipe operations between two processes

            Total time: 0.307 [sec]

              3.078180 usecs/op
                324867 ops/sec

        Performance counter stats for 'taskset -c 0 perf bench sched pipe -l 100000':

                  200,026      context-switches
                       63      cgroup-switches

              0.321637922 seconds time elapsed

     You can see small number of cgroup-switches because both write and
     read tasks are in the same cgroup.

       $ sudo mkdir /sys/fs/cgroup/{AAA,BBB}

       $ sudo perf stat -e context-switches,cgroup-switches -- \
       > taskset -c 0 perf bench sched pipe -l 100000 -G AAA,BBB
       # Running 'sched/pipe' benchmark:
       # Executed 100000 pipe operations between two processes

            Total time: 0.351 [sec]

              3.512990 usecs/op
                284657 ops/sec

        Performance counter stats for 'taskset -c 0 perf bench sched pipe -l 100000 -G AAA,BBB':

                  200,020      context-switches
                  200,019      cgroup-switches

              0.365034567 seconds time elapsed

     Now context-switches and cgroup-switches are almost same. And you
     can see the pipe operation took little more.

   - Kill child processes when perf bench sched messaging exited
     abnormally. Otherwise it'd leave the child doing unnecessary work.

  perf test:

   - Fix various shellcheck issues on the tests written in shell script.

   - Skip tests when condition is not satisfied:
      - object code reading test for non-text section addresses.
      - CoreSight test if cs_etm// event is not available.
      - lock contention test if not enough CPUs.

  Event parsing:

   - Make PMU alias name loading lazy to reduce the startup time in the
     event parsing code for perf record, stat and others in the general
     case.

   - Lazily compute PMU default config. In the same sense, delay PMU
     initialization until it's really needed to reduce the startup cost.

   - Fix event term values that are raw events. The event specification
     can have several terms including event name. But sometimes it
     clashes with raw event encoding which starts with 'r' and has
     hex-digits.

     For example, an event named 'read' should be processed as a normal
     event but it was mis-treated as a raw encoding and caused a
     failure.

       $ perf stat -e 'uncore_imc_free_running/event=read/' -a sleep 1
       event syntax error: '..nning/event=read/'
                                         \___ parser error
       Run 'perf list' for a list of valid events

        Usage: perf stat [<options>] [<command>]

           -e, --event <event> event selector. use 'perf list' to list available events

  Event metrics:

   - Add "Compat" regex to match event with multiple identifiers.

   - Usual updates for Intel, Power10, Arm telemetry/CMN and AmpereOne.

  Misc:

   - Assorted memory leak fixes and footprint reduction.

   - Add "bpf_skeletons" to perf version --build-options so that users
     can check whether their perf tools have BPF support easily.

   - Fix unaligned access in Intel-PT packet decoder found by
     undefined-behavior sanitizer.

   - Avoid frequency mode for the dummy event. Surprisingly it'd impact
     kernel timer tick handler performance by force iterating all PMU
     events.

   - Update bash shell completion for events and metrics"

* tag 'perf-tools-for-v6.7-1-2023-11-01' of git://git.kernel.org/pub/scm/linux/kernel/git/perf/perf-tools: (187 commits)
  perf vendor events intel: Update tsx_cycles_per_elision metrics
  perf vendor events intel: Update bonnell version number to v5
  perf vendor events intel: Update westmereex events to v4
  perf vendor events intel: Update meteorlake events to v1.06
  perf vendor events intel: Update knightslanding events to v16
  perf vendor events intel: Add typo fix for ivybridge FP
  perf vendor events intel: Update a spelling in haswell/haswellx
  perf vendor events intel: Update emeraldrapids to v1.01
  perf vendor events intel: Update alderlake/alderlake events to v1.23
  perf build: Disable BPF skeletons if clang version is < 12.0.1
  perf callchain: Fix spelling mistake "statisitcs" -> "statistics"
  perf report: Fix spelling mistake "heirachy" -> "hierarchy"
  perf python: Fix binding linkage due to rename and move of evsel__increase_rlimit()
  perf tests: test_arm_coresight: Simplify source iteration
  perf vendor events intel: Add tigerlake two metrics
  perf vendor events intel: Add broadwellde two metrics
  perf vendor events intel: Fix broadwellde tma_info_system_dram_bw_use metric
  perf mem_info: Add and use map_symbol__exit and addr_map_symbol__exit
  perf callchain: Minor layout changes to callchain_list
  perf callchain: Make brtype_stat in callchain_list optional
  ...
2023-11-03 08:17:38 -10:00
Ian Rogers
78c32f4cb1 libperf rc_check: Add RC_CHK_EQUAL
Comparing pointers with reference count checking is tricky to avoid a
SEGV. Add a convenience macro to simplify and use.

Signed-off-by: Ian Rogers <irogers@google.com>
Cc: K Prateek Nayak <kprateek.nayak@amd.com>
Cc: Ravi Bangoria <ravi.bangoria@amd.com>
Cc: Sandipan Das <sandipan.das@amd.com>
Cc: Anshuman Khandual <anshuman.khandual@arm.com>
Cc: German Gomez <german.gomez@arm.com>
Cc: James Clark <james.clark@arm.com>
Cc: Nick Terrell <terrelln@fb.com>
Cc: Sean Christopherson <seanjc@google.com>
Cc: Changbin Du <changbin.du@huawei.com>
Cc: liuwenyu <liuwenyu7@huawei.com>
Cc: Yang Jihong <yangjihong1@huawei.com>
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Miguel Ojeda <ojeda@kernel.org>
Cc: Song Liu <song@kernel.org>
Cc: Leo Yan <leo.yan@linaro.org>
Cc: Kajol Jain <kjain@linux.ibm.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Kan Liang <kan.liang@linux.intel.com>
Cc: Athira Rajeev <atrajeev@linux.vnet.ibm.com>
Cc: Yanteng Si <siyanteng@loongson.cn>
Cc: Liam Howlett <liam.howlett@oracle.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Link: https://lore.kernel.org/r/20231024222353.3024098-5-irogers@google.com
Signed-off-by: Namhyung Kim <namhyung@kernel.org>
2023-10-25 13:37:22 -07:00
Ian Rogers
75265320d2 libperf rc_check: Make implicit enabling work for GCC
Make the implicit REFCOUNT_CHECKING robust to when building with GCC.

Fixes: 9be6ab181b ("libperf rc_check: Enable implicitly with sanitizers")
Signed-off-by: Ian Rogers <irogers@google.com>
Cc: K Prateek Nayak <kprateek.nayak@amd.com>
Cc: Ravi Bangoria <ravi.bangoria@amd.com>
Cc: Sandipan Das <sandipan.das@amd.com>
Cc: Anshuman Khandual <anshuman.khandual@arm.com>
Cc: German Gomez <german.gomez@arm.com>
Cc: James Clark <james.clark@arm.com>
Cc: Nick Terrell <terrelln@fb.com>
Cc: Sean Christopherson <seanjc@google.com>
Cc: Changbin Du <changbin.du@huawei.com>
Cc: liuwenyu <liuwenyu7@huawei.com>
Cc: Yang Jihong <yangjihong1@huawei.com>
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Miguel Ojeda <ojeda@kernel.org>
Cc: Song Liu <song@kernel.org>
Cc: Leo Yan <leo.yan@linaro.org>
Cc: Kajol Jain <kjain@linux.ibm.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Kan Liang <kan.liang@linux.intel.com>
Cc: Athira Rajeev <atrajeev@linux.vnet.ibm.com>
Cc: Yanteng Si <siyanteng@loongson.cn>
Cc: Liam Howlett <liam.howlett@oracle.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Link: https://lore.kernel.org/r/20231024222353.3024098-4-irogers@google.com
Signed-off-by: Namhyung Kim <namhyung@kernel.org>
2023-10-25 13:36:50 -07:00
Daniel Borkmann
05c31b4ab2 libbpf: Add link-based API for netkit
This adds bpf_program__attach_netkit() API to libbpf. Overall it is very
similar to tcx. The API looks as following:

  LIBBPF_API struct bpf_link *
  bpf_program__attach_netkit(const struct bpf_program *prog, int ifindex,
                             const struct bpf_netkit_opts *opts);

The struct bpf_netkit_opts is done in similar way as struct bpf_tcx_opts
for supporting bpf_mprog control parameters. The attach location for the
primary and peer device is derived from the program section "netkit/primary"
and "netkit/peer", respectively.

Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Martin KaFai Lau <martin.lau@kernel.org>
Link: https://lore.kernel.org/r/20231024214904.29825-4-daniel@iogearbox.net
Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org>
2023-10-24 16:06:58 -07:00