Commit Graph

10 Commits

Author SHA1 Message Date
Dan Williams
09d09e04d2 cxl/dax: Create dax devices for CXL RAM regions
While platform firmware takes some responsibility for mapping the RAM
capacity of CXL devices present at boot, the OS is responsible for
mapping the remainder and hot-added devices. Platform firmware is also
responsible for identifying the platform general purpose memory pool,
typically DDR attached DRAM, and arranging for the remainder to be 'Soft
Reserved'. That reservation allows the CXL subsystem to route the memory
to core-mm via memory-hotplug (dax_kmem), or leave it for dedicated
access (device-dax).

The new 'struct cxl_dax_region' object allows for a CXL memory resource
(region) to be published, but also allow for udev and module policy to
act on that event. It also prevents cxl_core.ko from having a module
loading dependency on any drivers/dax/ modules.

Tested-by: Fan Ni <fan.ni@samsung.com>
Reviewed-by: Dave Jiang <dave.jiang@intel.com>
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Link: https://lore.kernel.org/r/167602003896.1924368.10335442077318970468.stgit@dwillia2-xfh.jf.intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2023-02-10 17:33:45 -08:00
Dan Williams
83762cb5c7 dax: Kill DEV_DAX_PMEM_COMPAT
The /sys/class/dax compatibility option has shipped in the kernel for 4
years now which should be sufficient time for tools to abandon the old
ABI in favor of the /sys/bus/dax device-model. Delete it now and see if
anyone screams.

Since this compatibility option shipped there has been more reports of
users being surprised by the compat ABI than surprised by the "new", so
the compat infrastructure has outlived its usefulness. Recall that
/sys/bus/dax device-model is required for the dax kmem driver which
allows PMEM to be used as "System RAM".

The following projects were known to have a dependency on /sys/class/dax
and have dropped their dependency as of the listed version:

- ndctl (including libndctl, daxctl, and libdaxctl): v64+
- fio: v3.13+
- pmdk: v1.5.2+

As further evidence this option is no longer needed some distributions
have already stopped enabling CONFIG_DEV_DAX_PMEM_COMPAT.

Cc: Ira Weiny <ira.weiny@intel.com>
Cc: Dave Jiang <dave.jiang@intel.com>
Reported-by: Vishal Verma <vishal.l.verma@intel.com>
Acked-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Jane Chu <jane.chu@oracle.com>
Link: https://lore.kernel.org/r/163701116195.3784476.726128179293466337.stgit@dwillia2-desk3.amr.corp.intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2021-11-24 19:21:35 -08:00
Dan Williams
c01044cc81 ACPI: HMAT: refactor hmat_register_target_device to hmem_register_device
In preparation for exposing "Soft Reserved" memory ranges without an HMAT,
move the hmem device registration to its own compilation unit and make the
implementation generic.

The generic implementation drops usage acpi_map_pxm_to_online_node() that
was translating ACPI proximity domain values and instead relies on
numa_map_to_online_node() to determine the numa node for the device.

[joao.m.martins@oracle.com: CONFIG_DEV_DAX_HMEM_DEVICES should depend on CONFIG_DAX=y]
  Link: https://lkml.kernel.org/r/8f34727f-ec2d-9395-cb18-969ec8a5d0d4@oracle.com

Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Signed-off-by: Joao Martins <joao.m.martins@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Ben Skeggs <bskeggs@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brice Goglin <Brice.Goglin@inria.fr>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Daniel Vetter <daniel@ffwll.ch>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Dave Jiang <dave.jiang@intel.com>
Cc: David Airlie <airlied@linux.ie>
Cc: David Hildenbrand <david@redhat.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Ira Weiny <ira.weiny@intel.com>
Cc: Jason Gunthorpe <jgg@mellanox.com>
Cc: Jeff Moyer <jmoyer@redhat.com>
Cc: Jia He <justin.he@arm.com>
Cc: Joao Martins <joao.m.martins@oracle.com>
Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Mike Rapoport <rppt@linux.ibm.com>
Cc: Paul Mackerras <paulus@ozlabs.org>
Cc: Pavel Tatashin <pasha.tatashin@soleen.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tom Lendacky <thomas.lendacky@amd.com>
Cc: Vishal Verma <vishal.l.verma@intel.com>
Cc: Wei Yang <richard.weiyang@linux.alibaba.com>
Cc: Will Deacon <will@kernel.org>
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Ard Biesheuvel <ardb@kernel.org>
Cc: Bjorn Helgaas <bhelgaas@google.com>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: Hulk Robot <hulkci@huawei.com>
Cc: Jason Yan <yanaijie@huawei.com>
Cc: "Jérôme Glisse" <jglisse@redhat.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: kernel test robot <lkp@intel.com>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Stefano Stabellini <sstabellini@kernel.org>
Cc: Vivek Goyal <vgoyal@redhat.com>
Link: https://lkml.kernel.org/r/159643096584.4062302.5035370788475153738.stgit@dwillia2-desk3.amr.corp.intel.com
Link: https://lore.kernel.org/r/158318761484.2216124.2049322072599482736.stgit@dwillia2-desk3.amr.corp.intel.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-10-13 18:38:27 -07:00
Dan Williams
a6c7f4c6ae device-dax: Add a driver for "hmem" devices
Platform firmware like EFI/ACPI may publish "hmem" platform devices.
Such a device is a performance differentiated memory range likely
reserved for an application specific use case. The driver gives access
to 100% of the capacity via a device-dax mmap instance by default.

However, if over-subscription and other kernel memory management is
desired the resulting dax device can be assigned to the core-mm via the
kmem driver.

This consumes "hmem" devices the producer of "hmem" devices is saved for
a follow-on patch so that it can reference the new CONFIG_DEV_DAX_HMEM
symbol to gate performing the enumeration work.

Reported-by: kbuild test robot <lkp@intel.com>
Reviewed-by: Dave Hansen <dave.hansen@linux.intel.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2019-11-07 15:45:00 +01:00
Dave Hansen
c221c0b030 device-dax: "Hotplug" persistent memory for use like normal RAM
This is intended for use with NVDIMMs that are physically persistent
(physically like flash) so that they can be used as a cost-effective
RAM replacement.  Intel Optane DC persistent memory is one
implementation of this kind of NVDIMM.

Currently, a persistent memory region is "owned" by a device driver,
either the "Direct DAX" or "Filesystem DAX" drivers.  These drivers
allow applications to explicitly use persistent memory, generally
by being modified to use special, new libraries. (DIMM-based
persistent memory hardware/software is described in great detail
here: Documentation/nvdimm/nvdimm.txt).

However, this limits persistent memory use to applications which
*have* been modified.  To make it more broadly usable, this driver
"hotplugs" memory into the kernel, to be managed and used just like
normal RAM would be.

To make this work, management software must remove the device from
being controlled by the "Device DAX" infrastructure:

	echo dax0.0 > /sys/bus/dax/drivers/device_dax/unbind

and then tell the new driver that it can bind to the device:

	echo dax0.0 > /sys/bus/dax/drivers/kmem/new_id

After this, there will be a number of new memory sections visible
in sysfs that can be onlined, or that may get onlined by existing
udev-initiated memory hotplug rules.

This rebinding procedure is currently a one-way trip.  Once memory
is bound to "kmem", it's there permanently and can not be
unbound and assigned back to device_dax.

The kmem driver will never bind to a dax device unless the device
is *explicitly* bound to the driver.  There are two reasons for
this: One, since it is a one-way trip, it can not be undone if
bound incorrectly.  Two, the kmem driver destroys data on the
device.  Think of if you had good data on a pmem device.  It
would be catastrophic if you compile-in "kmem", but leave out
the "device_dax" driver.  kmem would take over the device and
write volatile data all over your good data.

This inherits any existing NUMA information for the newly-added
memory from the persistent memory device that came from the
firmware.  On Intel platforms, the firmware has guarantees that
require each socket's persistent memory to be in a separate
memory-only NUMA node.  That means that this patch is not expected
to create NUMA nodes, but will simply hotplug memory into existing
nodes.

Because NUMA nodes are created, the existing NUMA APIs and tools
are sufficient to create policies for applications or memory areas
to have affinity for or an aversion to using this memory.

There is currently some metadata at the beginning of pmem regions.
The section-size memory hotplug restrictions, plus this small
reserved area can cause the "loss" of a section or two of capacity.
This should be fixable in follow-on patches.  But, as a first step,
losing 256MB of memory (worst case) out of hundreds of gigabytes
is a good tradeoff vs. the required code to fix this up precisely.
This calculation is also the reason we export
memory_block_size_bytes().

Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Dan Williams <dan.j.williams@intel.com>
Reviewed-by: Keith Busch <keith.busch@intel.com>
Cc: Dave Jiang <dave.jiang@intel.com>
Cc: Ross Zwisler <zwisler@kernel.org>
Cc: Vishal Verma <vishal.l.verma@intel.com>
Cc: Tom Lendacky <thomas.lendacky@amd.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: linux-nvdimm@lists.01.org
Cc: linux-kernel@vger.kernel.org
Cc: linux-mm@kvack.org
Cc: Huang Ying <ying.huang@intel.com>
Cc: Fengguang Wu <fengguang.wu@intel.com>
Cc: Borislav Petkov <bp@suse.de>
Cc: Bjorn Helgaas <bhelgaas@google.com>
Cc: Yaowei Bai <baiyaowei@cmss.chinamobile.com>
Cc: Takashi Iwai <tiwai@suse.de>
Cc: Jerome Glisse <jglisse@redhat.com>
Reviewed-by: Vishal Verma <vishal.l.verma@intel.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2019-02-28 10:41:23 -08:00
Dan Williams
730926c3b0 device-dax: Add /sys/class/dax backwards compatibility
On the expectation that some environments may not upgrade libdaxctl
(userspace component that depends on the /sys/class/dax hierarchy),
provide a default / legacy dax_pmem_compat driver. The dax_pmem_compat
driver implements the original /sys/class/dax sysfs layout rather than
/sys/bus/dax. When userspace is upgraded it can blacklist this module
and switch to the dax_pmem driver going forward.

CONFIG_DEV_DAX_PMEM_COMPAT and supporting code will be deleted according
to the dax_pmem entry in Documentation/ABI/obsolete/.

Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2019-01-06 21:41:57 -08:00
Dan Williams
51cf784c42 device-dax: Start defining a dax bus model
Towards eliminating the dax_class, move the dax-device-attribute
enabling to a new bus.c file in the core. The amount of code
thrash of sub-sequent patches is reduced as no logic changes are made,
just pure code movement.

A temporary export of unregister_dex_dax() and dax_attribute_groups is
needed to preserve compilation, but those symbols become static again in
a follow-on patch.

Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2019-01-06 21:24:46 -08:00
Greg Kroah-Hartman
b24413180f License cleanup: add SPDX GPL-2.0 license identifier to files with no license
Many source files in the tree are missing licensing information, which
makes it harder for compliance tools to determine the correct license.

By default all files without license information are under the default
license of the kernel, which is GPL version 2.

Update the files which contain no license information with the 'GPL-2.0'
SPDX license identifier.  The SPDX identifier is a legally binding
shorthand, which can be used instead of the full boiler plate text.

This patch is based on work done by Thomas Gleixner and Kate Stewart and
Philippe Ombredanne.

How this work was done:

Patches were generated and checked against linux-4.14-rc6 for a subset of
the use cases:
 - file had no licensing information it it.
 - file was a */uapi/* one with no licensing information in it,
 - file was a */uapi/* one with existing licensing information,

Further patches will be generated in subsequent months to fix up cases
where non-standard license headers were used, and references to license
had to be inferred by heuristics based on keywords.

The analysis to determine which SPDX License Identifier to be applied to
a file was done in a spreadsheet of side by side results from of the
output of two independent scanners (ScanCode & Windriver) producing SPDX
tag:value files created by Philippe Ombredanne.  Philippe prepared the
base worksheet, and did an initial spot review of a few 1000 files.

The 4.13 kernel was the starting point of the analysis with 60,537 files
assessed.  Kate Stewart did a file by file comparison of the scanner
results in the spreadsheet to determine which SPDX license identifier(s)
to be applied to the file. She confirmed any determination that was not
immediately clear with lawyers working with the Linux Foundation.

Criteria used to select files for SPDX license identifier tagging was:
 - Files considered eligible had to be source code files.
 - Make and config files were included as candidates if they contained >5
   lines of source
 - File already had some variant of a license header in it (even if <5
   lines).

All documentation files were explicitly excluded.

The following heuristics were used to determine which SPDX license
identifiers to apply.

 - when both scanners couldn't find any license traces, file was
   considered to have no license information in it, and the top level
   COPYING file license applied.

   For non */uapi/* files that summary was:

   SPDX license identifier                            # files
   ---------------------------------------------------|-------
   GPL-2.0                                              11139

   and resulted in the first patch in this series.

   If that file was a */uapi/* path one, it was "GPL-2.0 WITH
   Linux-syscall-note" otherwise it was "GPL-2.0".  Results of that was:

   SPDX license identifier                            # files
   ---------------------------------------------------|-------
   GPL-2.0 WITH Linux-syscall-note                        930

   and resulted in the second patch in this series.

 - if a file had some form of licensing information in it, and was one
   of the */uapi/* ones, it was denoted with the Linux-syscall-note if
   any GPL family license was found in the file or had no licensing in
   it (per prior point).  Results summary:

   SPDX license identifier                            # files
   ---------------------------------------------------|------
   GPL-2.0 WITH Linux-syscall-note                       270
   GPL-2.0+ WITH Linux-syscall-note                      169
   ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause)    21
   ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause)    17
   LGPL-2.1+ WITH Linux-syscall-note                      15
   GPL-1.0+ WITH Linux-syscall-note                       14
   ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause)    5
   LGPL-2.0+ WITH Linux-syscall-note                       4
   LGPL-2.1 WITH Linux-syscall-note                        3
   ((GPL-2.0 WITH Linux-syscall-note) OR MIT)              3
   ((GPL-2.0 WITH Linux-syscall-note) AND MIT)             1

   and that resulted in the third patch in this series.

 - when the two scanners agreed on the detected license(s), that became
   the concluded license(s).

 - when there was disagreement between the two scanners (one detected a
   license but the other didn't, or they both detected different
   licenses) a manual inspection of the file occurred.

 - In most cases a manual inspection of the information in the file
   resulted in a clear resolution of the license that should apply (and
   which scanner probably needed to revisit its heuristics).

 - When it was not immediately clear, the license identifier was
   confirmed with lawyers working with the Linux Foundation.

 - If there was any question as to the appropriate license identifier,
   the file was flagged for further research and to be revisited later
   in time.

In total, over 70 hours of logged manual review was done on the
spreadsheet to determine the SPDX license identifiers to apply to the
source files by Kate, Philippe, Thomas and, in some cases, confirmation
by lawyers working with the Linux Foundation.

Kate also obtained a third independent scan of the 4.13 code base from
FOSSology, and compared selected files where the other two scanners
disagreed against that SPDX file, to see if there was new insights.  The
Windriver scanner is based on an older version of FOSSology in part, so
they are related.

Thomas did random spot checks in about 500 files from the spreadsheets
for the uapi headers and agreed with SPDX license identifier in the
files he inspected. For the non-uapi files Thomas did random spot checks
in about 15000 files.

In initial set of patches against 4.14-rc6, 3 files were found to have
copy/paste license identifier errors, and have been fixed to reflect the
correct identifier.

Additionally Philippe spent 10 hours this week doing a detailed manual
inspection and review of the 12,461 patched files from the initial patch
version early this week with:
 - a full scancode scan run, collecting the matched texts, detected
   license ids and scores
 - reviewing anything where there was a license detected (about 500+
   files) to ensure that the applied SPDX license was correct
 - reviewing anything where there was no detection but the patch license
   was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied
   SPDX license was correct

This produced a worksheet with 20 files needing minor correction.  This
worksheet was then exported into 3 different .csv files for the
different types of files to be modified.

These .csv files were then reviewed by Greg.  Thomas wrote a script to
parse the csv files and add the proper SPDX tag to the file, in the
format that the file expected.  This script was further refined by Greg
based on the output to detect more types of files automatically and to
distinguish between header and source .c files (which need different
comment types.)  Finally Greg ran the script using the .csv files to
generate the patches.

Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-02 11:10:55 +01:00
Dan Williams
7b6be8444e dax: refactor dax-fs into a generic provider of 'struct dax_device' instances
We want dax capable drivers to be able to publish a set of dax
operations [1]. However, we do not want to further abuse block_devices
to advertise these operations. Instead we will attach these operations
to a dax device and add a lookup mechanism to go from block device path
to a dax device. A dax capable driver like pmem or brd is responsible
for registering a dax device, alongside a block device, and then a dax
capable filesystem is responsible for retrieving the dax device by path
name if it wants to call dax_operations.

For now, we refactor the dax pseudo-fs to be a generic facility, rather
than an implementation detail, of the device-dax use case. Where a "dax
device" is just an inode + dax infrastructure, and "Device DAX" is a
mapping service layered on top of that base 'struct dax_device'.
"Filesystem DAX" is then a mapping service that layers a filesystem on
top of that same base device. Filesystem DAX is associated with a
block_device for now, but perhaps directly to a dax device in the
future, or for new pmem-only filesystems.

[1]: https://lkml.org/lkml/2017/1/19/880

Suggested-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2017-04-12 21:59:14 -07:00
Dan Williams
ab68f26221 /dev/dax, pmem: direct access to persistent memory
Device DAX is the device-centric analogue of Filesystem DAX
(CONFIG_FS_DAX).  It allows memory ranges to be allocated and mapped
without need of an intervening file system.  Device DAX is strict,
precise and predictable.  Specifically this interface:

1/ Guarantees fault granularity with respect to a given page size (pte,
pmd, or pud) set at configuration time.

2/ Enforces deterministic behavior by being strict about what fault
scenarios are supported.

For example, by forcing MADV_DONTFORK semantics and omitting MAP_PRIVATE
support device-dax guarantees that a mapping always behaves/performs the
same once established.  It is the "what you see is what you get" access
mechanism to differentiated memory vs filesystem DAX which has
filesystem specific implementation semantics.

Persistent memory is the first target, but the mechanism is also
targeted for exclusive allocations of performance differentiated memory
ranges.

This commit is limited to the base device driver infrastructure to
associate a dax device with pmem range.

Cc: Jeff Moyer <jmoyer@redhat.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Ross Zwisler <ross.zwisler@linux.intel.com>
Reviewed-by: Johannes Thumshirn <jthumshirn@suse.de>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2016-05-20 22:02:53 -07:00