Pull scheduler fixes from Thomas Gleixner:
"A few scheduler fixes:
- Prevent a bogus warning vs. runqueue clock update flags in
do_sched_rt_period_timer()
- Simplify the helper functions which handle requests for skipping
the runqueue clock updat.
- Do not unlock the tunables mutex in the error path of the cpu
frequency scheduler utils. Its not held.
- Enforce proper alignement for 'struct util_est' in sched_avg to
prevent a misalignment fault on IA64"
* 'sched-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
sched/core: Force proper alignment of 'struct util_est'
sched/core: Simplify helpers for rq clock update skip requests
sched/rt: Fix rq->clock_update_flags < RQCF_ACT_SKIP warning
sched/cpufreq/schedutil: Fix error path mutex unlock
- Rework the idle loop in order to prevent CPUs from spending too
much time in shallow idle states by making it stop the scheduler
tick before putting the CPU into an idle state only if the idle
duration predicted by the idle governor is long enough. That
required the code to be reordered to invoke the idle governor
before stopping the tick, among other things (Rafael Wysocki,
Frederic Weisbecker, Arnd Bergmann).
- Add the missing description of the residency sysfs attribute to
the cpuidle documentation (Prashanth Prakash).
- Finalize the cpufreq cleanup moving frequency table validation
from drivers to the core (Viresh Kumar).
- Fix a clock leak regression in the armada-37xx cpufreq driver
(Gregory Clement).
- Fix the initialization of the CPU performance data structures
for shared policies in the CPPC cpufreq driver (Shunyong Yang).
- Clean up the ti-cpufreq, intel_pstate and CPPC cpufreq drivers
a bit (Viresh Kumar, Rafael Wysocki).
- Mark the expected switch fall-throughs in the PM QoS core (Gustavo
Silva).
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2
iQIcBAABCAAGBQJazfv7AAoJEILEb/54YlRx/kYP+gPOX5O5cFF22Y2xvDHPMWjm
D/3Nc2aRo+5DuHHECSIJ3ZVQzVoamN5zQ1KbsBRV0bJgwim4fw4M199Jr/0I2nES
1pkByuxLrAtwb83uX3uBIQnwgKOAwRftOTeVaFaMoXgIbyUqK7ZFkGq0xQTnKqor
6+J+78O7wMaIZ0YXQP98BC6g96vs/f+ICrh7qqY85r4NtO/thTA1IKevBmlFeIWR
yVhEYgwSFBaWehKK8KgbshmBBEk3qzDOYfwZF/JprPhiN/6madgHgYjHC8Seok5c
QUUTRlyO1ULTQe4JulyJUKobx7HE9u/FXC0RjbBiKPnYR4tb9Hd8OpajPRZo96AT
8IQCdzL2Iw/ZyQsmQZsWeO1HwPTwVlF/TO2gf6VdQtH221izuHG025p8/RcZe6zb
fTTFhh6/tmBvmOlbKMwxaLbGbwcj/5W5GvQXlXAtaElLobwwNEcEyVfF4jo4Zx/U
DQc7agaAps67lcgFAqNDy0PoU6bxV7yoiAIlTJHO9uyPkDNyIfb0ZPlmdIi3xYZd
tUD7C+VBezrNCkw7JWL1xXLFfJ5X7K6x5bi9I7TBj1l928Hak0dwzs7KlcNBtF1Y
SwnJsNa3kxunGsPajya8dy5gdO0aFeB9Bse0G429+ugk2IJO/Q9M9nQUArJiC9Xl
Gw1bw5Ynv6lx+r5EqxHa
=Pnk4
-----END PGP SIGNATURE-----
Merge tag 'pm-4.17-rc1-2' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm
Pull more power management updates from Rafael Wysocki:
"These include one big-ticket item which is the rework of the idle loop
in order to prevent CPUs from spending too much time in shallow idle
states. It reduces idle power on some systems by 10% or more and may
improve performance of workloads in which the idle loop overhead
matters. This has been in the works for several weeks and it has been
tested and reviewed quite thoroughly.
Also included are changes that finalize the cpufreq cleanup moving
frequency table validation from drivers to the core, a few fixes and
cleanups of cpufreq drivers, a cpuidle documentation update and a PM
QoS core update to mark the expected switch fall-throughs in it.
Specifics:
- Rework the idle loop in order to prevent CPUs from spending too
much time in shallow idle states by making it stop the scheduler
tick before putting the CPU into an idle state only if the idle
duration predicted by the idle governor is long enough.
That required the code to be reordered to invoke the idle governor
before stopping the tick, among other things (Rafael Wysocki,
Frederic Weisbecker, Arnd Bergmann).
- Add the missing description of the residency sysfs attribute to the
cpuidle documentation (Prashanth Prakash).
- Finalize the cpufreq cleanup moving frequency table validation from
drivers to the core (Viresh Kumar).
- Fix a clock leak regression in the armada-37xx cpufreq driver
(Gregory Clement).
- Fix the initialization of the CPU performance data structures for
shared policies in the CPPC cpufreq driver (Shunyong Yang).
- Clean up the ti-cpufreq, intel_pstate and CPPC cpufreq drivers a
bit (Viresh Kumar, Rafael Wysocki).
- Mark the expected switch fall-throughs in the PM QoS core (Gustavo
Silva)"
* tag 'pm-4.17-rc1-2' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm: (23 commits)
tick-sched: avoid a maybe-uninitialized warning
cpufreq: Drop cpufreq_table_validate_and_show()
cpufreq: SCMI: Don't validate the frequency table twice
cpufreq: CPPC: Initialize shared perf capabilities of CPUs
cpufreq: armada-37xx: Fix clock leak
cpufreq: CPPC: Don't set transition_latency
cpufreq: ti-cpufreq: Use builtin_platform_driver()
cpufreq: intel_pstate: Do not include debugfs.h
PM / QoS: mark expected switch fall-throughs
cpuidle: Add definition of residency to sysfs documentation
time: hrtimer: Use timerqueue_iterate_next() to get to the next timer
nohz: Avoid duplication of code related to got_idle_tick
nohz: Gather tick_sched booleans under a common flag field
cpuidle: menu: Avoid selecting shallow states with stopped tick
cpuidle: menu: Refine idle state selection for running tick
sched: idle: Select idle state before stopping the tick
time: hrtimer: Introduce hrtimer_next_event_without()
time: tick-sched: Split tick_nohz_stop_sched_tick()
cpuidle: Return nohz hint from cpuidle_select()
jiffies: Introduce USER_TICK_USEC and redefine TICK_USEC
...
In order to address the issue with short idle duration predictions
by the idle governor after the scheduler tick has been stopped,
reorder the code in cpuidle_idle_call() so that the governor idle
state selection runs before tick_nohz_idle_go_idle() and use the
"nohz" hint returned by cpuidle_select() to decide whether or not
to stop the tick.
This isn't straightforward, because menu_select() invokes
tick_nohz_get_sleep_length() to get the time to the next timer
event and the number returned by the latter comes from
__tick_nohz_idle_stop_tick(). Fortunately, however, it is possible
to compute that number without actually stopping the tick and with
the help of the existing code.
Namely, tick_nohz_get_sleep_length() can be made call
tick_nohz_next_event(), introduced earlier, to get the time to the
next non-highres timer event. If that happens, tick_nohz_next_event()
need not be called by __tick_nohz_idle_stop_tick() again.
If it turns out that the scheduler tick cannot be stopped going
forward or the next timer event is too close for the tick to be
stopped, tick_nohz_get_sleep_length() can simply return the time to
the next event currently programmed into the corresponding clock
event device.
In addition to knowing the return value of tick_nohz_next_event(),
however, tick_nohz_get_sleep_length() needs to know the time to the
next highres timer event, but with the scheduler tick timer excluded,
which can be computed with the help of hrtimer_get_next_event().
That minimum of that number and the tick_nohz_next_event() return
value is the total time to the next timer event with the assumption
that the tick will be stopped. It can be returned to the idle
governor which can use it for predicting idle duration (under the
assumption that the tick will be stopped) and deciding whether or
not it makes sense to stop the tick before putting the CPU into the
selected idle state.
With the above, the sleep_length field in struct tick_sched is not
necessary any more, so drop it.
Link: https://bugzilla.kernel.org/show_bug.cgi?id=199227
Reported-by: Doug Smythies <dsmythies@telus.net>
Reported-by: Thomas Ilsche <thomas.ilsche@tu-dresden.de>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Add a new pointer argument to cpuidle_select() and to the ->select
cpuidle governor callback to allow a boolean value indicating
whether or not the tick should be stopped before entering the
selected state to be returned from there.
Make the ladder governor ignore that pointer (to preserve its
current behavior) and make the menu governor return 'false" through
it if:
(1) the idle exit latency is constrained at 0, or
(2) the selected state is a polling one, or
(3) the expected idle period duration is within the tick period
range.
In addition to that, the correction factor computations in the menu
governor need to take the possibility that the tick may not be
stopped into account to avoid artificially small correction factor
values. To that end, add a mechanism to record tick wakeups, as
suggested by Peter Zijlstra, and use it to modify the menu_update()
behavior when tick wakeup occurs. Namely, if the CPU is woken up by
the tick and the return value of tick_nohz_get_sleep_length() is not
within the tick boundary, the predicted idle duration is likely too
short, so make menu_update() try to compensate for that by updating
the governor statistics as though the CPU was idle for a long time.
Since the value returned through the new argument pointer of
cpuidle_select() is not used by its caller yet, this change by
itself is not expected to alter the functionality of the code.
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
KASAN splats indicate that in some cases we free a live mm, then
continue to access it, with potentially disastrous results. This is
likely due to a mismatched mmdrop() somewhere in the kernel, but so far
the culprit remains elusive.
Let's have __mmdrop() verify that the mm isn't live for the current
task, similar to the existing check for init_mm. This way, we can catch
this class of issue earlier, and without requiring KASAN.
Currently, idle_task_exit() leaves active_mm stale after it switches to
init_mm. This isn't harmful, but will trigger the new assertions, so we
must adjust idle_task_exit() to update active_mm.
Link: http://lkml.kernel.org/r/20180312140103.19235-1-mark.rutland@arm.com
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Make cpuidle_idle_call() decide whether or not to stop the tick.
First, the cpuidle_enter_s2idle() path deals with the tick (and with
the entire timekeeping for that matter) by itself and it doesn't need
the tick to be stopped beforehand.
Second, to address the issue with short idle duration predictions
by the idle governor after the tick has been stopped, it will be
necessary to change the ordering of cpuidle_select() with respect
to tick_nohz_idle_stop_tick(). To prepare for that, put a
tick_nohz_idle_stop_tick() call in the same branch in which
cpuidle_select() is called.
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Push the decision whether or not to stop the tick somewhat deeper
into the idle loop.
Stopping the tick upfront leads to unpleasant outcomes in case the
idle governor doesn't agree with the nohz code on the duration of the
upcoming idle period. Specifically, if the tick has been stopped and
the idle governor predicts short idle, the situation is bad regardless
of whether or not the prediction is accurate. If it is accurate, the
tick has been stopped unnecessarily which means excessive overhead.
If it is not accurate, the CPU is likely to spend too much time in
the (shallow, because short idle has been predicted) idle state
selected by the governor [1].
As the first step towards addressing this problem, change the code
to make the tick stopping decision inside of the loop in do_idle().
In particular, do not stop the tick in the cpu_idle_poll() code path.
Also don't do that in tick_nohz_irq_exit() which doesn't really have
enough information on whether or not to stop the tick.
Link: https://marc.info/?l=linux-pm&m=150116085925208&w=2 # [1]
Link: https://tu-dresden.de/zih/forschung/ressourcen/dateien/projekte/haec/powernightmares.pdf
Suggested-by: Frederic Weisbecker <frederic@kernel.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Prepare the scheduler tick code for reworking the idle loop to
avoid stopping the tick in some cases.
The idea is to split the nohz idle entry call to decouple the idle
time stats accounting and preparatory work from the actual tick stop
code, in order to later be able to delay the tick stop once we reach
more power-knowledgeable callers.
Move away the tick_nohz_start_idle() invocation from
__tick_nohz_idle_enter(), rename the latter to
__tick_nohz_idle_stop_tick() and define tick_nohz_idle_stop_tick()
as a wrapper around it for calling it from the outside.
Make tick_nohz_idle_enter() only call tick_nohz_start_idle() instead
of calling the entire __tick_nohz_idle_enter(), add another wrapper
disabling and enabling interrupts around tick_nohz_idle_stop_tick()
and make the current callers of tick_nohz_idle_enter() call it too
to retain their current functionality.
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
By renaming the functions we can get rid of the skip parameter
and have better code redability. It makes zero sense to have
things such as:
rq_clock_skip_update(rq, false)
When the skip request is in fact not going to happen. Ever. Rename
things such that we end up with:
rq_clock_skip_update(rq)
rq_clock_cancel_skipupdate(rq)
Signed-off-by: Davidlohr Bueso <dbueso@suse.de>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Cc: matt@codeblueprint.co.uk
Cc: rostedt@goodmis.org
Link: http://lkml.kernel.org/r/20180404161539.nhadkff2aats74jh@linux-n805
Signed-off-by: Ingo Molnar <mingo@kernel.org>
While running rt-tests' pi_stress program I got the following splat:
rq->clock_update_flags < RQCF_ACT_SKIP
WARNING: CPU: 27 PID: 0 at kernel/sched/sched.h:960 assert_clock_updated.isra.38.part.39+0x13/0x20
[...]
<IRQ>
enqueue_top_rt_rq+0xf4/0x150
? cpufreq_dbs_governor_start+0x170/0x170
sched_rt_rq_enqueue+0x65/0x80
sched_rt_period_timer+0x156/0x360
? sched_rt_rq_enqueue+0x80/0x80
__hrtimer_run_queues+0xfa/0x260
hrtimer_interrupt+0xcb/0x220
smp_apic_timer_interrupt+0x62/0x120
apic_timer_interrupt+0xf/0x20
</IRQ>
[...]
do_idle+0x183/0x1e0
cpu_startup_entry+0x5f/0x70
start_secondary+0x192/0x1d0
secondary_startup_64+0xa5/0xb0
We can get rid of it be the "traditional" means of adding an
update_rq_clock() call after acquiring the rq->lock in
do_sched_rt_period_timer().
The case for the RT task throttling (which this workload also hits)
can be ignored in that the skip_update call is actually bogus and
quite the contrary (the request bits are removed/reverted).
By setting RQCF_UPDATED we really don't care if the skip is happening
or not and will therefore make the assert_clock_updated() check happy.
Signed-off-by: Davidlohr Bueso <dbueso@suse.de>
Reviewed-by: Matt Fleming <matt@codeblueprint.co.uk>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: dave@stgolabs.net
Cc: linux-kernel@vger.kernel.org
Cc: rostedt@goodmis.org
Link: http://lkml.kernel.org/r/20180402164954.16255-1-dave@stgolabs.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Pull removal of in-kernel calls to syscalls from Dominik Brodowski:
"System calls are interaction points between userspace and the kernel.
Therefore, system call functions such as sys_xyzzy() or
compat_sys_xyzzy() should only be called from userspace via the
syscall table, but not from elsewhere in the kernel.
At least on 64-bit x86, it will likely be a hard requirement from
v4.17 onwards to not call system call functions in the kernel: It is
better to use use a different calling convention for system calls
there, where struct pt_regs is decoded on-the-fly in a syscall wrapper
which then hands processing over to the actual syscall function. This
means that only those parameters which are actually needed for a
specific syscall are passed on during syscall entry, instead of
filling in six CPU registers with random user space content all the
time (which may cause serious trouble down the call chain). Those
x86-specific patches will be pushed through the x86 tree in the near
future.
Moreover, rules on how data may be accessed may differ between kernel
data and user data. This is another reason why calling sys_xyzzy() is
generally a bad idea, and -- at most -- acceptable in arch-specific
code.
This patchset removes all in-kernel calls to syscall functions in the
kernel with the exception of arch/. On top of this, it cleans up the
three places where many syscalls are referenced or prototyped, namely
kernel/sys_ni.c, include/linux/syscalls.h and include/linux/compat.h"
* 'syscalls-next' of git://git.kernel.org/pub/scm/linux/kernel/git/brodo/linux: (109 commits)
bpf: whitelist all syscalls for error injection
kernel/sys_ni: remove {sys_,sys_compat} from cond_syscall definitions
kernel/sys_ni: sort cond_syscall() entries
syscalls/x86: auto-create compat_sys_*() prototypes
syscalls: sort syscall prototypes in include/linux/compat.h
net: remove compat_sys_*() prototypes from net/compat.h
syscalls: sort syscall prototypes in include/linux/syscalls.h
kexec: move sys_kexec_load() prototype to syscalls.h
x86/sigreturn: use SYSCALL_DEFINE0
x86: fix sys_sigreturn() return type to be long, not unsigned long
x86/ioport: add ksys_ioperm() helper; remove in-kernel calls to sys_ioperm()
mm: add ksys_readahead() helper; remove in-kernel calls to sys_readahead()
mm: add ksys_mmap_pgoff() helper; remove in-kernel calls to sys_mmap_pgoff()
mm: add ksys_fadvise64_64() helper; remove in-kernel call to sys_fadvise64_64()
fs: add ksys_fallocate() wrapper; remove in-kernel calls to sys_fallocate()
fs: add ksys_p{read,write}64() helpers; remove in-kernel calls to syscalls
fs: add ksys_truncate() wrapper; remove in-kernel calls to sys_truncate()
fs: add ksys_sync_file_range helper(); remove in-kernel calls to syscall
kernel: add ksys_setsid() helper; remove in-kernel call to sys_setsid()
kernel: add ksys_unshare() helper; remove in-kernel calls to sys_unshare()
...
Pull wait_var_event updates from Ingo Molnar:
"This introduces the new wait_var_event() API, which is a more flexible
waiting primitive than wait_on_atomic_t().
All wait_on_atomic_t() users are migrated over to the new API and
wait_on_atomic_t() is removed. The migration fixes one bug and should
result in no functional changes for the other usecases"
* 'sched-wait-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
sched/wait: Improve __var_waitqueue() code generation
sched/wait: Remove the wait_on_atomic_t() API
sched/wait, arch/mips: Fix and convert wait_on_atomic_t() usage to the new wait_var_event() API
sched/wait, fs/ocfs2: Convert wait_on_atomic_t() usage to the new wait_var_event() API
sched/wait, fs/nfs: Convert wait_on_atomic_t() usage to the new wait_var_event() API
sched/wait, fs/fscache: Convert wait_on_atomic_t() usage to the new wait_var_event() API
sched/wait, fs/btrfs: Convert wait_on_atomic_t() usage to the new wait_var_event() API
sched/wait, fs/afs: Convert wait_on_atomic_t() usage to the new wait_var_event() API
sched/wait, drivers/media: Convert wait_on_atomic_t() usage to the new wait_var_event() API
sched/wait, drivers/drm: Convert wait_on_atomic_t() usage to the new wait_var_event() API
sched/wait: Introduce wait_var_event()
Pull scheduler updates from Ingo Molnar:
"The main scheduler changes in this cycle were:
- NUMA balancing improvements (Mel Gorman)
- Further load tracking improvements (Patrick Bellasi)
- Various NOHZ balancing cleanups and optimizations (Peter Zijlstra)
- Improve blocked load handling, in particular we can now reduce and
eventually stop periodic load updates on 'very idle' CPUs. (Vincent
Guittot)
- On isolated CPUs offload the final 1Hz scheduler tick as well, plus
related cleanups and reorganization. (Frederic Weisbecker)
- Core scheduler code cleanups (Ingo Molnar)"
* 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (45 commits)
sched/core: Update preempt_notifier_key to modern API
sched/cpufreq: Rate limits for SCHED_DEADLINE
sched/fair: Update util_est only on util_avg updates
sched/cpufreq/schedutil: Use util_est for OPP selection
sched/fair: Use util_est in LB and WU paths
sched/fair: Add util_est on top of PELT
sched/core: Remove TASK_ALL
sched/completions: Use bool in try_wait_for_completion()
sched/fair: Update blocked load when newly idle
sched/fair: Move idle_balance()
sched/nohz: Merge CONFIG_NO_HZ_COMMON blocks
sched/fair: Move rebalance_domains()
sched/nohz: Optimize nohz_idle_balance()
sched/fair: Reduce the periodic update duration
sched/nohz: Stop NOHZ stats when decayed
sched/cpufreq: Provide migration hint
sched/nohz: Clean up nohz enter/exit
sched/fair: Update blocked load from NEWIDLE
sched/fair: Add NOHZ stats balancing
sched/fair: Restructure nohz_balance_kick()
...
Using the sched-internal do_sched_yield() helper allows us to get rid of
the sched-internal call to the sys_sched_yield() syscall.
This patch is part of a series which removes in-kernel calls to syscalls.
On this basis, the syscall entry path can be streamlined. For details, see
http://lkml.kernel.org/r/20180325162527.GA17492@light.dominikbrodowski.net
Cc: Ingo Molnar <mingo@redhat.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Dominik Brodowski <linux@dominikbrodowski.net>
This patch prevents the 'global_tunables_lock' mutex from being
unlocked before being locked. This mutex is not locked if the
sugov_kthread_create() function fails.
Signed-off-by: Jules Maselbas <jules.maselbas@arm.com>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Cc: Chris Redpath <chris.redpath@arm.com>
Cc: Dietmar Eggermann <dietmar.eggemann@arm.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Patrick Bellasi <patrick.bellasi@arm.com>
Cc: Stephen Kyle <stephen.kyle@arm.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Cc: nd@arm.com
Link: http://lkml.kernel.org/r/20180329144301.38419-1-jules.maselbas@arm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Pull scheduler fixes from Ingo Molnar:
"Two sched debug output related fixes: a console output fix and
formatting fixes"
* 'sched-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
sched/debug: Adjust newlines for better alignment
sched/debug: Fix per-task line continuation for console output
When the SCHED_DEADLINE scheduling class increases the CPU utilization, it
should not wait for the rate limit, otherwise it may miss some deadline.
Tests using rt-app on Exynos5422 with up to 10 SCHED_DEADLINE tasks have
shown reductions of even 10% of deadline misses with a negligible
increase of energy consumption (measured through Baylibre Cape).
Signed-off-by: Claudio Scordino <claudio@evidence.eu.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
Cc: Juri Lelli <juri.lelli@redhat.com>
Cc: Joel Fernandes <joelaf@google.com>
Cc: Vincent Guittot <vincent.guittot@linaro.org>
Cc: linux-pm@vger.kernel.org
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Morten Rasmussen <morten.rasmussen@arm.com>
Cc: Patrick Bellasi <patrick.bellasi@arm.com>
Cc: Todd Kjos <tkjos@android.com>
Cc: Dietmar Eggemann <dietmar.eggemann@arm.com>
Link: https://lkml.kernel.org/r/1520937340-2755-1-git-send-email-claudio@evidence.eu.com
Scheduler debug stats include newlines that display out of alignment
when prefixed by timestamps. For example, the dmesg utility:
% echo t > /proc/sysrq-trigger
% dmesg
...
[ 83.124251]
runnable tasks:
S task PID tree-key switches prio wait-time
sum-exec sum-sleep
-----------------------------------------------------------------------------------------------------------
At the same time, some syslog utilities (like rsyslog by default) don't
like the additional newlines control characters, saving lines like this
to /var/log/messages:
Mar 16 16:02:29 localhost kernel: #012runnable tasks:#012 S task PID tree-key ...
^^^^ ^^^^
Clean these up by moving newline characters to their own SEQ_printf
invocation. This leaves the /proc/sched_debug unchanged, but brings the
entire output into alignment when prefixed:
% echo t > /proc/sysrq-trigger
% dmesg
...
[ 62.410368] runnable tasks:
[ 62.410368] S task PID tree-key switches prio wait-time sum-exec sum-sleep
[ 62.410369] -----------------------------------------------------------------------------------------------------------
[ 62.410369] I kworker/u12:0 5 1932.215593 332 120 0.000000 3.621252 0.000000 0 0 /
and no escaped control characters from rsyslog in /var/log/messages:
Mar 16 16:15:06 localhost kernel: runnable tasks:
Mar 16 16:15:06 localhost kernel: S task PID tree-key ...
Signed-off-by: Joe Lawrence <joe.lawrence@redhat.com>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1521484555-8620-3-git-send-email-joe.lawrence@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
When the SEQ_printf() macro prints to the console, it runs a simple
printk() without KERN_CONT "continued" line printing. The result of
this is oddly wrapped task info, for example:
% echo t > /proc/sysrq-trigger
% dmesg
...
runnable tasks:
...
[ 29.608611] I
[ 29.608613] rcu_sched 8 3252.013846 4087 120
[ 29.608614] 0.000000 29.090111 0.000000
[ 29.608615] 0 0
[ 29.608616] /
Modify SEQ_printf to use pr_cont() for expected one-line results:
% echo t > /proc/sysrq-trigger
% dmesg
...
runnable tasks:
...
[ 106.716329] S cpuhp/5 37 2006.315026 14 120 0.000000 0.496893 0.000000 0 0 /
Signed-off-by: Joe Lawrence <joe.lawrence@redhat.com>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1521484555-8620-2-git-send-email-joe.lawrence@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Since we fixed hash_64() to not suck there is no need to play games to
attempt to improve the hash value on 64-bit.
Also, since we don't use the bit value for the variables, use hash_ptr()
directly.
No change in functionality.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: George Spelvin <linux@sciencehorizons.net>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
There are no users left (everyone got converted to wait_var_event()), remove it.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
As a replacement for the wait_on_atomic_t() API provide the
wait_var_event() API.
The wait_var_event() API is based on the very same hashed-waitqueue
idea, but doesn't care about the type (atomic_t) or the specific
condition (atomic_read() == 0). IOW. it's much more widely
applicable/flexible.
It shares all the benefits/disadvantages of a hashed-waitqueue
approach with the existing wait_on_atomic_t/wait_on_bit() APIs.
The API is modeled after the existing wait_event() API, but instead of
taking a wait_queue_head, it takes an address. This addresses is
hashed to obtain a wait_queue_head from the bit_wait_table.
Similar to the wait_event() API, it takes a condition expression as
second argument and will wait until this expression becomes true.
The following are (mostly) identical replacements:
wait_on_atomic_t(&my_atomic, atomic_t_wait, TASK_UNINTERRUPTIBLE);
wake_up_atomic_t(&my_atomic);
wait_var_event(&my_atomic, !atomic_read(&my_atomic));
wake_up_var(&my_atomic);
The only difference is that wake_up_var() is an unconditional wakeup
and doesn't check the previously hard-coded (atomic_read() == 0)
condition here. This is of little concequence, since most callers are
already conditional on atomic_dec_and_test() and the ones that are
not, are trivial to make so.
Tested-by: Dan Williams <dan.j.williams@intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: David Howells <dhowells@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The estimated utilization of a task is currently updated every time the
task is dequeued. However, to keep overheads under control, PELT signals
are effectively updated at maximum once every 1ms.
Thus, for really short running tasks, it can happen that their util_avg
value has not been updates since their last enqueue. If such tasks are
also frequently running tasks (e.g. the kind of workload generated by
hackbench) it can also happen that their util_avg is updated only every
few activations.
This means that updating util_est at every dequeue potentially introduces
not necessary overheads and it's also conceptually wrong if the util_avg
signal has never been updated during a task activation.
Let's introduce a throttling mechanism on task's util_est updates
to sync them with util_avg updates. To make the solution memory
efficient, both in terms of space and load/store operations, we encode a
synchronization flag into the LSB of util_est.enqueued.
This makes util_est an even values only metric, which is still
considered good enough for its purpose.
The synchronization bit is (re)set by __update_load_avg_se() once the
PELT signal of a task has been updated during its last activation.
Such a throttling mechanism allows to keep under control util_est
overheads in the wakeup hot path, thus making it a suitable mechanism
which can be enabled also on high-intensity workload systems.
Thus, this now switches on by default the estimation utilization
scheduler feature.
Suggested-by: Chris Redpath <chris.redpath@arm.com>
Signed-off-by: Patrick Bellasi <patrick.bellasi@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Dietmar Eggemann <dietmar.eggemann@arm.com>
Cc: Joel Fernandes <joelaf@google.com>
Cc: Juri Lelli <juri.lelli@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Morten Rasmussen <morten.rasmussen@arm.com>
Cc: Paul Turner <pjt@google.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rafael J . Wysocki <rafael.j.wysocki@intel.com>
Cc: Steve Muckle <smuckle@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Todd Kjos <tkjos@android.com>
Cc: Vincent Guittot <vincent.guittot@linaro.org>
Cc: Viresh Kumar <viresh.kumar@linaro.org>
Link: http://lkml.kernel.org/r/20180309095245.11071-5-patrick.bellasi@arm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
When schedutil looks at the CPU utilization, the current PELT value for
that CPU is returned straight away. In certain scenarios this can have
undesired side effects and delays on frequency selection.
For example, since the task utilization is decayed at wakeup time, a
long sleeping big task newly enqueued does not add immediately a
significant contribution to the target CPU. This introduces some latency
before schedutil will be able to detect the best frequency required by
that task.
Moreover, the PELT signal build-up time is a function of the current
frequency, because of the scale invariant load tracking support. Thus,
starting from a lower frequency, the utilization build-up time will
increase even more and further delays the selection of the actual
frequency which better serves the task requirements.
In order to reduce these kind of latencies, we integrate the usage
of the CPU's estimated utilization in the sugov_get_util function.
This allows to properly consider the expected utilization of a CPU which,
for example, has just got a big task running after a long sleep period.
Ultimately this allows to select the best frequency to run a task
right after its wake-up.
Signed-off-by: Patrick Bellasi <patrick.bellasi@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Acked-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
Cc: Joel Fernandes <joelaf@google.com>
Cc: Juri Lelli <juri.lelli@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Morten Rasmussen <morten.rasmussen@arm.com>
Cc: Paul Turner <pjt@google.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steve Muckle <smuckle@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Todd Kjos <tkjos@android.com>
Cc: Vincent Guittot <vincent.guittot@linaro.org>
Link: http://lkml.kernel.org/r/20180309095245.11071-4-patrick.bellasi@arm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
When the scheduler looks at the CPU utilization, the current PELT value
for a CPU is returned straight away. In certain scenarios this can have
undesired side effects on task placement.
For example, since the task utilization is decayed at wakeup time, when
a long sleeping big task is enqueued it does not add immediately a
significant contribution to the target CPU.
As a result we generate a race condition where other tasks can be placed
on the same CPU while it is still considered relatively empty.
In order to reduce this kind of race conditions, this patch introduces the
required support to integrate the usage of the CPU's estimated utilization
in the wakeup path, via cpu_util_wake(), as well as in the load-balance
path, via cpu_util() which is used by update_sg_lb_stats().
The estimated utilization of a CPU is defined to be the maximum between
its PELT's utilization and the sum of the estimated utilization (at
previous dequeue time) of all the tasks currently RUNNABLE on that CPU.
This allows to properly represent the spare capacity of a CPU which, for
example, has just got a big task running since a long sleep period.
Signed-off-by: Patrick Bellasi <patrick.bellasi@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Cc: Joel Fernandes <joelaf@google.com>
Cc: Juri Lelli <juri.lelli@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Morten Rasmussen <morten.rasmussen@arm.com>
Cc: Paul Turner <pjt@google.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rafael J . Wysocki <rafael.j.wysocki@intel.com>
Cc: Steve Muckle <smuckle@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Todd Kjos <tkjos@android.com>
Cc: Vincent Guittot <vincent.guittot@linaro.org>
Cc: Viresh Kumar <viresh.kumar@linaro.org>
Link: http://lkml.kernel.org/r/20180309095245.11071-3-patrick.bellasi@arm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The util_avg signal computed by PELT is too variable for some use-cases.
For example, a big task waking up after a long sleep period will have its
utilization almost completely decayed. This introduces some latency before
schedutil will be able to pick the best frequency to run a task.
The same issue can affect task placement. Indeed, since the task
utilization is already decayed at wakeup, when the task is enqueued in a
CPU, this can result in a CPU running a big task as being temporarily
represented as being almost empty. This leads to a race condition where
other tasks can be potentially allocated on a CPU which just started to run
a big task which slept for a relatively long period.
Moreover, the PELT utilization of a task can be updated every [ms], thus
making it a continuously changing value for certain longer running
tasks. This means that the instantaneous PELT utilization of a RUNNING
task is not really meaningful to properly support scheduler decisions.
For all these reasons, a more stable signal can do a better job of
representing the expected/estimated utilization of a task/cfs_rq.
Such a signal can be easily created on top of PELT by still using it as
an estimator which produces values to be aggregated on meaningful
events.
This patch adds a simple implementation of util_est, a new signal built on
top of PELT's util_avg where:
util_est(task) = max(task::util_avg, f(task::util_avg@dequeue))
This allows to remember how big a task has been reported by PELT in its
previous activations via f(task::util_avg@dequeue), which is the new
_task_util_est(struct task_struct*) function added by this patch.
If a task should change its behavior and it runs longer in a new
activation, after a certain time its util_est will just track the
original PELT signal (i.e. task::util_avg).
The estimated utilization of cfs_rq is defined only for root ones.
That's because the only sensible consumer of this signal are the
scheduler and schedutil when looking for the overall CPU utilization
due to FAIR tasks.
For this reason, the estimated utilization of a root cfs_rq is simply
defined as:
util_est(cfs_rq) = max(cfs_rq::util_avg, cfs_rq::util_est::enqueued)
where:
cfs_rq::util_est::enqueued = sum(_task_util_est(task))
for each RUNNABLE task on that root cfs_rq
It's worth noting that the estimated utilization is tracked only for
objects of interests, specifically:
- Tasks: to better support tasks placement decisions
- root cfs_rqs: to better support both tasks placement decisions as
well as frequencies selection
Signed-off-by: Patrick Bellasi <patrick.bellasi@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Cc: Joel Fernandes <joelaf@google.com>
Cc: Juri Lelli <juri.lelli@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Morten Rasmussen <morten.rasmussen@arm.com>
Cc: Paul Turner <pjt@google.com>
Cc: Rafael J . Wysocki <rafael.j.wysocki@intel.com>
Cc: Steve Muckle <smuckle@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Todd Kjos <tkjos@android.com>
Cc: Vincent Guittot <vincent.guittot@linaro.org>
Cc: Viresh Kumar <viresh.kumar@linaro.org>
Link: http://lkml.kernel.org/r/20180309095245.11071-2-patrick.bellasi@arm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Pull cgroup fixes from Tejun Heo:
"Two commits to fix the following subtle cgroup2 behavior bugs:
- cpu.max was rejecting config when it shouldn't
- thread mode enable was allowed when it shouldn't"
* 'for-4.16-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup:
cgroup: fix rule checking for threaded mode switching
sched, cgroup: Don't reject lower cpu.max on ancestors
Since the return type of the function is bool, the internal
'ret' variable should be bool too.
Signed-off-by: Gaurav Jindal<gauravjindal1104@gmail.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20180221125407.GA14292@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
When NEWLY_IDLE load balance is not triggered, we might need to update the
blocked load anyway. We can kick an ilb so an idle CPU will take care of
updating blocked load or we can try to update them locally before entering
idle. In the latter case, we reuse part of the nohz_idle_balance.
Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: brendan.jackman@arm.com
Cc: dietmar.eggemann@arm.com
Cc: morten.rasmussen@foss.arm.com
Cc: valentin.schneider@arm.com
Link: http://lkml.kernel.org/r/1518622006-16089-4-git-send-email-vincent.guittot@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
We're going to want to call nohz_idle_balance() or parts thereof from
idle_balance(). Since we already have a forward declaration of
idle_balance() move it down such that it's below nohz_idle_balance()
avoiding the need for a forward declaration for that.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Now that we have two back-to-back NO_HZ_COMMON blocks, merge them.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
This pure code movement results in two #ifdef CONFIG_NO_HZ_COMMON
sections landing next to each other.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Avoid calling update_blocked_averages() when it does not in fact have
any by re-using/extending update_nohz_stats().
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Instead of using the cfs_rq_is_decayed() which monitors all *_avg
and *_sum, we create a cfs_rq_has_blocked() which only takes care of
util_avg and load_avg. We are only interested by these 2 values which are
decaying faster than the *_sum so we can stop the periodic update earlier.
Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: brendan.jackman@arm.com
Cc: dietmar.eggemann@arm.com
Cc: morten.rasmussen@foss.arm.com
Cc: valentin.schneider@arm.com
Link: http://lkml.kernel.org/r/1518517879-2280-3-git-send-email-vincent.guittot@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Stopped the periodic update of blocked load when all idle CPUs have fully
decayed. We introduce a new nohz.has_blocked that reflect if some idle
CPUs has blocked load that have to be periodiccally updated. nohz.has_blocked
is set everytime that a Idle CPU can have blocked load and it is then clear
when no more blocked load has been detected during an update. We don't need
atomic operation but only to make cure of the right ordering when updating
nohz.idle_cpus_mask and nohz.has_blocked.
Suggested-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: brendan.jackman@arm.com
Cc: dietmar.eggemann@arm.com
Cc: morten.rasmussen@foss.arm.com
Cc: valentin.schneider@arm.com
Link: http://lkml.kernel.org/r/1518517879-2280-2-git-send-email-vincent.guittot@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
It was suggested that a migration hint might be usefull for the
CPU-freq governors.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Juri Lelli <juri.lelli@arm.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Viresh Kumar <viresh.kumar@linaro.org>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The primary observation is that nohz enter/exit is always from the
current CPU, therefore NOHZ_TICK_STOPPED does not in fact need to be
an atomic.
Secondary is that we appear to have 2 nearly identical hooks in the
nohz enter code, set_cpu_sd_state_idle() and
nohz_balance_enter_idle(). Fold the whole set_cpu_sd_state thing into
nohz_balance_{enter,exit}_idle.
Removes an atomic op from both enter and exit paths.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Since we already iterate CPUs looking for work on NEWIDLE, use this
iteration to age the blocked load. If the domain for which this is
done completely spand the idle set, we can push the ILB based aging
forward.
Suggested-by: Brendan Jackman <brendan.jackman@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Teach the idle balancer about the need to update statistics which have
a different periodicity from regular balancing.
Suggested-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The current:
if (nohz_kick_needed())
nohz_balancer_kick()
is pointless complexity, fold them into a single call and avoid the
various conditions at the call site.
When we introduce multiple different needs to kick the ilb, the above
construct also becomes a problem.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Split the NOHZ idle balancer into doing two separate actions:
- update blocked load statistic
- actually load-balance
Since the latter requires the former, ensure this happens. For now
always tag both bits at the same time.
Prepares for a future where we can toggle only the STATS bit.
Suggested-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Using atomic_t allows us to use the more flexible bitops provided
there. Also its smaller.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Instead of trying to duplicate scheduler state to track if an RT task
is running, directly use the scheduler runqueue state for it.
This vastly simplifies things and fixes a number of bugs related to
sugov and the scheduler getting out of sync wrt this state.
As a consequence we not also update the remove cfs/dl state when
iterating the shared mask.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Juri Lelli <juri.lelli@arm.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Viresh Kumar <viresh.kumar@linaro.org>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Due to using GCC defines for configuration, some labels might be unused in
certain configurations. While adding a __maybe_unused to the label is
fine in general, the line has to be terminated with ';'. This is also
reflected in the GCC documentation, but GCC parsed the previous variant
without an error message.
This has been spotted while compiling with goto-cc, the compiler for the
CPROVER tool suite.
Signed-off-by: Norbert Manthey <nmanthey@amazon.de>
Signed-off-by: Michael Tautschnig <tautschn@amazon.co.uk>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1519717660-16157-1-git-send-email-nmanthey@amazon.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Make it easier to concatenate all the scheduler .c files for single-module
compilation.
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>