Change "max_addr" to "end" for less confusion in
memblock_alloc_range_nid comments.
Link: http://lkml.kernel.org/r/20191113051822.3296-1-ruansy.fnst@cn.fujitsu.com
Signed-off-by: Cao jin <caoj.fnst@cn.fujitsu.com>
Signed-off-by: Shiyang Ruan <ruansy.fnst@cn.fujitsu.com>
Reviewed-by: Mike Rapoport <rppt@linux.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
fix typos for:
elaboarte -> elaborate
architecure -> architecture
compltes -> completes
And, convert the markup :c:func:`foo` to foo() as kernel documentation
toolchain can recognize foo() as a function.
Link: http://lkml.kernel.org/r/20190912123127.8694-1-caoj.fnst@cn.fujitsu.com
Signed-off-by: Cao jin <caoj.fnst@cn.fujitsu.com>
Suggested-by: Mike Rapoport <rppt@linux.ibm.com>
Reviewed-by: Mike Rapoport <rppt@linux.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
mbind() is required to report EFAULT if range, specified by addr and
len, contains unmapped holes. In current implementation, below rules
are applied for this checking:
1: Unmapped holes at any part of the specified range should be reported
as EFAULT if mbind() for none MPOL_DEFAULT cases;
2: Unmapped holes at any part of the specified range should be ignored
(do not reprot EFAULT) if mbind() for MPOL_DEFAULT case;
3: The whole range in an unmapped hole should be reported as EFAULT;
Note that rule 2 does not fullfill the mbind() API definition, but since
that behavior has existed for long days (the internal flag
MPOL_MF_DISCONTIG_OK is for this purpose), this patch does not plan to
change it.
In current code, application observed inconsistent behavior on rule 1
and rule 2 respectively. That inconsistency is fixed as below details.
Cases of rule 1:
- Hole at head side of range. Current code reprot EFAULT, no change by
this patch.
[ vma ][ hole ][ vma ]
[ range ]
- Hole at middle of range. Current code report EFAULT, no change by
this patch.
[ vma ][ hole ][ vma ]
[ range ]
- Hole at tail side of range. Current code do not report EFAULT, this
patch fixes it.
[ vma ][ hole ][ vma ]
[ range ]
Cases of rule 2:
- Hole at head side of range. Current code reports EFAULT, this patch
fixes it.
[ vma ][ hole ][ vma ]
[ range ]
- Hole at middle of range. Current code does not report EFAULT, no
change by this patch.
[ vma ][ hole ][ vma]
[ range ]
- Hole at tail side of range. Current code does not report EFAULT, no
change by this patch.
[ vma ][ hole ][ vma]
[ range ]
This patch has no changes to rule 3.
The unmapped hole checking can also be handled by using .pte_hole(),
instead of .test_walk(). But .pte_hole() is called for holes inside and
outside vma, which causes more cost, so this patch keeps the original
design with .test_walk().
Link: http://lkml.kernel.org/r/1573218104-11021-3-git-send-email-lixinhai.lxh@gmail.com
Fixes: 6f4576e368 ("mempolicy: apply page table walker on queue_pages_range()")
Signed-off-by: Li Xinhai <lixinhai.lxh@gmail.com>
Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Hugh Dickins <hughd@google.com>
Cc: linux-man <linux-man@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "mm: Fix checking unmapped holes for mbind", v4.
This patchset fix checking unmapped holes for mbind().
First patch makes sure the vma been correctly tracked in .test_walk(),
so each time when .test_walk() is called, the neighborhood of two vma
is correct.
Current problem is that the !vma_migratable() check could cause return
immediately without update tracking to vma.
Second patch fix the inconsistent report of EFAULT when mbind() is
called for MPOL_DEFAULT and non MPOL_DEFAULT cases, so application do
not need to have workaround code to handle this special behavior.
Currently there are two problems, one is that the .test_walk() can not
know there is hole at tail side of range, because .test_walk() only
call for vma not for hole. The other one is that mbind_range() checks
for hole at head side of range but do not consider the
MPOL_MF_DISCONTIG_OK flag as done in .test_walk().
This patch (of 2):
Checking unmapped hole and updating the previous vma must be handled
first, otherwise the unmapped hole could be calculated from a wrong
previous vma.
Several commits were relevant to this error:
- commit 6f4576e368 ("mempolicy: apply page table walker on
queue_pages_range()")
This commit was correct, the VM_PFNMAP check was after updating
previous vma
- commit 48684a65b4 ("mm: pagewalk: fix misbehavior of
walk_page_range for vma(VM_PFNMAP)")
This commit added VM_PFNMAP check before updating previous vma. Then,
there were two VM_PFNMAP check did same thing twice.
- commit acda0c3340 ("mm/mempolicy.c: get rid of duplicated check for
vma(VM_PFNMAP) in queue_page s_range()")
This commit tried to fix the duplicated VM_PFNMAP check, but it
wrongly removed the one which was after updating vma.
Link: http://lkml.kernel.org/r/1573218104-11021-2-git-send-email-lixinhai.lxh@gmail.com
Fixes: acda0c3340 (mm/mempolicy.c: get rid of duplicated check for vma(VM_PFNMAP) in queue_pages_range())
Signed-off-by: Li Xinhai <lixinhai.lxh@gmail.com>
Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Hugh Dickins <hughd@google.com>
Cc: linux-man <linux-man@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
For each page scheduled for compaction (e. g. by z3fold_free()), try to
apply inter-page compaction before running the traditional/ existing
intra-page compaction. That means, if the page has only one buddy, we
treat that buddy as a new object that we aim to place into an existing
z3fold page. If such a page is found, that object is transferred and the
old page is freed completely. The transferred object is named "foreign"
and treated slightly differently thereafter.
Namely, we increase "foreign handle" counter for the new page. Pages with
non-zero "foreign handle" count become unmovable. This patch implements
"foreign handle" detection when a handle is freed to decrement the foreign
handle counter accordingly, so a page may as well become movable again as
the time goes by.
As a result, we almost always have exactly 3 objects per page and
significantly better average compression ratio.
[cai@lca.pw: fix -Wunused-but-set-variable warnings]
Link: http://lkml.kernel.org/r/1570542062-29144-1-git-send-email-cai@lca.pw
[vitalywool@gmail.com: avoid subtle race when freeing slots]
Link: http://lkml.kernel.org/r/20191127152118.6314b99074b0626d4c5a8835@gmail.com
[vitalywool@gmail.com: compact objects more accurately]
Link: http://lkml.kernel.org/r/20191127152216.6ad33745a21ba71c53606acb@gmail.com
[vitalywool@gmail.com: protect handle reads]
Link: http://lkml.kernel.org/r/20191127152345.8059852f60947686674d726d@gmail.com
Link: http://lkml.kernel.org/r/20191006041457.24113-1-vitalywool@gmail.com
Signed-off-by: Vitaly Wool <vitaly.vul@sony.com>
Cc: Dan Streetman <ddstreet@ieee.org>
Cc: Henry Burns <henrywolfeburns@gmail.com>
Cc: Shakeel Butt <shakeelb@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We split the LRU lists into inactive and an active parts to maximize
workingset protection while allowing just enough inactive cache space to
faciltate readahead and writeback for one-off file accesses (e.g. a
linear scan through a file, or logging); or just enough inactive anon to
maintain recent reference information when reclaim needs to swap.
With cgroups and their nested LRU lists, we currently don't do this
correctly. While recursive cgroup reclaim establishes a relative LRU
order among the pages of all involved cgroups, inactive:active size
decisions are done on a per-cgroup level. As a result, we'll reclaim a
cgroup's workingset when it doesn't have cold pages, even when one of its
siblings has plenty of it that should be reclaimed first.
For example: workload A has 50M worth of hot cache but doesn't do any
one-off file accesses; meanwhile, parallel workload B scans files and
rarely accesses the same page twice.
If these workloads were to run in an uncgrouped system, A would be
protected from the high rate of cache faults from B. But if they were put
in parallel cgroups for memory accounting purposes, B's fast cache fault
rate would push out the hot cache pages of A. This is unexpected and
undesirable - the "scan resistance" of the page cache is broken.
This patch moves inactive:active size balancing decisions to the root of
reclaim - the same level where the LRU order is established.
It does this by looking at the recursive size of the inactive and the
active file sets of the cgroup subtree at the beginning of the reclaim
cycle, and then making a decision - scan or skip active pages - that
applies throughout the entire run and to every cgroup involved.
With that in place, in the test above, the VM will recognize that there
are plenty of inactive pages in the combined cache set of workloads A and
B and prefer the one-off cache in B over the hot pages in A. The scan
resistance of the cache is restored.
[cai@lca.pw: fix some -Wenum-conversion warnings]
Link: http://lkml.kernel.org/r/1573848697-29262-1-git-send-email-cai@lca.pw
Link: http://lkml.kernel.org/r/20191107205334.158354-4-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Suren Baghdasaryan <surenb@google.com>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Rik van Riel <riel@surriel.com>
Cc: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We use refault information to determine whether the cache workingset is
stable or transitioning, and dynamically adjust the inactive:active file
LRU ratio so as to maximize protection from one-off cache during stable
periods, and minimize IO during transitions.
With cgroups and their nested LRU lists, we currently don't do this
correctly. While recursive cgroup reclaim establishes a relative LRU
order among the pages of all involved cgroups, refaults only affect the
local LRU order in the cgroup in which they are occuring. As a result,
cache transitions can take longer in a cgrouped system as the active pages
of sibling cgroups aren't challenged when they should be.
[ Right now, this is somewhat theoretical, because the siblings, under
continued regular reclaim pressure, should eventually run out of
inactive pages - and since inactive:active *size* balancing is also
done on a cgroup-local level, we will challenge the active pages
eventually in most cases. But the next patch will move that relative
size enforcement to the reclaim root as well, and then this patch
here will be necessary to propagate refault pressure to siblings. ]
This patch moves refault detection to the root of reclaim. Instead of
remembering the cgroup owner of an evicted page, remember the cgroup that
caused the reclaim to happen. When refaults later occur, they'll
correctly influence the cross-cgroup LRU order that reclaim follows.
I.e. if global reclaim kicked out pages in some subgroup A/B/C, the
refault of those pages will challenge the global LRU order, and not just
the local order down inside C.
[hannes@cmpxchg.org: use page_memcg() instead of another lookup]
Link: http://lkml.kernel.org/r/20191115160722.GA309754@cmpxchg.org
Link: http://lkml.kernel.org/r/20191107205334.158354-3-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Suren Baghdasaryan <surenb@google.com>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Rik van Riel <riel@surriel.com>
Cc: Shakeel Butt <shakeelb@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "mm: fix page aging across multiple cgroups".
When applications are put into unconfigured cgroups for memory accounting
purposes, the cgrouping itself should not change the behavior of the page
reclaim code. We expect the VM to reclaim the coldest pages in the
system. But right now the VM can reclaim hot pages in one cgroup while
there is eligible cold cache in others.
This is because one part of the reclaim algorithm isn't truly cgroup
hierarchy aware: the inactive/active list balancing. That is the part
that is supposed to protect hot cache data from one-off streaming IO.
The recursive cgroup reclaim scheme will scan and rotate the physical LRU
lists of each eligible cgroup at the same rate in a round-robin fashion,
thereby establishing a relative order among the pages of all those
cgroups. However, the inactive/active balancing decisions are made
locally within each cgroup, so when a cgroup is running low on cold pages,
its hot pages will get reclaimed - even when sibling cgroups have plenty
of cold cache eligible in the same reclaim run.
For example:
[root@ham ~]# head -n1 /proc/meminfo
MemTotal: 1016336 kB
[root@ham ~]# ./reclaimtest2.sh
Establishing 50M active files in cgroup A...
Hot pages cached: 12800/12800 workingset-a
Linearly scanning through 18G of file data in cgroup B:
real 0m4.269s
user 0m0.051s
sys 0m4.182s
Hot pages cached: 134/12800 workingset-a
The streaming IO in B, which doesn't benefit from caching at all, pushes
out most of the workingset in A.
Solution
This series fixes the problem by elevating inactive/active balancing
decisions to the toplevel of the reclaim run. This is either a cgroup
that hit its limit, or straight-up global reclaim if there is physical
memory pressure. From there, it takes a recursive view of the cgroup
subtree to decide whether page deactivation is necessary.
In the test above, the VM will then recognize that cgroup B has plenty of
eligible cold cache, and that the hot pages in A can be spared:
[root@ham ~]# ./reclaimtest2.sh
Establishing 50M active files in cgroup A...
Hot pages cached: 12800/12800 workingset-a
Linearly scanning through 18G of file data in cgroup B:
real 0m4.244s
user 0m0.064s
sys 0m4.177s
Hot pages cached: 12800/12800 workingset-a
Implementation
Whether active pages can be deactivated or not is influenced by two
factors: the inactive list dropping below a minimum size relative to the
active list, and the occurence of refaults.
This patch series first moves refault detection to the reclaim root, then
enforces the minimum inactive size based on a recursive view of the cgroup
tree's LRUs.
History
Note that this actually never worked correctly in Linux cgroups. In the
past it worked for global reclaim and leaf limit reclaim only (we used to
have two physical LRU linkages per page), but it never worked for
intermediate limit reclaim over multiple leaf cgroups.
We're noticing this now because 1) we're putting everything into cgroups
for accounting, not just the things we want to control and 2) we're moving
away from leaf limits that invoke reclaim on individual cgroups, toward
large tree reclaim, triggered by high-level limits, or physical memory
pressure that is influenced by local protections such as memory.low and
memory.min instead.
This patch (of 3):
When file pages are lower than the watermark on a node, we try to force
scan anonymous pages to counter-act the balancing algorithms preference
for new file pages when they are likely thrashing. This is a node-level
decision, but it's currently made each time we look at an lruvec. This is
unnecessarily expensive and also a layering violation that makes the code
harder to understand.
Clean this up by making the check once per node and setting a flag in the
scan_control.
Link: http://lkml.kernel.org/r/20191107205334.158354-2-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Reviewed-by: Suren Baghdasaryan <surenb@google.com>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Rik van Riel <riel@surriel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The current writeback congestion tracking has separate flags for kswapd
reclaim (node level) and cgroup limit reclaim (memcg-node level). This is
unnecessarily complicated: the lruvec is an existing abstraction layer for
that node-memcg intersection.
Introduce lruvec->flags and LRUVEC_CONGESTED. Then track that at the
reclaim root level, which is either the NUMA node for global reclaim, or
the cgroup-node intersection for cgroup reclaim.
Link: http://lkml.kernel.org/r/20191022144803.302233-9-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Roman Gushchin <guro@fb.com>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Cc: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This function is getting long and unwieldy, split out the memcg bits.
The updated shrink_node() handles the generic (node) reclaim aspects:
- global vmpressure notifications
- writeback and congestion throttling
- reclaim/compaction management
- kswapd giving up on unreclaimable nodes
It then calls a new shrink_node_memcgs() which handles cgroup specifics:
- the cgroup tree traversal
- memory.low considerations
- per-cgroup slab shrinking callbacks
- per-cgroup vmpressure notifications
[hannes@cmpxchg.org: rename "root" to "target_memcg", per Roman]
Link: http://lkml.kernel.org/r/20191025143640.GA386981@cmpxchg.org
Link: http://lkml.kernel.org/r/20191022144803.302233-8-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Roman Gushchin <guro@fb.com>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
An lruvec holds LRU pages owned by a certain NUMA node and cgroup.
Instead of awkwardly passing around a combination of a pgdat and a memcg
pointer, pass down the lruvec as soon as we can look it up.
Nested callers that need to access node or cgroup properties can look them
them up if necessary, but there are only a few cases.
Link: http://lkml.kernel.org/r/20191022144803.302233-7-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Roman Gushchin <guro@fb.com>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Most of the function body is inside a loop, which imposes an additional
indentation and scoping level that makes the code a bit hard to follow and
modify.
The looping only happens in case of reclaim-compaction, which isn't the
common case. So rather than adding yet another function level to the
reclaim path and have every reclaim invocation go through a level that
only exists for one specific cornercase, use a retry goto.
Link: http://lkml.kernel.org/r/20191022144803.302233-6-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Roman Gushchin <guro@fb.com>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Cc: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Seven years after introducing the global_reclaim() function, I still have
to double take when reading a callsite. I don't know how others do it,
this is a terrible name.
Invert the meaning and rename it to cgroup_reclaim().
[ After all, "global reclaim" is just regular reclaim invoked from the
page allocator. It's reclaim on behalf of a cgroup limit that is a
special case of reclaim, and should be explicit - not the reverse. ]
sane_reclaim() isn't very descriptive either: it tests whether we can use
the regular writeback throttling - available during regular page reclaim
or cgroup2 limit reclaim - or need to use the broken
wait_on_page_writeback() method. Use "writeback_throttling_sane()".
Link: http://lkml.kernel.org/r/20191022144803.302233-5-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Roman Gushchin <guro@fb.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
inactive_list_is_low() should be about one thing: checking the ratio
between inactive and active list. Kitchensink checks like the one for
swap space makes the function hard to use and modify its callsites.
Luckly, most callers already have an understanding of the swap situation,
so it's easy to clean up.
get_scan_count() has its own, memcg-aware swap check, and doesn't even get
to the inactive_list_is_low() check on the anon list when there is no swap
space available.
shrink_list() is called on the results of get_scan_count(), so that check
is redundant too.
age_active_anon() has its own totalswap_pages check right before it checks
the list proportions.
The shrink_node_memcg() site is the only one that doesn't do its own swap
check. Add it there.
Then delete the swap check from inactive_list_is_low().
Link: http://lkml.kernel.org/r/20191022144803.302233-4-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Roman Gushchin <guro@fb.com>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
There is a per-memcg lruvec and a NUMA node lruvec. Which one is being
used is somewhat confusing right now, and it's easy to make mistakes -
especially when it comes to global reclaim.
How it works: when memory cgroups are enabled, we always use the
root_mem_cgroup's per-node lruvecs. When memory cgroups are not compiled
in or disabled at runtime, we use pgdat->lruvec.
Document that in a comment.
Due to the way the reclaim code is generalized, all lookups use the
mem_cgroup_lruvec() helper function, and nobody should have to find the
right lruvec manually right now. But to avoid future mistakes, rename the
pgdat->lruvec member to pgdat->__lruvec and delete the convenience wrapper
that suggests it's a commonly accessed member.
While in this area, swap the mem_cgroup_lruvec() argument order. The name
suggests a memcg operation, yet it takes a pgdat first and a memcg second.
I have to double take every time I call this. Fix that.
Link: http://lkml.kernel.org/r/20191022144803.302233-3-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Cc: Roman Gushchin <guro@fb.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "mm: vmscan: cgroup-related cleanups".
Here are 8 patches that clean up the reclaim code's interaction with
cgroups a bit. They're not supposed to change any behavior, just make
the implementation easier to understand and work with.
This patch (of 8):
This function currently takes the node or lruvec size and subtracts the
zones that are excluded by the classzone index of the allocation. It uses
four different types of counters to do this.
Just add up the eligible zones.
[cai@lca.pw: fix an undefined behavior for zone id]
Link: http://lkml.kernel.org/r/20191108204407.1435-1-cai@lca.pw
[akpm@linux-foundation.org: deal with the MAX_NR_ZONES special case. per Qian Cai]
Link: http://lkml.kernel.org/r/64E60F6F-7582-427B-8DD5-EF97B1656F5A@lca.pw
Link: http://lkml.kernel.org/r/20191022144803.302233-2-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Roman Gushchin <guro@fb.com>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Since lumpy reclaim was removed in v3.5 scan_control is not used by
may_write_to_{queue|inode} and pageout() anymore, remove the unused
parameter.
Link: http://lkml.kernel.org/r/1570124498-19300-1-git-send-email-yang.shi@linux.alibaba.com
Signed-off-by: Yang Shi <yang.shi@linux.alibaba.com>
Acked-by: David Rientjes <rientjes@google.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Since 9092c71bb7 ("mm: use sc->priority for slab shrink targets") the
argument 'unsigned long *lru_pages' passed around with no purpose. Remove
it.
Link: http://lkml.kernel.org/r/20190228083329.31892-4-aryabinin@virtuozzo.com
Signed-off-by: Andrey Ryabinin <aryabinin@virtuozzo.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Rik van Riel <riel@surriel.com>
Cc: William Kucharski <william.kucharski@oracle.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Print nr_reserved_highatomic in show_free_areas, because when alloc_harder
is false, this value will be subtracted from the free_pages in
__zone_watermark_ok. Printing this value can help analyze memory
allocaction failure issues.
Link: http://lkml.kernel.org/r/19515f3de2fb6abe66b52e03e4b676a21e82beda.1573634806.git.lijiazi@xiaomi.com
Signed-off-by: lijiazi <lijiazi@xiaomi.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Memory hotplug needs to be able to reset and reinit the pcpu allocator
batch and high limits but this action is internal to the VM. Move the
declaration to internal.h
Link: http://lkml.kernel.org/r/20191021094808.28824-4-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Matt Fleming <matt@codeblueprint.co.uk>
Cc: Qian Cai <cai@lca.pw>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Both the percpu_pagelist_fraction sysctl handler and memory hotplug have
a common requirement of updating the pcpu page allocation batch and high
values. Split the relevant helper to share common code.
No functional change.
Link: http://lkml.kernel.org/r/20191021094808.28824-3-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Matt Fleming <matt@codeblueprint.co.uk>
Cc: Qian Cai <cai@lca.pw>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
HugeTLB helper alloc_gigantic_page() implements fairly generic
allocation method where it scans over various zones looking for a large
contiguous pfn range before trying to allocate it with
alloc_contig_range().
Other than deriving the requested order from 'struct hstate', there is
nothing HugeTLB specific in there. This can be made available for
general use to allocate contiguous memory which could not have been
allocated through the buddy allocator.
alloc_gigantic_page() has been split carving out actual allocation
method which is then made available via new alloc_contig_pages() helper
wrapped under CONFIG_CONTIG_ALLOC. All references to 'gigantic' have
been replaced with more generic term 'contig'. Allocated pages here
should be freed with free_contig_range() or by calling __free_page() on
each allocated page.
Link: http://lkml.kernel.org/r/1571300646-32240-1-git-send-email-anshuman.khandual@arm.com
Signed-off-by: Anshuman Khandual <anshuman.khandual@arm.com>
Acked-by: David Hildenbrand <david@redhat.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Michal Hocko <mhocko@suse.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Mike Rapoport <rppt@linux.ibm.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Pavel Tatashin <pavel.tatashin@microsoft.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: David Hildenbrand <david@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "kasan: support backing vmalloc space with real shadow
memory", v11.
Currently, vmalloc space is backed by the early shadow page. This means
that kasan is incompatible with VMAP_STACK.
This series provides a mechanism to back vmalloc space with real,
dynamically allocated memory. I have only wired up x86, because that's
the only currently supported arch I can work with easily, but it's very
easy to wire up other architectures, and it appears that there is some
work-in-progress code to do this on arm64 and s390.
This has been discussed before in the context of VMAP_STACK:
- https://bugzilla.kernel.org/show_bug.cgi?id=202009
- https://lkml.org/lkml/2018/7/22/198
- https://lkml.org/lkml/2019/7/19/822
In terms of implementation details:
Most mappings in vmalloc space are small, requiring less than a full
page of shadow space. Allocating a full shadow page per mapping would
therefore be wasteful. Furthermore, to ensure that different mappings
use different shadow pages, mappings would have to be aligned to
KASAN_SHADOW_SCALE_SIZE * PAGE_SIZE.
Instead, share backing space across multiple mappings. Allocate a
backing page when a mapping in vmalloc space uses a particular page of
the shadow region. This page can be shared by other vmalloc mappings
later on.
We hook in to the vmap infrastructure to lazily clean up unused shadow
memory.
Testing with test_vmalloc.sh on an x86 VM with 2 vCPUs shows that:
- Turning on KASAN, inline instrumentation, without vmalloc, introuduces
a 4.1x-4.2x slowdown in vmalloc operations.
- Turning this on introduces the following slowdowns over KASAN:
* ~1.76x slower single-threaded (test_vmalloc.sh performance)
* ~2.18x slower when both cpus are performing operations
simultaneously (test_vmalloc.sh sequential_test_order=1)
This is unfortunate but given that this is a debug feature only, not the
end of the world. The benchmarks are also a stress-test for the vmalloc
subsystem: they're not indicative of an overall 2x slowdown!
This patch (of 4):
Hook into vmalloc and vmap, and dynamically allocate real shadow memory
to back the mappings.
Most mappings in vmalloc space are small, requiring less than a full
page of shadow space. Allocating a full shadow page per mapping would
therefore be wasteful. Furthermore, to ensure that different mappings
use different shadow pages, mappings would have to be aligned to
KASAN_SHADOW_SCALE_SIZE * PAGE_SIZE.
Instead, share backing space across multiple mappings. Allocate a
backing page when a mapping in vmalloc space uses a particular page of
the shadow region. This page can be shared by other vmalloc mappings
later on.
We hook in to the vmap infrastructure to lazily clean up unused shadow
memory.
To avoid the difficulties around swapping mappings around, this code
expects that the part of the shadow region that covers the vmalloc space
will not be covered by the early shadow page, but will be left unmapped.
This will require changes in arch-specific code.
This allows KASAN with VMAP_STACK, and may be helpful for architectures
that do not have a separate module space (e.g. powerpc64, which I am
currently working on). It also allows relaxing the module alignment
back to PAGE_SIZE.
Testing with test_vmalloc.sh on an x86 VM with 2 vCPUs shows that:
- Turning on KASAN, inline instrumentation, without vmalloc, introuduces
a 4.1x-4.2x slowdown in vmalloc operations.
- Turning this on introduces the following slowdowns over KASAN:
* ~1.76x slower single-threaded (test_vmalloc.sh performance)
* ~2.18x slower when both cpus are performing operations
simultaneously (test_vmalloc.sh sequential_test_order=3D1)
This is unfortunate but given that this is a debug feature only, not the
end of the world.
The full benchmark results are:
Performance
No KASAN KASAN original x baseline KASAN vmalloc x baseline x KASAN
fix_size_alloc_test 662004 11404956 17.23 19144610 28.92 1.68
full_fit_alloc_test 710950 12029752 16.92 13184651 18.55 1.10
long_busy_list_alloc_test 9431875 43990172 4.66 82970178 8.80 1.89
random_size_alloc_test 5033626 23061762 4.58 47158834 9.37 2.04
fix_align_alloc_test 1252514 15276910 12.20 31266116 24.96 2.05
random_size_align_alloc_te 1648501 14578321 8.84 25560052 15.51 1.75
align_shift_alloc_test 147 830 5.65 5692 38.72 6.86
pcpu_alloc_test 80732 125520 1.55 140864 1.74 1.12
Total Cycles 119240774314 763211341128 6.40 1390338696894 11.66 1.82
Sequential, 2 cpus
No KASAN KASAN original x baseline KASAN vmalloc x baseline x KASAN
fix_size_alloc_test 1423150 14276550 10.03 27733022 19.49 1.94
full_fit_alloc_test 1754219 14722640 8.39 15030786 8.57 1.02
long_busy_list_alloc_test 11451858 52154973 4.55 107016027 9.34 2.05
random_size_alloc_test 5989020 26735276 4.46 68885923 11.50 2.58
fix_align_alloc_test 2050976 20166900 9.83 50491675 24.62 2.50
random_size_align_alloc_te 2858229 17971700 6.29 38730225 13.55 2.16
align_shift_alloc_test 405 6428 15.87 26253 64.82 4.08
pcpu_alloc_test 127183 151464 1.19 216263 1.70 1.43
Total Cycles 54181269392 308723699764 5.70 650772566394 12.01 2.11
fix_size_alloc_test 1420404 14289308 10.06 27790035 19.56 1.94
full_fit_alloc_test 1736145 14806234 8.53 15274301 8.80 1.03
long_busy_list_alloc_test 11404638 52270785 4.58 107550254 9.43 2.06
random_size_alloc_test 6017006 26650625 4.43 68696127 11.42 2.58
fix_align_alloc_test 2045504 20280985 9.91 50414862 24.65 2.49
random_size_align_alloc_te 2845338 17931018 6.30 38510276 13.53 2.15
align_shift_alloc_test 472 3760 7.97 9656 20.46 2.57
pcpu_alloc_test 118643 132732 1.12 146504 1.23 1.10
Total Cycles 54040011688 309102805492 5.72 651325675652 12.05 2.11
[dja@axtens.net: fixups]
Link: http://lkml.kernel.org/r/20191120052719.7201-1-dja@axtens.net
Link: https://bugzilla.kernel.org/show_bug.cgi?id=3D202009
Link: http://lkml.kernel.org/r/20191031093909.9228-2-dja@axtens.net
Signed-off-by: Mark Rutland <mark.rutland@arm.com> [shadow rework]
Signed-off-by: Daniel Axtens <dja@axtens.net>
Co-developed-by: Mark Rutland <mark.rutland@arm.com>
Acked-by: Vasily Gorbik <gor@linux.ibm.com>
Reviewed-by: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Christophe Leroy <christophe.leroy@c-s.fr>
Cc: Qian Cai <cai@lca.pw>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
With the new allocation approach introduced in the 5.2 kernel, it
becomes possible to get rid of one global spinlock. By doing that we
can further improve the KVA from the performance point of view.
Basically we can have two independent locks, one for allocation part and
another one for deallocation, because of two different entities: "free
data structures" and "busy data structures".
As a result, allocation/deallocation operations can still interfere
between each other in case of running simultaneously on different CPUs,
it means there is still dependency, but with two locks it becomes lower.
Summarizing:
- it reduces the high lock contention
- it allows to perform operations on "free" and "busy"
trees in parallel on different CPUs. Please note it
does not solve scalability issue.
Test results:
In order to evaluate this patch, we can run "vmalloc test driver" to see
how many CPU cycles it takes to complete all test cases running
sequentially. All online CPUs run it so it will cause a high lock
contention.
HiKey 960, ARM64, 8xCPUs, big.LITTLE:
<snip>
sudo ./test_vmalloc.sh sequential_test_order=1
<snip>
<default>
[ 390.950557] All test took CPU0=457126382 cycles
[ 391.046690] All test took CPU1=454763452 cycles
[ 391.128586] All test took CPU2=454539334 cycles
[ 391.222669] All test took CPU3=455649517 cycles
[ 391.313946] All test took CPU4=388272196 cycles
[ 391.410425] All test took CPU5=384036264 cycles
[ 391.492219] All test took CPU6=387432964 cycles
[ 391.578433] All test took CPU7=387201996 cycles
<default>
<patched>
[ 304.721224] All test took CPU0=391521310 cycles
[ 304.821219] All test took CPU1=393533002 cycles
[ 304.917120] All test took CPU2=392243032 cycles
[ 305.008986] All test took CPU3=392353853 cycles
[ 305.108944] All test took CPU4=297630721 cycles
[ 305.196406] All test took CPU5=297548736 cycles
[ 305.288602] All test took CPU6=297092392 cycles
[ 305.381088] All test took CPU7=297293597 cycles
<patched>
~14%-23% patched variant is better.
Link: http://lkml.kernel.org/r/20191022155800.20468-1-urezki@gmail.com
Signed-off-by: Uladzislau Rezki (Sony) <urezki@gmail.com>
Acked-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Hillf Danton <hdanton@sina.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Oleksiy Avramchenko <oleksiy.avramchenko@sonymobile.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When fit type is NE_FIT_TYPE there is a need in one extra object.
Usually the "ne_fit_preload_node" per-CPU variable has it and there is
no need in GFP_NOWAIT allocation, but there are exceptions.
This commit just adds more explanations, as a result giving answers on
questions like when it can occur, how often, under which conditions and
what happens if GFP_NOWAIT gets failed.
Link: http://lkml.kernel.org/r/20191016095438.12391-3-urezki@gmail.com
Signed-off-by: Uladzislau Rezki (Sony) <urezki@gmail.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Daniel Wagner <dwagner@suse.de>
Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Uladzislau Rezki <urezki@gmail.com>
Cc: Hillf Danton <hdanton@sina.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Oleksiy Avramchenko <oleksiy.avramchenko@sonymobile.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Allocation functions should comply with the given gfp_mask as much as
possible. The preallocation code in alloc_vmap_area doesn't follow that
pattern and it is using a hardcoded GFP_KERNEL. Although this doesn't
really make much difference because vmalloc is not GFP_NOWAIT compliant
in general (e.g. page table allocations are GFP_KERNEL) there is no
reason to spread that bad habit and it is good to fix the antipattern.
[mhocko@suse.com: rewrite changelog]
Link: http://lkml.kernel.org/r/20191016095438.12391-2-urezki@gmail.com
Signed-off-by: Uladzislau Rezki (Sony) <urezki@gmail.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Daniel Wagner <dwagner@suse.de>
Cc: Hillf Danton <hdanton@sina.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Oleksiy Avramchenko <oleksiy.avramchenko@sonymobile.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Some background. The preemption was disabled before to guarantee that a
preloaded object is available for a CPU, it was stored for. That was
achieved by combining the disabling the preemption and taking the spin
lock while the ne_fit_preload_node is checked.
The aim was to not allocate in atomic context when spinlock is taken
later, for regular vmap allocations. But that approach conflicts with
CONFIG_PREEMPT_RT philosophy. It means that calling spin_lock() with
disabled preemption is forbidden in the CONFIG_PREEMPT_RT kernel.
Therefore, get rid of preempt_disable() and preempt_enable() when the
preload is done for splitting purpose. As a result we do not guarantee
now that a CPU is preloaded, instead we minimize the case when it is
not, with this change, by populating the per cpu preload pointer under
the vmap_area_lock.
This implies that at least each caller that has done the preallocation
will not fallback to an atomic allocation later. It is possible that
the preallocation would be pointless or that no preallocation is done
because of the race but the data shows that this is really rare.
For example i run the special test case that follows the preload pattern
and path. 20 "unbind" threads run it and each does 1000000 allocations.
Only 3.5 times among 1000000 a CPU was not preloaded. So it can happen
but the number is negligible.
[mhocko@suse.com: changelog additions]
Link: http://lkml.kernel.org/r/20191016095438.12391-1-urezki@gmail.com
Fixes: 82dd23e84b ("mm/vmalloc.c: preload a CPU with one object for split purpose")
Signed-off-by: Uladzislau Rezki (Sony) <urezki@gmail.com>
Reviewed-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Acked-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Acked-by: Daniel Wagner <dwagner@suse.de>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Hillf Danton <hdanton@sina.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Oleksiy Avramchenko <oleksiy.avramchenko@sonymobile.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
gfpflags_allow_blocking() does not care about __GFP_HIGHMEM, so
highmem_mask can be removed.
Link: http://lkml.kernel.org/r/1568812319-3467-1-git-send-email-liuxiang_1999@126.com
Signed-off-by: Liu Xiang <liuxiang_1999@126.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Vincent has noticed [1] that there is something unusual with the memmap
allocations going on on his platform
: I noticed this because on my ARM64 platform, with 1 GiB of memory the
: first [and only] section is allocated from the zeroing path while with
: 2 GiB of memory the first 1 GiB section is allocated from the
: non-zeroing path.
The underlying problem is that although sparse_buffer_init allocates
enough memory for all sections on the node sparse_buffer_alloc is not
able to consume them due to mismatch in the expected allocation
alignement. While sparse_buffer_init preallocation uses the PAGE_SIZE
alignment the real memmap has to be aligned to section_map_size() this
results in a wasted initial chunk of the preallocated memmap and
unnecessary fallback allocation for a section.
While we are at it also change __populate_section_memmap to align to the
requested size because at least VMEMMAP has constrains to have memmap
properly aligned.
[1] http://lkml.kernel.org/r/20191030131122.8256-1-vincent.whitchurch@axis.com
[akpm@linux-foundation.org: tweak layout, per David]
Link: http://lkml.kernel.org/r/20191119092642.31799-1-mhocko@kernel.org
Fixes: 35fd1eb1e8 ("mm/sparse: abstract sparse buffer allocations")
Signed-off-by: Michal Hocko <mhocko@suse.com>
Reported-by: Vincent Whitchurch <vincent.whitchurch@axis.com>
Debugged-by: Vincent Whitchurch <vincent.whitchurch@axis.com>
Acked-by: David Hildenbrand <david@redhat.com>
Cc: Pavel Tatashin <pasha.tatashin@soleen.com>
Cc: Oscar Salvador <OSalvador@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Building the kernel on s390 with -Og produces the following warning:
WARNING: vmlinux.o(.text+0x28dabe): Section mismatch in reference from the function populate_section_memmap() to the function .meminit.text:__populate_section_memmap()
The function populate_section_memmap() references
the function __meminit __populate_section_memmap().
This is often because populate_section_memmap lacks a __meminit
annotation or the annotation of __populate_section_memmap is wrong.
While -Og is not supported, in theory this might still happen with
another compiler or on another architecture. So fix this by using the
correct section annotations.
[iii@linux.ibm.com: v2]
Link: http://lkml.kernel.org/r/20191030151639.41486-1-iii@linux.ibm.com
Link: http://lkml.kernel.org/r/20191028165549.14478-1-iii@linux.ibm.com
Signed-off-by: Ilya Leoshkevich <iii@linux.ibm.com>
Acked-by: David Hildenbrand <david@redhat.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Oscar Salvador <OSalvador@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
sparsemem without VMEMMAP has two allocation paths to allocate the
memory needed for its memmap (done in sparse_mem_map_populate()).
In one allocation path (sparse_buffer_alloc() succeeds), the memory is
not zeroed (since it was previously allocated with
memblock_alloc_try_nid_raw()).
In the other allocation path (sparse_buffer_alloc() fails and
sparse_mem_map_populate() falls back to memblock_alloc_try_nid()), the
memory is zeroed.
AFAICS this difference does not appear to be on purpose. If the code is
supposed to work with non-initialized memory (__init_single_page() takes
care of zeroing the struct pages which are actually used), we should
consistently not zero the memory, to avoid masking bugs.
( I noticed this because on my ARM64 platform, with 1 GiB of memory the
first [and only] section is allocated from the zeroing path while with
2 GiB of memory the first 1 GiB section is allocated from the
non-zeroing path. )
Michal:
"the main user visible problem is a memory wastage. The overal amount
of memory should be small. I wouldn't call it stable material."
Link: http://lkml.kernel.org/r/20191030131122.8256-1-vincent.whitchurch@axis.com
Signed-off-by: Vincent Whitchurch <vincent.whitchurch@axis.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Reviewed-by: Pavel Tatashin <pasha.tatashin@soleen.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Our onlining/offlining code is unnecessarily complicated. Only memory
blocks added during boot can have holes (a range that is not
IORESOURCE_SYSTEM_RAM). Hotplugged memory never has holes (e.g., see
add_memory_resource()). All memory blocks that belong to boot memory
are already online.
Note that boot memory can have holes and the memmap of the holes is
marked PG_reserved. However, also memory allocated early during boot is
PG_reserved - basically every page of boot memory that is not given to
the buddy is PG_reserved.
Therefore, when we stop allowing to offline memory blocks with holes, we
implicitly no longer have to deal with onlining memory blocks with
holes. E.g., online_pages() will do a walk_system_ram_range(...,
online_pages_range), whereby online_pages_range() will effectively only
free the memory holes not falling into a hole to the buddy. The other
pages (holes) are kept PG_reserved (via
move_pfn_range_to_zone()->memmap_init_zone()).
This allows to simplify the code. For example, we no longer have to
worry about marking pages that fall into memory holes PG_reserved when
onlining memory. We can stop setting pages PG_reserved completely in
memmap_init_zone().
Offlining memory blocks added during boot is usually not guaranteed to
work either way (unmovable data might have easily ended up on that
memory during boot). So stopping to do that should not really hurt.
Also, people are not even aware of a setup where onlining/offlining of
memory blocks with holes used to work reliably (see [1] and [2]
especially regarding the hotplug path) - I doubt it worked reliably.
For the use case of offlining memory to unplug DIMMs, we should see no
change. (holes on DIMMs would be weird).
Please note that hardware errors (PG_hwpoison) are not memory holes and
are not affected by this change when offlining.
[1] https://lkml.org/lkml/2019/10/22/135
[2] https://lkml.org/lkml/2019/8/14/1365
Link: http://lkml.kernel.org/r/20191119115237.6662-1-david@redhat.com
Reviewed-by: Dan Williams <dan.j.williams@intel.com>
Signed-off-by: David Hildenbrand <david@redhat.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Pavel Tatashin <pasha.tatashin@soleen.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Anshuman Khandual <anshuman.khandual@arm.com>
Cc: Naoya Horiguchi <nao.horiguchi@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We have two types of users of page isolation:
1. Memory offlining: Offline memory so it can be unplugged. Memory
won't be touched.
2. Memory allocation: Allocate memory (e.g., alloc_contig_range()) to
become the owner of the memory and make use of
it.
For example, in case we want to offline memory, we can ignore (skip
over) PageHWPoison() pages, as the memory won't get used. We can allow
to offline memory. In contrast, we don't want to allow to allocate such
memory.
Let's generalize the approach so we can special case other types of
pages we want to skip over in case we offline memory. While at it, also
pass the same flags to test_pages_isolated().
Link: http://lkml.kernel.org/r/20191021172353.3056-3-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Suggested-by: Michal Hocko <mhocko@suse.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Anshuman Khandual <anshuman.khandual@arm.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Pingfan Liu <kernelfans@gmail.com>
Cc: Qian Cai <cai@lca.pw>
Cc: Pavel Tatashin <pasha.tatashin@soleen.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Mike Rapoport <rppt@linux.vnet.ibm.com>
Cc: Alexander Duyck <alexander.h.duyck@linux.intel.com>
Cc: Mike Rapoport <rppt@linux.ibm.com>
Cc: Pavel Tatashin <pavel.tatashin@microsoft.com>
Cc: Wei Yang <richard.weiyang@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "mm: Memory offlining + page isolation cleanups", v2.
This patch (of 2):
We call __offline_isolated_pages() from __offline_pages() after all
pages were isolated and are either free (PageBuddy()) or PageHWPoison.
Nothing can stop us from offlining memory at this point.
In __offline_isolated_pages() we first set all affected memory sections
offline (offline_mem_sections(pfn, end_pfn)), to mark the memmap as
invalid (pfn_to_online_page() will no longer succeed), and then walk
over all pages to pull the free pages from the free lists (to the
isolated free lists, to be precise).
Note that re-onlining a memory block will result in the whole memmap
getting reinitialized, overwriting any old state. We already poision
the memmap when offlining is complete to find any access to
stale/uninitialized memmaps.
So, setting the pages PageReserved() is not helpful. The memap is
marked offline and all pageblocks are isolated. As soon as offline, the
memmap is stale either way.
This looks like a leftover from ancient times where we initialized the
memmap when adding memory and not when onlining it (the pages were set
PageReserved so re-onling would work as expected).
Link: http://lkml.kernel.org/r/20191021172353.3056-2-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Mike Rapoport <rppt@linux.ibm.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Wei Yang <richard.weiyang@gmail.com>
Cc: Alexander Duyck <alexander.h.duyck@linux.intel.com>
Cc: Anshuman Khandual <anshuman.khandual@arm.com>
Cc: Pavel Tatashin <pavel.tatashin@microsoft.com>
Cc: Mike Rapoport <rppt@linux.vnet.ibm.com>
Cc: Pavel Tatashin <pasha.tatashin@soleen.com>
Cc: Pingfan Liu <kernelfans@gmail.com>
Cc: Qian Cai <cai@lca.pw>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Let's drop the now unused functions.
Link: http://lkml.kernel.org/r/20190909114830.662-4-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Oscar Salvador <osalvador@suse.com>
Cc: Pavel Tatashin <pasha.tatashin@soleen.com>
Cc: Wei Yang <richard.weiyang@gmail.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Qian Cai <cai@lca.pw>
Cc: Haiyang Zhang <haiyangz@microsoft.com>
Cc: "K. Y. Srinivasan" <kys@microsoft.com>
Cc: Sasha Levin <sashal@kernel.org>
Cc: Stephen Hemminger <sthemmin@microsoft.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "mm/memory_hotplug: Export generic_online_page()".
Let's replace the __online_page...() functions by generic_online_page().
Hyper-V only wants to delay the actual onlining of un-backed pages, so
we can simpy re-use the generic function.
This patch (of 3):
Let's expose generic_online_page() so online_page_callback users can
simply fall back to the generic implementation when actually deciding to
online the pages.
Link: http://lkml.kernel.org/r/20190909114830.662-2-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Oscar Salvador <osalvador@suse.com>
Cc: Pavel Tatashin <pasha.tatashin@soleen.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Wei Yang <richard.weiyang@gmail.com>
Cc: Qian Cai <cai@lca.pw>
Cc: Haiyang Zhang <haiyangz@microsoft.com>
Cc: "K. Y. Srinivasan" <kys@microsoft.com>
Cc: Sasha Levin <sashal@kernel.org>
Cc: Stephen Hemminger <sthemmin@microsoft.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
On PowerPC, the address ranges allocated to OpenCAPI LPC memory are
allocated from firmware. These address ranges may be higher than what
older kernels permit, as we increased the maximum permissable address in
commit 4ffe713b75 ("powerpc/mm: Increase the max addressable memory to
2PB"). It is possible that the addressable range may change again in
the future.
In this scenario, we end up with a bogus section returned from
__section_nr (see the discussion on the thread "mm: Trigger bug on if a
section is not found in __section_nr").
Adding a check here means that we fail early and have an opportunity to
handle the error gracefully, rather than rumbling on and potentially
accessing an incorrect section.
Further discussion is also on the thread ("powerpc: Perform a bounds
check in arch_add_memory")
http://lkml.kernel.org/r/20190827052047.31547-1-alastair@au1.ibm.com
Link: http://lkml.kernel.org/r/20191001004617.7536-2-alastair@au1.ibm.com
Signed-off-by: Alastair D'Silva <alastair@d-silva.org>
Reviewed-by: David Hildenbrand <david@redhat.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Pavel Tatashin <pasha.tatashin@soleen.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently during memory hot add procedure, memory gets into memblock
before calling arch_add_memory() which creates its linear mapping.
add_memory_resource() {
..................
memblock_add_node()
..................
arch_add_memory()
..................
}
But during memory hot remove procedure, removal from memblock happens
first before its linear mapping gets teared down with
arch_remove_memory() which is not consistent. Resource removal should
happen in reverse order as they were added. However this does not pose
any problem for now, unless there is an assumption regarding linear
mapping. One example was a subtle failure on arm64 platform [1].
Though this has now found a different solution.
try_remove_memory() {
..................
memblock_free()
memblock_remove()
..................
arch_remove_memory()
..................
}
This changes the sequence of resource removal including memblock and
linear mapping tear down during memory hot remove which will now be the
reverse order in which they were added during memory hot add. The
changed removal order looks like the following.
try_remove_memory() {
..................
arch_remove_memory()
..................
memblock_free()
memblock_remove()
..................
}
[1] https://patchwork.kernel.org/patch/11127623/
Memory hot remove now works on arm64 without this because a recent
commit 60bb462fc7ad ("drivers/base/node.c: simplify
unregister_memory_block_under_nodes()").
This does not fix a serious problem. It just removes an inconsistency
while freeing resources during memory hot remove which for now does not
pose a real problem.
David mentioned that re-ordering should still make sense for consistency
purpose (removing stuff in the reverse order they were added). This
patch is now detached from arm64 hot-remove series.
Michal:
: I would just a note that the inconsistency doesn't pose any problem now
: but if somebody makes any assumptions about linear mappings then it could
: get subtly broken like your example for arm64 which has found a different
: solution in the meantime.
Link: http://lkml.kernel.org/r/1569380273-7708-1-git-send-email-anshuman.khandual@arm.com
Signed-off-by: Anshuman Khandual <anshuman.khandual@arm.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Pavel Tatashin <pasha.tatashin@soleen.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
page_shift() is supported after the commit 94ad933810 ("mm: introduce
page_shift()").
So replace with page_shift() in add_to_kill() for readability.
Link: http://lkml.kernel.org/r/543d8bc9-f2e7-3023-7c35-2e7ed67c0e82@huawei.com
Signed-off-by: Yunfeng Ye <yeyunfeng@huawei.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Acked-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently soft_offline_page() receives struct page, and its sibling
memory_failure() receives pfn. This discrepancy looks weird and makes
precheck on pfn validity tricky. So let's align them.
Link: http://lkml.kernel.org/r/20191016234706.GA5493@www9186uo.sakura.ne.jp
Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Acked-by: Andrew Morton <akpm@linux-foundation.org>
Cc: David Hildenbrand <david@redhat.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Oscar Salvador <osalvador@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
add_to_kill() expects the first 'tk' to be pre-allocated, it makes
subsequent allocations on need basis, this makes the code a bit
difficult to read.
Move all the allocation internal to add_to_kill() and drop the **tk
argument.
Link: http://lkml.kernel.org/r/1565112345-28754-2-git-send-email-jane.chu@oracle.com
Signed-off-by: Jane Chu <jane.chu@oracle.com>
Reviewed-by: Dan Williams <dan.j.williams@intel.com>
Acked-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Michal Hocko <mhocko@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
F_SEAL_FUTURE_WRITE has unexpected behavior when used with MAP_PRIVATE:
A private mapping created after the memfd file that gets sealed with
F_SEAL_FUTURE_WRITE loses the copy-on-write at fork behavior, meaning
children and parent share the same memory, even though the mapping is
private.
The reason for this is due to the code below:
static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
{
struct shmem_inode_info *info = SHMEM_I(file_inode(file));
if (info->seals & F_SEAL_FUTURE_WRITE) {
/*
* New PROT_WRITE and MAP_SHARED mmaps are not allowed when
* "future write" seal active.
*/
if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_WRITE))
return -EPERM;
/*
* Since the F_SEAL_FUTURE_WRITE seals allow for a MAP_SHARED
* read-only mapping, take care to not allow mprotect to revert
* protections.
*/
vma->vm_flags &= ~(VM_MAYWRITE);
}
...
}
And for the mm to know if a mapping is copy-on-write:
static inline bool is_cow_mapping(vm_flags_t flags)
{
return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
}
The patch fixes the issue by making the mprotect revert protection
happen only for shared mappings. For private mappings, using mprotect
will have no effect on the seal behavior.
The F_SEAL_FUTURE_WRITE feature was introduced in v5.1 so v5.3.x stable
kernels would need a backport.
[akpm@linux-foundation.org: reflow comment, per Christoph]
Link: http://lkml.kernel.org/r/20191107195355.80608-1-joel@joelfernandes.org
Fixes: ab3948f58f ("mm/memfd: add an F_SEAL_FUTURE_WRITE seal to memfd")
Signed-off-by: Nicolas Geoffray <ngeoffray@google.com>
Signed-off-by: Joel Fernandes (Google) <joel@joelfernandes.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Shuah Khan <shuah@kernel.org>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
A huge pud page can theoretically be faulted in racing with pmd_alloc()
in __handle_mm_fault(). That will lead to pmd_alloc() returning an
invalid pmd pointer.
Fix this by adding a pud_trans_unstable() function similar to
pmd_trans_unstable() and check whether the pud is really stable before
using the pmd pointer.
Race:
Thread 1: Thread 2: Comment
create_huge_pud() Fallback - not taken.
create_huge_pud() Taken.
pmd_alloc() Returns an invalid pointer.
This will result in user-visible huge page data corruption.
Note that this was caught during a code audit rather than a real
experienced problem. It looks to me like the only implementation that
currently creates huge pud pagetable entries is dev_dax_huge_fault()
which doesn't appear to care much about private (COW) mappings or
write-tracking which is, I believe, a prerequisite for create_huge_pud()
falling back on thread 1, but not in thread 2.
Link: http://lkml.kernel.org/r/20191115115808.21181-2-thomas_os@shipmail.org
Fixes: a00cc7d9dd ("mm, x86: add support for PUD-sized transparent hugepages")
Signed-off-by: Thomas Hellstrom <thellstrom@vmware.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The __page_check_anon_rmap() just calls two BUG_ON()s protected by
CONFIG_DEBUG_VM, the #ifdef could be eliminated by using VM_BUG_ON_PAGE().
Link: http://lkml.kernel.org/r/1573157346-111316-1-git-send-email-yang.shi@linux.alibaba.com
Signed-off-by: Yang Shi <yang.shi@linux.alibaba.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Replace DESTROY_BY_RCU with SLAB_TYPESAFE_BY_RCU because
SLAB_DESTROY_BY_RCU has been renamed to SLAB_TYPESAFE_BY_RCU by commit
5f0d5a3ae7 ("mm: Rename SLAB_DESTROY_BY_RCU to SLAB_TYPESAFE_BY_RCU")
Link: http://lkml.kernel.org/r/20191017093554.22562-1-miles.chen@mediatek.com
Signed-off-by: Miles Chen <miles.chen@mediatek.com>
Cc: Paul E. McKenney <paulmck@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This came up when removing __ARCH_HAS_5LEVEL_HACK for ARC as code bloat.
With this patch we see the following code reduction.
| bloat-o-meter2 vmlinux-D-elide-p4d_free_tlb vmlinux-E-elide-p?d_clear_bad
| add/remove: 0/2 grow/shrink: 0/0 up/down: 0/-40 (-40)
| function old new delta
| pud_clear_bad 20 - -20
| p4d_clear_bad 20 - -20
| Total: Before=4136930, After=4136890, chg -1.000000%
Link: http://lkml.kernel.org/r/20191016162400.14796-6-vgupta@synopsys.com
Signed-off-by: Vineet Gupta <vgupta@synopsys.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Will Deacon <will@kernel.org>
Cc: "Aneesh Kumar K . V" <aneesh.kumar@linux.ibm.com>
Cc: Nick Piggin <npiggin@gmail.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
get_unmapped_area() returns an address or -errno on failure. Historically
we have checked for the failure by offset_in_page() which is correct but
quite hard to read. Newer code started using IS_ERR_VALUE which is much
easier to read. Convert remaining users of offset_in_page as well.
[mhocko@suse.com: rewrite changelog]
[mhocko@kernel.org: fix mremap.c and uprobes.c sites also]
Link: http://lkml.kernel.org/r/20191012102512.28051-1-pugaowei@gmail.com
Signed-off-by: Gaowei Pu <pugaowei@gmail.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Wei Yang <richardw.yang@linux.intel.com>
Cc: Konstantin Khlebnikov <khlebnikov@yandex-team.ru>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: "Jérôme Glisse" <jglisse@redhat.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Rik van Riel <riel@surriel.com>
Cc: Qian Cai <cai@lca.pw>
Cc: Shakeel Butt <shakeelb@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
In __anon_vma_prepare(), we will try to find anon_vma if it is possible to
reuse it. While on fork, the logic is different.
Since commit 5beb493052 ("mm: change anon_vma linking to fix
multi-process server scalability issue"), function anon_vma_clone() tries
to allocate new anon_vma for child process. But the logic here will
allocate a new anon_vma for each vma, even in parent this vma is mergeable
and share the same anon_vma with its sibling. This may do better for
scalability issue, while it is not necessary to do so especially after
interval tree is used.
Commit 7a3ef208e6 ("mm: prevent endless growth of anon_vma hierarchy")
tries to reuse some anon_vma by counting child anon_vma and attached vmas.
While for those mergeable anon_vmas, we can just reuse it and not
necessary to go through the logic.
After this change, kernel build test reduces 20% anon_vma allocation.
Do the same kernel build test, it shows run time in sys reduced 11.6%.
Origin:
real 2m50.467s
user 17m52.002s
sys 1m51.953s
real 2m48.662s
user 17m55.464s
sys 1m50.553s
real 2m51.143s
user 17m59.687s
sys 1m53.600s
Patched:
real 2m39.933s
user 17m1.835s
sys 1m38.802s
real 2m39.321s
user 17m1.634s
sys 1m39.206s
real 2m39.575s
user 17m1.420s
sys 1m38.845s
Link: http://lkml.kernel.org/r/20191011072256.16275-2-richardw.yang@linux.intel.com
Signed-off-by: Wei Yang <richardw.yang@linux.intel.com>
Acked-by: Konstantin Khlebnikov <khlebnikov@yandex-team.ru>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: "Jérôme Glisse" <jglisse@redhat.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Rik van Riel <riel@surriel.com>
Cc: Qian Cai <cai@lca.pw>
Cc: Shakeel Butt <shakeelb@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Before commit 7a3ef208e6 ("mm: prevent endless growth of anon_vma
hierarchy"), anon_vma_clone() doesn't change dst->anon_vma. While after
this commit, anon_vma_clone() will try to reuse an exist one on forking.
But this commit go a little bit further for the case not forking.
anon_vma_clone() is called from __vma_split(), __split_vma(), copy_vma()
and anon_vma_fork(). For the first three places, the purpose here is
get a copy of src and we don't expect to touch dst->anon_vma even it is
NULL.
While after that commit, it is possible to reuse an anon_vma when
dst->anon_vma is NULL. This is not we intend to have.
This patch stops reuse of anon_vma for non-fork cases.
Link: http://lkml.kernel.org/r/20191011072256.16275-1-richardw.yang@linux.intel.com
Fixes: 7a3ef208e6 ("mm: prevent endless growth of anon_vma hierarchy")
Signed-off-by: Wei Yang <richardw.yang@linux.intel.com>
Acked-by: Konstantin Khlebnikov <khlebnikov@yandex-team.ru>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: "Jérôme Glisse" <jglisse@redhat.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Rik van Riel <riel@surriel.com>
Cc: Qian Cai <cai@lca.pw>
Cc: Shakeel Butt <shakeelb@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Now we use rb_parent to get next, while this is not necessary.
When prev is NULL, this means vma should be the first element in the list.
Then next should be current first one (mm->mmap), no matter whether we
have parent or not.
After removing it, the code shows the beauty of symmetry.
Link: http://lkml.kernel.org/r/20190813032656.16625-1-richardw.yang@linux.intel.com
Signed-off-by: Wei Yang <richardw.yang@linux.intel.com>
Acked-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Matthew Wilcox <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Just make the code a little easier to read.
Link: http://lkml.kernel.org/r/20191006012636.31521-3-richardw.yang@linux.intel.com
Signed-off-by: Wei Yang <richardw.yang@linux.intel.com>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The third parameter of __vma_unlink_common() could differentiate these two
types. __vma_unlink_prev() is not necessary now.
Link: http://lkml.kernel.org/r/20191006012636.31521-2-richardw.yang@linux.intel.com
Signed-off-by: Wei Yang <richardw.yang@linux.intel.com>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently __vma_unlink_common handles two cases:
* has_prev
* or not
When has_prev is false, it is obvious prev is calculated from
vma->vm_prev in __vma_unlink_common.
When has_prev is true, the prev is passed through from __vma_unlink_prev
in __vma_adjust for non-case 8. And at the beginning next is calculated
from vma->vm_next, which implies vma is next->vm_prev.
The above statement sounds a little complicated, while to think in
another point of view, no matter whether vma and next is swapped, the
mmap link list still preserves its property. It is proper to access
vma->vm_prev.
Link: http://lkml.kernel.org/r/20191006012636.31521-1-richardw.yang@linux.intel.com
Signed-off-by: Wei Yang <richardw.yang@linux.intel.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This is a very slow operation. Right now POSIX_FADV_DONTNEED is the top
user because it has to freeze page references when removing it from the
cache. invalidate_bdev() calls it for the same reason. Both are
triggered from userspace, so it's easy to generate a storm.
mlock/mlockall no longer calls lru_add_drain_all - I've seen here
serious slowdown on older kernels.
There are some less obvious paths in memory migration/CMA/offlining
which shouldn't call frequently.
The worst case requires a non-trivial workload because
lru_add_drain_all() skips cpus where vectors are empty. Something must
constantly generate a flow of pages for each cpu. Also cpus must be
busy to make scheduling per-cpu works slower. And the machine must be
big enough (64+ cpus in our case).
In our case that was a massive series of mlock calls in map-reduce while
other tasks write logs (and generates flows of new pages in per-cpu
vectors). Mlock calls were serialized by mutex and accumulated latency
up to 10 seconds or more.
The kernel does not call lru_add_drain_all on mlock paths since 4.15,
but the same scenario could be triggered by fadvise(POSIX_FADV_DONTNEED)
or any other remaining user.
There is no reason to do the drain again if somebody else already
drained all the per-cpu vectors while we waited for the lock.
Piggyback on a drain starting and finishing while we wait for the lock:
all pages pending at the time of our entry were drained from the
vectors.
Callers like POSIX_FADV_DONTNEED retry their operations once after
draining per-cpu vectors when pages have unexpected references.
Link: http://lkml.kernel.org/r/157019456205.3142.3369423180908482020.stgit@buzz
Signed-off-by: Konstantin Khlebnikov <khlebnikov@yandex-team.ru>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Matthew Wilcox <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The upper level of "if" makes sure (end >= next->vm_end), which means
there are only two possibilities:
1) end == next->vm_end
2) end > next->vm_end
remove_next is assigned to be (1 + end > next->vm_end). This means if
remove_next is 1, end must equal to next->vm_end.
The VM_WARN_ON will never trigger.
Link: http://lkml.kernel.org/r/20190912063126.13250-1-richardw.yang@linux.intel.com
Signed-off-by: Wei Yang <richardw.yang@linux.intel.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Yang Shi <yang.shi@linux.alibaba.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When a process updates the RSS of a different process, the rss_stat
tracepoint appears in the context of the process doing the update. This
can confuse userspace that the RSS of process doing the update is
updated, while in reality a different process's RSS was updated.
This issue happens in reclaim paths such as with direct reclaim or
background reclaim.
This patch adds more information to the tracepoint about whether the mm
being updated belongs to the current process's context (curr field). We
also include a hash of the mm pointer so that the process who the mm
belongs to can be uniquely identified (mm_id field).
Also vsprintf.c is refactored a bit to allow reuse of hashing code.
[akpm@linux-foundation.org: remove unused local `str']
[joelaf@google.com: inline call to ptr_to_hashval]
Link: http://lore.kernel.org/r/20191113153816.14b95acd@gandalf.local.home
Link: http://lkml.kernel.org/r/20191114164622.GC233237@google.com
Link: http://lkml.kernel.org/r/20191106024452.81923-1-joel@joelfernandes.org
Signed-off-by: Joel Fernandes (Google) <joel@joelfernandes.org>
Reported-by: Ioannis Ilkos <ilkos@google.com>
Acked-by: Petr Mladek <pmladek@suse.com> [lib/vsprintf.c]
Cc: Tim Murray <timmurray@google.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Carmen Jackson <carmenjackson@google.com>
Cc: Mayank Gupta <mayankgupta@google.com>
Cc: Daniel Colascione <dancol@google.com>
Cc: Steven Rostedt (VMware) <rostedt@goodmis.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.ibm.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Jerome Glisse <jglisse@redhat.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Ralph Campbell <rcampbell@nvidia.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Useful to track how RSS is changing per TGID to detect spikes in RSS and
memory hogs. Several Android teams have been using this patch in
various kernel trees for half a year now. Many reported to me it is
really useful so I'm posting it upstream.
Initial patch developed by Tim Murray. Changes I made from original
patch: o Prevent any additional space consumed by mm_struct.
Regarding the fact that the RSS may change too often thus flooding the
traces - note that, there is some "hysterisis" with this already. That
is - We update the counter only if we receive 64 page faults due to
SPLIT_RSS_ACCOUNTING. However, during zapping or copying of pte range,
the RSS is updated immediately which can become noisy/flooding. In a
previous discussion, we agreed that BPF or ftrace can be used to rate
limit the signal if this becomes an issue.
Also note that I added wrappers to trace_rss_stat to prevent compiler
errors where linux/mm.h is included from tracing code, causing errors
such as:
CC kernel/trace/power-traces.o
In file included from ./include/trace/define_trace.h:102,
from ./include/trace/events/kmem.h:342,
from ./include/linux/mm.h:31,
from ./include/linux/ring_buffer.h:5,
from ./include/linux/trace_events.h:6,
from ./include/trace/events/power.h:12,
from kernel/trace/power-traces.c:15:
./include/trace/trace_events.h:113:22: error: field `ent' has incomplete type
struct trace_entry ent; \
Link: http://lore.kernel.org/r/20190903200905.198642-1-joel@joelfernandes.org
Link: http://lkml.kernel.org/r/20191001172817.234886-1-joel@joelfernandes.org
Co-developed-by: Tim Murray <timmurray@google.com>
Signed-off-by: Tim Murray <timmurray@google.com>
Signed-off-by: Joel Fernandes (Google) <joel@joelfernandes.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Carmen Jackson <carmenjackson@google.com>
Cc: Mayank Gupta <mayankgupta@google.com>
Cc: Daniel Colascione <dancol@google.com>
Cc: Steven Rostedt (VMware) <rostedt@goodmis.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.ibm.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Jerome Glisse <jglisse@redhat.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Ralph Campbell <rcampbell@nvidia.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
One of our services is observing hanging ps/top/etc under heavy write
IO, and the task states show this is an mmap_sem priority inversion:
A write fault is holding the mmap_sem in read-mode and waiting for
(heavily cgroup-limited) IO in balance_dirty_pages():
balance_dirty_pages+0x724/0x905
balance_dirty_pages_ratelimited+0x254/0x390
fault_dirty_shared_page.isra.96+0x4a/0x90
do_wp_page+0x33e/0x400
__handle_mm_fault+0x6f0/0xfa0
handle_mm_fault+0xe4/0x200
__do_page_fault+0x22b/0x4a0
page_fault+0x45/0x50
Somebody tries to change the address space, contending for the mmap_sem in
write-mode:
call_rwsem_down_write_failed_killable+0x13/0x20
do_mprotect_pkey+0xa8/0x330
SyS_mprotect+0xf/0x20
do_syscall_64+0x5b/0x100
entry_SYSCALL_64_after_hwframe+0x3d/0xa2
The waiting writer locks out all subsequent readers to avoid lock
starvation, and several threads can be seen hanging like this:
call_rwsem_down_read_failed+0x14/0x30
proc_pid_cmdline_read+0xa0/0x480
__vfs_read+0x23/0x140
vfs_read+0x87/0x130
SyS_read+0x42/0x90
do_syscall_64+0x5b/0x100
entry_SYSCALL_64_after_hwframe+0x3d/0xa2
To fix this, do what we do for cache read faults already: drop the
mmap_sem before calling into anything IO bound, in this case the
balance_dirty_pages() function, and return VM_FAULT_RETRY.
Link: http://lkml.kernel.org/r/20190924194238.GA29030@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Josef Bacik <josef@toxicpanda.com>
Cc: Hillf Danton <hdanton@sina.com>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Since commit 1ba6fc9af3 ("mm: vmscan: do not share cgroup iteration
between reclaimers"), the memcg reclaim does not bail out earlier based
on sc->nr_reclaimed and will traverse all the nodes. All the
reclaimable pages of the memcg on all the nodes will be scanned relative
to the reclaim priority. So, there is no need to maintain state
regarding which node to start the memcg reclaim from.
This patch effectively reverts the commit 889976dbcb ("memcg: reclaim
memory from nodes in round-robin order") and commit 453a9bf347
("memcg: fix numa scan information update to be triggered by memory
event").
[shakeelb@google.com: v2]
Link: http://lkml.kernel.org/r/20191030204232.139424-1-shakeelb@google.com
Link: http://lkml.kernel.org/r/20191029234753.224143-1-shakeelb@google.com
Signed-off-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Roman Gushchin <guro@fb.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Greg Thelen <gthelen@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Setting a memory.high limit below the usage makes almost no effort to
shrink the cgroup to the new target size.
While memory.high is a "soft" limit that isn't supposed to cause OOM
situations, we should still try harder to meet a user request through
persistent reclaim.
For example, after setting a 10M memory.high on an 800M cgroup full of
file cache, the usage shrinks to about 350M:
+ cat /cgroup/workingset/memory.current
841568256
+ echo 10M
+ cat /cgroup/workingset/memory.current
355729408
This isn't exactly what the user would expect to happen. Setting the
value a few more times eventually whittles the usage down to what we
are asking for:
+ echo 10M
+ cat /cgroup/workingset/memory.current
104181760
+ echo 10M
+ cat /cgroup/workingset/memory.current
31801344
+ echo 10M
+ cat /cgroup/workingset/memory.current
10440704
To improve this, add reclaim retry loops to the memory.high write()
callback, similar to what we do for memory.max, to make a reasonable
effort that the usage meets the requested size after the call returns.
Afterwards, a single write() to memory.high is enough in all but extreme
cases:
+ cat /cgroup/workingset/memory.current
841609216
+ echo 10M
+ cat /cgroup/workingset/memory.current
10182656
790M is not a reasonable reclaim target to ask of a single reclaim
invocation. And it wouldn't be reasonable to optimize the reclaim code
for it. So asking for the full size but retrying is not a bad choice
here: we express our intent, and benefit if reclaim becomes better at
handling larger requests, but we also acknowledge that some of the
deltas we can encounter in memory_high_write() are just too ridiculously
big for a single reclaim invocation to manage.
Link: http://lkml.kernel.org/r/20191022201518.341216-2-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When the reclaim loop in memory_max_write() is ^C'd or similar, we set err
to -EINTR. But we don't return err. Once the limit is set, we always
return success (nbytes). Delete the dead code.
Link: http://lkml.kernel.org/r/20191022201518.341216-1-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The mem_cgroup_reclaim_cookie is only used in memcg softlimit reclaim now,
and the priority of the reclaim is always 0. We don't need to define the
iter in struct mem_cgroup_per_node as an array any more. That could make
the code more clear and save some space.
Link: http://lkml.kernel.org/r/1569897728-1686-1-git-send-email-laoar.shao@gmail.com
Signed-off-by: Yafang Shao <laoar.shao@gmail.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
A zoned block device consists of a number of zones. Zones are either
conventional and accepting random writes or sequential and requiring
that writes be issued in LBA order from each zone write pointer
position. For the write restriction, zoned block devices are not
suitable for a swap device. Disallow swapon on them.
[akpm@linux-foundation.org: reflow and reword comment, per Christoph]
Link: http://lkml.kernel.org/r/20191015085814.637837-1-naohiro.aota@wdc.com
Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: "Theodore Y. Ts'o" <tytso@mit.edu>
Cc: Hannes Reinecke <hare@suse.de>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Fix comments of __get_user_pages() and get_user_pages_remote(), make
them more clear.
Link: http://lkml.kernel.org/r/1572443533-3118-1-git-send-email-liuxiang_1999@126.com
Signed-off-by: Liu Xiang <liuxiang_1999@126.com>
Suggested-by: John Hubbard <jhubbard@nvidia.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Reviewed-by: John Hubbard <jhubbard@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
check_and_migrate_cma_pages() was recording the result of
__get_user_pages_locked() in an unsigned "nr_pages" variable.
Because __get_user_pages_locked() returns a signed value that can
include negative errno values, this had the effect of hiding errors.
Change check_and_migrate_cma_pages() implementation so that it uses a
signed variable instead, and propagates the results back to the caller
just as other gup internal functions do.
This was discovered with the help of unsigned_lesser_than_zero.cocci.
Link: http://lkml.kernel.org/r/1571671030-58029-1-git-send-email-zhongjiang@huawei.com
Signed-off-by: zhong jiang <zhongjiang@huawei.com>
Suggested-by: John Hubbard <jhubbard@nvidia.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: John Hubbard <jhubbard@nvidia.com>
Reviewed-by: Ira Weiny <ira.weiny@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
generic_file_direct_write() tries to invalidate pagecache after O_DIRECT
write. Unlike to similar code in dio_complete() this silently ignores
error returned from invalidate_inode_pages2_range().
According to comment this code here because not all filesystems call
dio_complete() to do proper invalidation after O_DIRECT write. Noticeable
example is a blkdev_direct_IO().
This patch calls dio_warn_stale_pagecache() if invalidation fails.
Link: http://lkml.kernel.org/r/157270038294.4812.2238891109785106069.stgit@buzz
Signed-off-by: Konstantin Khlebnikov <khlebnikov@yandex-team.ru>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Jan Kara <jack@suse.cz>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This helper prints warning if direct I/O write failed to invalidate cache,
and set EIO at inode to warn usersapce about possible data corruption.
See also commit 5a9d929d6e ("iomap: report collisions between directio
and buffered writes to userspace").
Direct I/O is supported by non-disk filesystems, for example NFS. Thus
generic code needs this even in kernel without CONFIG_BLOCK.
Link: http://lkml.kernel.org/r/157270038074.4812.7980855544557488880.stgit@buzz
Signed-off-by: Konstantin Khlebnikov <khlebnikov@yandex-team.ru>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Jan Kara <jack@suse.cz>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
generic_file_direct_write() invalidates cache at entry. Second time this
should be done when request completes. But this function calls second
invalidation at exit unconditionally even for async requests.
This patch skips second invalidation for async requests (-EIOCBQUEUED).
Link: http://lkml.kernel.org/r/157270037850.4812.15036239021726025572.stgit@buzz
Signed-off-by: Konstantin Khlebnikov <khlebnikov@yandex-team.ru>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Jan Kara <jack@suse.cz>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The function doesn't need to return any value, and the check can be done
in one pass.
There is a behavior change: before the patch, we stop at the first invalid
free object; after the patch, we stop at the first invalid object, free or
in use. This shouldn't matter because the original behavior isn't
intended anyway.
Link: http://lkml.kernel.org/r/20191108193958.205102-1-yuzhao@google.com
Signed-off-by: Yu Zhao <yuzhao@google.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Tetsuo Handa <penguin-kernel@i-love.sakura.ne.jp>
Cc: Yu Zhao <yuzhao@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The type of local variable *type* of new_kmalloc_cache() should be enum
kmalloc_cache_type instead of int, so correct it.
Link: http://lkml.kernel.org/r/1569241648-26908-4-git-send-email-lpf.vector@gmail.com
Signed-off-by: Pengfei Li <lpf.vector@gmail.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Roman Gushchin <guro@fb.com>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Pekka Enberg <penberg@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The size of kmalloc can be obtained from kmalloc_info[], so remove
kmalloc_size() that will not be used anymore.
Link: http://lkml.kernel.org/r/1569241648-26908-3-git-send-email-lpf.vector@gmail.com
Signed-off-by: Pengfei Li <lpf.vector@gmail.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Roman Gushchin <guro@fb.com>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Pekka Enberg <penberg@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "mm, slab: Make kmalloc_info[] contain all types of names", v6.
There are three types of kmalloc, KMALLOC_NORMAL, KMALLOC_RECLAIM
and KMALLOC_DMA.
The name of KMALLOC_NORMAL is contained in kmalloc_info[].name,
but the names of KMALLOC_RECLAIM and KMALLOC_DMA are dynamically
generated by kmalloc_cache_name().
Patch1 predefines the names of all types of kmalloc to save
the time spent dynamically generating names.
These changes make sense, and the time spent by new_kmalloc_cache()
has been reduced by approximately 36.3%.
Time spent by new_kmalloc_cache()
(CPU cycles)
5.3-rc7 66264
5.3-rc7+patch 42188
This patch (of 3):
There are three types of kmalloc, KMALLOC_NORMAL, KMALLOC_RECLAIM and
KMALLOC_DMA.
The name of KMALLOC_NORMAL is contained in kmalloc_info[].name, but the
names of KMALLOC_RECLAIM and KMALLOC_DMA are dynamically generated by
kmalloc_cache_name().
This patch predefines the names of all types of kmalloc to save the time
spent dynamically generating names.
Besides, remove the kmalloc_cache_name() that is no longer used.
Link: http://lkml.kernel.org/r/1569241648-26908-2-git-send-email-lpf.vector@gmail.com
Signed-off-by: Pengfei Li <lpf.vector@gmail.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Roman Gushchin <guro@fb.com>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This is another round of bug fixing and cleanup. This time the focus is on
the driver pattern to use mmu notifiers to monitor a VA range. This code
is lifted out of many drivers and hmm_mirror directly into the
mmu_notifier core and written using the best ideas from all the driver
implementations.
This removes many bugs from the drivers and has a very pleasing
diffstat. More drivers can still be converted, but that is for another
cycle.
- A shared branch with RDMA reworking the RDMA ODP implementation
- New mmu_interval_notifier API. This is focused on the use case of
monitoring a VA and simplifies the process for drivers
- A common seq-count locking scheme built into the mmu_interval_notifier
API usable by drivers that call get_user_pages() or hmm_range_fault()
with the VA range
- Conversion of mlx5 ODP, hfi1, radeon, nouveau, AMD GPU, and Xen GntDev
drivers to the new API. This deletes a lot of wonky driver code.
- Two improvements for hmm_range_fault(), from testing done by Ralph
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEEfB7FMLh+8QxL+6i3OG33FX4gmxoFAl3cCjQACgkQOG33FX4g
mxpp8xAAiR9iOdT28m/tx1GF31XludrMhRZVIiz0vmCIxIiAkWekWEfAEVm9PDnh
wdrxTJohSs+B65AK3sfToOM3AIuNCuFVWmbbHI5qmOO76vaSvcZa905Z++pNsawO
Bn8mgRCprYoFHcxWLvTvnA5U0g1S2BSSOwBSZI43CbEnVvHjYAR6MnvRqfGMk+NF
bf8fTk/x+fl0DCemhynlBLuJkogzoE2Hgl0yPY5bFna4PktOxdpa1yPaQsiqZ7e6
2s2NtM3pbMBJk0W42q5BU+aPhiqfxFFszasPSLBduXrD2xDsG76HJdHj5VydKmfL
nelG4BvqJozXTEZWvTEePYhCqaZ41eJZ7Asw8BXtmacVqE5mDlTXo/Zdgbz7yEOR
mI5MVyjD5rauZJldUOWXbwrPoWVFRvboauehiSgqvxvT9HvlFp9GKObSuu4gubBQ
mzxs4t48tPhA7bswLmw0/pETSogFuVDfaB7hsyY0gi8EwxMFMpw2qFypm1PEEF+C
BuUxCSShzvNKrraNe5PWaNNFd3AzIwAOWJHE+poH4bCoXQVr5nA+rq2gnHkdY5vq
/xrBCyxkf0U05YoFGYembPVCInMehzp9Xjy8V+SueSvCg2/TYwGDCgGfsbe9dNOP
Bc40JpS7BDn5w9nyLUJmOx7jfruNV6kx1QslA7NDDrB/rzOlsEc=
=Hj8a
-----END PGP SIGNATURE-----
Merge tag 'for-linus-hmm' of git://git.kernel.org/pub/scm/linux/kernel/git/rdma/rdma
Pull hmm updates from Jason Gunthorpe:
"This is another round of bug fixing and cleanup. This time the focus
is on the driver pattern to use mmu notifiers to monitor a VA range.
This code is lifted out of many drivers and hmm_mirror directly into
the mmu_notifier core and written using the best ideas from all the
driver implementations.
This removes many bugs from the drivers and has a very pleasing
diffstat. More drivers can still be converted, but that is for another
cycle.
- A shared branch with RDMA reworking the RDMA ODP implementation
- New mmu_interval_notifier API. This is focused on the use case of
monitoring a VA and simplifies the process for drivers
- A common seq-count locking scheme built into the
mmu_interval_notifier API usable by drivers that call
get_user_pages() or hmm_range_fault() with the VA range
- Conversion of mlx5 ODP, hfi1, radeon, nouveau, AMD GPU, and Xen
GntDev drivers to the new API. This deletes a lot of wonky driver
code.
- Two improvements for hmm_range_fault(), from testing done by Ralph"
* tag 'for-linus-hmm' of git://git.kernel.org/pub/scm/linux/kernel/git/rdma/rdma:
mm/hmm: remove hmm_range_dma_map and hmm_range_dma_unmap
mm/hmm: make full use of walk_page_range()
xen/gntdev: use mmu_interval_notifier_insert
mm/hmm: remove hmm_mirror and related
drm/amdgpu: Use mmu_interval_notifier instead of hmm_mirror
drm/amdgpu: Use mmu_interval_insert instead of hmm_mirror
drm/amdgpu: Call find_vma under mmap_sem
nouveau: use mmu_interval_notifier instead of hmm_mirror
nouveau: use mmu_notifier directly for invalidate_range_start
drm/radeon: use mmu_interval_notifier_insert
RDMA/hfi1: Use mmu_interval_notifier_insert for user_exp_rcv
RDMA/odp: Use mmu_interval_notifier_insert()
mm/hmm: define the pre-processor related parts of hmm.h even if disabled
mm/hmm: allow hmm_range to be used with a mmu_interval_notifier or hmm_mirror
mm/mmu_notifier: add an interval tree notifier
mm/mmu_notifier: define the header pre-processor parts even if disabled
mm/hmm: allow snapshot of the special zero page
-----BEGIN PGP SIGNATURE-----
iQIcBAABAgAGBQJd4HA/AAoJEAx081l5xIa+wKUP/RrFElDUUIsYZ0M8i5FGSVdZ
dD8zL3z0NHxWu+UwieAWrIKU69k+wYwsnFFwHsAxOXflmcA1UeBTqcMLgb5tECcq
s2bNqd97XAjbDzreUIeHL3vrSNIeMg8m4Rpo7mdtC3DphoBEodYeRsAez7Ml42Ey
J0oBdWgcBt+sC6iq6f6dEBZmNjYtx/m5L+FX35jRCHAfthjD7AbccK5eK3++Vtni
Af2SZKMQr1uwjP6+ottx89LdpXCrQc2vNHm3nCnDxtLV8PgzXzXiSno0aqc3zk81
J2D/7pb0q561gOBmvW+XfkzMQm/PXtLvhP25iD2dKRDhDjeRgmWLS84J1JePoFQ2
1NALHyuYIRUKjVUEXlq9bx4pMci40/ifM2EaRW+TjhsdmmjA4bbni5O6UW8lhrvb
Ji/bL/LBpmrX0DxKis1xh0iJBdW/aEltVcLqHNPXs0SvkeiMNW0frJss5KP9Yp9G
n8BRS4HahAbNoKUsa9UPcwOAjrY6KwqnKV+PShTly70Po2JhpWISejcTMicIdmgZ
xiXWzq5SB7ZmXzmmEOL5qZzY6iMj0QZYfvVziehwCLiwNVyc2Rpt0tZwLceW/Zfn
Z3sFRUH19pIpQogErtiYiBhw9v481qCUy2ooeEj5YTwiLwGAyJ1BvGwSlD91mdbd
0RiixbdVNBrmaS7WfHCo
=G9TA
-----END PGP SIGNATURE-----
Merge tag 'drm-vmwgfx-coherent-2019-11-29' of git://anongit.freedesktop.org/drm/drm
Pull drm coherent memory support for vmwgfx from Dave Airlie:
"This is a separate pull for the mm pagewalking + drm/vmwgfx work
Thomas did and you were involved in, I've left it separate in case you
don't feel as comfortable with it as the other stuff.
It has mm acks/r-b in the right places from what I can see"
* tag 'drm-vmwgfx-coherent-2019-11-29' of git://anongit.freedesktop.org/drm/drm:
drm/vmwgfx: Add surface dirty-tracking callbacks
drm/vmwgfx: Implement an infrastructure for read-coherent resources
drm/vmwgfx: Use an RBtree instead of linked list for MOB resources
drm/vmwgfx: Implement an infrastructure for write-coherent resources
mm: Add write-protect and clean utilities for address space ranges
mm: Add a walk_page_mapping() function to the pagewalk code
mm: pagewalk: Take the pagetable lock in walk_pte_range()
mm: Remove BUG_ON mmap_sem not held from xxx_trans_huge_lock()
drm/ttm: Convert vm callbacks to helpers
drm/ttm: Remove explicit typecasts of vm_private_data
On PEF-enabled POWER platforms that support running of secure guests,
secure pages of the guest are represented by device private pages
in the host. Such pages needn't participate in KSM merging. This is
achieved by using ksm_madvise() call which need to be exported
since KVM PPC can be a kernel module.
Signed-off-by: Bharata B Rao <bharata@linux.ibm.com>
Acked-by: Hugh Dickins <hughd@google.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Graphics APIs like OpenGL 4.4 and Vulkan require the graphics driver
to provide coherent graphics memory, meaning that the GPU sees any
content written to the coherent memory on the next GPU operation that
touches that memory, and the CPU sees any content written by the GPU
to that memory immediately after any fence object trailing the GPU
operation is signaled.
Paravirtual drivers that otherwise require explicit synchronization
needs to do this by hooking up dirty tracking to pagefault handlers
and buffer object validation.
Provide mm helpers needed for this and that also allow for huge pmd-
and pud entries (patch 1-3), and the associated vmwgfx code (patch 4-7).
The code has been tested and exercised by a tailored version of mesa
where we disable all explicit synchronization and assume graphics memory
is coherent. The performance loss varies of course; a typical number is
around 5%.
Signed-off-by: Dave Airlie <airlied@redhat.com>
From: Thomas Hellstrom <thomas_os@shipmail.org>
Link: https://patchwork.freedesktop.org/patch/msgid/20191113131639.4653-1-thomas_os@shipmail.org
Pull locking updates from Ingo Molnar:
"The main changes in this cycle were:
- A comprehensive rewrite of the robust/PI futex code's exit handling
to fix various exit races. (Thomas Gleixner et al)
- Rework the generic REFCOUNT_FULL implementation using
atomic_fetch_* operations so that the performance impact of the
cmpxchg() loops is mitigated for common refcount operations.
With these performance improvements the generic implementation of
refcount_t should be good enough for everybody - and this got
confirmed by performance testing, so remove ARCH_HAS_REFCOUNT and
REFCOUNT_FULL entirely, leaving the generic implementation enabled
unconditionally. (Will Deacon)
- Other misc changes, fixes, cleanups"
* 'locking-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (27 commits)
lkdtm: Remove references to CONFIG_REFCOUNT_FULL
locking/refcount: Remove unused 'refcount_error_report()' function
locking/refcount: Consolidate implementations of refcount_t
locking/refcount: Consolidate REFCOUNT_{MAX,SATURATED} definitions
locking/refcount: Move saturation warnings out of line
locking/refcount: Improve performance of generic REFCOUNT_FULL code
locking/refcount: Move the bulk of the REFCOUNT_FULL implementation into the <linux/refcount.h> header
locking/refcount: Remove unused refcount_*_checked() variants
locking/refcount: Ensure integer operands are treated as signed
locking/refcount: Define constants for saturation and max refcount values
futex: Prevent exit livelock
futex: Provide distinct return value when owner is exiting
futex: Add mutex around futex exit
futex: Provide state handling for exec() as well
futex: Sanitize exit state handling
futex: Mark the begin of futex exit explicitly
futex: Set task::futex_state to DEAD right after handling futex exit
futex: Split futex_mm_release() for exit/exec
exit/exec: Seperate mm_release()
futex: Replace PF_EXITPIDONE with a state
...
Pull networking updates from David Miller:
"Another merge window, another pull full of stuff:
1) Support alternative names for network devices, from Jiri Pirko.
2) Introduce per-netns netdev notifiers, also from Jiri Pirko.
3) Support MSG_PEEK in vsock/virtio, from Matias Ezequiel Vara
Larsen.
4) Allow compiling out the TLS TOE code, from Jakub Kicinski.
5) Add several new tracepoints to the kTLS code, also from Jakub.
6) Support set channels ethtool callback in ena driver, from Sameeh
Jubran.
7) New SCTP events SCTP_ADDR_ADDED, SCTP_ADDR_REMOVED,
SCTP_ADDR_MADE_PRIM, and SCTP_SEND_FAILED_EVENT. From Xin Long.
8) Add XDP support to mvneta driver, from Lorenzo Bianconi.
9) Lots of netfilter hw offload fixes, cleanups and enhancements,
from Pablo Neira Ayuso.
10) PTP support for aquantia chips, from Egor Pomozov.
11) Add UDP segmentation offload support to igb, ixgbe, and i40e. From
Josh Hunt.
12) Add smart nagle to tipc, from Jon Maloy.
13) Support L2 field rewrite by TC offloads in bnxt_en, from Venkat
Duvvuru.
14) Add a flow mask cache to OVS, from Tonghao Zhang.
15) Add XDP support to ice driver, from Maciej Fijalkowski.
16) Add AF_XDP support to ice driver, from Krzysztof Kazimierczak.
17) Support UDP GSO offload in atlantic driver, from Igor Russkikh.
18) Support it in stmmac driver too, from Jose Abreu.
19) Support TIPC encryption and auth, from Tuong Lien.
20) Introduce BPF trampolines, from Alexei Starovoitov.
21) Make page_pool API more numa friendly, from Saeed Mahameed.
22) Introduce route hints to ipv4 and ipv6, from Paolo Abeni.
23) Add UDP segmentation offload to cxgb4, Rahul Lakkireddy"
* git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-next: (1857 commits)
libbpf: Fix usage of u32 in userspace code
mm: Implement no-MMU variant of vmalloc_user_node_flags
slip: Fix use-after-free Read in slip_open
net: dsa: sja1105: fix sja1105_parse_rgmii_delays()
macvlan: schedule bc_work even if error
enetc: add support Credit Based Shaper(CBS) for hardware offload
net: phy: add helpers phy_(un)lock_mdio_bus
mdio_bus: don't use managed reset-controller
ax88179_178a: add ethtool_op_get_ts_info()
mlxsw: spectrum_router: Fix use of uninitialized adjacency index
mlxsw: spectrum_router: After underlay moves, demote conflicting tunnels
bpf: Simplify __bpf_arch_text_poke poke type handling
bpf: Introduce BPF_TRACE_x helper for the tracing tests
bpf: Add bpf_jit_blinding_enabled for !CONFIG_BPF_JIT
bpf, testing: Add various tail call test cases
bpf, x86: Emit patchable direct jump as tail call
bpf: Constant map key tracking for prog array pokes
bpf: Add poke dependency tracking for prog array maps
bpf: Add initial poke descriptor table for jit images
bpf: Move owner type, jited info into array auxiliary data
...
- On ARMv8 CPUs without hardware updates of the access flag, avoid
failing cow_user_page() on PFN mappings if the pte is old. The patches
introduce an arch_faults_on_old_pte() macro, defined as false on x86.
When true, cow_user_page() makes the pte young before attempting
__copy_from_user_inatomic().
- Covert the synchronous exception handling paths in
arch/arm64/kernel/entry.S to C.
- FTRACE_WITH_REGS support for arm64.
- ZONE_DMA re-introduced on arm64 to support Raspberry Pi 4
- Several kselftest cases specific to arm64, together with a MAINTAINERS
update for these files (moved to the ARM64 PORT entry).
- Workaround for a Neoverse-N1 erratum where the CPU may fetch stale
instructions under certain conditions.
- Workaround for Cortex-A57 and A72 errata where the CPU may
speculatively execute an AT instruction and associate a VMID with the
wrong guest page tables (corrupting the TLB).
- Perf updates for arm64: additional PMU topologies on HiSilicon
platforms, support for CCN-512 interconnect, AXI ID filtering in the
IMX8 DDR PMU, support for the CCPI2 uncore PMU in ThunderX2.
- GICv3 optimisation to avoid a heavy barrier when accessing the
ICC_PMR_EL1 register.
- ELF HWCAP documentation updates and clean-up.
- SMC calling convention conduit code clean-up.
- KASLR diagnostics printed during boot
- NVIDIA Carmel CPU added to the KPTI whitelist
- Some arm64 mm clean-ups: use generic free_initrd_mem(), remove stale
macro, simplify calculation in __create_pgd_mapping(), typos.
- Kconfig clean-ups: CMDLINE_FORCE to depend on CMDLINE, choice for
endinanness to help with allmodconfig.
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEE5RElWfyWxS+3PLO2a9axLQDIXvEFAl3YJswACgkQa9axLQDI
XvFwYg//aTGhNLew3ADgW2TYal7LyqetRROixPBrzqHLu2A8No1+QxHMaKxpZVyf
pt25tABuLtPHql3qBzE0ltmfbLVsPj/3hULo404EJb9HLRfUnVGn7gcPkc+p4YAr
IYkYPXJbk6OlJ84vI+4vXmDEF12bWCqamC9qZ+h99qTpMjFXFO17DSJ7xQ8Xic3A
HHgCh4uA7gpTVOhLxaS6KIw+AZNYwvQxLXch2+wj6agbGX79uw9BeMhqVXdkPq8B
RTDJpOdS970WOT4cHWOkmXwsqqGRqgsgyu+bRUJ0U72+0y6MX0qSHIUnVYGmNc5q
Dtox4rryYLvkv/hbpkvjgVhv98q3J1mXt/CalChWB5dG4YwhJKN2jMiYuoAvB3WS
6dR7Dfupgai9gq1uoKgBayS2O6iFLSa4g58vt3EqUBqmM7W7viGFPdLbuVio4ycn
CNF2xZ8MZR6Wrh1JfggO7Hc11EJdSqESYfHO6V/pYB4pdpnqJLDoriYHXU7RsZrc
HvnrIvQWKMwNbqBvpNbWvK5mpBMMX2pEienA3wOqKNH7MbepVsG+npOZTVTtl9tN
FL0ePb/mKJu/2+gW8ntiqYn7EzjKprRmknOiT2FjWWo0PxgJ8lumefuhGZZbaOWt
/aTAeD7qKd/UXLKGHF/9v3q4GEYUdCFOXP94szWVPyLv+D9h8L8=
=TPL9
-----END PGP SIGNATURE-----
Merge tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux
Pull arm64 updates from Catalin Marinas:
"Apart from the arm64-specific bits (core arch and perf, new arm64
selftests), it touches the generic cow_user_page() (reviewed by
Kirill) together with a macro for x86 to preserve the existing
behaviour on this architecture.
Summary:
- On ARMv8 CPUs without hardware updates of the access flag, avoid
failing cow_user_page() on PFN mappings if the pte is old. The
patches introduce an arch_faults_on_old_pte() macro, defined as
false on x86. When true, cow_user_page() makes the pte young before
attempting __copy_from_user_inatomic().
- Covert the synchronous exception handling paths in
arch/arm64/kernel/entry.S to C.
- FTRACE_WITH_REGS support for arm64.
- ZONE_DMA re-introduced on arm64 to support Raspberry Pi 4
- Several kselftest cases specific to arm64, together with a
MAINTAINERS update for these files (moved to the ARM64 PORT entry).
- Workaround for a Neoverse-N1 erratum where the CPU may fetch stale
instructions under certain conditions.
- Workaround for Cortex-A57 and A72 errata where the CPU may
speculatively execute an AT instruction and associate a VMID with
the wrong guest page tables (corrupting the TLB).
- Perf updates for arm64: additional PMU topologies on HiSilicon
platforms, support for CCN-512 interconnect, AXI ID filtering in
the IMX8 DDR PMU, support for the CCPI2 uncore PMU in ThunderX2.
- GICv3 optimisation to avoid a heavy barrier when accessing the
ICC_PMR_EL1 register.
- ELF HWCAP documentation updates and clean-up.
- SMC calling convention conduit code clean-up.
- KASLR diagnostics printed during boot
- NVIDIA Carmel CPU added to the KPTI whitelist
- Some arm64 mm clean-ups: use generic free_initrd_mem(), remove
stale macro, simplify calculation in __create_pgd_mapping(), typos.
- Kconfig clean-ups: CMDLINE_FORCE to depend on CMDLINE, choice for
endinanness to help with allmodconfig"
* tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux: (93 commits)
arm64: Kconfig: add a choice for endianness
kselftest: arm64: fix spelling mistake "contiguos" -> "contiguous"
arm64: Kconfig: make CMDLINE_FORCE depend on CMDLINE
MAINTAINERS: Add arm64 selftests to the ARM64 PORT entry
arm64: kaslr: Check command line before looking for a seed
arm64: kaslr: Announce KASLR status on boot
kselftest: arm64: fake_sigreturn_misaligned_sp
kselftest: arm64: fake_sigreturn_bad_size
kselftest: arm64: fake_sigreturn_duplicated_fpsimd
kselftest: arm64: fake_sigreturn_missing_fpsimd
kselftest: arm64: fake_sigreturn_bad_size_for_magic0
kselftest: arm64: fake_sigreturn_bad_magic
kselftest: arm64: add helper get_current_context
kselftest: arm64: extend test_init functionalities
kselftest: arm64: mangle_pstate_invalid_mode_el[123][ht]
kselftest: arm64: mangle_pstate_invalid_daif_bits
kselftest: arm64: mangle_pstate_invalid_compat_toggle and common utils
kselftest: arm64: extend toplevel skeleton Makefile
drivers/perf: hisi: update the sccl_id/ccl_id for certain HiSilicon platform
arm64: mm: reserve CMA and crashkernel in ZONE_DMA32
...
To fix build with !CONFIG_MMU, implement it for no-MMU configurations as well.
Fixes: fc9702273e ("bpf: Add mmap() support for BPF_MAP_TYPE_ARRAY")
Reported-by: kbuild test robot <lkp@intel.com>
Signed-off-by: Andrii Nakryiko <andriin@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: John Fastabend <john.fastabend@gmail.com>
Link: https://lore.kernel.org/bpf/20191123220835.1237773-1-andriin@fb.com
These two functions have never been used since they were added.
Link: https://lore.kernel.org/r/20191113134528.21187-1-hch@lst.de
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: John Hubbard <jhubbard@nvidia.com>
Reviewed-by: Jason Gunthorpe <jgg@mellanox.com>
Signed-off-by: Jason Gunthorpe <jgg@mellanox.com>
hmm_range_fault() calls find_vma() and walk_page_range() in a loop. This
is unnecessary duplication since walk_page_range() calls find_vma() in a
loop already.
Simplify hmm_range_fault() by defining a walk_test() callback function to
filter unhandled vmas.
This also fixes a bug where hmm_range_fault() was not checking start >=
vma->vm_start before checking vma->vm_flags so hmm_range_fault() could
return an error based on the wrong vma for the requested range.
It also fixes a bug when the vma has no read access and the caller did not
request a fault, there shouldn't be any error return code.
Link: https://lore.kernel.org/r/20191104222141.5173-2-rcampbell@nvidia.com
Signed-off-by: Ralph Campbell <rcampbell@nvidia.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Jason Gunthorpe <jgg@mellanox.com>
Signed-off-by: Jason Gunthorpe <jgg@mellanox.com>
The only two users of this are now converted to use mmu_interval_notifier,
delete all the code and update hmm.rst.
Link: https://lore.kernel.org/r/20191112202231.3856-14-jgg@ziepe.ca
Reviewed-by: Jérôme Glisse <jglisse@redhat.com>
Tested-by: Ralph Campbell <rcampbell@nvidia.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jason Gunthorpe <jgg@mellanox.com>
hmm_mirror's handling of ranges does not use a sequence count which
results in this bug:
CPU0 CPU1
hmm_range_wait_until_valid(range)
valid == true
hmm_range_fault(range)
hmm_invalidate_range_start()
range->valid = false
hmm_invalidate_range_end()
range->valid = true
hmm_range_valid(range)
valid == true
Where the hmm_range_valid() should not have succeeded.
Adding the required sequence count would make it nearly identical to the
new mmu_interval_notifier. Instead replace the hmm_mirror stuff with
mmu_interval_notifier.
Co-existence of the two APIs is the first step.
Link: https://lore.kernel.org/r/20191112202231.3856-4-jgg@ziepe.ca
Reviewed-by: Jérôme Glisse <jglisse@redhat.com>
Tested-by: Philip Yang <Philip.Yang@amd.com>
Tested-by: Ralph Campbell <rcampbell@nvidia.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jason Gunthorpe <jgg@mellanox.com>
Of the 13 users of mmu_notifiers, 8 of them use only
invalidate_range_start/end() and immediately intersect the
mmu_notifier_range with some kind of internal list of VAs. 4 use an
interval tree (i915_gem, radeon_mn, umem_odp, hfi1). 4 use a linked list
of some kind (scif_dma, vhost, gntdev, hmm)
And the remaining 5 either don't use invalidate_range_start() or do some
special thing with it.
It turns out that building a correct scheme with an interval tree is
pretty complicated, particularly if the use case is synchronizing against
another thread doing get_user_pages(). Many of these implementations have
various subtle and difficult to fix races.
This approach puts the interval tree as common code at the top of the mmu
notifier call tree and implements a shareable locking scheme.
It includes:
- An interval tree tracking VA ranges, with per-range callbacks
- A read/write locking scheme for the interval tree that avoids
sleeping in the notifier path (for OOM killer)
- A sequence counter based collision-retry locking scheme to tell
device page fault that a VA range is being concurrently invalidated.
This is based on various ideas:
- hmm accumulates invalidated VA ranges and releases them when all
invalidates are done, via active_invalidate_ranges count.
This approach avoids having to intersect the interval tree twice (as
umem_odp does) at the potential cost of a longer device page fault.
- kvm/umem_odp use a sequence counter to drive the collision retry,
via invalidate_seq
- a deferred work todo list on unlock scheme like RTNL, via deferred_list.
This makes adding/removing interval tree members more deterministic
- seqlock, except this version makes the seqlock idea multi-holder on the
write side by protecting it with active_invalidate_ranges and a spinlock
To minimize MM overhead when only the interval tree is being used, the
entire SRCU and hlist overheads are dropped using some simple
branches. Similarly the interval tree overhead is dropped when in hlist
mode.
The overhead from the mandatory spinlock is broadly the same as most of
existing users which already had a lock (or two) of some sort on the
invalidation path.
Link: https://lore.kernel.org/r/20191112202231.3856-3-jgg@ziepe.ca
Acked-by: Christian König <christian.koenig@amd.com>
Tested-by: Philip Yang <Philip.Yang@amd.com>
Tested-by: Ralph Campbell <rcampbell@nvidia.com>
Reviewed-by: John Hubbard <jhubbard@nvidia.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jason Gunthorpe <jgg@mellanox.com>
Minor conflict in drivers/s390/net/qeth_l2_main.c, kept the lock
from commit c8183f5489 ("s390/qeth: fix potential deadlock on
workqueue flush"), removed the code which was removed by commit
9897d583b0 ("s390/qeth: consolidate some duplicated HW cmd code").
Signed-off-by: Jakub Kicinski <jakub.kicinski@netronome.com>
It's possible to hit the WARN_ON_ONCE(page_mapped(page)) in
remove_stable_node() when it races with __mmput() and squeezes in
between ksm_exit() and exit_mmap().
WARNING: CPU: 0 PID: 3295 at mm/ksm.c:888 remove_stable_node+0x10c/0x150
Call Trace:
remove_all_stable_nodes+0x12b/0x330
run_store+0x4ef/0x7b0
kernfs_fop_write+0x200/0x420
vfs_write+0x154/0x450
ksys_write+0xf9/0x1d0
do_syscall_64+0x99/0x510
entry_SYSCALL_64_after_hwframe+0x49/0xbe
Remove the warning as there is nothing scary going on.
Link: http://lkml.kernel.org/r/20191119131850.5675-1-aryabinin@virtuozzo.com
Fixes: cbf86cfe04 ("ksm: remove old stable nodes more thoroughly")
Signed-off-by: Andrey Ryabinin <aryabinin@virtuozzo.com>
Acked-by: Hugh Dickins <hughd@google.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Let's limit shrinking to !ZONE_DEVICE so we can fix the current code.
We should never try to touch the memmap of offline sections where we
could have uninitialized memmaps and could trigger BUGs when calling
page_to_nid() on poisoned pages.
There is no reliable way to distinguish an uninitialized memmap from an
initialized memmap that belongs to ZONE_DEVICE, as we don't have
anything like SECTION_IS_ONLINE we can use similar to
pfn_to_online_section() for !ZONE_DEVICE memory.
E.g., set_zone_contiguous() similarly relies on pfn_to_online_section()
and will therefore never set a ZONE_DEVICE zone consecutive. Stopping
to shrink the ZONE_DEVICE therefore results in no observable changes,
besides /proc/zoneinfo indicating different boundaries - something we
can totally live with.
Before commit d0dc12e86b ("mm/memory_hotplug: optimize memory
hotplug"), the memmap was initialized with 0 and the node with the right
value. So the zone might be wrong but not garbage. After that commit,
both the zone and the node will be garbage when touching uninitialized
memmaps.
Toshiki reported a BUG (race between delayed initialization of
ZONE_DEVICE memmaps without holding the memory hotplug lock and
concurrent zone shrinking).
https://lkml.org/lkml/2019/11/14/1040
"Iteration of create and destroy namespace causes the panic as below:
kernel BUG at mm/page_alloc.c:535!
CPU: 7 PID: 2766 Comm: ndctl Not tainted 5.4.0-rc4 #6
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.11.0-0-g63451fca13-prebuilt.qemu-project.org 04/01/2014
RIP: 0010:set_pfnblock_flags_mask+0x95/0xf0
Call Trace:
memmap_init_zone_device+0x165/0x17c
memremap_pages+0x4c1/0x540
devm_memremap_pages+0x1d/0x60
pmem_attach_disk+0x16b/0x600 [nd_pmem]
nvdimm_bus_probe+0x69/0x1c0
really_probe+0x1c2/0x3e0
driver_probe_device+0xb4/0x100
device_driver_attach+0x4f/0x60
bind_store+0xc9/0x110
kernfs_fop_write+0x116/0x190
vfs_write+0xa5/0x1a0
ksys_write+0x59/0xd0
do_syscall_64+0x5b/0x180
entry_SYSCALL_64_after_hwframe+0x44/0xa9
While creating a namespace and initializing memmap, if you destroy the
namespace and shrink the zone, it will initialize the memmap outside
the zone and trigger VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page),
pfn), page) in set_pfnblock_flags_mask()."
This BUG is also mitigated by this commit, where we for now stop to
shrink the ZONE_DEVICE zone until we can do it in a safe and clean way.
Link: http://lkml.kernel.org/r/20191006085646.5768-5-david@redhat.com
Fixes: f1dd2cd13c ("mm, memory_hotplug: do not associate hotadded memory to zones until online") [visible after d0dc12e86b]
Signed-off-by: David Hildenbrand <david@redhat.com>
Reported-by: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Reported-by: Toshiki Fukasawa <t-fukasawa@vx.jp.nec.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: David Hildenbrand <david@redhat.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Pavel Tatashin <pasha.tatashin@soleen.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Alexander Duyck <alexander.h.duyck@linux.intel.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Anshuman Khandual <anshuman.khandual@arm.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Christian Borntraeger <borntraeger@de.ibm.com>
Cc: Christophe Leroy <christophe.leroy@c-s.fr>
Cc: Damian Tometzki <damian.tometzki@gmail.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: Gerald Schaefer <gerald.schaefer@de.ibm.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Halil Pasic <pasic@linux.ibm.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Ira Weiny <ira.weiny@intel.com>
Cc: Jason Gunthorpe <jgg@ziepe.ca>
Cc: Jun Yao <yaojun8558363@gmail.com>
Cc: Logan Gunthorpe <logang@deltatee.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Masahiro Yamada <yamada.masahiro@socionext.com>
Cc: "Matthew Wilcox (Oracle)" <willy@infradead.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Mike Rapoport <rppt@linux.ibm.com>
Cc: Pankaj Gupta <pagupta@redhat.com>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Pavel Tatashin <pavel.tatashin@microsoft.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Qian Cai <cai@lca.pw>
Cc: Rich Felker <dalias@libc.org>
Cc: Robin Murphy <robin.murphy@arm.com>
Cc: Steve Capper <steve.capper@arm.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tom Lendacky <thomas.lendacky@amd.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Wei Yang <richard.weiyang@gmail.com>
Cc: Wei Yang <richardw.yang@linux.intel.com>
Cc: Will Deacon <will@kernel.org>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Cc: Yu Zhao <yuzhao@google.com>
Cc: <stable@vger.kernel.org> [4.13+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Daniel Borkmann says:
====================
pull-request: bpf-next 2019-11-20
The following pull-request contains BPF updates for your *net-next* tree.
We've added 81 non-merge commits during the last 17 day(s) which contain
a total of 120 files changed, 4958 insertions(+), 1081 deletions(-).
There are 3 trivial conflicts, resolve it by always taking the chunk from
196e8ca748:
<<<<<<< HEAD
=======
void *bpf_map_area_mmapable_alloc(u64 size, int numa_node);
>>>>>>> 196e8ca748
<<<<<<< HEAD
void *bpf_map_area_alloc(u64 size, int numa_node)
=======
static void *__bpf_map_area_alloc(u64 size, int numa_node, bool mmapable)
>>>>>>> 196e8ca748
<<<<<<< HEAD
if (size <= (PAGE_SIZE << PAGE_ALLOC_COSTLY_ORDER)) {
=======
/* kmalloc()'ed memory can't be mmap()'ed */
if (!mmapable && size <= (PAGE_SIZE << PAGE_ALLOC_COSTLY_ORDER)) {
>>>>>>> 196e8ca748
The main changes are:
1) Addition of BPF trampoline which works as a bridge between kernel functions,
BPF programs and other BPF programs along with two new use cases: i) fentry/fexit
BPF programs for tracing with practically zero overhead to call into BPF (as
opposed to k[ret]probes) and ii) attachment of the former to networking related
programs to see input/output of networking programs (covering xdpdump use case),
from Alexei Starovoitov.
2) BPF array map mmap support and use in libbpf for global data maps; also a big
batch of libbpf improvements, among others, support for reading bitfields in a
relocatable manner (via libbpf's CO-RE helper API), from Andrii Nakryiko.
3) Extend s390x JIT with usage of relative long jumps and loads in order to lift
the current 64/512k size limits on JITed BPF programs there, from Ilya Leoshkevich.
4) Add BPF audit support and emit messages upon successful prog load and unload in
order to have a timeline of events, from Daniel Borkmann and Jiri Olsa.
5) Extension to libbpf and xdpsock sample programs to demo the shared umem mode
(XDP_SHARED_UMEM) as well as RX-only and TX-only sockets, from Magnus Karlsson.
6) Several follow-up bug fixes for libbpf's auto-pinning code and a new API
call named bpf_get_link_xdp_info() for retrieving the full set of prog
IDs attached to XDP, from Toke Høiland-Jørgensen.
7) Add BTF support for array of int, array of struct and multidimensional arrays
and enable it for skb->cb[] access in kfree_skb test, from Martin KaFai Lau.
8) Fix AF_XDP by using the correct number of channels from ethtool, from Luigi Rizzo.
9) Two fixes for BPF selftest to get rid of a hang in test_tc_tunnel and to avoid
xdping to be run as standalone, from Jiri Benc.
10) Various BPF selftest fixes when run with latest LLVM trunk, from Yonghong Song.
11) Fix a memory leak in BPF fentry test run data, from Colin Ian King.
12) Various smaller misc cleanups and improvements mostly all over BPF selftests and
samples, from Daniel T. Lee, Andre Guedes, Anders Roxell, Mao Wenan, Yue Haibing.
====================
Signed-off-by: David S. Miller <davem@davemloft.net>
Add ability to memory-map contents of BPF array map. This is extremely useful
for working with BPF global data from userspace programs. It allows to avoid
typical bpf_map_{lookup,update}_elem operations, improving both performance
and usability.
There had to be special considerations for map freezing, to avoid having
writable memory view into a frozen map. To solve this issue, map freezing and
mmap-ing is happening under mutex now:
- if map is already frozen, no writable mapping is allowed;
- if map has writable memory mappings active (accounted in map->writecnt),
map freezing will keep failing with -EBUSY;
- once number of writable memory mappings drops to zero, map freezing can be
performed again.
Only non-per-CPU plain arrays are supported right now. Maps with spinlocks
can't be memory mapped either.
For BPF_F_MMAPABLE array, memory allocation has to be done through vmalloc()
to be mmap()'able. We also need to make sure that array data memory is
page-sized and page-aligned, so we over-allocate memory in such a way that
struct bpf_array is at the end of a single page of memory with array->value
being aligned with the start of the second page. On deallocation we need to
accomodate this memory arrangement to free vmalloc()'ed memory correctly.
One important consideration regarding how memory-mapping subsystem functions.
Memory-mapping subsystem provides few optional callbacks, among them open()
and close(). close() is called for each memory region that is unmapped, so
that users can decrease their reference counters and free up resources, if
necessary. open() is *almost* symmetrical: it's called for each memory region
that is being mapped, **except** the very first one. So bpf_map_mmap does
initial refcnt bump, while open() will do any extra ones after that. Thus
number of close() calls is equal to number of open() calls plus one more.
Signed-off-by: Andrii Nakryiko <andriin@fb.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Song Liu <songliubraving@fb.com>
Acked-by: John Fastabend <john.fastabend@gmail.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Link: https://lore.kernel.org/bpf/20191117172806.2195367-4-andriin@fb.com
PageAnon() and PageKsm() use the low two bits of the page->mapping
pointer to indicate the page type. PageAnon() only checks the LSB while
PageKsm() checks the least significant 2 bits are equal to 3.
Therefore, PageAnon() is true for KSM pages. __dump_page() incorrectly
will never print "ksm" because it checks PageAnon() first. Fix this by
checking PageKsm() first.
Link: http://lkml.kernel.org/r/20191113000651.20677-1-rcampbell@nvidia.com
Fixes: 1c6fb1d89e ("mm: print more information about mapping in __dump_page")
Signed-off-by: Ralph Campbell <rcampbell@nvidia.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Jerome Glisse <jglisse@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When dumping struct page information, __dump_page() prints the page type
with a trailing blank followed by the page flags on a separate line:
anon
flags: 0x100000000090034(uptodate|lru|active|head|swapbacked)
It looks like the intent was to use pr_cont() for printing "flags:" but
pr_cont() usage is discouraged so fix this by extending the format to
include the flags into a single line:
anon flags: 0x100000000090034(uptodate|lru|active|head|swapbacked)
If the page is file backed, the name might be long so use two lines:
shmem_aops name:"dev/zero"
flags: 0x10000000008000c(uptodate|dirty|swapbacked)
Eliminate pr_conf() usage as well for appending compound_mapcount.
Link: http://lkml.kernel.org/r/20191112012608.16926-1-rcampbell@nvidia.com
Signed-off-by: Ralph Campbell <rcampbell@nvidia.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Jerome Glisse <jglisse@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The following race is observed due to which a processes faulting on a
swap entry, finds the page neither in swapcache nor swap. This causes
zram to give a zero filled page that gets mapped to the process,
resulting in a user space crash later.
Consider parent and child processes Pa and Pb sharing the same swap slot
with swap_count 2. Swap is on zram with SWP_SYNCHRONOUS_IO set.
Virtual address 'VA' of Pa and Pb points to the shared swap entry.
Pa Pb
fault on VA fault on VA
do_swap_page do_swap_page
lookup_swap_cache fails lookup_swap_cache fails
Pb scheduled out
swapin_readahead (deletes zram entry)
swap_free (makes swap_count 1)
Pb scheduled in
swap_readpage (swap_count == 1)
Takes SWP_SYNCHRONOUS_IO path
zram enrty absent
zram gives a zero filled page
Fix this by making sure that swap slot is freed only when swap count
drops down to one.
Link: http://lkml.kernel.org/r/1571743294-14285-1-git-send-email-vinmenon@codeaurora.org
Fixes: aa8d22a11d ("mm: swap: SWP_SYNCHRONOUS_IO: skip swapcache only if swapped page has no other reference")
Signed-off-by: Vinayak Menon <vinmenon@codeaurora.org>
Suggested-by: Minchan Kim <minchan@google.com>
Acked-by: Minchan Kim <minchan@kernel.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
try_offline_node() is pretty much broken right now:
- The node span is updated when onlining memory, not when adding it. We
ignore memory that was mever onlined. Bad.
- We touch possible garbage memmaps. The pfn_to_nid(pfn) can easily
trigger a kernel panic. Bad for memory that is offline but also bad
for subsection hotadd with ZONE_DEVICE, whereby the memmap of the
first PFN of a section might contain garbage.
- Sections belonging to mixed nodes are not properly considered.
As memory blocks might belong to multiple nodes, we would have to walk
all pageblocks (or at least subsections) within present sections.
However, we don't have a way to identify whether a memmap that is not
online was initialized (relevant for ZONE_DEVICE). This makes things
more complicated.
Luckily, we can piggy pack on the node span and the nid stored in memory
blocks. Currently, the node span is grown when calling
move_pfn_range_to_zone() - e.g., when onlining memory, and shrunk when
removing memory, before calling try_offline_node(). Sysfs links are
created via link_mem_sections(), e.g., during boot or when adding
memory.
If the node still spans memory or if any memory block belongs to the
nid, we don't set the node offline. As memory blocks that span multiple
nodes cannot get offlined, the nid stored in memory blocks is reliable
enough (for such online memory blocks, the node still spans the memory).
Introduce for_each_memory_block() to efficiently walk all memory blocks.
Note: We will soon stop shrinking the ZONE_DEVICE zone and the node span
when removing ZONE_DEVICE memory to fix similar issues (access of
garbage memmaps) - until we have a reliable way to identify whether
these memmaps were properly initialized. This implies later, that once
a node had ZONE_DEVICE memory, we won't be able to set a node offline -
which should be acceptable.
Since commit f1dd2cd13c ("mm, memory_hotplug: do not associate
hotadded memory to zones until online") memory that is added is not
assoziated with a zone/node (memmap not initialized). The introducing
commit 60a5a19e74 ("memory-hotplug: remove sysfs file of node")
already missed that we could have multiple nodes for a section and that
the zone/node span is updated when onlining pages, not when adding them.
I tested this by hotplugging two DIMMs to a memory-less and cpu-less
NUMA node. The node is properly onlined when adding the DIMMs. When
removing the DIMMs, the node is properly offlined.
Masayoshi Mizuma reported:
: Without this patch, memory hotplug fails as panic:
:
: BUG: kernel NULL pointer dereference, address: 0000000000000000
: ...
: Call Trace:
: remove_memory_block_devices+0x81/0xc0
: try_remove_memory+0xb4/0x130
: __remove_memory+0xa/0x20
: acpi_memory_device_remove+0x84/0x100
: acpi_bus_trim+0x57/0x90
: acpi_bus_trim+0x2e/0x90
: acpi_device_hotplug+0x2b2/0x4d0
: acpi_hotplug_work_fn+0x1a/0x30
: process_one_work+0x171/0x380
: worker_thread+0x49/0x3f0
: kthread+0xf8/0x130
: ret_from_fork+0x35/0x40
[david@redhat.com: v3]
Link: http://lkml.kernel.org/r/20191102120221.7553-1-david@redhat.com
Link: http://lkml.kernel.org/r/20191028105458.28320-1-david@redhat.com
Fixes: 60a5a19e74 ("memory-hotplug: remove sysfs file of node")
Fixes: f1dd2cd13c ("mm, memory_hotplug: do not associate hotadded memory to zones until online") # visiable after d0dc12e86b
Signed-off-by: David Hildenbrand <david@redhat.com>
Tested-by: Masayoshi Mizuma <m.mizuma@jp.fujitsu.com>
Cc: Tang Chen <tangchen@cn.fujitsu.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: "Rafael J. Wysocki" <rafael@kernel.org>
Cc: Keith Busch <keith.busch@intel.com>
Cc: Jiri Olsa <jolsa@kernel.org>
Cc: "Peter Zijlstra (Intel)" <peterz@infradead.org>
Cc: Jani Nikula <jani.nikula@intel.com>
Cc: Nayna Jain <nayna@linux.ibm.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Pavel Tatashin <pasha.tatashin@soleen.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>