In preparation of pblk supporting 2.0, implement the get log report
chunk in pblk. Also, define the chunk states as given in the 2.0 spec.
Signed-off-by: Javier González <javier@cnexlabs.com>
Signed-off-by: Matias Bjørling <mb@lightnvm.io>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Add support for 2.0 address format. Also, align address bits for 1.2 and
2.0 to be able to operate on channel and luns without requiring a format
conversion. Use a generic address format for this purpose.
Also, convert the generic operations to the generic format in pblk.
Signed-off-by: Javier González <javier@cnexlabs.com>
Signed-off-by: Matias Bjørling <mb@lightnvm.io>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Normalize nomenclature for naming channels, luns, chunks, planes and
sectors as well as derivations in order to improve readability.
Signed-off-by: Javier González <javier@cnexlabs.com>
Signed-off-by: Matias Bjørling <mb@lightnvm.io>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Currently, the device geometry is stored redundantly in the nvm_id and
nvm_geo structures at a device level. Moreover, when instantiating
targets on a specific number of LUNs, these structures are replicated
and manually modified to fit the instance channel and LUN partitioning.
Instead, create a generic geometry around nvm_geo, which can be used by
(i) the underlying device to describe the geometry of the whole device,
and (ii) instances to describe their geometry independently.
Signed-off-by: Javier González <javier@cnexlabs.com>
Signed-off-by: Matias Bjørling <mb@lightnvm.io>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
In preparation for the OCSSD 2.0 spec. bad block identification,
refactor the current code to generalize bad block get/set functions and
structures.
Signed-off-by: Javier González <javier@cnexlabs.com>
Signed-off-by: Matias Bjørling <mb@lightnvm.io>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
When shutting down pblk the write buffer is flushed and if the
current line can't fit the data in the write buffer we need
to allocate a new line, so remove the check that prevents this.
Signed-off-by: Hans Holmberg <hans.holmberg@cnexlabs.com>
Reviewed-by: Javier González <javier@cnexlabs.com>
Signed-off-by: Matias Bjørling <mb@lightnvm.io>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
In a SSD, write amplification, WA, is defined as the average
number of page writes per user page write. Write amplification
negatively affects write performance and decreases the lifetime
of the disk, so it's a useful metric to add to sysfs.
In plkb's case, the number of writes per user sector is the sum of:
(1) number of user writes
(2) number of sectors written by the garbage collector
(3) number of sectors padded (i.e. due to syncs)
This patch adds persistent counters for 1-3 and two sysfs attributes
to export these along with WA calculated with five decimals:
write_amp_mileage: the accumulated write amplification stats
for the lifetime of the pblk instance
write_amp_trip: resetable stats to facilitate delta measurements,
values reset at creation and if 0 is written
to the attribute.
64-bit counters are used as a 32 bit counter would wrap around
already after about 17 TB worth of user data. It will take a
long long time before the 64 bit sector counters wrap around.
The counters are stored after the bad block bitmap in the first
emeta sector of each written line. There is plenty of space in the
first emeta sector, so we don't need to bump the major version of
the line data format.
Signed-off-by: Hans Holmberg <hans.holmberg@cnexlabs.com>
Signed-off-by: Javier González <javier@cnexlabs.com>
Signed-off-by: Matias Bjørling <mb@lightnvm.io>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
As a preparation for future bumps of data line persistent storage
versions, we need to start checking the emeta line version during
recovery. Also slit up the current emeta/smeta version into two
bytes (major,minor).
Recovering lines with the same major number as the current pblk data
line version must succeed. This means that any changes in the
persistent format must be:
(1) Backward compatible: if we switch back to and older
kernel, recovery of lines stored with major == current_major
and minor > current_minor must succeed.
(2) Forward compatible: switching to a newer kernel,
recovery of lines stored with major=current_major and
minor < minor must handle the data format differences
gracefully(i.e. initialize new data structures to default values).
If we detect lines that have a different major number than
the current we must abort recovery. The user must manually
migrate the data in this case.
Previously the version stored in the emeta header was copied
from smeta, which has version 1, so we need to set the minor
version to 1.
Signed-off-by: Hans Holmberg <hans.holmberg@cnexlabs.com>
Signed-off-by: Javier González <javier@cnexlabs.com>
Signed-off-by: Matias Bjørling <mb@lightnvm.io>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Unless we check if there are bad sectors in the entire emeta-area
we risk ending up with valid bitmap / available sector count inconsistency.
This results in lines with a bad chunk at the last LUN marked as bad,
so go through the whole emeta area and mark up the invalid sectors.
Signed-off-by: Hans Holmberg <hans.holmberg@cnexlabs.com>
Signed-off-by: Matias Bjørling <mb@lightnvm.io>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
On scan recovery, reads can fail. This happens because the first page
for each line is read in order to determined if the line has been used
(and thus needs to be recovered), or not. This can lead to "empty page"
read errors.
Since these errors are normal, do not log them, as they are confusing
when reviewing the logs.
Signed-off-by: Javier González <javier@cnexlabs.com>
Signed-off-by: Matias Bjørling <m@bjorling.me>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Until now, pblk's rate-limiter has used a heuristic to reserve space for
GC I/O given that the over-provision area was fixed.
In preparation for allowing to define the over-provision area on target
creation, define a dedicated free_block counter in the rate-limiter to
track the number of blocks being used for user data.
Signed-off-by: Javier González <javier@cnexlabs.com>
Signed-off-by: Hans Holmberg <hans.holmberg@cnexlabs.com>
Signed-off-by: Matias Bjørling <m@bjorling.me>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Through time, we have generated some redundant helper functions.
Refactor them to eliminate redundant and unnecessary code. Also, reorder
them to improve readability
Signed-off-by: Javier González <javier@cnexlabs.com>
Signed-off-by: Matias Bjørling <m@bjorling.me>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Prepare for the 2.0 revision by adapting the geometry
structures to coexist with the 1.2 revision.
Signed-off-by: Matias Bjørling <m@bjorling.me>
Reviewed-by: Javier González <javier@cnexlabs.com>
Signed-off-by: Matias Bjørling <m@bjorling.me>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
In preparation for unconditionally passing the struct timer_list pointer to
all timer callbacks, switch to using the new timer_setup() and from_timer()
to pass the timer pointer explicitly.
Cc: Matias Bjorling <mb@lightnvm.io>
Cc: linux-block@vger.kernel.org
Signed-off-by: Kees Cook <keescook@chromium.org>
Implement a generic path for sending sync I/O on LightNVM. This allows
to reuse the standard synchronous path trough blk_execute_rq(), instead
of implementing a wait_for_completion on the target side (e.g., pblk).
Signed-off-by: Javier González <javier@cnexlabs.com>
Signed-off-by: Matias Bjørling <m@bjorling.me>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Cleanup up unused and static functions across the whole codebase.
Signed-off-by: Javier González <javier@cnexlabs.com>
Signed-off-by: Matias Bjørling <m@bjorling.me>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Finish garbage collect of the lines that are in the gc pipeline
before exiting. Ensure that all lines already in in the pipeline
goes through, from read to write.
Do this by keeping track of how many lines are in the pipeline
and waiting for that number to reach zero before exiting the gc
reader task.
Since we're adding a new gc line counter, change the name of
inflight_gc to read_inflight_gc to make the distinction clear.
Signed-off-by: Hans Holmberg <hans.holmberg@cnexlabs.com>
Signed-off-by: Matias Bjørling <m@bjorling.me>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Metadata I/Os are scheduled to minimize their impact on user data I/Os.
When there are enough LUNs instantiated (i.e., enough bandwidth), it is
easy to interleave metadata and data one after the other so that
metadata I/Os are the ones being blocked and not vice-versa.
We do this by calculating the distance between the I/Os in terms of the
LUNs that are not in used, and selecting a free LUN that satisfies a
the simple heuristic that metadata is scheduled behind. The per-LUN
semaphores guarantee consistency. This works fine on >1 LUN
configuration. However, when a single LUN is instantiated, this design
leads to a deadlock, where metadata waits to be scheduled on a free LUN.
This patch implements the 1 LUN case by simply scheduling the metadada
I/O after the data I/O. In the process, we refactor the way a line is
replaced to ensure that metadata writes are submitted after data writes
in order to guarantee block sequentiality. Note that, since there is
only one LUN, both I/Os will block each other by design. However, such
configuration only pursues tight read latencies, not write bandwidth.
Signed-off-by: Javier González <javier@cnexlabs.com>
Signed-off-by: Matias Bjørling <m@bjorling.me>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
When a line is recycled during garbage collection, reads can still be
issued to the line. If the line is freed in the middle of this process,
data corruption might occur.
This patch guarantees that lines are not freed in the middle of reads
that target them (lines). Specifically, we use the existing line
reference to decide when a line is eligible for being freed after the
recycle process.
Signed-off-by: Javier González <javier@cnexlabs.com>
Signed-off-by: Matias Bjørling <m@bjorling.me>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
For consistency with the rest of pblk, use rqd->end_io to point to the
function taking care of ending the request on the completion path.
Signed-off-by: Javier González <javier@cnexlabs.com>
Signed-off-by: Matias Bjørling <m@bjorling.me>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Refactor the rqd allocation and free functions so that all I/O types can
use these helper functions.
Signed-off-by: Javier González <javier@cnexlabs.com>
Signed-off-by: Matias Bjørling <m@bjorling.me>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Each request type sent to the LightNVM subsystem requires different
metadata. Until now, we have tailored this metadata based on write, read
and erase commands. However, pblk uses different metadata for internal
writes that do not hit the write buffer. Instead of abusing the metadata
for reads, create a new request type - internal write to improve
code readability.
In the process, create internal values for each I/O type instead of
abusing the READ/WRITE macros, as suggested by Christoph.
Signed-off-by: Javier González <javier@cnexlabs.com>
Signed-off-by: Matias Bjørling <m@bjorling.me>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Simplify put bio by doing it on bio end_io instead of manually putting
it on the completion path.
Signed-off-by: Javier González <javier@cnexlabs.com>
Signed-off-by: Matias Bjørling <m@bjorling.me>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
When a line is selected for recycling by the garbage collector (GC), the
line state changes and the invalid bitmap is frozen, preventing
invalidations from happening. Throughout the GC, the L2P map is checked
to verify that not data being recycled has been updated. The last check
is done before the new map is being stored on the L2P table. Though
this algorithm works, it requires a number of corner cases to be checked
each time the L2P table is being updated. This complicates readability
and is error prone in case that the recycling algorithm is modified.
Instead, this patch makes the invalid bitmap accessible even when the
line is being recycled. When recycled data is being remapped, it is
enough to check the invalid bitmap for the line before updating the L2P
table.
Signed-off-by: Javier González <javier@cnexlabs.com>
Signed-off-by: Matias Bjørling <m@bjorling.me>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Normalize the way we name ppa variables to improve code readability.
Signed-off-by: Javier González <javier@cnexlabs.com>
Signed-off-by: Matias Bjørling <m@bjorling.me>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
As part of the mempool audit on pblk, remove unnecessary mempool
allocation checks on mempools.
Reported-by: Jens Axboe <axboe@kernel.dk>
Signed-off-by: Javier González <javier@cnexlabs.com>
Signed-off-by: Matias Bjørling <m@bjorling.me>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
pblk holds two sector bitmaps: one to keep track of the mapped sectors
while the line is active and another one to keep track of the invalid
sectors. The latter is kept during the whole live of the line, until it
is recycled. Since we cannot guarantee forward progress for the mempool
in this case, get rid of the mempool and simply allocate memory through
kmalloc.
Reported-by: Jens Axboe <axboe@kernel.dk>
Signed-off-by: Javier González <javier@cnexlabs.com>
Signed-off-by: Matias Bjørling <m@bjorling.me>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Since read and erase paths offer different guarantees for inflight I/Os,
separate the mempools to set the right min_nr for each on creation.
Reported-by: Jens Axboe <axboe@kernel.dk>
Signed-off-by: Javier González <javier@cnexlabs.com>
Signed-off-by: Matias Bjørling <m@bjorling.me>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
In pblk, we have a mempool to allocate a generic structure that we
pass along workqueues. This is heavily used in the GC path in order
to have enough inflight reads and fully utilize the GC bandwidth.
However, the current GC path copies data to the host memory and puts it
back into the write buffer. This requires a vmalloc allocation for the
data and a memory copy. Thus, guaranteeing the allocation by using a
mempool for the structure in itself does not give us much. Until we
implement support for vector copy to avoid moving data through the host,
just allocate the workqueue structure using kmalloc.
This allows us to have a much smaller mempool.
Reported-by: Jens Axboe <axboe@kernel.dk>
Signed-off-by: Javier González <javier@cnexlabs.com>
Signed-off-by: Matias Bjørling <m@bjorling.me>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
pblk uses an internal page mempool for allocating pages on internal
bios. The main two users of this memory pool are partial reads (reads
with some sectors in cache and some on media) and padded writes, which
need to add dummy pages to an existing bio already containing valid
data (and with a large enough bioset allocated). In both cases, the
maximum number of pages per bio is defined by the maximum number of
physical sectors supported by the underlying device.
This patch fixes a bad mempool allocation, where the min_nr of elements
on the pool was fixed (to 16), which is lower than the maximum number
of sectors supported by NVMe (as of the time for this patch). Instead,
use the maximum number of allowed sectors reported by the device.
Reported-by: Jens Axboe <axboe@kernel.dk>
Signed-off-by: Javier González <javier@cnexlabs.com>
Signed-off-by: Matias Bjørling <m@bjorling.me>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
When a REQ_FLUSH reaches pblk, the bio cannot be directly completed.
Instead, data on the write buffer is flushed and the bio is completed on
the completion pah. This might require some sectors to be padded in
order to guarantee a successful write.
This patch fixes a memory leak on the padded pages. A consequence of
this bad free was that internal bios not containing data (only a flush)
were not being completed.
Fixes: a4bd217b43 ("lightnvm: physical block device (pblk) target")
Signed-off-by: Javier González <javier@cnexlabs.com>
Signed-off-by: Matias Bjørling <m@bjorling.me>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
This is a trivial change which reuses pblk_gc_should_kick instead of
repeating it again in pblk_rl_free_lines_inc.
Signed-off-by: Rakesh Pandit <rakesh@tuxera.com>
Made it apply to the common case.
Reviewed-by: Javier González <javier@cnexlabs.com>
Signed-off-by: Matias Bjørling <m@bjorling.me>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Correct it by converting little endian to cpu endian and also define
a macro for line version so that maintenance is easy.
Signed-off-by: Rakesh Pandit <rakesh@tuxera.com>
Reviewed-by: Javier González <javier@cnexlabs.com>
Signed-off-by: Matias Bjørling <m@bjorling.me>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
The two pr_err messages are useless as they don't differentiate
error code.
Signed-off-by: Rakesh Pandit <rakesh@tuxera.com>
Reviewed-by: Javier González <javier@cnexlabs.com>
Signed-off-by: Matias Bjørling <m@bjorling.me>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
It seems pblk_dealloc_page would race against pblk_alloc_pages for
line bitmap for sector allocation.The chances are very low but might
as well protect the bitmap properly.
Signed-off-by: Rakesh Pandit <rakesh@tuxera.com>
Reviewed-by: Javier González <javier@cnexlabs.com>
Signed-off-by: Matias Bjørling <m@bjorling.me>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
When removing a pblk instance, control the write I/O flow to the
controller as we do in the fast path.
Signed-off-by: Javier González <javier@cnexlabs.com>
Signed-off-by: Matias Bjørling <matias@cnexlabs.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Do bitmap checks only when debug mode is enable. The line bitmap used
for mapping to physical addresses is fairly large (~512KB) and it is
expensive to do this checks on the fast path.
Signed-off-by: Javier González <javier@cnexlabs.com>
Signed-off-by: Matias Bjørling <matias@cnexlabs.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
When removing a pblk instance, pad the current line using asynchronous
I/O. This reduces the removal time from ~1 minute in the worst case to a
couple of seconds.
Signed-off-by: Javier González <javier@cnexlabs.com>
Signed-off-by: Matias Bjørling <matias@cnexlabs.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
For now, we allocate a per I/O buffer for GC data. Since the potential
size of the buffer is 256KB and GC is not in the fast path, do this
allocation with vmalloc. This puts lets pressure on the memory
allocator at no performance cost.
Signed-off-by: Javier González <javier@cnexlabs.com>
Signed-off-by: Matias Bjørling <matias@cnexlabs.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Use the right types and conversions on le64 variables. Reported by
sparse.
Signed-off-by: Javier González <javier@cnexlabs.com>
Signed-off-by: Matias Bjørling <matias@cnexlabs.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Due to user writes being decoupled from media writes because of the need
of an intermediate write buffer, irrecoverable media write errors lead
to pblk stalling; user writes fill up the buffer and end up in an
infinite retry loop.
In order to let user writes fail gracefully, it is necessary for pblk to
keep track of its own internal state and prevent further writes from
being placed into the write buffer.
This patch implements a state machine to keep track of internal errors
and, in case of failure, fail further user writes in an standard way.
Depending on the type of error, pblk will do its best to persist
buffered writes (which are already acknowledged) and close down on a
graceful manner. This way, data might be recovered by re-instantiating
pblk. Such state machine paves out the way for a state-based FTL log.
Signed-off-by: Javier González <javier@cnexlabs.com>
Signed-off-by: Matias Bjørling <matias@cnexlabs.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Make constants to define sizes for internal mempools and workqueues. In
this process, adjust the values to be more meaningful given the internal
constrains of the FTL. In order to do this for workqueues, separate the
current auxiliary workqueue into two dedicated workqueues to manage
lines being closed and bad blocks.
Signed-off-by: Javier González <javier@cnexlabs.com>
Signed-off-by: Matias Bjørling <matias@cnexlabs.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
At the moment, in order to get enough read parallelism, we have recycled
several lines at the same time. This approach has proven not to work
well when reaching capacity, since we end up mixing valid data from all
lines, thus not maintaining a sustainable free/recycled line ratio.
The new design, relies on a two level workqueue mechanism. In the first
level, we read the metadata for a number of lines based on the GC list
they reside on (this is governed by the number of valid sectors in each
line). In the second level, we recycle a single line at a time. Here, we
issue reads in parallel, while a single GC write thread places data in
the write buffer. This design allows to (i) only move data from one line
at a time, thus maintaining a sane free/recycled ration and (ii)
maintain the GC writer busy with recycled data.
Signed-off-by: Javier González <javier@cnexlabs.com>
Signed-off-by: Matias Bjørling <matias@cnexlabs.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Set a dma area for all I/Os in order to read/write from/to the metadata
stored on the per-sector out-of-bound area.
Signed-off-by: Javier González <javier@cnexlabs.com>
Signed-off-by: Matias Bjørling <matias@cnexlabs.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
smeta size will always be suitable for a kmalloc allocation. Simplify
the code and leave the vmalloc fallback only for emeta, where the pblk
configuration has an impact.
Signed-off-by: Javier González <javier@cnexlabs.com>
Signed-off-by: Matias Bjørling <matias@cnexlabs.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
If a read request is sequential and its size aligns with a
multi-plane page size, use the multi-plane hint to process the I/O in
parallel in the controller.
Signed-off-by: Javier González <javier@cnexlabs.com>
Signed-off-by: Matias Bjørling <matias@cnexlabs.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
After refactoring the metadata path, the backpointer controlling
synced I/Os in a line becomes unnecessary; metadata is scheduled
on the write thread, thus we know when the end of the line is reached
and act on it directly.
Signed-off-by: Javier González <javier@cnexlabs.com>
Signed-off-by: Matias Bjørling <matias@cnexlabs.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>