Pull thermal management updates from Zhang Rui:
- introduce brcmstb AVS TMON thermal driver (Brian Norris)
- add Rockchip RV1108 support in rockchip thermal driver (Rocky Hao)
- major rework on HISI driver plus additional support of hisi3660
(Daniel Lezcano)
- add nvmem-cells binding on imx6sx (Leonard Crestez)
- fix a NULL pointer dereference on ti thermal driver unloading (Tony
Lindgren)
- improve tmon tool to make it easier to cross-compile tmon (Markus
Mayer)
- add Coffee Lake and Cannon Lake support for intel processor and pch
thermal drivers (Srinivas Pandruvada)
- other small fixes and cleanups (Arvind Yadav, Colin Ian King, Allen
Wild, Nicolin Chen, Baruch SiachNiklas Söderlund, Arnd Bergmann)
* 'next' of git://git.kernel.org/pub/scm/linux/kernel/git/rzhang/linux: (44 commits)
thermal: pch: Add Cannon Lake support
thermal: int340x: processor_thermal: Add Coffee Lake support
thermal: int340x: processor_thermal: Add Cannon Lake support
thermal: bxt: remove redundant variable trip
thermal: cpu_cooling: pr_err() strings should end with newlines
thermal: add brcmstb AVS TMON driver
Documentation: devicetree: add binding for Broadcom STB AVS TMON
thermal/drivers/hisi: Add support for hi3660 SoC
thermal/drivers/hisi: Prepare to add support for other hisi platforms
thermal/drivers/hisi: Add platform prefix to function name
thermal/drivers/hisi: Put platform code together
thermal/drivers/qcom-spmi: Use devm_iio_channel_get
thermal/drivers/generic-iio-adc: Switch tz request to devm version
thermal/drivers/step_wise: Fix temperature regulation misbehavior
thermal/drivers/hisi: Use round up step value
thermal/drivers/hisi: Move the clk setup in the corresponding functions
thermal/drivers/hisi: Remove mutex_lock in the code
thermal/drivers/hisi: Remove thermal data back pointer
thermal/drivers/hisi: Convert long to int
thermal/drivers/hisi: Rename and remove unused field
...
This branch contains platform-related driver updates for ARM and ARM64,
these are the areas that bring the changes:
New drivers:
- Driver support for Renesas R-Car V3M (R8A77970)
- Power management support for Amlogic GX
- A new driver for the Tegra BPMP thermal sensor
- A new bus driver for Technologic Systems NBUS
Changes for subsystems that prefer to merge through arm-soc:
- The usual updates for reset controller drivers from Philipp Zabel,
with five added drivers for SoCs in the arc, meson, socfpa, uniphier
and mediatek families.
- Updates to the ARM SCPI and PSCI frameworks, from Sudeep Holla,
Heiner Kallweit and Lorenzo Pieralisi.
Changes specific to some ARM-based SoC
- The Freescale/NXP DPAA QBMan drivers from PowerPC can now work
on ARM as well.
- Several changes for power management on Broadcom SoCs
- Various improvements on Qualcomm, Broadcom, Amlogic, Atmel, Mediatek
- Minor Cleanups for Samsung, TI OMAP SoCs
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQIcBAABAgAGBQJaDggbAAoJEGCrR//JCVInIeQQAN1MDyO1UaWiFYnbkVOgzFcj
dqbFOc41DBE/90JoBWE8kR/rjyF83OqztiaYpx9viu2qMMBZVcOwxhCUthWK59c/
IujYdw4zGevLscF+jdrLbXgk97nfaWebsHyTAF307WAdZVJxiVGGzQEcgm71d6Zp
CXjLiUii4winHUMK9FLRY2st0HKAevXhuvZJVV432+sTg3p7fGVilYeGOL5G62WO
zQfCisqzC5q677kGGyUlPRGlHWMPkllsTTnfXcmV/FUiGyVa3lUWY5sEu+wCl96O
U1ffPENeNj/A/4fa1dbErtbiNnC2z/+jf+Dg7Cn8w/dPk4Suf0ppjP8RqIGyxmDl
Wm/UxbwDClxaeF4GSaYh2yKgGRJMH5N87bJnZRINE5ccGiol8Ww/34bFG0xNnfyh
jSAFAc318AFG62WD4lvqWc7LSpzOYxp/MNqIFXKN692St/MJLkx8/q0nTwY1qPY0
3SELz9II3hz+3MfDRqtRi7hZpkgHgQ+UG7S5+Xhmqrl309GOEldCjPVJhhXxWoxK
ZPtZOuyYvGhIC+YAnHaN6lUjADIdNJZHwbuXFImx85oKHVofoxHbcni5vk8Uu7z1
sQNYOtdDGaPG/2u9RJdJlPg/jIgLKxxt/Xm9TYVawpZ5hFANhBTtIq5ExCRAil68
j9sMOrpZ1DzCQyR7zN2v
=qDhq
-----END PGP SIGNATURE-----
Merge tag 'armsoc-drivers' of git://git.kernel.org/pub/scm/linux/kernel/git/arm/arm-soc
Pull ARM SoC driver updates from Arnd Bergmann:
"This branch contains platform-related driver updates for ARM and
ARM64, these are the areas that bring the changes:
New drivers:
- driver support for Renesas R-Car V3M (R8A77970)
- power management support for Amlogic GX
- a new driver for the Tegra BPMP thermal sensor
- a new bus driver for Technologic Systems NBUS
Changes for subsystems that prefer to merge through arm-soc:
- the usual updates for reset controller drivers from Philipp Zabel,
with five added drivers for SoCs in the arc, meson, socfpa,
uniphier and mediatek families
- updates to the ARM SCPI and PSCI frameworks, from Sudeep Holla,
Heiner Kallweit and Lorenzo Pieralisi
Changes specific to some ARM-based SoC
- the Freescale/NXP DPAA QBMan drivers from PowerPC can now work on
ARM as well
- several changes for power management on Broadcom SoCs
- various improvements on Qualcomm, Broadcom, Amlogic, Atmel,
Mediatek
- minor Cleanups for Samsung, TI OMAP SoCs"
[ NOTE! This doesn't work without the previous ARM SoC device-tree pull,
because the R8A77970 driver is missing a header file that came from
that pull.
The fact that this got merged afterwards only fixes it at this point,
and bisection of that driver will fail if/when you walk into the
history of that driver. - Linus ]
* tag 'armsoc-drivers' of git://git.kernel.org/pub/scm/linux/kernel/git/arm/arm-soc: (96 commits)
soc: amlogic: meson-gx-pwrc-vpu: fix power-off when powered by bootloader
bus: add driver for the Technologic Systems NBUS
memory: omap-gpmc: Remove deprecated gpmc_update_nand_reg()
soc: qcom: remove unused label
soc: amlogic: gx pm domain: add PM and OF dependencies
drivers/firmware: psci_checker: Add missing destroy_timer_on_stack()
dt-bindings: power: add amlogic meson power domain bindings
soc: amlogic: add Meson GX VPU Domains driver
soc: qcom: Remote filesystem memory driver
dt-binding: soc: qcom: Add binding for rmtfs memory
of: reserved_mem: Accessor for acquiring reserved_mem
of/platform: Generalize /reserved-memory handling
soc: mediatek: pwrap: fix fatal compiler error
soc: mediatek: pwrap: fix compiler errors
arm64: mediatek: cleanup message for platform selection
soc: Allow test-building of MediaTek drivers
soc: mediatek: place Kconfig for all SoC drivers under menu
soc: mediatek: pwrap: add support for MT7622 SoC
soc: mediatek: pwrap: add common way for setup CS timing extenstion
soc: mediatek: pwrap: add MediaTek MT6380 as one slave of pwrap
..
Many source files in the tree are missing licensing information, which
makes it harder for compliance tools to determine the correct license.
By default all files without license information are under the default
license of the kernel, which is GPL version 2.
Update the files which contain no license information with the 'GPL-2.0'
SPDX license identifier. The SPDX identifier is a legally binding
shorthand, which can be used instead of the full boiler plate text.
This patch is based on work done by Thomas Gleixner and Kate Stewart and
Philippe Ombredanne.
How this work was done:
Patches were generated and checked against linux-4.14-rc6 for a subset of
the use cases:
- file had no licensing information it it.
- file was a */uapi/* one with no licensing information in it,
- file was a */uapi/* one with existing licensing information,
Further patches will be generated in subsequent months to fix up cases
where non-standard license headers were used, and references to license
had to be inferred by heuristics based on keywords.
The analysis to determine which SPDX License Identifier to be applied to
a file was done in a spreadsheet of side by side results from of the
output of two independent scanners (ScanCode & Windriver) producing SPDX
tag:value files created by Philippe Ombredanne. Philippe prepared the
base worksheet, and did an initial spot review of a few 1000 files.
The 4.13 kernel was the starting point of the analysis with 60,537 files
assessed. Kate Stewart did a file by file comparison of the scanner
results in the spreadsheet to determine which SPDX license identifier(s)
to be applied to the file. She confirmed any determination that was not
immediately clear with lawyers working with the Linux Foundation.
Criteria used to select files for SPDX license identifier tagging was:
- Files considered eligible had to be source code files.
- Make and config files were included as candidates if they contained >5
lines of source
- File already had some variant of a license header in it (even if <5
lines).
All documentation files were explicitly excluded.
The following heuristics were used to determine which SPDX license
identifiers to apply.
- when both scanners couldn't find any license traces, file was
considered to have no license information in it, and the top level
COPYING file license applied.
For non */uapi/* files that summary was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 11139
and resulted in the first patch in this series.
If that file was a */uapi/* path one, it was "GPL-2.0 WITH
Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 WITH Linux-syscall-note 930
and resulted in the second patch in this series.
- if a file had some form of licensing information in it, and was one
of the */uapi/* ones, it was denoted with the Linux-syscall-note if
any GPL family license was found in the file or had no licensing in
it (per prior point). Results summary:
SPDX license identifier # files
---------------------------------------------------|------
GPL-2.0 WITH Linux-syscall-note 270
GPL-2.0+ WITH Linux-syscall-note 169
((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21
((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17
LGPL-2.1+ WITH Linux-syscall-note 15
GPL-1.0+ WITH Linux-syscall-note 14
((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5
LGPL-2.0+ WITH Linux-syscall-note 4
LGPL-2.1 WITH Linux-syscall-note 3
((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3
((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1
and that resulted in the third patch in this series.
- when the two scanners agreed on the detected license(s), that became
the concluded license(s).
- when there was disagreement between the two scanners (one detected a
license but the other didn't, or they both detected different
licenses) a manual inspection of the file occurred.
- In most cases a manual inspection of the information in the file
resulted in a clear resolution of the license that should apply (and
which scanner probably needed to revisit its heuristics).
- When it was not immediately clear, the license identifier was
confirmed with lawyers working with the Linux Foundation.
- If there was any question as to the appropriate license identifier,
the file was flagged for further research and to be revisited later
in time.
In total, over 70 hours of logged manual review was done on the
spreadsheet to determine the SPDX license identifiers to apply to the
source files by Kate, Philippe, Thomas and, in some cases, confirmation
by lawyers working with the Linux Foundation.
Kate also obtained a third independent scan of the 4.13 code base from
FOSSology, and compared selected files where the other two scanners
disagreed against that SPDX file, to see if there was new insights. The
Windriver scanner is based on an older version of FOSSology in part, so
they are related.
Thomas did random spot checks in about 500 files from the spreadsheets
for the uapi headers and agreed with SPDX license identifier in the
files he inspected. For the non-uapi files Thomas did random spot checks
in about 15000 files.
In initial set of patches against 4.14-rc6, 3 files were found to have
copy/paste license identifier errors, and have been fixed to reflect the
correct identifier.
Additionally Philippe spent 10 hours this week doing a detailed manual
inspection and review of the 12,461 patched files from the initial patch
version early this week with:
- a full scancode scan run, collecting the matched texts, detected
license ids and scores
- reviewing anything where there was a license detected (about 500+
files) to ensure that the applied SPDX license was correct
- reviewing anything where there was no detection but the patch license
was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied
SPDX license was correct
This produced a worksheet with 20 files needing minor correction. This
worksheet was then exported into 3 different .csv files for the
different types of files to be modified.
These .csv files were then reviewed by Greg. Thomas wrote a script to
parse the csv files and add the proper SPDX tag to the file, in the
format that the file expected. This script was further refined by Greg
based on the output to detect more types of files automatically and to
distinguish between header and source .c files (which need different
comment types.) Finally Greg ran the script using the .csv files to
generate the patches.
Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Add new PCI id for Coffee lake processor thermal device.
Signed-off-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Signed-off-by: Zhang Rui <rui.zhang@intel.com>
Variable trip is assigned but never read, hence it is redundant
and can be removed. Cleans up clang warning:
drivers/thermal/intel_bxt_pmic_thermal.c:204:4: warning: Value stored
to 'trip' is never read
Signed-off-by: Colin Ian King <colin.king@canonical.com>
Signed-off-by: Zhang Rui <rui.zhang@intel.com>
pr_err() messages should end with a new-line to avoid other messages
being concatenated.
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
Acked-by: Javi Merino <javi.merino@kernel.org>
Signed-off-by: Arvind Yadav <arvind.yadav.cs@gmail.com>
Signed-off-by: Eduardo Valentin <edubezval@gmail.com>
The AVS TMON core provides temperature readings, a pair of configurable
high- and low-temperature threshold interrupts, and an emergency
over-temperature chip reset. The driver utilizes the first two to
provide temperature readings and high-temperature notifications to
applications. The over-temperature reset is not exposed to
applications; this reset threshold is critical to the system and should
be set with care within the bootloader.
Applications may choose to utilize the notification mechanism, the
temperature reading mechanism (e.g., through polling), or both.
Signed-off-by: Brian Norris <computersforpeace@gmail.com>
Signed-off-by: Doug Berger <opendmb@gmail.com>
Signed-off-by: Markus Mayer <mmayer@broadcom.com>
Signed-off-by: Eduardo Valentin <edubezval@gmail.com>
This patch adds the support for thermal sensor on the Hi3660 SoC.
Hi3660 tsensor support alarm in alarm threshold, it also has a configurable
hysteresis interval, interrupt will be triggered when temperature rise above
the alarm threshold or fall below the hysteresis threshold.
Signed-off-by: Kevin Wangtao <kevin.wangtao@linaro.org>
Tested-by: Daniel Lezcano <daniel.lezcano@linaro.org> # hikey6220
Signed-off-by: Daniel Lezcano <daniel.lezcano@linaro.org>
Signed-off-by: Eduardo Valentin <edubezval@gmail.com>
For platform compatibility, add the tsensor ops to a thermal data
structure. Each platform has its own probe function to register proper
tsensor ops function to the pointer, platform related resource request
are also implemented in the platform probe function.
Signed-off-by: Kevin Wangtao <kevin.wangtao@linaro.org>
Tested-by: Daniel Lezcano <daniel.lezcano@linaro.org> # hikey6220
Signed-off-by: Daniel Lezcano <daniel.lezcano@linaro.org>
Signed-off-by: Eduardo Valentin <edubezval@gmail.com>
As the next patches will provide support for the hikey3660's sensor,
several functions with the same purpose but for different platforms will
be introduced.
In order to make a clear distinction between them, let's prefix the
function names with the platform name.
This patch has no functional changes, only name changes.
Signed-off-by: Kevin Wangtao <kevin.wangtao@linaro.org>
Tested-by: Daniel Lezcano <daniel.lezcano@linaro.org> # hikey6220
Signed-off-by: Daniel Lezcano <daniel.lezcano@linaro.org>
Signed-off-by: Eduardo Valentin <edubezval@gmail.com>
Reorganize the code for next patches by moving the functions upper in
the file which will prevent a forward declaration. There is no functional
change here.
Signed-off-by: Kevin Wangtao <kevin.wangtao@linaro.org>
Tested-by: Daniel Lezcano <daniel.lezcano@linaro.org> # hikey6220
Signed-off-by: Daniel Lezcano <daniel.lezcano@linaro.org>
Signed-off-by: Eduardo Valentin <edubezval@gmail.com>
The iio_channel_get() function has now its devm_ version.
Use it and remove all the rollback code for iio_channel_release() as well
as the .remove ops.
[Compiled tested only]
Signed-off-by: Daniel Lezcano <daniel.lezcano@linaro.org>
Signed-off-by: Eduardo Valentin <edubezval@gmail.com>
Everything mentionned here:
https://lkml.org/lkml/2016/4/20/850
This driver was added before the devm_iio_channel_get() function version was
merged. The sensor should be released before the iio channel, thus we had to
use the non-devm version of thermal_zone_of_sensor_register().
Now the devm_iio_channel_get() is available, do the corresponding change in
this driver and remove gadc_thermal_remove().
[Compiled tested only]
Acked-by: Laxman Dewangan <ldewangan@nvidia.com>
Signed-off-by: Daniel Lezcano <daniel.lezcano@linaro.org>
Signed-off-by: Eduardo Valentin <edubezval@gmail.com>
There is a particular situation when the cooling device is cpufreq and the heat
dissipation is not efficient enough where the temperature increases little by
little until reaching the critical threshold and leading to a SoC reset.
The behavior is reproducible on a hikey6220 with bad heat dissipation (eg.
stacked with other boards).
Running a simple C program doing while(1); for each CPU of the SoC makes the
temperature to reach the passive regulation trip point and ends up to the
maximum allowed temperature followed by a reset.
This issue has been also reported by running the libhugetlbfs test suite.
What is observed is a ping pong between two cpu frequencies, 1.2GHz and 900MHz
while the temperature continues to grow.
It appears the step wise governor calls get_target_state() the first time with
the throttle set to true and the trend to 'raising'. The code selects logically
the next state, so the cpu frequency decreases from 1.2GHz to 900MHz, so far so
good. The temperature decreases immediately but still stays greater than the
trip point, then get_target_state() is called again, this time with the
throttle set to true *and* the trend to 'dropping'. From there the algorithm
assumes we have to step down the state and the cpu frequency jumps back to
1.2GHz. But the temperature is still higher than the trip point, so
get_target_state() is called with throttle=1 and trend='raising' again, we jump
to 900MHz, then get_target_state() is called with throttle=1 and
trend='dropping', we jump to 1.2GHz, etc ... but the temperature does not
stabilizes and continues to increase.
[ 237.922654] thermal thermal_zone0: Trip0[type=1,temp=65000]:trend=1,throttle=1
[ 237.922678] thermal thermal_zone0: Trip1[type=1,temp=75000]:trend=1,throttle=1
[ 237.922690] thermal cooling_device0: cur_state=0
[ 237.922701] thermal cooling_device0: old_target=0, target=1
[ 238.026656] thermal thermal_zone0: Trip0[type=1,temp=65000]:trend=2,throttle=1
[ 238.026680] thermal thermal_zone0: Trip1[type=1,temp=75000]:trend=2,throttle=1
[ 238.026694] thermal cooling_device0: cur_state=1
[ 238.026707] thermal cooling_device0: old_target=1, target=0
[ 238.134647] thermal thermal_zone0: Trip0[type=1,temp=65000]:trend=1,throttle=1
[ 238.134667] thermal thermal_zone0: Trip1[type=1,temp=75000]:trend=1,throttle=1
[ 238.134679] thermal cooling_device0: cur_state=0
[ 238.134690] thermal cooling_device0: old_target=0, target=1
In this situation the temperature continues to increase while the trend is
oscillating between 'dropping' and 'raising'. We need to keep the current state
untouched if the throttle is set, so the temperature can decrease or a higher
state could be selected, thus preventing this oscillation.
Keeping the next_target untouched when 'throttle' is true at 'dropping' time
fixes the issue.
The following traces show the governor does not change the next state if
trend==2 (dropping) and throttle==1.
[ 2306.127987] thermal thermal_zone0: Trip0[type=1,temp=65000]:trend=1,throttle=1
[ 2306.128009] thermal thermal_zone0: Trip1[type=1,temp=75000]:trend=1,throttle=1
[ 2306.128021] thermal cooling_device0: cur_state=0
[ 2306.128031] thermal cooling_device0: old_target=0, target=1
[ 2306.231991] thermal thermal_zone0: Trip0[type=1,temp=65000]:trend=2,throttle=1
[ 2306.232016] thermal thermal_zone0: Trip1[type=1,temp=75000]:trend=2,throttle=1
[ 2306.232030] thermal cooling_device0: cur_state=1
[ 2306.232042] thermal cooling_device0: old_target=1, target=1
[ 2306.335982] thermal thermal_zone0: Trip0[type=1,temp=65000]:trend=0,throttle=1
[ 2306.336006] thermal thermal_zone0: Trip1[type=1,temp=75000]:trend=0,throttle=1
[ 2306.336021] thermal cooling_device0: cur_state=1
[ 2306.336034] thermal cooling_device0: old_target=1, target=1
[ 2306.439984] thermal thermal_zone0: Trip0[type=1,temp=65000]:trend=2,throttle=1
[ 2306.440008] thermal thermal_zone0: Trip1[type=1,temp=75000]:trend=2,throttle=0
[ 2306.440022] thermal cooling_device0: cur_state=1
[ 2306.440034] thermal cooling_device0: old_target=1, target=0
[ ... ]
After a while, if the temperature continues to increase, the next state becomes
2 which is 720MHz on the hikey. That results in the temperature stabilizing
around the trip point.
[ 2455.831982] thermal thermal_zone0: Trip0[type=1,temp=65000]:trend=1,throttle=1
[ 2455.832006] thermal thermal_zone0: Trip1[type=1,temp=75000]:trend=1,throttle=0
[ 2455.832019] thermal cooling_device0: cur_state=1
[ 2455.832032] thermal cooling_device0: old_target=1, target=1
[ 2455.935985] thermal thermal_zone0: Trip0[type=1,temp=65000]:trend=0,throttle=1
[ 2455.936013] thermal thermal_zone0: Trip1[type=1,temp=75000]:trend=0,throttle=0
[ 2455.936027] thermal cooling_device0: cur_state=1
[ 2455.936040] thermal cooling_device0: old_target=1, target=1
[ 2456.043984] thermal thermal_zone0: Trip0[type=1,temp=65000]:trend=0,throttle=1
[ 2456.044009] thermal thermal_zone0: Trip1[type=1,temp=75000]:trend=0,throttle=0
[ 2456.044023] thermal cooling_device0: cur_state=1
[ 2456.044036] thermal cooling_device0: old_target=1, target=1
[ 2456.148001] thermal thermal_zone0: Trip0[type=1,temp=65000]:trend=1,throttle=1
[ 2456.148028] thermal thermal_zone0: Trip1[type=1,temp=75000]:trend=1,throttle=1
[ 2456.148042] thermal cooling_device0: cur_state=1
[ 2456.148055] thermal cooling_device0: old_target=1, target=2
[ 2456.252009] thermal thermal_zone0: Trip0[type=1,temp=65000]:trend=2,throttle=1
[ 2456.252041] thermal thermal_zone0: Trip1[type=1,temp=75000]:trend=2,throttle=0
[ 2456.252058] thermal cooling_device0: cur_state=2
[ 2456.252075] thermal cooling_device0: old_target=2, target=1
IOW, this change is needed to keep the state for a cooling device if the
temperature trend is oscillating while the temperature increases slightly.
Without this change, the situation above leads to a catastrophic crash by a
hardware reset on hikey. This issue has been reported to happen on an OMAP
dra7xx also.
Signed-off-by: Daniel Lezcano <daniel.lezcano@linaro.org>
Cc: Keerthy <j-keerthy@ti.com>
Cc: John Stultz <john.stultz@linaro.org>
Cc: Leo Yan <leo.yan@linaro.org>
Tested-by: Keerthy <j-keerthy@ti.com>
Reviewed-by: Keerthy <j-keerthy@ti.com>
Signed-off-by: Eduardo Valentin <edubezval@gmail.com>
Use round up division to ensure the programmed value of threshold and the lag
are not less than what we set, and in order to keep the accuracy while using
round up division, the step value should be a rounded up value. There is
no need to use hisi_thermal_round_temp.
Signed-off-by: Kevin Wangtao <kevin.wangtao@linaro.org>
Tested-by: Daniel Lezcano <daniel.lezcano@linaro.org> # hikey6220
Signed-off-by: Daniel Lezcano <daniel.lezcano@linaro.org>
Signed-off-by: Eduardo Valentin <edubezval@gmail.com>
The sensor's clock is enabled and disabled outside of the probe and
disable function. Moving the corresponding action in the
hisi_thermal_setup() and hisi_thermal_disable_sensor(), factors out
some lines of code and makes the code more symmetric.
Signed-off-by: Kevin Wangtao <kevin.wangtao@linaro.org>
Tested-by: Daniel Lezcano <daniel.lezcano@linaro.org> # hikey6220
Signed-off-by: Daniel Lezcano <daniel.lezcano@linaro.org>
Signed-off-by: Eduardo Valentin <edubezval@gmail.com>
The mutex is used to protect against writes in the configuration register.
That happens at probe time, with no possible race yet.
Then when the module is unloaded and at suspend/resume.
When the module is unloaded, it is an userspace operation, thus via a process.
Suspending the system goes through the freezer to suspend all the tasks
synchronously before continuing. So it is not possible to hit the suspend ops
in this driver while we are unloading it.
The resume is the same situation than the probe.
In other words, even if there are several places where we write the
configuration register, there is no situation where we can write it at the same
time, so far as I can judge
Signed-off-by: Daniel Lezcano <daniel.lezcano@linaro.org>
Reviewed-by: Leo Yan <leo.yan@linaro.org>
Tested-by: Leo Yan <leo.yan@linaro.org>
Signed-off-by: Eduardo Valentin <edubezval@gmail.com>
The presence of the thermal data pointer in the sensor structure has the unique
purpose of accessing the thermal data in the interrupt handler.
The sensor pointer is passed when registering the interrupt handler, replace the
cookie by the thermal data pointer, so the back pointer is no longer needed.
Signed-off-by: Daniel Lezcano <daniel.lezcano@linaro.org>
Signed-off-by: Eduardo Valentin <edubezval@gmail.com>
There is no point to specify the temperature as long variable, the int is
enough.
Replace all long variables to int, so making the code consistent.
Signed-off-by: Daniel Lezcano <daniel.lezcano@linaro.org>
Reviewed-by: Leo Yan <leo.yan@linaro.org>
Signed-off-by: Eduardo Valentin <edubezval@gmail.com>
Rename the 'sensors' field to 'sensor' as we describe only one sensor.
Remove the 'sensor_temp' as it is no longer used.
Signed-off-by: Daniel Lezcano <daniel.lezcano@linaro.org>
Reviewed-by: Leo Yan <leo.yan@linaro.org>
Tested-by: Leo Yan <leo.yan@linaro.org>
Signed-off-by: Eduardo Valentin <edubezval@gmail.com>
The sensor is all setup, bind, resetted, acked, etc... every single second.
That was the way to workaround a problem with the interrupt bouncing again and
again.
With the following changes, we fix all in one:
- Do the setup, one time, at probe time
- Add the IRQF_ONESHOT, ack the interrupt in the threaded handler
- Remove the interrupt handler
- Set the correct value for the LAG register
- Remove all the irq_enabled stuff in the code as the interruption
handling is fixed
- Remove the 3ms delay
- Reorder the initialization routine to be in the right order
It ends up to a nicer code and more efficient, the 3-5ms delay is removed from
the get_temp() path.
Signed-off-by: Daniel Lezcano <daniel.lezcano@linaro.org>
Reviewed-by: Leo Yan <leo.yan@linaro.org>
Tested-by: Leo Yan <leo.yan@linaro.org>
Signed-off-by: Eduardo Valentin <edubezval@gmail.com>
The TEMP0_CFG configuration register contains different field to set up the
temperature controller. However in the code, nothing prevents a setup to
overwrite the previous one: eg. writing the hdak value overwrites the sensor
selection, the sensor selection overwrites the hdak value.
In order to prevent such thing, use a regmap-like mechanism by reading the
value before, set the corresponding bits and write the result.
Signed-off-by: Daniel Lezcano <daniel.lezcano@linaro.org>
Signed-off-by: Eduardo Valentin <edubezval@gmail.com>
Hopefully, the function name can help to clarify the semantic of the operations
when writing in the register.
Signed-off-by: Daniel Lezcano <daniel.lezcano@linaro.org>
Signed-off-by: Eduardo Valentin <edubezval@gmail.com>
The threaded interrupt inspect the sensors structure to look in the temp
threshold field, but this field is read-only in all the code, except in the
probe function before the threaded interrupt is set. In other words there
is not race window in the threaded interrupt when reading the field value.
Signed-off-by: Daniel Lezcano <daniel.lezcano@linaro.org>
Reviewed-by: Leo Yan <leo.yan@linaro.org>
Signed-off-by: Eduardo Valentin <edubezval@gmail.com>
The DT specifies a threshold of 65000, we setup the register with a value in
the temperature resolution for the controller, 64656.
When we reach 64656, the interrupt fires, the interrupt is disabled. Then the
irq thread runs and calls thermal_zone_device_update() which will call in turn
hisi_thermal_get_temp().
The function will look if the temperature decreased, assuming it was more than
65000, but that is not the case because the current temperature is 64656
(because of the rounding when setting the threshold). This condition being
true, we re-enable the interrupt which fires immediately after exiting the irq
thread. That happens again and again until the temperature goes to more than
65000.
Potentially, there is here an interrupt storm if the temperature stabilizes at
this temperature. A very unlikely case but possible.
In any case, it does not make sense to handle dozens of alarm interrupt for
nothing.
Fix this by rounding the threshold value to the controller resolution so the
check against the threshold is consistent with the one set in the controller.
Signed-off-by: Daniel Lezcano <daniel.lezcano@linaro.org>
Reviewed-by: Leo Yan <leo.yan@linaro.org>
Tested-by: Leo Yan <leo.yan@linaro.org>
Signed-off-by: Eduardo Valentin <edubezval@gmail.com>
The step and the base temperature are fixed values, we can simplify the
computation by converting the base temperature to milli celsius and use a
pre-computed step value. That saves us a lot of mult + div for nothing at
runtime.
Take also the opportunity to change the function names to be consistent with
the rest of the code.
Signed-off-by: Daniel Lezcano <daniel.lezcano@linaro.org>
Reviewed-by: Leo Yan <leo.yan@linaro.org>
Tested-by: Leo Yan <leo.yan@linaro.org>
Signed-off-by: Eduardo Valentin <edubezval@gmail.com>
The threaded interrupt for the alarm interrupt is requested before the
temperature controller is setup. This one can fire an interrupt immediately
leading to a kernel panic as the sensor data is not initialized.
In order to prevent that, move the threaded irq after the Tsensor is setup.
Signed-off-by: Daniel Lezcano <daniel.lezcano@linaro.org>
Reviewed-by: Leo Yan <leo.yan@linaro.org>
Tested-by: Leo Yan <leo.yan@linaro.org>
Signed-off-by: Eduardo Valentin <edubezval@gmail.com>
By essence, the tsensor does not really support multiple sensor at the same
time. It allows to set a sensor and use it to get the temperature, another
sensor could be switched but with a delay of 3-5ms. It is difficult to read
simultaneously several sensors without a big delay.
Today, just one sensor is used, it is not necessary to deal with multiple
sensors in the code. Remove them and if it is needed in the future add them
on top of a code which will be clean up in the meantime.
Signed-off-by: Daniel Lezcano <daniel.lezcano@linaro.org>
Reviewed-by: Leo Yan <leo.yan@linaro.org>
Acked-by: Wangtao (Kevin, Kirin) <kevin.wangtao@hisilicon.com>
Signed-off-by: Eduardo Valentin <edubezval@gmail.com>
The interrupt for the temperature threshold is not enabled at the end of the
probe function, enable it after the setup is complete.
On the other side, the irq_enabled is not correctly set as we are checking if
the interrupt is masked where 'yes' means irq_enabled=false.
irq_get_irqchip_state(data->irq, IRQCHIP_STATE_MASKED,
&data->irq_enabled);
As we are always enabling the interrupt, it is pointless to check if
the interrupt is masked or not, just set irq_enabled to 'true'.
Signed-off-by: Daniel Lezcano <daniel.lezcano@linaro.org>
Reviewed-by: Leo Yan <leo.yan@linaro.org>
Tested-by: Leo Yan <leo.yan@linaro.org>
Signed-off-by: Eduardo Valentin <edubezval@gmail.com>
While debugging some PM issues and trying to remove all the loaded modules, I ran
across the following when unloading ti-soc-thermal:
Unable to handle kernel NULL pointer dereference at virtual address 000000b4
...
[<c08db340>] (kobject_put) from [<bf28954c>] (ti_thermal_unregister_cpu_cooling+0x20/0x28 [ti_soc_thermal])
[<bf28954c>] (ti_thermal_unregister_cpu_cooling [ti_soc_thermal]) from [<bf287c88>] (ti_bandgap_remove+0x3c/0x104 [ti_soc_thermal])
[<bf287c88>] (ti_bandgap_remove [ti_soc_thermal]) from [<c0610d48>] (platform_drv_remove+0x24/0x3c)
[<c0610d48>] (platform_drv_remove) from [<c060f114>] (device_release_driver_internal+0x160/0x208)
[<c060f114>] (device_release_driver_internal) from [<c060f200>] (driver_detach+0x38/0x6c)
[<c060f200>] (driver_detach) from [<c060e2d4>] (bus_remove_driver+0x4c/0xa0)
[<c060e2d4>] (bus_remove_driver) from [<c01f2370>] (SyS_delete_module+0x168/0x238)
[<c01f2370>] (SyS_delete_module) from [<c0108240>] (ret_fast_syscall+0x0/0x28)
Cc: Keerthy <j-keerthy@ti.com>
Signed-off-by: Tony Lindgren <tony@atomide.com>
Signed-off-by: Eduardo Valentin <edubezval@gmail.com>
The initialization sequence for H3 (r8a7795) ES1.x and ES2.0 is
different. H3 ES2.0 and later uses the same sequence as M3 (r8a7796)
ES1.0. Fix this by not looking at compatible strings and instead
defaulting to the r8a7796 initialization sequence and use
soc_device_match() to check for H3 ES1.x.
Signed-off-by: Niklas Söderlund <niklas.soderlund+renesas@ragnatech.se>
Reviewed-by: Geert Uytterhoeven <geert+renesas@glider.be>
Acked-by: Wolfram Sang <wsa+renesas@sang-engineering.com>
Signed-off-by: Eduardo Valentin <edubezval@gmail.com>
The formula implementation at armada_get_temp() indicates that the sign
in the formula is inverted.
Cc: Ezequiel Garcia <ezequiel@vanguardiasur.com.ar>
Signed-off-by: Baruch Siach <baruch@tkos.co.il>
Signed-off-by: Eduardo Valentin <edubezval@gmail.com>
The dev pointer is going through a null check after a dereference.
So this patch removes that useless check since the driver does not
pass a null dev pointer in any case.
Signed-off-by: Nicolin Chen <nicoleotsuka@gmail.com>
Signed-off-by: Eduardo Valentin <edubezval@gmail.com>
Moving the bcm2835 thermal driver to the broadcom directory prevented it
from getting enabled for arm64 builds, since the broadcom directory is only
available when 32-bit specific ARCH_BCM is set.
Fix this by enabling the Broadcom menu for ARCH_BCM or ARCH_BCM2835.
Fixes: 6892cf07e7 ("thermal: bcm2835: move to the broadcom subdirectory")
Reviewed-by: Eric Anholt <eric@anholt.net>
Signed-off-by: Allen Wild <allenwild93@gmail.com>
Signed-off-by: Stefan Wahren <stefan.wahren@i2se.com>
Signed-off-by: Eduardo Valentin <edubezval@gmail.com>
RV1108 SOC has one Temperature Sensor for CPU.
Reviewed-by: Caesar Wang <wxt@rock-chips.com>
Signed-off-by: Rocky Hao <rocky.hao@rock-chips.com>
Signed-off-by: Eduardo Valentin <edubezval@gmail.com>
On Tegra186, the BPMP (Boot and Power Management Processor) exposes an
interface to thermal sensors on the system-on-chip. This driver
implements access to the interface. It supports reading the
temperature, setting trip points and receiving notification of a
tripped trip point.
Signed-off-by: Mikko Perttunen <mperttunen@nvidia.com>
Acked-by: Zhang Rui <rui.zhang@intel.com>
Signed-off-by: Thierry Reding <treding@nvidia.com>
The driver now fails to link into vmlinux when CONFIG_NVMEM is a loadable
module:
drivers/thermal/imx_thermal.o: In function `imx_thermal_probe':
imx_thermal.c:(.text+0x360): undefined reference to `nvmem_cell_read_u32'
imx_thermal.c:(.text+0x360): relocation truncated to fit: R_AARCH64_CALL26 against undefined symbol `nvmem_cell_read_u32'
imx_thermal.c:(.text+0x388): undefined reference to `nvmem_cell_read_u32'
imx_thermal.c:(.text+0x388): relocation truncated to fit: R_AARCH64_CALL26 against undefined symbol `nvmem_cell_read_u32'
This adds a Kconfig dependency to force it to be a module as well
when its dependency is loadable.
Fixes: 7fe5ba04fcdc ("thermal: imx: Add support for reading OCOTP through nvmem")
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Reviewed-by: Leonard Crestez <leonard.crestez@nxp.com>
Signed-off-by: Zhang Rui <rui.zhang@intel.com>
pr_err()/pr_info() messages should end with a new-line to avoid
other messages being concatenated.
Signed-off-by: Arvind Yadav <arvind.yadav.cs@gmail.com>
Signed-off-by: Zhang Rui <rui.zhang@intel.com>
On newer imx SOCs accessing OCOTP directly is wrong because the ocotp
clock needs to be enabled first. Add support for reading those same
values through the nvmem API instead.
The older path is preserved for compatibility with older dts and because
it works correctly on imx6qdl chips.
Signed-off-by: Leonard Crestez <leonard.crestez@nxp.com>
Acked-by: Shawn Guo <shawnguo@kernel.org>
Signed-off-by: Zhang Rui <rui.zhang@intel.com>
there are three concepts represent backlight in int3406_thermal driver.
1. the raw brightness value from native graphics driver.
2. the percentage numbers from ACPI _BCL control method.
3. the consecutive numbers represent cooling states.
int3406_thermal driver
1. uses value from DDDL/DDPC as the lower/upper limit, which is consistent
with ACPI _BCL control methods.
2. reads current and maximum brightness from the native graphics driver.
3. expose them to thermal sysfs I/F
This patch fixes the code that switches between the raw brightness value
and the cooling state, which results in bogus value in thermal sysfs I/F.
Signed-off-by: Zhang Rui <rui.zhang@intel.com>
This patch adds support for mt2712 chip thermal calibration data
and calculation, and is compatible with the existing chips.
Signed-off-by: Louis Yu <louis.yu@mediatek.com>
Reviewed-by: Dawei Chien <dawei.chien@mediatek.com>
Signed-off-by: Zhang Rui <rui.zhang@intel.com>
This patch adds support for mt2712 chip to mtk_thermal,
and integrate mt2712 into the same mediatek thermal driver.
MT2712 has only 1 bank and 4 sensors.
Signed-off-by: Louis Yu <louis.yu@mediatek.com>
Reviewed-by: Dawei Chien <dawei.chien@mediatek.com>
Signed-off-by: Zhang Rui <rui.zhang@intel.com>
Using the TSDSS flag to determine whether the thermal sensor is
enabled is problematic. Broadwell-DE (Xeon D-1500) does not support
dynamic shutdown and the TSDSS flag always reads 0 (contrary to the
current datasheet). Even on hardware supporting dynamic shutdown, the
driver does nothing to configure it, and the dynamic shutdown state
should not prevent the driver from loading. The ETS flag itself
indicates whether the thermal sensor is enabled, so use it instead of
the TSDSS flag on all hardware platforms.
Signed-off-by: Ed Swierk <eswierk@skyportsystems.com>
Reviewed-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Signed-off-by: Zhang Rui <rui.zhang@intel.com>