Commit Graph

6 Commits

Author SHA1 Message Date
Christoph Hellwig
7fcd3efa1e xfs: remove filestream item xfs_inode reference
The filestreams allocator stores an xfs_fstrm_item structure in the MRU to
cache inode number to agno mappings for a particular length of time.  Each
xfs_fstrm_item contains the internal MRU structure, an inode pointer and
agno value.

The inode pointer stored in the xfs_fstrm_item is not referenced, however,
which means the inode itself can be removed and reclaimed before the MRU
item is freed. If this occurs, xfs_fstrm_free_func() can access freed or
unrelated memory through xfs_fstrm_item->ip and crash.

The obvious solution is to grab an inode reference for xfs_fstrm_item.
The filestream mechanism only actually uses the inode pointer as a means
to access the xfs_mount, however.  Rather than add unnecessary
complexity, simplify the implementation to store an xfs_mount pointer in
struct xfs_mru_cache, and pass it to the free callback.  This also
requires updates to the tracepoint class to provide the associated data
via parameters rather than the inode and a minor hack to peek at the MRU
key to establish the inode number at free time.

Based on debugging work and an earlier patch from Brian Foster, who
also wrote most of this changelog.

Reported-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
2018-04-09 10:23:39 -07:00
Christoph Hellwig
22328d712d xfs: embedd mru_elem into parent structure
There is no need to do a separate allocation for each mru element, just
embedd the structure into the parent one in the user.  Besides saving
a memory allocation and the infrastructure required for it this also
simplifies the API.

While we do major surgery on xfs_mru_cache.c also de-typedef it and
make struct mru_cache private to the implementation file.

Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
2014-04-23 07:11:51 +10:00
Dave Chinner
b657fc82a3 xfs: Kill filestreams cache flush
The filestreams cache flush is not needed in the sync code as it
does not affect data writeback, and it is now not used by the growfs
code, either, so kill it.

Signed-off-by: Dave Chinner <david@fromorbit.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Alex Elder <aelder@sgi.com>
2010-01-15 15:34:22 -06:00
Eric Sandeen
d96f8f891f xfs: add more statics & drop some unused functions
A lot more functions could be made static, but they need
forward declarations; this does some easy ones, and also
found a few unused functions in the process.

Signed-off-by: Eric Sandeen <sandeen@sandeen.net>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Felix Blyakher <felixb@sgi.com>
2009-08-31 14:46:20 -05:00
David Chinner
65de556756 [XFS] On-demand reaping of the MRU cache
Instead of running the mru cache reaper all the time based on a timeout,
we should only run it when the cache has active objects. This allows CPUs
to sleep when there is no activity rather than be woken repeatedly just to
check if there is anything to do.

SGI-PV: 968554
SGI-Modid: xfs-linux-melb:xfs-kern:29305a

Signed-off-by: David Chinner <dgc@sgi.com>
Signed-off-by: Donald Douwsma <donaldd@sgi.com>
Signed-off-by: Tim Shimmin <tes@sgi.com>
2007-09-17 16:42:02 +10:00
David Chinner
2a82b8be8a [XFS] Concurrent Multi-File Data Streams
In media spaces, video is often stored in a frame-per-file format. When
dealing with uncompressed realtime HD video streams in this format, it is
crucial that files do not get fragmented and that multiple files a placed
contiguously on disk.

When multiple streams are being ingested and played out at the same time,
it is critical that the filesystem does not cross the streams and
interleave them together as this creates seek and readahead cache miss
latency and prevents both ingest and playout from meeting frame rate
targets.

This patch set creates a "stream of files" concept into the allocator to
place all the data from a single stream contiguously on disk so that RAID
array readahead can be used effectively. Each additional stream gets
placed in different allocation groups within the filesystem, thereby
ensuring that we don't cross any streams. When an AG fills up, we select a
new AG for the stream that is not in use.

The core of the functionality is the stream tracking - each inode that we
create in a directory needs to be associated with the directories' stream.
Hence every time we create a file, we look up the directories' stream
object and associate the new file with that object.

Once we have a stream object for a file, we use the AG that the stream
object point to for allocations. If we can't allocate in that AG (e.g. it
is full) we move the entire stream to another AG. Other inodes in the same
stream are moved to the new AG on their next allocation (i.e. lazy
update).

Stream objects are kept in a cache and hold a reference on the inode.
Hence the inode cannot be reclaimed while there is an outstanding stream
reference. This means that on unlink we need to remove the stream
association and we also need to flush all the associations on certain
events that want to reclaim all unreferenced inodes (e.g. filesystem
freeze).

SGI-PV: 964469
SGI-Modid: xfs-linux-melb:xfs-kern:29096a

Signed-off-by: David Chinner <dgc@sgi.com>
Signed-off-by: Barry Naujok <bnaujok@sgi.com>
Signed-off-by: Donald Douwsma <donaldd@sgi.com>
Signed-off-by: Christoph Hellwig <hch@infradead.org>
Signed-off-by: Tim Shimmin <tes@sgi.com>
Signed-off-by: Vlad Apostolov <vapo@sgi.com>
2007-07-14 15:40:53 +10:00