I wrote the following coccinelle script to find function declarations
that didn't have the corresponding code for them
@funcproto@
identifier func;
type T;
position p0;
@@
T func@p0(...);
@funccode@
identifier funcproto.func;
position p1;
@@
func@p1(...) { ... }
@script:python depends on !funccode@
p0 << funcproto.p0;
@@
print("Proto with no function at %s:%s" % (p0[0].file, p0[0].line))
and ran it against btrfs, which identified the 4 function prototypes
I've removed in this patch.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This inline helper calls btrfs_fs_compat_ro(), which is defined in
another header. To avoid weird header dependency problems move this
helper into disk-io.c with the rest of the global root helpers.
Reviewed-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Previous commit a05d3c9153 ("btrfs: check superblock to ensure the fs
was not modified at thaw time") only checks the content of the super
block, but it doesn't really check if the on-disk super block has a
matching checksum.
This patch will add the checksum verification to thaw time superblock
verification.
This involves the following extra changes:
- Export btrfs_check_super_csum()
As we need to call it in super.c.
- Change the argument list of btrfs_check_super_csum()
Instead of passing a char *, directly pass struct btrfs_super_block *
pointer.
- Verify that our checksum type didn't change before checking the
checksum value, like it's done at mount time
Fixes: a05d3c9153 ("btrfs: check superblock to ensure the fs was not modified at thaw time")
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
[BUG]
When one user did a wrong attempt to clear block group tree, which can
not be done through mount option, by using "-o clear_cache,space_cache=v2",
it will cause the following error on a fs with block-group-tree feature:
BTRFS info (device dm-1): force clearing of disk cache
BTRFS info (device dm-1): using free space tree
BTRFS info (device dm-1): clearing free space tree
BTRFS info (device dm-1): clearing compat-ro feature flag for FREE_SPACE_TREE (0x1)
BTRFS info (device dm-1): clearing compat-ro feature flag for FREE_SPACE_TREE_VALID (0x2)
BTRFS error (device dm-1): block-group-tree feature requires fres-space-tree and no-holes
BTRFS error (device dm-1): super block corruption detected before writing it to disk
BTRFS: error (device dm-1) in write_all_supers:4318: errno=-117 Filesystem corrupted (unexpected superblock corruption detected)
BTRFS warning (device dm-1: state E): Skipping commit of aborted transaction.
[CAUSE]
Although the dependency for block-group-tree feature is just an
artificial one (to reduce test matrix), we put the dependency check into
btrfs_validate_super().
This is too strict, and during space cache clearing, we will have a
window where free space tree is cleared, and we need to commit the super
block.
In that window, we had block group tree without v2 cache, and triggered
the artificial dependency check.
This is not necessary at all, especially for such a soft dependency.
[FIX]
Introduce a new helper, btrfs_check_features(), to do all the runtime
limitation checks, including:
- Unsupported incompat flags check
- Unsupported compat RO flags check
- Setting missing incompat flags
- Artificial feature dependency checks
Currently only block group tree will rely on this.
- Subpage runtime check for v1 cache
With this helper, we can move quite some checks from
open_ctree()/btrfs_remount() into it, and just call it after
btrfs_parse_options().
Now "-o clear_cache,space_cache=v2" will not trigger the above error
anymore.
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
[ edit messages ]
Signed-off-by: David Sterba <dsterba@suse.com>
The problem of long mount time caused by block group item search is
already known for some time, and the solution of block group tree has
been proposed.
There is really no need to bound this feature into extent tree v2, just
introduce compat RO flag, BLOCK_GROUP_TREE, to correctly solve the
problem.
All the code handling block group root is already in the upstream
kernel, thus this patch really only needs to introduce the new compat RO
flag.
This patch introduces one extra artificial limitation on block group
tree feature, that free space cache v2 and no-holes feature must be
enabled to use this new compat RO feature.
This artificial requirement is mostly to reduce the test combinations,
and can be a guideline for future features, to mostly rely on the latest
default features.
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
[BACKGROUND]
There is an incident report that, one user hibernated the system, with
one btrfs on removable device still mounted.
Then by some incident, the btrfs got mounted and modified by another
system/OS, then back to the hibernated system.
After resuming from the hibernation, new write happened into the victim btrfs.
Now the fs is completely broken, since the underlying btrfs is no longer
the same one before the hibernation, and the user lost their data due to
various transid mismatch.
[REPRODUCER]
We can emulate the situation using the following small script:
truncate -s 1G $dev
mkfs.btrfs -f $dev
mount $dev $mnt
fsstress -w -d $mnt -n 500
sync
xfs_freeze -f $mnt
cp $dev $dev.backup
# There is no way to mount the same cloned fs on the same system,
# as the conflicting fsid will be rejected by btrfs.
# Thus here we have to wipe the fs using a different btrfs.
mkfs.btrfs -f $dev.backup
dd if=$dev.backup of=$dev bs=1M
xfs_freeze -u $mnt
fsstress -w -d $mnt -n 20
umount $mnt
btrfs check $dev
The final fsck will fail due to some tree blocks has incorrect fsid.
This is enough to emulate the problem hit by the unfortunate user.
[ENHANCEMENT]
Although such case should not be that common, it can still happen from
time to time.
From the view of btrfs, we can detect any unexpected super block change,
and if there is any unexpected change, we just mark the fs read-only,
and thaw the fs.
By this we can limit the damage to minimal, and I hope no one would lose
their data by this anymore.
Suggested-by: Goffredo Baroncelli <kreijack@libero.it>
Link: https://lore.kernel.org/linux-btrfs/83bf3b4b-7f4c-387a-b286-9251e3991e34@bluemole.com/
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
These definitions exist in disk-io.c, which is not related to the
locking. Move this over to locking.h/c where it makes more sense.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
btrfs_wq_submit_bio is used for writeback under memory pressure.
Instead of failing the I/O when we can't allocate the async_submit_bio,
just punt back to the synchronous submission path.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Tested-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: David Sterba <dsterba@suse.com>
All reads bio that go through btrfs_map_bio need to be completed in
user context. And read I/Os are the most common and timing critical
in almost any file system workloads.
Embed a work_struct into struct btrfs_bio and use it to complete all
read bios submitted through btrfs_map, using the REQ_META flag to decide
which workqueue they are placed on.
This removes the need for a separate 128 byte allocation (typically
rounded up to 192 bytes by slab) for all reads with a size increase
of 24 bytes for struct btrfs_bio. Future patches will reorganize
struct btrfs_bio to make use of this extra space for writes as well.
(All sizes are based a on typical 64-bit non-debug build)
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: David Sterba <dsterba@suse.com>
Instead of attaching an extra allocation an indirect call to each
low-level bio issued by the RAID code, add a work_struct to struct
btrfs_raid_bio and only defer the per-rbio completion action. The
per-bio action for all the I/Os are trivial and can be safely done
from interrupt context.
As a nice side effect this also allows sharing the boilerplate code
for the per-bio completions
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: David Sterba <dsterba@suse.com>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
btrfs_submit_metadata_bio already calls ->bi_end_io on error and the
caller must ignore the return value, so remove it.
Reviewed-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This argument is unused since commit 953651eb30 ("btrfs: factor out
helper adding a page to bio") and commit 1b36294a6c ("btrfs: call
submit_bio_hook directly for metadata pages") reworked the way metadata
bio submission is handled.
Reviewed-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The function btrfs_read_buffer() is useless, it just calls
btree_read_extent_buffer_pages() with exactly the same arguments.
So remove it and rename btree_read_extent_buffer_pages() to
btrfs_read_extent_buffer(), which is a shorter name, has the "btrfs_"
prefix (since it's used outside disk-io.c) and the name is clear enough
about what it does.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This code adds the on disk structures for the block group root, which
will hold the block group items for extent tree v2.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
In the future we are going to have multiple copies of these trees. To
facilitate this we need a way to lookup the different roots we are
looking for. Handle this by adding a global root rb tree that is
indexed on the root->root_key. Then instead of loading the roots at
mount time with individually targeted keys, simply search the tree_root
for anything with the specific objectid we want. This will make it
straightforward to support both old style and new style file systems.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We are going to have multiple csum roots in the future, so convert all
users of ->csum_root to btrfs_csum_root() and rename ->csum_root to
->_csum_root so we can easily find remaining users in the future.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
When we start having multiple extent roots we'll need to use a helper to
get to the correct extent_root. Rename fs_info->extent_root to
_extent_root and convert all of the users of the extent root to using
the btrfs_extent_root() helper. This will allow us to easily clean up
the remaining direct accesses in the future.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
With extent tree v2 we will have a separate root to hold the block group
items. Add a btrfs_block_group_root() that will return the appropriate
root given the flags of the fs, and convert all functions that need to
modify block group items to use the helper.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
It's a common practice to avoid use sizeof(struct btrfs_super_block)
(3531), but to use BTRFS_SUPER_INFO_SIZE (4096).
The problem is that, sizeof(struct btrfs_super_block) doesn't match
BTRFS_SUPER_INFO_SIZE from the very beginning.
Furthermore, for all call sites except selftests, we always allocate
BTRFS_SUPER_INFO_SIZE space for super block, there isn't any real reason
to use the smaller value, and it doesn't really save any space.
So let's get rid of such confusing behavior, and unify those two values.
This modification also adds a new static_assert() to verify the size,
and moves the BTRFS_SUPER_INFO_* macros to the definition of
btrfs_super_block for the static_assert().
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Previously we had "struct btrfs_bio", which records IO context for
mirrored IO and RAID56, and "strcut btrfs_io_bio", which records extra
btrfs specific info for logical bytenr bio.
With "btrfs_bio" renamed to "btrfs_io_context", we are safe to rename
"btrfs_io_bio" to "btrfs_bio" which is a more suitable name now.
The struct btrfs_bio changes meaning by this commit. There was a
suggested name like btrfs_logical_bio but it's a bit long and we'd
prefer to use a shorter name.
This could be a concern for backports to older kernels where the
different meaning could possibly cause confusion or bugs. Comparing the
new and old structures, there's no overlap among the struct members so a
build would break in case of incorrect backport.
We haven't had many backports to bio code anyway so this is more of a
theoretical cause of bugs and a matter of precaution but we'll need to
keep the semantic change in mind.
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This is a preparation patch for the next patch. Split alloc_log_tree()
into two parts. The first one allocating the tree structure, remains in
alloc_log_tree() and the second part allocating the tree node, which is
moved into btrfs_alloc_log_tree_node().
Also export the latter part is to be used in the next patch.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This better reflects the semantics of the function i.e no search is
performed whatsoever.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This function is used to initialize the in-memory
btrfs_root::highest_objectid member, which is used to get an available
objectid. Rename it to better reflect its semantics.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The parameter bio_offset of extent_submit_bio_start_t is very confusing.
If it's really bio_offset (offset to bio), then it should be u32. But
in fact, it's only utilized by dio read, and that member is used as file
offset, which must be u64.
Rename it to dio_file_offset since the only user uses it as file offset,
and add comment for who is using it.
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Some options only apply during mount time and are cleared at the end
of mount. For now, the example is USEBACKUPROOT, but CLEAR_CACHE also
fits the bill, and this is a preparation patch for also clearing that
option.
One subtlety is that the current code only resets USEBACKUPROOT on rw
mounts, but the option is meaningfully "consumed" by a ro mount, so it
feels appropriate to clear in that case as well. A subsequent read-write
remount would not go through open_ctree, which is the only place that
checks the option, so the change should be benign.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Boris Burkov <boris@bur.io>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Mounting rw and remounting from ro to rw naturally share invariants and
functionality which result in a correctly setup rw filesystem. Luckily,
there is even a strong unity in the code which implements them. In
mount's open_ctree, these operations mostly happen after an early return
for ro file systems, and in remount, they happen in a section devoted to
remounting ro->rw, after some remount specific validation passes.
However, there are unfortunately a few differences. There are small
deviations in the order of some of the operations, remount does not
start orphan cleanup in root_tree or fs_tree, remount does not create
the free space tree, and remount does not handle "one-shot" mount
options like clear_cache and uuid tree rescan.
Since we want to add building the free space tree to remount, and also
to start the same orphan cleanup process on a filesystem mounted as ro
then remounted rw, we would benefit from unifying the logic between the
two code paths.
This patch only lifts the existing common functionality, and leaves a
natural path for fixing the discrepancies.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Boris Burkov <boris@bur.io>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Those functions are going to be used even after inode cache is removed
so moved them to a more appropriate place.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Parameter @phy_offset is the offset against the bio->bi_iter.bi_sector.
@phy_offset is mostly for data io to lookup the csum in btrfs_io_bio.
But for metadata, it's completely useless as metadata stores their own
csum in its header, so we can remove it.
Note: parameters @start and @end, they are not utilized at all for
current sectorsize == PAGE_SIZE case, as we can grab eb directly from
page.
But those two parameters are very important for later subpage support,
thus @start/@len are not touched here.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Now that we've plumbed all of the callers to have the owner root and the
level, plumb it down into alloc_extent_buffer().
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
In order to properly set the lockdep class of a newly allocated block we
need to know the owner of the block. For non-refcounted trees this is
straightforward, we always know in advance what tree we're reading from.
For refcounted trees we don't necessarily know, however all refcounted
trees share the same lockdep class name, tree-<level>.
Fix all the callers of read_tree_block() to pass in the root objectid
we're using. In places like relocation and backref we could probably
unconditionally use 0, but just in case use the root when we have it,
otherwise use 0 in the cases we don't have the root as it's going to be
a refcounted tree anyway.
This is a preparation patch for further changes.
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We're going to pass around more information when we allocate extent
buffers, in order to make that cleaner how we do readahead. Most of the
callers have the parent node that we're getting our blockptr from, with
the sole exception of relocation which simply has the bytenr it wants to
read.
Add a helper that takes the current arguments that we need (bytenr and
gen), and add another helper for simply reading the slot out of a node.
In followup patches the helper that takes all the extra arguments will
be expanded, and the simpler helper won't need to have it's arguments
adjusted.
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
All callers of btrfs_wq_submit_bio() pass struct inode as @private_data,
so there is no need for it to be (void *), replace it with "struct inode
*inode".
While we can extract fs_info from struct inode, also remove the @fs_info
parameter.
Since we're here, also replace all the (void *private_data) into (struct
inode *inode).
Reviewed-by: Goldwyn Rodrigues <rgoldwyn@suse.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The names in btrfs_lockdep_keysets are generated from a simple pattern
using snprintf but we can generate them directly with some macro magic
and remove the helpers.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
I got the following lockdep splat with tree locks converted to rwsem
patches on btrfs/104:
======================================================
WARNING: possible circular locking dependency detected
5.9.0+ #102 Not tainted
------------------------------------------------------
btrfs-cleaner/903 is trying to acquire lock:
ffff8e7fab6ffe30 (btrfs-root-00){++++}-{3:3}, at: __btrfs_tree_read_lock+0x32/0x170
but task is already holding lock:
ffff8e7fab628a88 (&fs_info->commit_root_sem){++++}-{3:3}, at: btrfs_find_all_roots+0x41/0x80
which lock already depends on the new lock.
the existing dependency chain (in reverse order) is:
-> #3 (&fs_info->commit_root_sem){++++}-{3:3}:
down_read+0x40/0x130
caching_thread+0x53/0x5a0
btrfs_work_helper+0xfa/0x520
process_one_work+0x238/0x540
worker_thread+0x55/0x3c0
kthread+0x13a/0x150
ret_from_fork+0x1f/0x30
-> #2 (&caching_ctl->mutex){+.+.}-{3:3}:
__mutex_lock+0x7e/0x7b0
btrfs_cache_block_group+0x1e0/0x510
find_free_extent+0xb6e/0x12f0
btrfs_reserve_extent+0xb3/0x1b0
btrfs_alloc_tree_block+0xb1/0x330
alloc_tree_block_no_bg_flush+0x4f/0x60
__btrfs_cow_block+0x11d/0x580
btrfs_cow_block+0x10c/0x220
commit_cowonly_roots+0x47/0x2e0
btrfs_commit_transaction+0x595/0xbd0
sync_filesystem+0x74/0x90
generic_shutdown_super+0x22/0x100
kill_anon_super+0x14/0x30
btrfs_kill_super+0x12/0x20
deactivate_locked_super+0x36/0xa0
cleanup_mnt+0x12d/0x190
task_work_run+0x5c/0xa0
exit_to_user_mode_prepare+0x1df/0x200
syscall_exit_to_user_mode+0x54/0x280
entry_SYSCALL_64_after_hwframe+0x44/0xa9
-> #1 (&space_info->groups_sem){++++}-{3:3}:
down_read+0x40/0x130
find_free_extent+0x2ed/0x12f0
btrfs_reserve_extent+0xb3/0x1b0
btrfs_alloc_tree_block+0xb1/0x330
alloc_tree_block_no_bg_flush+0x4f/0x60
__btrfs_cow_block+0x11d/0x580
btrfs_cow_block+0x10c/0x220
commit_cowonly_roots+0x47/0x2e0
btrfs_commit_transaction+0x595/0xbd0
sync_filesystem+0x74/0x90
generic_shutdown_super+0x22/0x100
kill_anon_super+0x14/0x30
btrfs_kill_super+0x12/0x20
deactivate_locked_super+0x36/0xa0
cleanup_mnt+0x12d/0x190
task_work_run+0x5c/0xa0
exit_to_user_mode_prepare+0x1df/0x200
syscall_exit_to_user_mode+0x54/0x280
entry_SYSCALL_64_after_hwframe+0x44/0xa9
-> #0 (btrfs-root-00){++++}-{3:3}:
__lock_acquire+0x1167/0x2150
lock_acquire+0xb9/0x3d0
down_read_nested+0x43/0x130
__btrfs_tree_read_lock+0x32/0x170
__btrfs_read_lock_root_node+0x3a/0x50
btrfs_search_slot+0x614/0x9d0
btrfs_find_root+0x35/0x1b0
btrfs_read_tree_root+0x61/0x120
btrfs_get_root_ref+0x14b/0x600
find_parent_nodes+0x3e6/0x1b30
btrfs_find_all_roots_safe+0xb4/0x130
btrfs_find_all_roots+0x60/0x80
btrfs_qgroup_trace_extent_post+0x27/0x40
btrfs_add_delayed_data_ref+0x3fd/0x460
btrfs_free_extent+0x42/0x100
__btrfs_mod_ref+0x1d7/0x2f0
walk_up_proc+0x11c/0x400
walk_up_tree+0xf0/0x180
btrfs_drop_snapshot+0x1c7/0x780
btrfs_clean_one_deleted_snapshot+0xfb/0x110
cleaner_kthread+0xd4/0x140
kthread+0x13a/0x150
ret_from_fork+0x1f/0x30
other info that might help us debug this:
Chain exists of:
btrfs-root-00 --> &caching_ctl->mutex --> &fs_info->commit_root_sem
Possible unsafe locking scenario:
CPU0 CPU1
---- ----
lock(&fs_info->commit_root_sem);
lock(&caching_ctl->mutex);
lock(&fs_info->commit_root_sem);
lock(btrfs-root-00);
*** DEADLOCK ***
3 locks held by btrfs-cleaner/903:
#0: ffff8e7fab628838 (&fs_info->cleaner_mutex){+.+.}-{3:3}, at: cleaner_kthread+0x6e/0x140
#1: ffff8e7faadac640 (sb_internal){.+.+}-{0:0}, at: start_transaction+0x40b/0x5c0
#2: ffff8e7fab628a88 (&fs_info->commit_root_sem){++++}-{3:3}, at: btrfs_find_all_roots+0x41/0x80
stack backtrace:
CPU: 0 PID: 903 Comm: btrfs-cleaner Not tainted 5.9.0+ #102
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.13.0-2.fc32 04/01/2014
Call Trace:
dump_stack+0x8b/0xb0
check_noncircular+0xcf/0xf0
__lock_acquire+0x1167/0x2150
? __bfs+0x42/0x210
lock_acquire+0xb9/0x3d0
? __btrfs_tree_read_lock+0x32/0x170
down_read_nested+0x43/0x130
? __btrfs_tree_read_lock+0x32/0x170
__btrfs_tree_read_lock+0x32/0x170
__btrfs_read_lock_root_node+0x3a/0x50
btrfs_search_slot+0x614/0x9d0
? find_held_lock+0x2b/0x80
btrfs_find_root+0x35/0x1b0
? do_raw_spin_unlock+0x4b/0xa0
btrfs_read_tree_root+0x61/0x120
btrfs_get_root_ref+0x14b/0x600
find_parent_nodes+0x3e6/0x1b30
btrfs_find_all_roots_safe+0xb4/0x130
btrfs_find_all_roots+0x60/0x80
btrfs_qgroup_trace_extent_post+0x27/0x40
btrfs_add_delayed_data_ref+0x3fd/0x460
btrfs_free_extent+0x42/0x100
__btrfs_mod_ref+0x1d7/0x2f0
walk_up_proc+0x11c/0x400
walk_up_tree+0xf0/0x180
btrfs_drop_snapshot+0x1c7/0x780
? btrfs_clean_one_deleted_snapshot+0x73/0x110
btrfs_clean_one_deleted_snapshot+0xfb/0x110
cleaner_kthread+0xd4/0x140
? btrfs_alloc_root+0x50/0x50
kthread+0x13a/0x150
? kthread_create_worker_on_cpu+0x40/0x40
ret_from_fork+0x1f/0x30
BTRFS info (device sdb): disk space caching is enabled
BTRFS info (device sdb): has skinny extents
This happens because qgroups does a backref lookup when we create a
delayed ref. From here it may have to look up a root from an indirect
ref, which does a normal lookup on the tree_root, which takes the read
lock on the tree_root nodes.
To fix this we need to add a variant for looking up roots that searches
the commit root of the tree_root. Then when we do the backref search
using the commit root we are sure to not take any locks on the tree_root
nodes. This gets rid of the lockdep splat when running btrfs/104.
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
No need to go through a function pointer indirection simply call
submit_bio_hook directly by exporting and renaming the helper to
btrfs_submit_metadata_bio. This makes the code more readable and should
result in somewhat faster code due to no longer paying the price for
specualtive attack mitigations that come with indirect function calls.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Don't call readpage_end_io_hook for the btree inode. Instead of relying
on indirect calls to implement metadata buffer validation simply check
if the inode whose page we are processing equals the btree inode. If it
does call the necessary function.
This is an improvement in 2 directions:
1. We aren't paying the penalty of indirect calls in a post-speculation
attacks world.
2. The function is now named more explicitly so it's obvious what's
going on
This is in preparation to removing struct extent_io_ops altogether.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The sole purpose of this function was to satisfy the requirements of
__do_readpage. Since that function is no longer used to read metadata
pages the need to keep btree_get_extent around has also disappeared.
Simply remove it.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
[BUG]
When the anonymous block device pool is exhausted, subvolume/snapshot
creation fails with EMFILE (Too many files open). This has been reported
by a user. The allocation happens in the second phase during transaction
commit where it's only way out is to abort the transaction
BTRFS: Transaction aborted (error -24)
WARNING: CPU: 17 PID: 17041 at fs/btrfs/transaction.c:1576 create_pending_snapshot+0xbc4/0xd10 [btrfs]
RIP: 0010:create_pending_snapshot+0xbc4/0xd10 [btrfs]
Call Trace:
create_pending_snapshots+0x82/0xa0 [btrfs]
btrfs_commit_transaction+0x275/0x8c0 [btrfs]
btrfs_mksubvol+0x4b9/0x500 [btrfs]
btrfs_ioctl_snap_create_transid+0x174/0x180 [btrfs]
btrfs_ioctl_snap_create_v2+0x11c/0x180 [btrfs]
btrfs_ioctl+0x11a4/0x2da0 [btrfs]
do_vfs_ioctl+0xa9/0x640
ksys_ioctl+0x67/0x90
__x64_sys_ioctl+0x1a/0x20
do_syscall_64+0x5a/0x110
entry_SYSCALL_64_after_hwframe+0x44/0xa9
---[ end trace 33f2f83f3d5250e9 ]---
BTRFS: error (device sda1) in create_pending_snapshot:1576: errno=-24 unknown
BTRFS info (device sda1): forced readonly
BTRFS warning (device sda1): Skipping commit of aborted transaction.
BTRFS: error (device sda1) in cleanup_transaction:1831: errno=-24 unknown
[CAUSE]
When the global anonymous block device pool is exhausted, the following
call chain will fail, and lead to transaction abort:
btrfs_ioctl_snap_create_v2()
|- btrfs_ioctl_snap_create_transid()
|- btrfs_mksubvol()
|- btrfs_commit_transaction()
|- create_pending_snapshot()
|- btrfs_get_fs_root()
|- btrfs_init_fs_root()
|- get_anon_bdev()
[FIX]
Although we can't enlarge the anonymous block device pool, at least we
can preallocate anon_dev for subvolume/snapshot in the first phase,
outside of transaction context and exactly at the moment the user calls
the creation ioctl.
Reported-by: Greed Rong <greedrong@gmail.com>
Link: https://lore.kernel.org/linux-btrfs/CA+UqX+NTrZ6boGnWHhSeZmEY5J76CTqmYjO2S+=tHJX7nb9DPw@mail.gmail.com/
CC: stable@vger.kernel.org # 4.4+
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The main function to lookup a root by its id btrfs_get_fs_root takes the
whole key, while only using the objectid. The value of offset is preset
to (u64)-1 but not actually used until btrfs_find_root that does the
actual search.
Switch btrfs_get_fs_root to use only objectid and remove all local
variables that existed just for the lookup. The actual key for search is
set up in btrfs_get_fs_root, reusing another key variable.
Signed-off-by: David Sterba <dsterba@suse.com>
This was originally added in commit 8b110e393c ("Btrfs: implement
repair function when direct read fails") to avoid a deadlock. In that
commit, the direct I/O read endio executes on the endio_workers
workqueue, submits a repair bio, and waits for it to complete. The
repair bio endio must execute on a different workqueue, otherwise it
could block on the endio_workers workqueue becoming available, which
won't happen because the original endio is blocked on the repair bio.
As of the previous commit, the original endio doesn't wait for the
repair bio, so this separate workqueue is unnecessary.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Omar Sandoval <osandov@fb.com>
Signed-off-by: David Sterba <dsterba@suse.com>
There are a few different ways to free roots, either you allocated them
yourself and you just do
free_extent_buffer(root->node);
free_extent_buffer(root->commit_node);
btrfs_put_root(root);
Which is the pattern for log roots. Or for snapshots/subvolumes that
are being dropped you simply call btrfs_free_fs_root() which does all
the cleanup for you.
Unify this all into btrfs_put_root(), so that we don't free up things
associated with the root until the last reference is dropped. This
makes the root freeing code much more significant.
The only caveat is at close_ctree() time we have to free the extent
buffers for all of our main roots (extent_root, chunk_root, etc) because
we have to drop the btree_inode and we'll run into issues if we hold
onto those nodes until ->kill_sb() time. This will be addressed in the
future when we kill the btree_inode.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Super-block reading in BTRFS is done using buffer_heads. Buffer_heads
have some drawbacks, like not being able to propagate errors from the
lower layers.
Directly use the page cache for reading the super blocks from disk or
invalidating an on-disk super block. We have to use the page cache so to
avoid races between mkfs and udev. See also 6f60cbd3ae ("btrfs: access
superblock via pagecache in scan_one_device").
This patch unwraps the buffer head API and does not change the way the
super block is actually read.
Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We are now using these for all roots, rename them to btrfs_put_root()
and btrfs_grab_root();
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Now that we're going to start relying on getting ref counting right for
roots, add a list to track allocated roots and print out any roots that
aren't freed up at free_fs_info time.
Hide this behind CONFIG_BTRFS_DEBUG because this will just be used for
developers to verify they aren't breaking things.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
In adding things like eb leak checking and root leak checking there were
a lot of weird corner cases that come from the fact that
1) We do not init the fs_info until we get to open_ctree time in the
normal case and
2) The test infrastructure half-init's the fs_info for things that it
needs.
This makes it really annoying to make changes because you have to add
init in two different places, have special cases for testing fs_info's
that may not have certain things initialized, and cases for fs_info's
that didn't make it to open_ctree and thus are not fully set up.
Fix this by extracting out the non-allocating init of the fs info into
it's own public function and use that to make sure we're all getting
consistent views of an allocated fs_info.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We're going to start freeing roots and doing other complicated things in
free_fs_info, so we need to move it to disk-io.c and export it in order
to use things lik btrfs_put_fs_root().
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We want to use this for dropping all roots, and in some error cases we
may not have a root, so handle this to make the cleanup code easier.
Make btrfs_grab_fs_root the same so we can use it in cases where the
root may not exist (like the quota root).
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Now that the orphan cleanup stuff doesn't use this directly we can just
make them static.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
All this does is call btrfs_get_fs_root() with check_ref == true. Just
use btrfs_get_fs_root() so we don't have a bunch of different helpers
that do the same thing.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>