Pull x86 ras, uv and vdso fixlets from Ingo Molnar:
"ras: tone down a kernel message to only occur during initial bootup,
not during suspend/resume cycles.
uv: a cleanup commit
vdso: a fix to error checking"
* 'x86-ras-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/mce: Avoid showing repetitive message from intel_init_thermal()
* 'x86-uv-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/apic/uv: Remove unnecessary #ifdef
* 'x86-vdso-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/vdso: Fix vdso2c's special_pages[] error checking
In the file x2apic_uv_x.c, some code is compiled conditionally
depending on CONFIG_SMP. However, the file is only built, if
CONFIG_X86_UV is enabled.
CONFIG_X86_UV depends on CONFIG_NUMA, which itself depends on
CONFIG_SMP, so the #ifdef will always evaluate to true, if the
file is compiled. Thus, it is unnecessary and can be removed.
Signed-off-by: Andreas Ruprecht <rupran@einserver.de>
Cc: David Rientjes <rientjes@google.com>
Cc: Dimitri Sivanich <sivanich@sgi.com>
Cc: Hedi Berriche <hedi@sgi.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Travis <travis@sgi.com>
Cc: Russ Anderson <rja@sgi.com>
Link: http://lkml.kernel.org/r/1408522561-23389-1-git-send-email-rupran@einserver.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Since commit b5660ba76b ("x86, platforms: Remove NUMAQ") removed NUMAQ,
the mps_oem_check() apic callback has been obsolete. Remove it.
This allows generic_mps_oem_check() to be removed as well.
Signed-off-by: David Rientjes <rientjes@google.com>
Link: http://lkml.kernel.org/r/alpine.DEB.2.02.1407302349390.17503@chino.kir.corp.google.com
Signed-off-by: H. Peter Anvin <hpa@zytor.com>
The trampoline_phys_{high,low} members of struct apic are always
initialized to DEFAULT_TRAMPOLINE_PHYS_HIGH and TRAMPOLINE_PHYS_LOW,
respectively. Hardwire the constants and remove the unneeded members.
Signed-off-by: David Rientjes <rientjes@google.com>
Link: http://lkml.kernel.org/r/alpine.DEB.2.02.1407302348330.17503@chino.kir.corp.google.com
Signed-off-by: H. Peter Anvin <hpa@zytor.com>
The value of n_lshift for UV is currently set based on the
socket m_val.
For UV3, set the n_lshift value based on the GAM_GR_CONFIG MMR.
This will allow bios to control the n_lshift value independent
of the socket m_val. Then n_lshift can be assigned a fixed value
across a multi-partition system, allowing for a fixed common
global physical address format that is independent of socket
m_val.
Cleanup unneeded macros.
Signed-off-by: Dimitri Sivanich <sivanich@sgi.com>
Link: http://lkml.kernel.org/r/20140331143700.GB29916@sgi.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Now that there is only a single wait_for_init_deassert()
function, just convert the member of struct apic to a bool to
determine whether we need to wait for init_deassert to become
non-zero.
There are no more callers of default_wait_for_init_deassert(),
so fold it into the caller.
Signed-off-by: David Rientjes <rientjes@google.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/alpine.DEB.2.02.1402042354010.7839@chino.kir.corp.google.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Make uv_register_nmi_notifier() and uv_handle_nmi_ping() static
to address sparse warnings.
Fix problem where uv_nmi_kexec_failed is unused when
CONFIG_KEXEC is not defined.
Signed-off-by: Mike Travis <travis@sgi.com>
Reviewed-by: Hedi Berriche <hedi@sgi.com>
Cc: Russ Anderson <rja@sgi.com>
Cc: Jason Wessel <jason.wessel@windriver.com>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Arnaldo Carvalho de Melo <acme@ghostprotocols.net>
Link: http://lkml.kernel.org/r/20140114162551.480872353@asylum.americas.sgi.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Pull x86 UV debug changes from Ingo Molnar:
"Various SGI UV debuggability improvements, amongst them KDB support,
with related core KDB enabling patches changing kernel/debug/kdb/"
* 'x86-uv-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
Revert "x86/UV: Add uvtrace support"
x86/UV: Add call to KGDB/KDB from NMI handler
kdb: Add support for external NMI handler to call KGDB/KDB
x86/UV: Check for alloc_cpumask_var() failures properly in uv_nmi_setup()
x86/UV: Add uvtrace support
x86/UV: Add kdump to UV NMI handler
x86/UV: Add summary of cpu activity to UV NMI handler
x86/UV: Update UV support for external NMI signals
x86/UV: Move NMI support
The UV3 hub revision ID is different than expected. The first
revision was supposed to start at 1 but instead will start at 0.
Signed-off-by: Russ Anderson <rja@sgi.com>
Cc: <stable@kernel.org> # v3.9, v3.10, v3.11
Link: http://lkml.kernel.org/r/20131014161733.GA6274@sgi.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The current UV NMI handler has not been updated for the changes
in the system NMI handler and the perf operations. The UV NMI
handler reads an MMR in the UV Hub to check to see if the NMI
event was caused by the external 'system NMI' that the operator
can initiate on the System Mgmt Controller.
The problem arises when the perf tools are running, causing
millions of perf events per second on very large CPU count
systems. Previously this was okay because the perf NMI handler
ran at a higher priority on the NMI call chain and if the NMI
was a perf event, it would stop calling other NMI handlers
remaining on the NMI call chain.
Now the system NMI handler calls all the handlers on the NMI
call chain including the UV NMI handler. This causes the UV NMI
handler to read the MMRs at the same millions per second rate.
This can lead to significant performance loss and possible
system failures. It also can cause thousands of 'Dazed and
Confused' messages being sent to the system console. This
effectively makes perf tools unusable on UV systems.
To avoid this excessive overhead when perf tools are running,
this code has been optimized to minimize reading of the MMRs as
much as possible, by moving to the NMI_UNKNOWN notifier chain.
This chain is called only when all the users on the standard
NMI_LOCAL call chain have been called and none of them have
claimed this NMI.
There is an exception where the NMI_LOCAL notifier chain is
used. When the perf tools are in use, it's possible that the UV
NMI was captured by some other NMI handler and then either
ignored or mistakenly processed as a perf event. We set a
per_cpu ('ping') flag for those CPUs that ignored the initial
NMI, and then send them an IPI NMI signal. The NMI_LOCAL
handler on each cpu does not need to read the MMR, but instead
checks the in memory flag indicating it was pinged. There are
two module variables, 'ping_count' indicating how many requested
NMI events occurred, and 'ping_misses' indicating how many stray
NMI events. These most likely are perf events so it shows the
overhead of the perf NMI interrupts and how many MMR reads were avoided.
This patch also minimizes the reads of the MMRs by having the
first cpu entering the NMI handler on each node set a per HUB
in-memory atomic value. (Having a per HUB value avoids sending
lock traffic over NumaLink.) Both types of UV NMIs from the SMI
layer are supported.
Signed-off-by: Mike Travis <travis@sgi.com>
Reviewed-by: Dimitri Sivanich <sivanich@sgi.com>
Reviewed-by: Hedi Berriche <hedi@sgi.com>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Arnaldo Carvalho de Melo <acme@ghostprotocols.net>
Cc: Jason Wessel <jason.wessel@windriver.com>
Link: http://lkml.kernel.org/r/20130923212500.353547733@asylum.americas.sgi.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
This patch moves the UV NMI support from the x2apic file to a
new separate uv_nmi.c file in preparation for the next sequence
of patches. It prevents upcoming bloat of the x2apic file, and
has the added benefit of putting the upcoming /sys/module
parameters under the name 'uv_nmi' instead of 'x2apic_uv_x',
which was obscure.
Signed-off-by: Mike Travis <travis@sgi.com>
Reviewed-by: Dimitri Sivanich <sivanich@sgi.com>
Reviewed-by: Hedi Berriche <hedi@sgi.com>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Arnaldo Carvalho de Melo <acme@ghostprotocols.net>
Cc: Jason Wessel <jason.wessel@windriver.com>
Link: http://lkml.kernel.org/r/20130923212500.183295611@asylum.americas.sgi.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The __cpuinit type of throwaway sections might have made sense
some time ago when RAM was more constrained, but now the savings
do not offset the cost and complications. For example, the fix in
commit 5e427ec2d0 ("x86: Fix bit corruption at CPU resume time")
is a good example of the nasty type of bugs that can be created
with improper use of the various __init prefixes.
After a discussion on LKML[1] it was decided that cpuinit should go
the way of devinit and be phased out. Once all the users are gone,
we can then finally remove the macros themselves from linux/init.h.
Note that some harmless section mismatch warnings may result, since
notify_cpu_starting() and cpu_up() are arch independent (kernel/cpu.c)
are flagged as __cpuinit -- so if we remove the __cpuinit from
arch specific callers, we will also get section mismatch warnings.
As an intermediate step, we intend to turn the linux/init.h cpuinit
content into no-ops as early as possible, since that will get rid
of these warnings. In any case, they are temporary and harmless.
This removes all the arch/x86 uses of the __cpuinit macros from
all C files. x86 only had the one __CPUINIT used in assembly files,
and it wasn't paired off with a .previous or a __FINIT, so we can
delete it directly w/o any corresponding additional change there.
[1] https://lkml.org/lkml/2013/5/20/589
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: x86@kernel.org
Acked-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: H. Peter Anvin <hpa@linux.intel.com>
Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
Merge together the unicore32, arm, and x86 reboot= command line
parameter handling.
Signed-off-by: Robin Holt <holt@sgi.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Russell King <rmk+kernel@arm.linux.org.uk>
Cc: Guan Xuetao <gxt@mprc.pku.edu.cn>
Cc: Russ Anderson <rja@sgi.com>
Cc: Robin Holt <holt@sgi.com>
Acked-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Guan Xuetao <gxt@mprc.pku.edu.cn>
Acked-by: Russell King <rmk+kernel@arm.linux.org.uk>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
GRU hardware will support an optional distributed mode that will
allow per-node address mapping of local GRU space, as opposed
to mapping all GRU hardware to the same contiguous high space.
If GRU distributed mode is selected, setup per-node page table
mappings.
Signed-off-by: Dimitri Sivanich <sivanich@sgi.com>
Cc: Alexander Gordeev <agordeev@redhat.com>
Cc: Suresh Siddha <suresh.b.siddha@intel.com>
Cc: Russ Anderson <rja@sgi.com>
Cc: Mike Travis <travis@sgi.com>
Link: http://lkml.kernel.org/r/20130529155609.GB22917@sgi.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
This patch adds support for the SGI UV3 hub to the common x2apic
functions. The primary changes are to account for the similarities
between UV2 and UV3 which are encompassed within the "UVX" nomenclature.
One significant difference within UV3 is the handling of the MMIOH
regions which are redirected to the target blade (with the device) in
a different manner. It also now has two MMIOH regions for both small and
large BARs. This aids in limiting the amount of physical address space
removed from real memory that's used for I/O in the max config of 64TB.
Signed-off-by: Mike Travis <travis@sgi.com>
Link: http://lkml.kernel.org/r/20130211194508.752924185@gulag1.americas.sgi.com
Acked-by: Russ Anderson <rja@sgi.com>
Reviewed-by: Dimitri Sivanich <sivanich@sgi.com>
Cc: Alexander Gordeev <agordeev@redhat.com>
Cc: Suresh Siddha <suresh.b.siddha@intel.com>
Cc: Michael S. Tsirkin <mst@redhat.com>
Cc: Steffen Persvold <sp@numascale.com>
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
Since there are only two locations where cpu_mask_to_apicid() is
called from, remove the operation and use only
cpu_mask_to_apicid_and() instead.
Signed-off-by: Alexander Gordeev <agordeev@redhat.com>
Suggested-and-acked-by: Suresh Siddha <suresh.b.siddha@intel.com>
Acked-by: Yinghai Lu <yinghai@kernel.org>
Link: http://lkml.kernel.org/r/20120614074935.GE3383@dhcp-26-207.brq.redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Currently cpu_mask_to_apicid() should not get a offline CPU with
the cpumask. Otherwise some apic drivers might try to access
non-existent per-cpu variables (i.e. x2apic). In that regard
cpu_mask_to_apicid() and cpu_mask_to_apicid_and() operations are
inconsistent.
This fix makes the two operations do not rely on calling
functions and always return the apicid for only online CPUs. As
result, the meaning and implementations of cpu_mask_to_apicid()
and cpu_mask_to_apicid_and() operations become straight.
Signed-off-by: Alexander Gordeev <agordeev@redhat.com>
Acked-by: Suresh Siddha <suresh.b.siddha@intel.com>
Cc: Yinghai Lu <yinghai@kernel.org>
Link: http://lkml.kernel.org/r/20120607131624.GG4759@dhcp-26-207.brq.redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Current cpu_mask_to_apicid() and cpu_mask_to_apicid_and()
implementations have few shortcomings:
1. A value returned by cpu_mask_to_apicid() is written to
hardware registers unconditionally. Should BAD_APICID get ever
returned it will be written to a hardware too. But the value of
BAD_APICID is not universal across all hardware in all modes and
might cause unexpected results, i.e. interrupts might get routed
to CPUs that are not configured to receive it.
2. Because the value of BAD_APICID is not universal it is
counter- intuitive to return it for a hardware where it does not
make sense (i.e. x2apic).
3. cpu_mask_to_apicid_and() operation is thought as an
complement to cpu_mask_to_apicid() that only applies a AND mask
on top of a cpumask being passed. Yet, as consequence of 18374d8
commit the two operations are inconsistent in that of:
cpu_mask_to_apicid() should not get a offline CPU with the cpumask
cpu_mask_to_apicid_and() should not fail and return BAD_APICID
These limitations are impossible to realize just from looking at
the operations prototypes.
Most of these shortcomings are resolved by returning a error
code instead of BAD_APICID. As the result, faults are reported
back early rather than possibilities to cause a unexpected
behaviour exist (in case of [1]).
The only exception is setup_timer_IRQ0_pin() routine. Although
obviously controversial to this fix, its existing behaviour is
preserved to not break the fragile check_timer() and would
better addressed in a separate fix.
Signed-off-by: Alexander Gordeev <agordeev@redhat.com>
Acked-by: Suresh Siddha <suresh.b.siddha@intel.com>
Cc: Yinghai Lu <yinghai@kernel.org>
Link: http://lkml.kernel.org/r/20120607131559.GF4759@dhcp-26-207.brq.redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
We know both register and value for eoi beforehand,
so there's no need to check it and no need to do math
to calculate the msr. Saves instructions/branches
on each EOI when using x2apic.
I looked at the objdump output to verify that the
generated code looks right and actually is shorter.
The real improvemements will be on the KVM guest side
though, those come in a later patch.
Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
Cc: Avi Kivity <avi@redhat.com>
Cc: Marcelo Tosatti <mtosatti@redhat.com>
Cc: gleb@redhat.com
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: http://lkml.kernel.org/r/e019d1a125316f10d3e3a4b2f6bda41473f4fb72.1337184153.git.mst@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Add eoi_write callback so that kvm can override
eoi accesses without touching the rest of the apic.
As a side-effect, this will enable a micro-optimization
for apics using msr.
Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
Cc: Avi Kivity <avi@redhat.com>
Cc: Marcelo Tosatti <mtosatti@redhat.com>
Cc: gleb@redhat.com
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: http://lkml.kernel.org/r/0df425d746c49ac2ecc405174df87752869629d2.1337184153.git.mst@redhat.com
[ tidied it up a bit ]
Signed-off-by: Ingo Molnar <mingo@kernel.org>
As suggested by Suresh Siddha and Yinghai Lu:
For x2apic pre-enabled systems, apic driver is set already early
through early_acpi_boot_init()/early_acpi_process_madt()/
acpi_parse_madt()/default_acpi_madt_oem_check() path so that
apic_id_valid() checking will be sufficient during MADT and SRAT
parsing.
For non-x2apic pre-enabled systems, all apic ids should be less
than 255.
This allows us to substitute the checks in
arch/x86/kernel/acpi/boot.c::acpi_parse_x2apic() and
arch/x86/mm/srat.c::acpi_numa_x2apic_affinity_init() with
apic->apic_id_valid().
In addition we can avoid feigning the x2apic cpu feature in the
NumaChip apic code.
The following apic drivers have separate apic_id_valid()
functions which will accept x2apic type IDs :
x2apic_phys
x2apic_cluster
x2apic_uv_x
apic_numachip
Signed-off-by: Steffen Persvold <sp@numascale.com>
Cc: Suresh Siddha <suresh.b.siddha@intel.com>
Cc: Daniel J Blueman <daniel@numascale-asia.com>
Cc: Yinghai Lu <yinghai@kernel.org>
Cc: Jack Steiner <steiner@sgi.com>
Link: http://lkml.kernel.org/r/1331925935-13372-1-git-send-email-sp@numascale.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Move APIC ID validity check into platform APIC code, so it can
be overridden when needed. For NumaChip systems, always trust
MADT, as it's constructed with high APIC IDs.
Behaviour verifies on standard x86 systems and on NumaChip
systems with this, and compile-tested with allyesconfig.
Signed-off-by: Daniel J Blueman <daniel@numascale-asia.com>
Reviewed-by: Steffen Persvold <sp@numascale.com>
Cc: Yinghai Lu <yinghai@kernel.org>
Cc: H. Peter Anvin <hpa@linux.intel.com>
Cc: Suresh Siddha <suresh.b.siddha@intel.com>
Link: http://lkml.kernel.org/r/1331709454-27966-1-git-send-email-daniel@numascale-asia.com
Signed-off-by: Ingo Molnar <mingo@elte.hu>
SGI UV systems print a message during boot:
UV: Found <num> blades
Due to packaging changes, the blade count is not accurate for
on the next generation of the platform. This patch corrects the
count.
Signed-off-by: Jack Steiner <steiner@sgi.com>
Cc: <stable@kernel.org>
Link: http://lkml.kernel.org/r/20120106191900.GA19772@sgi.com
Signed-off-by: Ingo Molnar <mingo@elte.hu>
There was a mixup when the SGI UV2 hub chip was sent to be
fabricated, and it ended up with the wrong part number in the
HRP_NODE_ID mmr. Future versions of the chip will (may) have the
correct part number. Change the UV infrastructure to recognize
both part numbers as valid IDs of a UV2 hub chip.
Signed-off-by: Jack Steiner <steiner@sgi.com>
Link: http://lkml.kernel.org/r/20111129210058.GA20452@sgi.com
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Just convert all the files that have an nmi handler to the new routines.
Most of it is straight forward conversion. A couple of places needed some
tweaking like kgdb which separates the debug notifier from the nmi handler
and mce removes a call to notify_die.
[Thanks to Ying for finding out the history behind that mce call
https://lkml.org/lkml/2010/5/27/114
And Boris responding that he would like to remove that call because of it
https://lkml.org/lkml/2011/9/21/163]
The things that get converted are the registeration/unregistration routines
and the nmi handler itself has its args changed along with code removal
to check which list it is on (most are on one NMI list except for kgdb
which has both an NMI routine and an NMI Unknown routine).
Signed-off-by: Don Zickus <dzickus@redhat.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Acked-by: Corey Minyard <minyard@acm.org>
Cc: Jason Wessel <jason.wessel@windriver.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Robert Richter <robert.richter@amd.com>
Cc: Huang Ying <ying.huang@intel.com>
Cc: Corey Minyard <minyard@acm.org>
Cc: Jack Steiner <steiner@sgi.com>
Link: http://lkml.kernel.org/r/1317409584-23662-4-git-send-email-dzickus@redhat.com
Signed-off-by: Ingo Molnar <mingo@elte.hu>
This is a workaround for a UV2 hub bug that affects the format of system
global addresses.
The GRU API for UV2 was inadvertently broken by a hardware change. The
format of the physical address used for TLB dropins and for addresses used
with instructions running in unmapped mode has changed. This change was
not documented and became apparent only when diags failed running on
system simulators.
For UV1, TLB and GRU instruction physical addresses are identical to
socket physical addresses (although high NASID bits must be OR'ed into the
address).
For UV2, socket physical addresses need to be converted. The NODE portion
of the physical address needs to be shifted so that the low bit is in bit
39 or bit 40, depending on an MMR value.
It is not yet clear if this bug will be fixed in a silicon respin. If it
is fixed, the hub revision will be incremented & the workaround disabled.
Signed-off-by: Jack Steiner <steiner@sgi.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: <stable@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Delete the 10 msec delay between the INIT and SIPI when starting
slave cpus. I can find no requirement for this delay. BIOS also
has similar code sequences without the delay.
Removing the delay reduces boot time by 40 sec. Every bit helps.
Signed-off-by: Jack Steiner <steiner@sgi.com>
Cc: <stable@kernel.org>
Link: http://lkml.kernel.org/r/20110805140900.GA6774@sgi.com
Signed-off-by: Ingo Molnar <mingo@elte.hu>
When I added 3448a19da4
I forgot about the special uv handling code for this, so this
patch fixes it up.
Acked-by: Jesse Barnes <jbarnes@virtuousgeek.org>
Acked-by: Ingo Molnar
Signed-off-by: Dave Airlie <airlied@redhat.com>
This patch adds support for a new version of the SGI UV hub
chip. The hub chip is the node controller that connects multiple
blades into a larger coherent SSI.
For the most part, UV2 is compatible with UV1. The majority of
the changes are in the addresses of MMRs and in a few cases, the
contents of MMRs. These changes are the result in changes in the
system topology such as node configuration, processor types,
maximum nodes, physical address sizes, etc.
Signed-off-by: Jack Steiner <steiner@sgi.com>
Link: http://lkml.kernel.org/r/20110511175028.GA18006@sgi.com
Signed-off-by: Ingo Molnar <mingo@elte.hu>
This will pave the way for each apic driver to be self-contained
and eliminate the need for apic_probe[].
Order in which apic drivers are listed in the .apicdrivers
section is important, as this determines the apic probe order.
And this is enforced by the ordering of apic driver files in the
Makefile and the macros apic_driver()/apic_drivers().
Signed-off-by: Suresh Siddha <suresh.b.siddha@intel.com>
Tested-by: Cyrill Gorcunov <gorcunov@openvz.org>
Cc: steiner@sgi.com
Cc: gorcunov@openvz.org
Cc: yinghai@kernel.org
Link: http://lkml.kernel.org/r/20110521005526.068775085@sbsiddha-MOBL3.sc.intel.com
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Use the unused probe routine in the apic driver to finalize the
apic model selection. This cleans up the
default_setup_apic_routing() and this probe routine in future
can also be used for doing any apic model specific
initialisation.
Signed-off-by: Suresh Siddha <suresh.b.siddha@intel.com>
Acked-by: Cyrill Gorcunov <gorcunov@openvz.org>
Cc: steiner@sgi.com
Cc: yinghai@kernel.org
Link: http://lkml.kernel.org/r/20110519234637.247458931@sbsiddha-MOBL3.sc.intel.com
Signed-off-by: Ingo Molnar <mingo@elte.hu>
This fixes problems seen on UV systems handling NMIs from the
node controller.
I isolated the "dazed..." messages that I saw earlier to a bug in
the BMC on our platform. It was sending NMIs w/o properly setting
a register that indicated the source of NMI.
So rather than _assuming_ any unhandled NMI came from the UV system
maintenance console (SMC), add a check to verify that the SMC actually
sent the NMI.
Signed-off-by: Jack Steiner <steiner@sgi.com>
Cc: gorcunov@gmail.com
Cc: dzickus@redhat.com
Signed-off-by: Ingo Molnar <mingo@elte.hu>
After a crash dump on an SGI Altix UV system the crash kernel
fails to cause a reboot. EFI mode is disabled in the kdump
kernel, so only the reboot_type of BOOT_ACPI works.
Signed-off-by: Cliff Wickman <cpw@sgi.com>
Cc: rja@sgi.com
LKML-Reference: <E1Q5Iuo-00013b-UK@eag09.americas.sgi.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Stop including <linux/delay.h> in x86 header files which don't
need it. This will let the compiler complain when this header is
not included by source files when it should, so that
contributors can fix the problem before building on other
architectures starts to fail.
Credits go to Geert for the idea.
Signed-off-by: Jean Delvare <khali@linux-fr.org>
Cc: James E.J. Bottomley <James.Bottomley@suse.de>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
LKML-Reference: <20110325152014.297890ec@endymion.delvare>
[ this also fixes an upstream build bug in drivers/media/rc/ite-cir.c ]
Signed-off-by: Ingo Molnar <mingo@elte.hu>
apic->apicid_to_node() is 32bit specific apic operation which
determines NUMA node for a CPU. Depending on the APIC
implementation, it can be easier to determine NUMA node from
either physical or logical apicid. Currently,
->apicid_to_node() takes @logical_apicid and calls
hard_smp_processor_id() if the physical apicid is needed.
This prevents NUMA mapping from being queried from a different
CPU, which in turn makes it impossible to initialize NUMA
mapping before SMP bringup.
This patch replaces apic->apicid_to_node() with
->x86_32_numa_cpu_node() which takes @cpu, from which both
logical and physical apicids can easily be determined. While at
it, drop duplicate implementations from bigsmp_32 and summit_32,
and use the default one.
Signed-off-by: Tejun Heo <tj@kernel.org>
Reviewed-by: Pekka Enberg <penberg@kernel.org>
Cc: eric.dumazet@gmail.com
Cc: yinghai@kernel.org
Cc: brgerst@gmail.com
Cc: gorcunov@gmail.com
Cc: shaohui.zheng@intel.com
Cc: rientjes@google.com
LKML-Reference: <1295789862-25482-13-git-send-email-tj@kernel.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
After the previous patch, apic->cpu_to_logical_apicid() is no
longer used. Kill it.
For apic types with custom cpu_to_logical_apicid() which is also
used for other purposes, remove the function and modify its
users to do the mapping directly.
#ifdef's on CONFIG_SMP in es7000_32 and summit_32 are ignored
during conversion as they are not used for UP kernels.
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: eric.dumazet@gmail.com
Cc: yinghai@kernel.org
Cc: brgerst@gmail.com
Cc: gorcunov@gmail.com
Cc: penberg@kernel.org
Cc: shaohui.zheng@intel.com
Cc: rientjes@google.com
LKML-Reference: <1295789862-25482-7-git-send-email-tj@kernel.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
* 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
x86: Fix Moorestown VRTC fixmap placement
x86/gpio: Implement x86 gpio_to_irq convert function
x86, UV: Fix APICID shift for Westmere processors
x86: Use PCI method for enabling AMD extended config space before MSR method
x86: tsc: Prevent delayed init if initial tsc calibration failed
x86, lapic-timer: Increase the max_delta to 31 bits
x86: Fix sparse non-ANSI function warnings in smpboot.c
x86, numa: Fix CONFIG_DEBUG_PER_CPU_MAPS without NUMA emulation
x86, AMD, PCI: Add AMD northbridge PCI device id for CPU families 12h and 14h
x86, numa: Fix cpu to node mapping for sparse node ids
x86, numa: Fake node-to-cpumask for NUMA emulation
x86, numa: Fake apicid and pxm mappings for NUMA emulation
x86, numa: Avoid compiling NUMA emulation functions without CONFIG_NUMA_EMU
x86, numa: Reduce minimum fake node size to 32M
Fix up trivial conflict in arch/x86/kernel/apic/x2apic_uv_x.c
Westmere processors use a different algorithm for
assigning APICIDs on SGI UV systems. The location of the
node number within the apicid is now a function of the
processor type.
Signed-off-by: Jack Steiner <steiner@sgi.com>
LKML-Reference: <20110110195210.GA18737@sgi.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>