This patch restores the changes of commit dff38e3e93 "x86: Use inline
assembler instead of global register variable to get sp". They got lost
in commit 198d208df4 "x86: Keep thread_info on thread stack in x86_32"
while moving the code to arch/x86/kernel/irq_32.c.
Quoting Andi from commit dff38e3e93:
"""
LTO in gcc 4.6/47. has trouble with global register variables. They were
used to read the stack pointer. Use a simple inline assembler statement
with a mov instead.
This also helps LLVM/clang, which does not support global register
variables.
"""
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Andi Kleen <ak@linux.intel.com>
Signed-off-by: Mathias Krause <minipli@googlemail.com>
Link: http://lkml.kernel.org/r/1394178752-18047-1-git-send-email-minipli@googlemail.com
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
It's an enum, not a #define, you can't use it in asm files.
Introduced in commit 5fa10196bd ("x86: Ignore NMIs that come in during
early boot"), and sadly I didn't compile-test things like I should have
before pushing out.
My weak excuse is that the x86 tree generally doesn't introduce stupid
things like this (and the ARM pull afterwards doesn't cause me to do a
compile-test either, since I don't cross-compile).
Cc: Don Zickus <dzickus@redhat.com>
Cc: H. Peter Anvin <hpa@linux.intel.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Don Zickus reports:
A customer generated an external NMI using their iLO to test kdump
worked. Unfortunately, the machine hung. Disabling the nmi_watchdog
made things work.
I speculated the external NMI fired, caused the machine to panic (as
expected) and the perf NMI from the watchdog came in and was latched.
My guess was this somehow caused the hang.
----
It appears that the latched NMI stays latched until the early page
table generation on 64 bits, which causes exceptions to happen which
end in IRET, which re-enable NMI. Therefore, ignore NMIs that come in
during early execution, until we have proper exception handling.
Reported-and-tested-by: Don Zickus <dzickus@redhat.com>
Link: http://lkml.kernel.org/r/1394221143-29713-1-git-send-email-dzickus@redhat.com
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
Cc: <stable@vger.kernel.org> # v3.5+, older with some backport effort
Ftrace modifies function calls using Int3 breakpoints on x86.
The breakpoints are handled only when the patching is in progress.
If something goes wrong, there is a recovery code that removes
the breakpoints. If this fails, the system might get silently
rebooted when a remaining break is not handled or an invalid
instruction is proceed.
We should BUG() when the breakpoint could not be removed. Otherwise,
the system silently crashes when the function finishes the Int3
handler is disabled.
Note that we need to modify remove_breakpoint() to return non-zero
value only when there is an error. The return value was ignored before,
so it does not cause any troubles.
Link: http://lkml.kernel.org/r/1393258342-29978-4-git-send-email-pmladek@suse.cz
Signed-off-by: Petr Mladek <pmladek@suse.cz>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
As the data parameter is not really used by any ftrace_dyn_arch_init,
remove that from ftrace_dyn_arch_init. This also removes the addr
local variable from ftrace_init which is now unused.
Note the documentation was imprecise as it did not suggest to set
(*data) to 0.
Link: http://lkml.kernel.org/r/1393268401-24379-4-git-send-email-jslaby@suse.cz
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: linux-arch@vger.kernel.org
Signed-off-by: Jiri Slaby <jslaby@suse.cz>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
No architecture uses the "data" parameter in ftrace_dyn_arch_init() in any
way, it just sets the value to 0. And this is used as a return value
in the caller -- ftrace_init, which just checks the retval against
zero.
Note there is also "return 0" in every ftrace_dyn_arch_init. So it is
enough to check the retval and remove all the indirect sets of data on
all archs.
Link: http://lkml.kernel.org/r/1393268401-24379-3-git-send-email-jslaby@suse.cz
Cc: linux-arch@vger.kernel.org
Signed-off-by: Jiri Slaby <jslaby@suse.cz>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Having ftrace_write() return -EPERM on failure, as that's what the callers
return, then we can clean up the code a bit. That is, instead of:
if (ftrace_write(...))
return -EPERM;
return 0;
or
if (ftrace_write(...)) {
ret = -EPERM;
goto_out;
}
We can instead have:
return ftrace_write(...);
or
ret = ftrace_write(...);
if (ret)
goto out;
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
The dump_trace() function in dumpstack_64.c is hard to follow.
The test for exception stack is processed differently than the
test for irq stack, and the normal stack is outside completely.
By restructuring this code to have all the stacks determined by
a single function that returns an enum of the following:
STACK_IS_NORMAL
STACK_IS_EXCEPTION
STACK_IS_IRQ
STACK_IS_UNKNOWN
and has the logic of each within a switch statement.
This should make the code much easier to read and understand.
Link: http://lkml.kernel.org/r/20110806012354.684598995@goodmis.org
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Brian Gerst <brgerst@gmail.com>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Link: http://lkml.kernel.org/r/20140206144322.086050042@goodmis.org
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
x86_64 uses a per_cpu variable kernel_stack to always point to
the thread stack of current. This is where the thread_info is stored
and is accessed from this location even when the irq or exception stack
is in use. This removes the complexity of having to maintain the
thread info on the stack when interrupts are running and having to
copy the preempt_count and other fields to the interrupt stack.
x86_32 uses the old method of copying the thread_info from the thread
stack to the exception stack just before executing the exception.
Having the two different requires #ifdefs and also the x86_32 way
is a bit of a pain to maintain. By converting x86_32 to the same
method of x86_64, we can remove #ifdefs, clean up the x86_32 code
a little, and remove the overhead of the copy.
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Brian Gerst <brgerst@gmail.com>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Link: http://lkml.kernel.org/r/20110806012354.263834829@goodmis.org
Link: http://lkml.kernel.org/r/20140206144321.852942014@goodmis.org
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
The i386 thread_info contains a previous_esp field that is used
to daisy chain the different stacks for dump_stack()
(ie. irq, softirq, thread stacks).
The goal is to eventual make i386 handling of thread_info the same
as x86_64, which means that the thread_info will not be in the stack
but as a per_cpu variable. We will no longer depend on thread_info
being able to daisy chain different stacks as it will only exist
in one location (the thread stack).
By moving previous_esp to the end of thread_info and referencing
it as an offset instead of using a thread_info field, this becomes
a stepping stone to moving the thread_info.
The offset to get to the previous stack is rather ugly in this
patch, but this is only temporary and the prev_esp will be changed
in the next commit. This commit is more for sanity checks of the
change.
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Robert Richter <rric@kernel.org>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Link: http://lkml.kernel.org/r/20110806012353.891757693@goodmis.org
Link: http://lkml.kernel.org/r/20140206144321.608754481@goodmis.org
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
Only CF9_COND is appropriate for inclusion in the default chain, not
CF9; the latter will poke that register unconditionally, whereas
CF9_COND will at least look for PCI configuration method #1 or #2
first (a weak check, but better than nothing.)
CF9 should be used for explicit system configuration (command line or
DMI) only.
Cc: Aubrey Li <aubrey.li@intel.com>
Cc: Matthew Garrett <mjg59@srcf.ucam.org>
Link: http://lkml.kernel.org/r/53130A46.1010801@linux.intel.com
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
Reboot is the last service linux OS provides to the end user. We are
supposed to make this function more robust than today. This patch adds
all of the known reboot methods into the default attempt list. The
machines requiring reboot=efi or reboot=p or reboot=bios get a chance
to reboot automatically now.
If there is a new reboot method emerged, we are supposed to add it to
the default list as well, instead of adding the endless dmidecode entry.
If one method required is in the default list in this patch but the
machine reboot still hangs, that means some methods ahead of the
required method cause the system hangs, then reboot the machine by
passing reboot= arguments and submit the reboot dmidecode table quirk.
We are supposed to remove the reboot dmidecode table from the kernel,
but to be safe, we keep it. This patch prevents us from adding more.
If you happened to have a machine listed in the reboot dmidecode
table and this patch makes reboot work on your machine, please submit
a patch to remove the quirk.
The default reboot order with this patch is now:
ACPI > KBD > ACPI > KBD > EFI > CF9_COND > BIOS
Because BIOS and TRIPLE are mutually exclusive (either will either
work or hang the machine) that method is not included.
[ hpa: as with any changes to the reboot order, this patch will have
to be monitored carefully for regressions. ]
Signed-off-by: Aubrey Li <aubrey.li@intel.com>
Acked-by: Matthew Garrett <mjg59@srcf.ucam.org>
Link: http://lkml.kernel.org/r/53130A46.1010801@linux.intel.com
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
Compiling last minute changes without setting the proper config
options is not really clever.
Reported-by: Fengguang Wu <fengguang.wu@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
causes a crash during boot - Borislav Petkov
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQIcBAABAgAGBQJTFmV4AAoJEC84WcCNIz1VeSgP/1gykrBiH3Vr4H4c32la/arZ
ktXRAT+RHdiebEXopt6+A1Pv6iyRYz3fBB1cKKb7q8fhDmVVmefGVkyO4qg4NbgL
Ic1dP6uPgiFidcYML9/c6+UIovbwDD7f5wwJEjXxoZKg7b7P0TIykd8z8YPQ/6A6
fIY5Z2L9A8eVt4k1m6Dg2PUJ2B+XKOLa5BbL7gXB6u9avgAVAoLM9oQStss+V9Pv
JQu+BZxeEwuxgi0LOxk1sFWXaAoRtgVDNH6nPK93CRvO2H83voWFf+OcW9hQWsF5
tLam6aMkvjuM5Dv1IA69PBAWrE/jxcMvjEdJyrGMWRKWtH/iTN4ez4EoFiO38o4R
IgzXh9L5xbP3o+g3rntIu4h3/5yde9TRM18mER0lLTdNFZ8QzmLt4L0TptntRoBv
bTXffILACq0uQU6T10P+EwseT472HphMeswaWVDkRxkN2hTCipFqQX0ekb0qbw3O
yQeRyz1/t7DeA77iAGG96SfeziMdr44d6u6zDQPrTAJV+H1ZZ3XNIlJDi01CAg3b
PDT6nHb/9V0tPZQebntZnczVRP+5EBdn5RbJaAMldEwVgjdjlFNY5slsF01KeCSF
6Cx6UyAI9XKuZMoayC3QDHKKWi+BTOwbKcVAdtZ1c9AMLt9pyxsDfdoOAV4zBiQa
PsVs9t/l7TZoL1MQHlEJ
=YIab
-----END PGP SIGNATURE-----
Merge tag 'efi-urgent' into x86/urgent
* Disable the new EFI 1:1 virtual mapping for SGI UV because using it
causes a crash during boot - Borislav Petkov
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
Alex reported hitting the following BUG after the EFI 1:1 virtual
mapping work was merged,
kernel BUG at arch/x86/mm/init_64.c:351!
invalid opcode: 0000 [#1] SMP
Call Trace:
[<ffffffff818aa71d>] init_extra_mapping_uc+0x13/0x15
[<ffffffff818a5e20>] uv_system_init+0x22b/0x124b
[<ffffffff8108b886>] ? clockevents_register_device+0x138/0x13d
[<ffffffff81028dbb>] ? setup_APIC_timer+0xc5/0xc7
[<ffffffff8108b620>] ? clockevent_delta2ns+0xb/0xd
[<ffffffff818a3a92>] ? setup_boot_APIC_clock+0x4a8/0x4b7
[<ffffffff8153d955>] ? printk+0x72/0x74
[<ffffffff818a1757>] native_smp_prepare_cpus+0x389/0x3d6
[<ffffffff818957bc>] kernel_init_freeable+0xb7/0x1fb
[<ffffffff81535530>] ? rest_init+0x74/0x74
[<ffffffff81535539>] kernel_init+0x9/0xff
[<ffffffff81541dfc>] ret_from_fork+0x7c/0xb0
[<ffffffff81535530>] ? rest_init+0x74/0x74
Getting this thing to work with the new mapping scheme would need more
work, so automatically switch to the old memmap layout for SGI UV.
Acked-by: Russ Anderson <rja@sgi.com>
Cc: Alex Thorlton <athorlton@sgi.com
Signed-off-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Matt Fleming <matt.fleming@intel.com>
Reported-by: fengguang.wu@intel.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: K. Y. Srinivasan <kys@microsoft.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: linuxdrivers <devel@linuxdriverproject.org>
Cc: x86 <x86@kernel.org>
Commit 1aec16967 (x86: Hyperv: Cleanup the irq mess) removed the
ability to build the hyperv stuff as a module. Bring it back.
Reported-by: fengguang.wu@intel.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: K. Y. Srinivasan <kys@microsoft.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: linuxdrivers <devel@linuxdriverproject.org>
Cc: x86 <x86@kernel.org>
The vmbus/hyperv interrupt handling is another complete trainwreck and
probably the worst of all currently in tree.
If CONFIG_HYPERV=y then the interrupt delivery to the vmbus happens
via the direct HYPERVISOR_CALLBACK_VECTOR. So far so good, but:
The driver requests first a normal device interrupt. The only reason
to do so is to increment the interrupt stats of that device
interrupt. For no reason it also installs a private flow handler.
We have proper accounting mechanisms for direct vectors, but of
course it's too much effort to add that 5 lines of code.
Aside of that the alloc_intr_gate() is not protected against
reallocation which makes module reload impossible.
Solution to the problem is simple to rip out the whole mess and
implement it correctly.
First of all move all that code to arch/x86/kernel/cpu/mshyperv.c and
merily install the HYPERVISOR_CALLBACK_VECTOR with proper reallocation
protection and use the proper direct vector accounting mechanism.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: K. Y. Srinivasan <kys@microsoft.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: linuxdrivers <devel@linuxdriverproject.org>
Cc: x86 <x86@kernel.org>
Link: http://lkml.kernel.org/r/20140223212739.028307673@linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
HyperV abuses a device interrupt to account for the
HYPERVISOR_CALLBACK_VECTOR.
Provide proper accounting as we have for the other vectors as well.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Cc: K. Y. Srinivasan <kys@microsoft.com>
Cc: x86 <x86@kernel.org>
Link: http://lkml.kernel.org/r/20140223212738.681855582@linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
As we grow support for more EFI architectures they're going to want the
ability to query which EFI features are available on the running system.
Instead of storing this information in an architecture-specific place,
stick it in the global 'struct efi', which is already the central
location for EFI state.
While we're at it, let's change the return value of efi_enabled() to be
bool and replace all references to 'facility' with 'feature', which is
the usual word used to describe the attributes of the running system.
Signed-off-by: Matt Fleming <matt.fleming@intel.com>
If a failure occurs while modifying ftrace function, it bails out and will
remove the tracepoints to be back to what the code originally was.
There is missing the final sync run across the CPUs after the fix up is done
and before the ftrace int3 handler flag is reset.
Here's the description of the problem:
CPU0 CPU1
---- ----
remove_breakpoint();
modifying_ftrace_code = 0;
[still sees breakpoint]
<takes trap>
[sees modifying_ftrace_code as zero]
[no breakpoint handler]
[goto failed case]
[trap exception - kernel breakpoint, no
handler]
BUG()
Link: http://lkml.kernel.org/r/1393258342-29978-2-git-send-email-pmladek@suse.cz
Fixes: 8a4d0a687a "ftrace: Use breakpoint method to update ftrace caller"
Acked-by: Frederic Weisbecker <fweisbec@gmail.com>
Acked-by: H. Peter Anvin <hpa@linux.intel.com>
Signed-off-by: Petr Mladek <pmladek@suse.cz>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
If a failure occurs while enabling a trace, it bails out and will remove
the tracepoints to be back to what the code originally was. But the fix
up had some bugs in it. By injecting a failure in the code, the fix up
ran to completion, but shortly afterward the system rebooted.
There was two bugs here.
The first was that there was no final sync run across the CPUs after the
fix up was done, and before the ftrace int3 handler flag was reset. That
means that other CPUs could still see the breakpoint and trigger on it
long after the flag was cleared, and the int3 handler would think it was
a spurious interrupt. Worse yet, the int3 handler could hit other breakpoints
because the ftrace int3 handler flag would have prevented the int3 handler
from going further.
Here's a description of the issue:
CPU0 CPU1
---- ----
remove_breakpoint();
modifying_ftrace_code = 0;
[still sees breakpoint]
<takes trap>
[sees modifying_ftrace_code as zero]
[no breakpoint handler]
[goto failed case]
[trap exception - kernel breakpoint, no
handler]
BUG()
The second bug was that the removal of the breakpoints required the
"within()" logic updates instead of accessing the ip address directly.
As the kernel text is mapped read-only when CONFIG_DEBUG_RODATA is set, and
the removal of the breakpoint is a modification of the kernel text.
The ftrace_write() includes the "within()" logic, where as, the
probe_kernel_write() does not. This prevented the breakpoint from being
removed at all.
Link: http://lkml.kernel.org/r/1392650573-3390-1-git-send-email-pmladek@suse.cz
Reported-by: Petr Mladek <pmladek@suse.cz>
Tested-by: Petr Mladek <pmladek@suse.cz>
Acked-by: H. Peter Anvin <hpa@linux.intel.com>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Pull perf fixes from Ingo Molnar:
"Misc fixes, most of them on the tooling side"
* 'perf-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
perf tools: Fix strict alias issue for find_first_bit
perf tools: fix BFD detection on opensuse
perf: Fix hotplug splat
perf/x86: Fix event scheduling
perf symbols: Destroy unused symsrcs
perf annotate: Check availability of annotate when processing samples
Extend ECC decoding support for F16h M30h. Tested on F16h M30h with ECC
turned on using mce_amd_inj module and the patch works fine.
Signed-off-by: Aravind Gopalakrishnan <Aravind.Gopalakrishnan@amd.com>
Link: http://lkml.kernel.org/r/1392913726-16961-1-git-send-email-Aravind.Gopalakrishnan@amd.com
Tested-by: Arindam Nath <Arindam.Nath@amd.com>
Acked-by: H. Peter Anvin <hpa@zytor.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
We call this "clflush" in /proc/cpuinfo, and have
cpu_has_clflush()... let's be consistent and just call it that.
Cc: Gleb Natapov <gleb@kernel.org>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Alan Cox <alan@linux.intel.com>
Link: http://lkml.kernel.org/n/tip-mlytfzjkvuf739okyn40p8a5@git.kernel.org
The NUMAQ support seems to be unmaintained, remove it.
Cc: Paul Gortmaker <paul.gortmaker@windriver.com>
Cc: David Rientjes <rientjes@google.com>
Acked-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
Link: http://lkml.kernel.org/r/n/530CFD6C.7040705@zytor.com
The SGI Visual Workstation seems to be dead; remove support so we
don't have to continue maintaining it.
Cc: Andrey Panin <pazke@donpac.ru>
Cc: Michael Reed <mdr@sgi.com>
Link: http://lkml.kernel.org/r/530CFD6C.7040705@zytor.com
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
Add a few comments on the ->add(), ->del() and ->*_txn()
implementation.
Requested-by: Vince Weaver <vincent.weaver@maine.edu>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/n/tip-he3819318c245j7t5e1e22tr@git.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Vince "Super Tester" Weaver reported a new round of syscall fuzzing (Trinity) failures,
with perf WARN_ON()s triggering. He also provided traces of the failures.
This is I think the relevant bit:
> pec_1076_warn-2804 [000] d... 147.926153: x86_pmu_disable: x86_pmu_disable
> pec_1076_warn-2804 [000] d... 147.926153: x86_pmu_state: Events: {
> pec_1076_warn-2804 [000] d... 147.926156: x86_pmu_state: 0: state: .R config: ffffffffffffffff ( (null))
> pec_1076_warn-2804 [000] d... 147.926158: x86_pmu_state: 33: state: AR config: 0 (ffff88011ac99800)
> pec_1076_warn-2804 [000] d... 147.926159: x86_pmu_state: }
> pec_1076_warn-2804 [000] d... 147.926160: x86_pmu_state: n_events: 1, n_added: 0, n_txn: 1
> pec_1076_warn-2804 [000] d... 147.926161: x86_pmu_state: Assignment: {
> pec_1076_warn-2804 [000] d... 147.926162: x86_pmu_state: 0->33 tag: 1 config: 0 (ffff88011ac99800)
> pec_1076_warn-2804 [000] d... 147.926163: x86_pmu_state: }
> pec_1076_warn-2804 [000] d... 147.926166: collect_events: Adding event: 1 (ffff880119ec8800)
So we add the insn:p event (fd[23]).
At this point we should have:
n_events = 2, n_added = 1, n_txn = 1
> pec_1076_warn-2804 [000] d... 147.926170: collect_events: Adding event: 0 (ffff8800c9e01800)
> pec_1076_warn-2804 [000] d... 147.926172: collect_events: Adding event: 4 (ffff8800cbab2c00)
We try and add the {BP,cycles,br_insn} group (fd[3], fd[4], fd[15]).
These events are 0:cycles and 4:br_insn, the BP event isn't x86_pmu so
that's not visible.
group_sched_in()
pmu->start_txn() /* nop - BP pmu */
event_sched_in()
event->pmu->add()
So here we should end up with:
0: n_events = 3, n_added = 2, n_txn = 2
4: n_events = 4, n_added = 3, n_txn = 3
But seeing the below state on x86_pmu_enable(), the must have failed,
because the 0 and 4 events aren't there anymore.
Looking at group_sched_in(), since the BP is the leader, its
event_sched_in() must have succeeded, for otherwise we would not have
seen the sibling adds.
But since neither 0 or 4 are in the below state; their event_sched_in()
must have failed; but I don't see why, the complete state: 0,0,1:p,4
fits perfectly fine on a core2.
However, since we try and schedule 4 it means the 0 event must have
succeeded! Therefore the 4 event must have failed, its failure will
have put group_sched_in() into the fail path, which will call:
event_sched_out()
event->pmu->del()
on 0 and the BP event.
Now x86_pmu_del() will reduce n_events; but it will not reduce n_added;
giving what we see below:
n_event = 2, n_added = 2, n_txn = 2
> pec_1076_warn-2804 [000] d... 147.926177: x86_pmu_enable: x86_pmu_enable
> pec_1076_warn-2804 [000] d... 147.926177: x86_pmu_state: Events: {
> pec_1076_warn-2804 [000] d... 147.926179: x86_pmu_state: 0: state: .R config: ffffffffffffffff ( (null))
> pec_1076_warn-2804 [000] d... 147.926181: x86_pmu_state: 33: state: AR config: 0 (ffff88011ac99800)
> pec_1076_warn-2804 [000] d... 147.926182: x86_pmu_state: }
> pec_1076_warn-2804 [000] d... 147.926184: x86_pmu_state: n_events: 2, n_added: 2, n_txn: 2
> pec_1076_warn-2804 [000] d... 147.926184: x86_pmu_state: Assignment: {
> pec_1076_warn-2804 [000] d... 147.926186: x86_pmu_state: 0->33 tag: 1 config: 0 (ffff88011ac99800)
> pec_1076_warn-2804 [000] d... 147.926188: x86_pmu_state: 1->0 tag: 1 config: 1 (ffff880119ec8800)
> pec_1076_warn-2804 [000] d... 147.926188: x86_pmu_state: }
> pec_1076_warn-2804 [000] d... 147.926190: x86_pmu_enable: S0: hwc->idx: 33, hwc->last_cpu: 0, hwc->last_tag: 1 hwc->state: 0
So the problem is that x86_pmu_del(), when called from a
group_sched_in() that fails (for whatever reason), and without x86_pmu
TXN support (because the leader is !x86_pmu), will corrupt the n_added
state.
Reported-and-Tested-by: Vince Weaver <vincent.weaver@maine.edu>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Dave Jones <davej@redhat.com>
Cc: <stable@vger.kernel.org>
Link: http://lkml.kernel.org/r/20140221150312.GF3104@twins.programming.kicks-ass.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Randomize the load address of modules in the kernel to make kASLR
effective for modules. Modules can only be loaded within a particular
range of virtual address space. This patch adds 10 bits of entropy to
the load address by adding 1-1024 * PAGE_SIZE to the beginning range
where modules are loaded.
The single base offset was chosen because randomizing each module
load ends up wasting/fragmenting memory too much. Prior approaches to
minimizing fragmentation while doing randomization tend to result in
worse entropy than just doing a single base address offset.
Example kASLR boot without this change, with a single module loaded:
---[ Modules ]---
0xffffffffc0000000-0xffffffffc0001000 4K ro GLB x pte
0xffffffffc0001000-0xffffffffc0002000 4K ro GLB NX pte
0xffffffffc0002000-0xffffffffc0004000 8K RW GLB NX pte
0xffffffffc0004000-0xffffffffc0200000 2032K pte
0xffffffffc0200000-0xffffffffff000000 1006M pmd
---[ End Modules ]---
Example kASLR boot after this change, same module loaded:
---[ Modules ]---
0xffffffffc0000000-0xffffffffc0200000 2M pmd
0xffffffffc0200000-0xffffffffc03bf000 1788K pte
0xffffffffc03bf000-0xffffffffc03c0000 4K ro GLB x pte
0xffffffffc03c0000-0xffffffffc03c1000 4K ro GLB NX pte
0xffffffffc03c1000-0xffffffffc03c3000 8K RW GLB NX pte
0xffffffffc03c3000-0xffffffffc0400000 244K pte
0xffffffffc0400000-0xffffffffff000000 1004M pmd
---[ End Modules ]---
Signed-off-by: Andy Honig <ahonig@google.com>
Link: http://lkml.kernel.org/r/20140226005916.GA27083@www.outflux.net
Signed-off-by: Kees Cook <keescook@chromium.org>
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
Include kASLR offset in VMCOREINFO ELF notes to assist in debugging.
[ hpa: pushing this for v3.14 to avoid having a kernel version with
kASLR where we can't debug output. ]
Signed-off-by: Eugene Surovegin <surovegin@google.com>
Link: http://lkml.kernel.org/r/20140123173120.GA25474@www.outflux.net
Signed-off-by: Kees Cook <keescook@chromium.org>
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
Pull x86 fixes from Thomas Gleixner:
- a bugfix which prevents a divide by 0 panic when the newly introduced
try_msr_calibrate_tsc() fails
- enablement of the Baytrail platform to utilize the newfangled msr
based calibration
* 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86: tsc: Add missing Baytrail frequency to the table
x86, tsc: Fallback to normal calibration if fast MSR calibration fails
These days hv_clock allocation is memblock based (i.e. the percpu
allocator is not involved), which means that the physical address
of each of the per-cpu hv_clock areas is guaranteed to remain
unchanged through all its lifetime and we do not need to update
its location after CPU bring-up.
Signed-off-by: Fernando Luis Vazquez Cao <fernando@oss.ntt.co.jp>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
This patch updates the CBOX PMU filters mapping tables for SNB-EP
and IVT (model 45 and 62 respectively).
The NID umask always comes in addition to another umask.
When set, the NID filter is applied.
The current mapping tables were missing some code/umask
combinations to account for the NID umask. This patch
fixes that.
Cc: mingo@elte.hu
Cc: ak@linux.intel.com
Reviewed-by: Yan, Zheng <zheng.z.yan@intel.com>
Signed-off-by: Stephane Eranian <eranian@google.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/20140219131018.GA24475@quad
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
The current code simply assumes Intel Arch PerfMon v2+ to have
the IA32_PERF_CAPABILITIES MSR; the SDM specifies that we should check
CPUID[1].ECX[15] (aka, FEATURE_PDCM) instead.
This was found by KVM which implements v2+ but didn't provide the
capabilities MSR. Change the code to DTRT; KVM will also implement the
MSR and return 0.
Cc: pbonzini@redhat.com
Reported-by: "Michael S. Tsirkin" <mst@redhat.com>
Suggested-by: Eduardo Habkost <ehabkost@redhat.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/20140203132903.GI8874@twins.programming.kicks-ass.net
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
When using BTS on Core i7-4*, I get the below kernel warning.
$ perf record -c 1 -e branches:u ls
Message from syslogd@labpc1501 at Nov 11 15:49:25 ...
kernel:[ 438.317893] Uhhuh. NMI received for unknown reason 31 on CPU 2.
Message from syslogd@labpc1501 at Nov 11 15:49:25 ...
kernel:[ 438.317920] Do you have a strange power saving mode enabled?
Message from syslogd@labpc1501 at Nov 11 15:49:25 ...
kernel:[ 438.317945] Dazed and confused, but trying to continue
Make intel_pmu_handle_irq() take the full exit path when returning early.
Cc: eranian@google.com
Cc: peterz@infradead.org
Cc: mingo@kernel.org
Signed-off-by: Markus Metzger <markus.t.metzger@intel.com>
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1392425048-5309-1-git-send-email-andi@firstfloor.org
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
This patch is needed because that PMU uses 32-bit free
running counters with no interrupt capabilities.
On SNB/IVB/HSW, we used 20GB/s theoretical peak to calculate
the hrtimer timeout necessary to avoid missing an overflow.
That delay is set to 5s to be on the cautious side.
The SNB IMC uses free running counters, which are handled
via pseudo fixed counters. The SNB IMC PMU implementation
supports an arbitrary number of events, because the counters
are read-only. Therefore it is not possible to track active
counters. Instead we put active events on a linked list which
is then used by the hrtimer handler to update the SW counts.
Cc: mingo@elte.hu
Cc: acme@redhat.com
Cc: ak@linux.intel.com
Cc: zheng.z.yan@intel.com
Cc: peterz@infradead.org
Signed-off-by: Stephane Eranian <eranian@google.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1392132015-14521-8-git-send-email-eranian@google.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
This patch makes the hrtimer timeout configurable per PMU
box. Not all counters have necessarily the same width and
rate, thus the default timeout of 60s may need to be adjusted.
This patch adds box->hrtimer_duration. It is set to default
when the box is allocated. It can be overriden when the box
is initialized.
Cc: mingo@elte.hu
Cc: acme@redhat.com
Cc: ak@linux.intel.com
Cc: zheng.z.yan@intel.com
Cc: peterz@infradead.org
Signed-off-by: Stephane Eranian <eranian@google.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1392132015-14521-5-git-send-email-eranian@google.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
On certain processors, the uncore PMU boxes may only be
msr-bsed or PCI-based. But in both cases, the cpumask,
suggesting on which CPUs to monitor to get full coverage
of the particular PMU, must be created.
However with the current code base, the cpumask was only
created on processor which had at least one MSR-based
uncore PMU. This patch removes that restriction and
ensures the cpumask is created even when there is no
msr-based PMU. For instance, on SNB client where only
a PCI-based memory controller PMU is supported.
Cc: mingo@elte.hu
Cc: acme@redhat.com
Cc: ak@linux.intel.com
Cc: zheng.z.yan@intel.com
Cc: peterz@infradead.org
Signed-off-by: Stephane Eranian <eranian@google.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1392132015-14521-2-git-send-email-eranian@google.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Current ACPI cpu hotplug driver fails to associate hot-added CPUs with
corresponding NUMA node when doing socket online. The code path to
associate CPU with NUMA node is as below:
acpi_processor_add()
->acpi_processor_get_info()
->acpi_processor_hotadd_init()
->acpi_map_lsapic()
->_acpi_map_lsapic()
->acpi_map_cpu2node()
cpu_subsys_online()
->try_online_node()
->node_set_online()
When doing socket online, a new NUMA node is introduced in addition to
hot-added CPU and memory device. And the new NUMA node is marked as
online when onlining hot-added CPUs through sysfs interface
/sys/devices/system/cpu/cpuxx/online.
On the other hand, acpi_map_cpu2node() will only build the CPU to node
map if corresponding NUMA node is already online, so it always fails
to associate hot-added CPUs with corresponding NUMA node because the
NUMA node is still in offline state.
For the fix, we could safely remove the "node_online(node)" check in
function acpi_map_cpu2node() because it's only called for hot-added CPUs
by acpi_processor_hotadd_init().
Signed-off-by: Jiang Liu <jiang.liu@linux.intel.com>
Link: http://lkml.kernel.org/r/1390185115-26850-1-git-send-email-jiang.liu@linux.intel.com
Acked-by: Rafael J. Wysocki <rjw@rjwysocki.net>
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
Pull DMA-mapping fixes from Marek Szyprowski:
"This contains fixes for incorrect atomic test in dma-mapping subsystem
for ARM and x86 architecture"
* 'fixes-for-v3.14' of git://git.linaro.org/people/mszyprowski/linux-dma-mapping:
x86: dma-mapping: fix GFP_ATOMIC macro usage
ARM: dma-mapping: fix GFP_ATOMIC macro usage
Linux uses CPUID.MWAIT.EDX to validate the C-states
reported by ACPI, silently discarding states which
are not supported by the HW.
This test is too restrictive, as some HW now uses
sparse sub-state numbering, so the sub-state number
may be higher than the number of sub-states...
Also, rather than silently ignoring an invalid state,
we should complain about a firmware bug.
In practice...
Bay Trail systems originally supported C6-no-shrink as
MWAIT sub-state 0x58, and in CPUID.MWAIT.EDX 0x03000000
indicated that there were 3 MWAIT-C6 sub-states.
So acpi_idle would discard that C-state because 8 >= 3.
Upon discovering this issue, the ucode was updated so that
C6-no-shrink was also exported as 0x51, and the BIOS was
updated to match. However, systems shipped with 0x58,
will never get a BIOS update, and this patch allows
Linux to see C6-no-shrink on early Bay Trail.
Signed-off-by: Len Brown <len.brown@intel.com>
Intel Baytrail is based on Silvermont core so MSR_FSB_FREQ[2:0] == 0 means
that the CPU reference clock runs at 83.3MHz. Add this missing frequency to
the table.
Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com>
Cc: Bin Gao <bin.gao@linux.intel.com>
Cc: One Thousand Gnomes <gnomes@lxorguk.ukuu.org.uk>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: H. Peter Anvin <hpa@zytor.com>
Link: http://lkml.kernel.org/r/1392810750-18660-2-git-send-email-mika.westerberg@linux.intel.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
If we cannot calibrate TSC via MSR based calibration
try_msr_calibrate_tsc() stores zero to fast_calibrate and returns that
to the caller. This value gets then propagated further to clockevents
code resulting division by zero oops like the one below:
divide error: 0000 [#1] PREEMPT SMP
Modules linked in:
CPU: 0 PID: 1 Comm: swapper/0 Tainted: G W 3.13.0+ #47
task: ffff880075508000 ti: ffff880075506000 task.ti: ffff880075506000
RIP: 0010:[<ffffffff810aec14>] [<ffffffff810aec14>] clockevents_config.part.3+0x24/0xa0
RSP: 0000:ffff880075507e58 EFLAGS: 00010246
RAX: ffffffffffffffff RBX: ffff880079c0cd80 RCX: 0000000000000000
RDX: 0000000000000000 RSI: 0000000000000000 RDI: ffffffffffffffff
RBP: ffff880075507e70 R08: 0000000000000001 R09: 00000000000000be
R10: 00000000000000bd R11: 0000000000000003 R12: 000000000000b008
R13: 0000000000000008 R14: 000000000000b010 R15: 0000000000000000
FS: 0000000000000000(0000) GS:ffff880079c00000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 000000008005003b
CR2: ffff880079fff000 CR3: 0000000001c0b000 CR4: 00000000001006f0
Stack:
ffff880079c0cd80 000000000000b008 0000000000000008 ffff880075507e88
ffffffff810aecb0 ffff880079c0cd80 ffff880075507e98 ffffffff81030168
ffff880075507ed8 ffffffff81d1104f 00000000000000c3 0000000000000000
Call Trace:
[<ffffffff810aecb0>] clockevents_config_and_register+0x20/0x30
[<ffffffff81030168>] setup_APIC_timer+0xc8/0xd0
[<ffffffff81d1104f>] setup_boot_APIC_clock+0x4cc/0x4d8
[<ffffffff81d0f5de>] native_smp_prepare_cpus+0x3dd/0x3f0
[<ffffffff81d02ee9>] kernel_init_freeable+0xc3/0x205
[<ffffffff8177c910>] ? rest_init+0x90/0x90
[<ffffffff8177c91e>] kernel_init+0xe/0x120
[<ffffffff8178deec>] ret_from_fork+0x7c/0xb0
[<ffffffff8177c910>] ? rest_init+0x90/0x90
Prevent this from happening by:
1) Modifying try_msr_calibrate_tsc() to return calibration value or zero
if it fails.
2) Check this return value in native_calibrate_tsc() and in case of zero
fallback to use normal non-MSR based calibration.
[mw: Added subject and changelog]
Reported-and-tested-by: Mika Westerberg <mika.westerberg@linux.intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Bin Gao <bin.gao@linux.intel.com>
Cc: One Thousand Gnomes <gnomes@lxorguk.ukuu.org.uk>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: H. Peter Anvin <hpa@zytor.com>
Link: http://lkml.kernel.org/r/1392810750-18660-1-git-send-email-mika.westerberg@linux.intel.com
Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
BAD_MADT_ENTRY() is arch independent and will be used for all
architectures which parse MADT, so move it to linux/acpi.h to
reduce code duplication.
Signed-off-by: Hanjun Guo <hanjun.guo@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
The x86 CPU feature modalias handling existed before it was reimplemented
generically. This patch aligns the x86 handling so that it
(a) reuses some more code that is now generic;
(b) uses the generic format for the modalias module metadata entry, i.e., it
now uses 'cpu:type:x86,venVVVVfamFFFFmodMMMM:feature:,XXXX,YYYY' instead of
the 'x86cpu:vendor:VVVV👪FFFF:model:MMMM:feature:,XXXX,YYYY' that was
used before.
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Acked-by: H. Peter Anvin <hpa@linux.intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
The first is a fix for the way the ring buffer stores timestamps.
After a restructure of the code was done, the ring buffer timestamp
logic missed the fact that the first event on a sub buffer is to have
a zero delta, as the full timestamp is stored on the sub buffer itself.
But because the delta was not cleared to zero, the timestamp for that
event will be calculated as the real timestamp + the delta from the
last timestamp. This can skew the timestamps of the events and
have them say they happened when they didn't really happen. That's bad.
The second fix is for modifying the function graph caller site.
When the stop machine was removed from updating the function tracing
code, it missed updating the function graph call site location.
It is still modified as if it is being done via stop machine. But it's not.
This can lead to a GPF and kernel crash if the function graph call site
happens to lie between cache lines and one CPU is executing it while
another CPU is doing the update. It would be a very hard condition to
hit, but the result is sever enough to have it fixed ASAP.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1.4.15 (GNU/Linux)
iQEcBAABAgAGBQJS/2leAAoJEKQekfcNnQGu7nYH/AltUO19AgM2sFLOLM7Q0dp4
Lg7vE8CLKtFq0fjtv/ri//fJ56Lr+/WNHiiD06aIrgnMVBbWynS0m0RO+9bhFl8/
rELiUpXTTruqljmlT2T5lPxk+ZKgtLbxK8hNywU99eLgkTwyaOwrSUol30E8pw41
UwtKg4OAn1LbjQ8/sddVynGlFDNRdqFiGTIDvhHqI6F6/QlaEX81EeZbLThDU4D/
l86fMuIdw5pb+efa29Rr0s7O4Xol7SJgnSMVgd0OYADRFmp4sg+MKxuJAUjPsHk7
9vvbylOb4w5H6lo5h7kUee3w7kG+FjYVoEx+Sqq9936+KlwtN0kbiNvl0DkrXnY=
=kUmM
-----END PGP SIGNATURE-----
Merge tag 'trace-fixes-v3.14-rc2' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt/linux-trace
Pull twi tracing fixes from Steven Rostedt:
"Two urgent fixes in the tracing utility.
The first is a fix for the way the ring buffer stores timestamps.
After a restructure of the code was done, the ring buffer timestamp
logic missed the fact that the first event on a sub buffer is to have
a zero delta, as the full timestamp is stored on the sub buffer
itself. But because the delta was not cleared to zero, the timestamp
for that event will be calculated as the real timestamp + the delta
from the last timestamp. This can skew the timestamps of the events
and have them say they happened when they didn't really happen.
That's bad.
The second fix is for modifying the function graph caller site. When
the stop machine was removed from updating the function tracing code,
it missed updating the function graph call site location. It is still
modified as if it is being done via stop machine. But it's not. This
can lead to a GPF and kernel crash if the function graph call site
happens to lie between cache lines and one CPU is executing it while
another CPU is doing the update. It would be a very hard condition to
hit, but the result is severe enough to have it fixed ASAP"
* tag 'trace-fixes-v3.14-rc2' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt/linux-trace:
ftrace/x86: Use breakpoints for converting function graph caller
ring-buffer: Fix first commit on sub-buffer having non-zero delta
If SMAP support is not compiled into the kernel, don't enable SMAP in
CR4 -- in fact, we should clear it, because the kernel doesn't contain
the proper STAC/CLAC instructions for SMAP support.
Found by Fengguang Wu's test system.
Reported-by: Fengguang Wu <fengguang.wu@intel.com>
Link: http://lkml.kernel.org/r/20140213124550.GA30497@localhost
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
Cc: <stable@vger.kernel.org> # v3.7+
There should no longer be any IBM x440 systems or those using the
Summit/EXA chipset out in the wild, so remove support for it.
We've done our due diligence in reaching out to any contact information
listed for this chipset and no indication was given that it should be
kept around.
Signed-off-by: David Rientjes <rientjes@google.com>
There should no longer be any ia32-based Unisys ES7000 systems out in
the wild, so remove support for it.
We've done our due diligence in reaching out to any contact information
listed for this system and no indication was given that it should be
kept around.
Signed-off-by: David Rientjes <rientjes@google.com>
When the conversion was made to remove stop machine and use the breakpoint
logic instead, the modification of the function graph caller is still
done directly as though it was being done under stop machine.
As it is not converted via stop machine anymore, there is a possibility
that the code could be layed across cache lines and if another CPU is
accessing that function graph call when it is being updated, it could
cause a General Protection Fault.
Convert the update of the function graph caller to use the breakpoint
method as well.
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: stable@vger.kernel.org # 3.5+
Fixes: 08d636b6d4 "ftrace/x86: Have arch x86_64 use breakpoints instead of stop machine"
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
GFP_ATOMIC is not a single gfp flag, but a macro which expands to the other
flags, where meaningful is the LACK of __GFP_WAIT flag. To check if caller
wants to perform an atomic allocation, the code must test for a lack of the
__GFP_WAIT flag. This patch fixes the issue introduced in v3.5-rc1.
CC: stable@vger.kernel.org
Signed-off-by: Marek Szyprowski <m.szyprowski@samsung.com>
The "nox2apic" variable can be defined as __initdata since it is
only used for bootstrap. It can now unconditionally be defined
since it will later be freed.
At the same time, it is also better off as a bool.
Signed-off-by: David Rientjes <rientjes@google.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/alpine.DEB.2.02.1402042354380.7839@chino.kir.corp.google.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Now that there is only a single wait_for_init_deassert()
function, just convert the member of struct apic to a bool to
determine whether we need to wait for init_deassert to become
non-zero.
There are no more callers of default_wait_for_init_deassert(),
so fold it into the caller.
Signed-off-by: David Rientjes <rientjes@google.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/alpine.DEB.2.02.1402042354010.7839@chino.kir.corp.google.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
es7000_wait_for_init_deassert() is functionally equivalent to
default_wait_for_init_deassert(), so remove the duplicate code
and use only a single function.
Signed-off-by: David Rientjes <rientjes@google.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/alpine.DEB.2.02.1402042353030.7839@chino.kir.corp.google.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
There isn't an explicit stolen memory base register on gen2.
Some old comment in the i915 code suggests we should get it via
max_low_pfn_mapped, but that's clearly a bad idea on my MGM.
The e820 map in said machine looks like this:
BIOS-e820: [mem 0x0000000000000000-0x000000000009f7ff] usable
BIOS-e820: [mem 0x000000000009f800-0x000000000009ffff] reserved
BIOS-e820: [mem 0x00000000000ce000-0x00000000000cffff] reserved
BIOS-e820: [mem 0x00000000000dc000-0x00000000000fffff] reserved
BIOS-e820: [mem 0x0000000000100000-0x000000001f6effff] usable
BIOS-e820: [mem 0x000000001f6f0000-0x000000001f6f7fff] ACPI data
BIOS-e820: [mem 0x000000001f6f8000-0x000000001f6fffff] ACPI NVS
BIOS-e820: [mem 0x000000001f700000-0x000000001fffffff] reserved
BIOS-e820: [mem 0x00000000fec10000-0x00000000fec1ffff] reserved
BIOS-e820: [mem 0x00000000ffb00000-0x00000000ffbfffff] reserved
BIOS-e820: [mem 0x00000000fff00000-0x00000000ffffffff] reserved
That makes max_low_pfn_mapped = 1f6f0000, so assuming our stolen
memory would start there would place it on top of some ACPI
memory regions. So not a good idea as already stated.
The 9MB region after the ACPI regions at 0x1f700000 however
looks promising given that the macine reports the stolen memory
size to be 8MB. Looking at the PGTBL_CTL register, the GTT
entries are at offset 0x1fee00000, and given that the GTT
entries occupy 128KB, it looks like the stolen memory could
start at 0x1f700000 and the GTT entries would occupy the last
128KB of the stolen memory.
After some more digging through chipset documentation, I've
determined the BIOS first allocates space for something called
TSEG (something to do with SMM) from the top of memory, and then
it allocates the graphics stolen memory below that. Accordind to
the chipset documentation TSEG has a fixed size of 1MB on 855.
So that explains the top 1MB in the e820 region. And it also
confirms that the GTT entries are in fact at the end of the the
stolen memory region.
Derive the stolen memory base address on gen2 the same as the
BIOS does (TOM-TSEG_SIZE-stolen_size). There are a few
differences between the registers on various gen2 chipsets, so a
few different codepaths are required.
865G is again bit more special since it seems to support enough
memory to hit 4GB address space issues. This means the PCI
allocations will also affect the location of the stolen memory.
Fortunately there appears to be the TOUD register which may give
us the correct answer directly. But the chipset docs are a bit
unclear, so I'm not 100% sure that the graphics stolen memory is
always the last thing the BIOS steals. Someone would need to
verify it on a real system.
I tested this on the my 830 and 855 machines, and so far
everything looks peachy.
Signed-off-by: Ville Syrjälä <ville.syrjala@linux.intel.com>
Cc: Bjorn Helgaas <bhelgaas@google.com>
Link: http://lkml.kernel.org/r/1391628540-23072-3-git-send-email-ville.syrjala@linux.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
For gen2 devices we're going to need another way to determine
the stolen memory base address. Make that into a vfunc as well.
Also drop the bogus inline keyword from gen8_stolen_size().
Signed-off-by: Ville Syrjälä <ville.syrjala@linux.intel.com>
Cc: Bjorn Helgaas <bhelgaas@google.com>
Link: http://lkml.kernel.org/r/1391628540-23072-2-git-send-email-ville.syrjala@linux.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
A bunch of unknown NMIs have popped up on a Pentium4 recently when booting
into a kdump kernel. This was exposed because the watchdog timer went
from 60 seconds down to 10 seconds (increasing the ability to reproduce
this problem).
What is happening is on boot up of the second kernel (the kdump one),
the previous nmi_watchdogs were enabled on thread 0 and thread 1. The
second kernel only initializes one cpu but the perf counter on thread 1
still counts.
Normally in a kdump scenario, the other cpus are blocking in an NMI loop,
but more importantly their local apics have the performance counters disabled
(iow LVTPC is masked). So any counters that fire are masked and never get
through to the second kernel.
However, on a P4 the local apic is shared by both threads and thread1's PMI
(despite being configured to only interrupt thread1) will generate an NMI on
thread0. Because thread0 knows nothing about this NMI, it is seen as an
unknown NMI.
This would be fine because it is a kdump kernel, strange things happen
what is the big deal about a single unknown NMI.
Unfortunately, the P4 comes with another quirk: clearing the overflow bit
to prevent a stream of NMIs. This is the problem.
The kdump kernel can not execute because of the endless NMIs that happen.
To solve this, I instrumented the p4 perf init code, to walk all the counters
and zero them out (just like a normal reset would).
Now when the counters go off, they do not generate anything and no unknown
NMIs are seen.
I tested this on a P4 we have in our lab. After two or three crashes, I could
normally reproduce the problem. Now after 10 crashes, everything continues
to boot correctly.
Signed-off-by: Don Zickus <dzickus@redhat.com>
Cc: Dave Young <dyoung@redhat.com>
Cc: Vivek Goyal <vgoyal@redhat.com>
Cc: Cyrill Gorcunov <gorcunov@openvz.org>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/20140120154115.GZ25953@redhat.com
[ Fixed a stylistic detail. ]
Signed-off-by: Ingo Molnar <mingo@kernel.org>
On a P4 box stressing perf with:
./perf record -o perf.data ./perf stat -v ./perf bench all
it was noticed that a slew of unknown NMIs would pop out rather quickly.
Painfully debugging this ancient platform, led me to notice cross cpu counter
corruption.
The P4 machine is special in that it has 18 counters, half are used for cpu0
and the other half is for cpu1 (or all 18 if hyperthreading is disabled). But
the splitting of the counters has to be actively managed by the software.
In this particular bug, one of the cpu0 specific counters was being used by
cpu1 and caused all sorts of random unknown nmis.
I am not entirely sure on the corruption path, but what happens is:
o perf schedules a group with p4_pmu_schedule_events()
o inside p4_pmu_schedule_events(), it notices an hwc pointer is being reused
but for a different cpu, so it 'swaps' the config bits and returns the
updated 'assign' array with a _new_ index.
o perf schedules another group with p4_pmu_schedule_events()
o inside p4_pmu_schedule_events(), it notices an hwc pointer is being reused
(the same one as above) but for the _same_ cpu [BUG!!], so it updates the
'assign' array to use the _old_ (wrong cpu) index because the _new_ index is in
an earlier part of the 'assign' array (and hasn't been committed yet).
o perf commits the transaction using the wrong index and corrupts the other cpu
The [BUG!!] is because the 'hwc->config' is updated but not the 'hwc->idx'. So
the check for 'p4_should_swap_ts()' is correct the first time around but
incorrect the second time around (because hwc->config was updated in between).
I think the spirit of perf was to not modify anything until all the
transactions had a chance to 'test' if they would succeed, and if so, commit
atomically. However, P4 breaks this spirit by touching the hwc->config
element.
So my fix is to continue the un-perf like breakage, by assigning hwc->idx to -1
on swap to tell follow up group scheduling to find a new index.
Of course if the transaction fails rolling this back will be difficult, but
that is not different than how the current code works. :-) And I wasn't sure
how much effort to cleanup the code I should do for a platform that is almost
10 years old by now.
Hence the lazy fix.
Signed-off-by: Don Zickus <dzickus@redhat.com>
Acked-by: Cyrill Gorcunov <gorcunov@openvz.org>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1391024270-19469-1-git-send-email-dzickus@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Calling printk() from NMI context is bad (TM), so move it to IRQ
context.
In doing so we slightly change (probably wreck) the debugfs
nmi_longest_ns thingy, in that it doesn't update to reflect the
longest, nor does writing to it reset the count.
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: Don Zickus <dzickus@redhat.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Link: http://lkml.kernel.org/n/tip-rdw0au56a5ymis1u8p48c12d@git.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
When debug preempt is enabled, preempt_disable() can be traced by
function and function graph tracing.
There's a place in the function graph tracer that calls trace_clock()
which eventually calls cycles_2_ns() outside of the recursion
protection. When cycles_2_ns() calls preempt_disable() it gets traced
and the graph tracer will go into a recursive loop causing a crash or
worse, a triple fault.
Simple fix is to use preempt_disable_notrace() in cycles_2_ns, which
makes sense because the preempt_disable() tracing may use that code
too, and it tracing it, even with recursion protection is rather
pointless.
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: http://lkml.kernel.org/r/20140204141315.2a968a72@gandalf.local.home
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The current code forgets to change the CR4 state on the current CPU.
Use on_each_cpu() instead of smp_call_function().
Reported-by: Mark Davies <junk@eslaf.co.uk>
Suggested-by: Mark Davies <junk@eslaf.co.uk>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: fweisbec@gmail.com
Link: http://lkml.kernel.org/n/tip-69efsat90ibhnd577zy3z9gh@git.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
For additional coverage, BorisO and friends unknowlingly did swap AMD
microcode with Intel microcode blobs in order to see what happens. What
did happen on 32-bit was
[ 5.722656] BUG: unable to handle kernel paging request at be3a6008
[ 5.722693] IP: [<c106d6b4>] load_microcode_amd+0x24/0x3f0
[ 5.722716] *pdpt = 0000000000000000 *pde = 0000000000000000
because there was a valid initrd there but without valid microcode in it
and the container check happened *after* the relocated ramdisk handling
on 32-bit, which was clearly wrong.
While at it, take care of the ramdisk relocation on both 32- and 64-bit
as it is done on both. Also, comment what we're doing because this code
is a bit tricky.
Reported-and-tested-by: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: http://lkml.kernel.org/r/1391460104-7261-1-git-send-email-bp@alien8.de
Signed-off-by: H. Peter Anvin <hpa@zytor.com>
Pull core debug changes from Ingo Molnar:
"This contains mostly kernel debugging related updates:
- make hung_task detection more configurable to distros
- add final bits for x86 UV NMI debugging, with related KGDB changes
- update the mailing-list of MAINTAINERS entries I'm involved with"
* 'core-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
hung_task: Display every hung task warning
sysctl: Add neg_one as a standard constraint
x86/uv/nmi, kgdb/kdb: Fix UV NMI handler when KDB not configured
x86/uv/nmi: Fix Sparse warnings
kgdb/kdb: Fix no KDB config problem
MAINTAINERS: Restore "L: linux-kernel@vger.kernel.org" entries
two s390 guest features that need some handling in the host,
and all the PPC changes. The PPC changes include support for
little-endian guests and enablement for new POWER8 features.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2.0.22 (GNU/Linux)
iQIcBAABAgAGBQJS6UF5AAoJEBvWZb6bTYby55kP/AgTJnyu7avN653/2aSHkjkx
KgYSMYhZPIFoY5LyZuNetXaoXFRvCykux1VYSZ6V6s35h2PZ+hdJNbHGjFYKPGTq
FQ92xQVNuWCAPxmFCjDNuDV/0BauG5y08/Orh/jpjz+GAfH43LruUQGbtXUuyJ8u
vf+yTHniU5gguqsAmodqjHUgbf+GoPJ1j7hmRoWwt8IWm7Ns3v/IK4l0p6G0h26a
RjE6aK+Tm208Yr5hD/dRAqeTbBNt3c4xub+QPsKoiEMaZBSuAOiux7D3Kx+If1gp
WsmqEQxoymihVtkZhUFO9ONLJepvmG2QwJVVyMSUW9iqxX9rraXsvVyVMwcQAhog
JuOAYxBftH07xu6Fs4eym5KvCFghM+EaJvxxt+kgnvdD4htK1+eK5trntc2zygSi
/qGiIrkqjXpkskW8kujLayF0eAU3CrZvFWveEPBfFgYiOGX/2wzJCtSm/bt9Jo0M
v60qgNFK3LNqAyeEfnm9VtlwGr6ZgsAB6DHNPX4fM5s2IBjL+qloXk/e/+aVKkW0
I3yeRdy/ExhLAab6w81JtMeR7G3YS0UNuAEVvcoxzNb5wIBY8qnpfUzTKyMxQR94
64EVpxWEYO1s55eCCyMujWrSvc+YAwhJcWHGKgC4K7mxxLD3FVyQXX6YZvgRozMX
HjQju+DToj9CskyrFlRL
=yd0Z
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull more KVM updates from Paolo Bonzini:
"Second batch of KVM updates. Some minor x86 fixes, two s390 guest
features that need some handling in the host, and all the PPC changes.
The PPC changes include support for little-endian guests and
enablement for new POWER8 features"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (45 commits)
x86, kvm: correctly access the KVM_CPUID_FEATURES leaf at 0x40000101
x86, kvm: cache the base of the KVM cpuid leaves
kvm: x86: move KVM_CAP_HYPERV_TIME outside #ifdef
KVM: PPC: Book3S PR: Cope with doorbell interrupts
KVM: PPC: Book3S HV: Add software abort codes for transactional memory
KVM: PPC: Book3S HV: Add new state for transactional memory
powerpc/Kconfig: Make TM select VSX and VMX
KVM: PPC: Book3S HV: Basic little-endian guest support
KVM: PPC: Book3S HV: Add support for DABRX register on POWER7
KVM: PPC: Book3S HV: Prepare for host using hypervisor doorbells
KVM: PPC: Book3S HV: Handle new LPCR bits on POWER8
KVM: PPC: Book3S HV: Handle guest using doorbells for IPIs
KVM: PPC: Book3S HV: Consolidate code that checks reason for wake from nap
KVM: PPC: Book3S HV: Implement architecture compatibility modes for POWER8
KVM: PPC: Book3S HV: Add handler for HV facility unavailable
KVM: PPC: Book3S HV: Flush the correct number of TLB sets on POWER8
KVM: PPC: Book3S HV: Context-switch new POWER8 SPRs
KVM: PPC: Book3S HV: Align physical and virtual CPU thread numbers
KVM: PPC: Book3S HV: Don't set DABR on POWER8
kvm/ppc: IRQ disabling cleanup
...
Pull x86 asmlinkage (LTO) changes from Peter Anvin:
"This patchset adds more infrastructure for link time optimization
(LTO).
This patchset was pulled into my tree late because of a
miscommunication (part of the patchset was picked up by other
maintainers). However, the patchset is strictly build-related and
seems to be okay in testing"
* 'x86-asmlinkage-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86, asmlinkage, xen: Fix type of NMI
x86, asmlinkage, xen, kvm: Make {xen,kvm}_lock_spinning global and visible
x86: Use inline assembler instead of global register variable to get sp
x86, asmlinkage, paravirt: Make paravirt thunks global
x86, asmlinkage, paravirt: Don't rely on local assembler labels
x86, asmlinkage, lguest: Fix C functions used by inline assembler
Further discussion here: http://marc.info/?l=linux-kernel&m=139073901101034&w=2
kbuild, 0day kernel build service, outputs the warning:
arch/x86/kernel/irq.c:333:1: warning: the frame size of 2056 bytes
is larger than 2048 bytes [-Wframe-larger-than=]
because check_irq_vectors_for_cpu_disable() allocates two cpumasks on the
stack. Fix this by moving the two cpumasks to a global file context.
Reported-by: Fengguang Wu <fengguang.wu@intel.com>
Tested-by: David Rientjes <rientjes@google.com>
Signed-off-by: Prarit Bhargava <prarit@redhat.com>
Link: http://lkml.kernel.org/r/1390915331-27375-1-git-send-email-prarit@redhat.com
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Michel Lespinasse <walken@google.com>
Cc: Seiji Aguchi <seiji.aguchi@hds.com>
Cc: Yang Zhang <yang.z.zhang@Intel.com>
Cc: Paul Gortmaker <paul.gortmaker@windriver.com>
Cc: Janet Morgan <janet.morgan@intel.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Ruiv Wang <ruiv.wang@gmail.com>
Cc: Gong Chen <gong.chen@linux.intel.com>
Cc: Yinghai Lu <yinghai@kernel.org>
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
These functions are called from inline assembler stubs, thus
need to be global and visible.
Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Cc: Gleb Natapov <gleb@kernel.org>
Cc: Raghavendra K T <raghavendra.kt@linux.vnet.ibm.com>
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Link: http://lkml.kernel.org/r/1382458079-24450-7-git-send-email-andi@firstfloor.org
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
The paravirt thunks use a hack of using a static reference to a static
function to reference that function from the top level statement.
This assumes that gcc always generates static function names in a specific
format, which is not necessarily true.
Simply make these functions global and asmlinkage or __visible. This way the
static __used variables are not needed and everything works.
Functions with arguments are __visible to keep the register calling
convention on 32bit.
Changed in paravirt and in all users (Xen and vsmp)
v2: Use __visible for functions with arguments
Cc: Jeremy Fitzhardinge <jeremy@goop.org>
Cc: Ido Yariv <ido@wizery.com>
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Link: http://lkml.kernel.org/r/1382458079-24450-5-git-send-email-andi@firstfloor.org
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
When Hyper-V hypervisor leaves are present, KVM must relocate
its own leaves at 0x40000100, because Windows does not look for
Hyper-V leaves at indices other than 0x40000000. In this case,
the KVM features are at 0x40000101, but the old code would always
look at 0x40000001.
Fix by using kvm_cpuid_base(). This also requires making the
function non-inline, since kvm_cpuid_base() is static.
Fixes: 1085ba7f55
Cc: stable@vger.kernel.org
Cc: mtosatti@redhat.com
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
It is unnecessary to go through hypervisor_cpuid_base every time
a leaf is found (which will be every time a feature is requested
after the next patch).
Fixes: 1085ba7f55
Cc: stable@vger.kernel.org
Cc: mtosatti@redhat.com
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Dave reported big numa system booting is broken.
It turns out that commit 5b6e529521 ("x86: memblock: set current limit
to max low memory address") sets the limit to low wrongly.
max_low_pfn_mapped is different from max_pfn_mapped.
max_low_pfn_mapped is always under 4G.
That will memblock_alloc_nid all go under 4G.
Revert 5b6e529521 to fix a no-boot regression which was triggered by
457ff1de2d ("lib/swiotlb.c: use memblock apis for early memory
allocations").
Signed-off-by: Yinghai Lu <yinghai@kernel.org>
Reported-by: Dave Hansen <dave.hansen@intel.com>
Acked-by: Santosh Shilimkar <santosh.shilimkar@ti.com>
Cc: Russell King <linux@arm.linux.org.uk>
Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pull scheduler fixes from Ingo Molnar:
"A couple of regression fixes mostly hitting virtualized setups, but
also some bare metal systems"
* 'sched-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
sched/x86/tsc: Initialize multiplier to 0
sched/clock: Fixup early initialization
sched/preempt/x86: Fix voluntary preempt for x86
Revert "sched: Fix sleep time double accounting in enqueue entity"
There was a large ebizzy performance regression that was
bisected to commit 611ae8e3 (x86/tlb: enable tlb flush range
support for x86). The problem was related to the
tlb_flushall_shift tuning for IvyBridge which was altered. The
problem is that it is not clear if the tuning values for each
CPU family is correct as the methodology used to tune the values
is unclear.
This patch uses a conservative tlb_flushall_shift value for all
CPU families except IvyBridge so the decision can be revisited
if any regression is found as a result of this change.
IvyBridge is an exception as testing with one methodology
determined that the value of 2 is acceptable. Details are in
the changelog for the patch "x86: mm: Change tlb_flushall_shift
for IvyBridge".
One important aspect of this to watch out for is Xen. The
original commit log mentioned large performance gains on Xen.
It's possible Xen is more sensitive to this value if it flushes
small ranges of pages more frequently than workloads on bare
metal typically do.
Signed-off-by: Mel Gorman <mgorman@suse.de>
Tested-by: Davidlohr Bueso <davidlohr@hp.com>
Reviewed-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Alex Shi <alex.shi@linaro.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/n/tip-dyzMww3fqugnhbhgo6Gxmtkw@git.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
There was a large performance regression that was bisected to
commit 611ae8e3 ("x86/tlb: enable tlb flush range support for
x86"). This patch simply changes the default balance point
between a local and global flush for IvyBridge.
In the interest of allowing the tests to be reproduced, this
patch was tested using mmtests 0.15 with the following
configurations
configs/config-global-dhp__tlbflush-performance
configs/config-global-dhp__scheduler-performance
configs/config-global-dhp__network-performance
Results are from two machines
Ivybridge 4 threads: Intel(R) Core(TM) i3-3240 CPU @ 3.40GHz
Ivybridge 8 threads: Intel(R) Core(TM) i7-3770 CPU @ 3.40GHz
Page fault microbenchmark showed nothing interesting.
Ebizzy was configured to run multiple iterations and threads.
Thread counts ranged from 1 to NR_CPUS*2. For each thread count,
it ran 100 iterations and each iteration lasted 10 seconds.
Ivybridge 4 threads
3.13.0-rc7 3.13.0-rc7
vanilla altshift-v3
Mean 1 6395.44 ( 0.00%) 6789.09 ( 6.16%)
Mean 2 7012.85 ( 0.00%) 8052.16 ( 14.82%)
Mean 3 6403.04 ( 0.00%) 6973.74 ( 8.91%)
Mean 4 6135.32 ( 0.00%) 6582.33 ( 7.29%)
Mean 5 6095.69 ( 0.00%) 6526.68 ( 7.07%)
Mean 6 6114.33 ( 0.00%) 6416.64 ( 4.94%)
Mean 7 6085.10 ( 0.00%) 6448.51 ( 5.97%)
Mean 8 6120.62 ( 0.00%) 6462.97 ( 5.59%)
Ivybridge 8 threads
3.13.0-rc7 3.13.0-rc7
vanilla altshift-v3
Mean 1 7336.65 ( 0.00%) 7787.02 ( 6.14%)
Mean 2 8218.41 ( 0.00%) 9484.13 ( 15.40%)
Mean 3 7973.62 ( 0.00%) 8922.01 ( 11.89%)
Mean 4 7798.33 ( 0.00%) 8567.03 ( 9.86%)
Mean 5 7158.72 ( 0.00%) 8214.23 ( 14.74%)
Mean 6 6852.27 ( 0.00%) 7952.45 ( 16.06%)
Mean 7 6774.65 ( 0.00%) 7536.35 ( 11.24%)
Mean 8 6510.50 ( 0.00%) 6894.05 ( 5.89%)
Mean 12 6182.90 ( 0.00%) 6661.29 ( 7.74%)
Mean 16 6100.09 ( 0.00%) 6608.69 ( 8.34%)
Ebizzy hits the worst case scenario for TLB range flushing every
time and it shows for these Ivybridge CPUs at least that the
default choice is a poor on. The patch addresses the problem.
Next was a tlbflush microbenchmark written by Alex Shi at
http://marc.info/?l=linux-kernel&m=133727348217113 . It
measures access costs while the TLB is being flushed. The
expectation is that if there are always full TLB flushes that
the benchmark would suffer and it benefits from range flushing
There are 320 iterations of the test per thread count. The
number of entries is randomly selected with a min of 1 and max
of 512. To ensure a reasonably even spread of entries, the full
range is broken up into 8 sections and a random number selected
within that section.
iteration 1, random number between 0-64
iteration 2, random number between 64-128 etc
This is still a very weak methodology. When you do not know
what are typical ranges, random is a reasonable choice but it
can be easily argued that the opimisation was for smaller ranges
and an even spread is not representative of any workload that
matters. To improve this, we'd need to know the probability
distribution of TLB flush range sizes for a set of workloads
that are considered "common", build a synthetic trace and feed
that into this benchmark. Even that is not perfect because it
would not account for the time between flushes but there are
limits of what can be reasonably done and still be doing
something useful. If a representative synthetic trace is
provided then this benchmark could be revisited and the shift values retuned.
Ivybridge 4 threads
3.13.0-rc7 3.13.0-rc7
vanilla altshift-v3
Mean 1 10.50 ( 0.00%) 10.50 ( 0.03%)
Mean 2 17.59 ( 0.00%) 17.18 ( 2.34%)
Mean 3 22.98 ( 0.00%) 21.74 ( 5.41%)
Mean 5 47.13 ( 0.00%) 46.23 ( 1.92%)
Mean 8 43.30 ( 0.00%) 42.56 ( 1.72%)
Ivybridge 8 threads
3.13.0-rc7 3.13.0-rc7
vanilla altshift-v3
Mean 1 9.45 ( 0.00%) 9.36 ( 0.93%)
Mean 2 9.37 ( 0.00%) 9.70 ( -3.54%)
Mean 3 9.36 ( 0.00%) 9.29 ( 0.70%)
Mean 5 14.49 ( 0.00%) 15.04 ( -3.75%)
Mean 8 41.08 ( 0.00%) 38.73 ( 5.71%)
Mean 13 32.04 ( 0.00%) 31.24 ( 2.49%)
Mean 16 40.05 ( 0.00%) 39.04 ( 2.51%)
For both CPUs, average access time is reduced which is good as
this is the benchmark that was used to tune the shift values in
the first place albeit it is now known *how* the benchmark was
used.
The scheduler benchmarks were somewhat inconclusive. They
showed gains and losses and makes me reconsider how stable those
benchmarks really are or if something else might be interfering
with the test results recently.
Network benchmarks were inconclusive. Almost all results were
flat except for netperf-udp tests on the 4 thread machine.
These results were unstable and showed large variations between
reboots. It is unknown if this is a recent problems but I've
noticed before that netperf-udp results tend to vary.
Based on these results, changing the default for Ivybridge seems
like a logical choice.
Signed-off-by: Mel Gorman <mgorman@suse.de>
Tested-by: Davidlohr Bueso <davidlohr@hp.com>
Reviewed-by: Alex Shi <alex.shi@linaro.org>
Reviewed-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/n/tip-cqnadffh1tiqrshthRj3Esge@git.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Bisection between 3.11 and 3.12 fingered commit 9824cf97 ("mm:
vmstats: tlb flush counters") to cause overhead problems.
The counters are undeniably useful but how often do we really
need to debug TLB flush related issues? It does not justify
taking the penalty everywhere so make it a debugging option.
Signed-off-by: Mel Gorman <mgorman@suse.de>
Tested-by: Davidlohr Bueso <davidlohr@hp.com>
Reviewed-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Alex Shi <alex.shi@linaro.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/n/tip-XzxjntugxuwpxXhcrxqqh53b@git.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Make uv_register_nmi_notifier() and uv_handle_nmi_ping() static
to address sparse warnings.
Fix problem where uv_nmi_kexec_failed is unused when
CONFIG_KEXEC is not defined.
Signed-off-by: Mike Travis <travis@sgi.com>
Reviewed-by: Hedi Berriche <hedi@sgi.com>
Cc: Russ Anderson <rja@sgi.com>
Cc: Jason Wessel <jason.wessel@windriver.com>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Arnaldo Carvalho de Melo <acme@ghostprotocols.net>
Link: http://lkml.kernel.org/r/20140114162551.480872353@asylum.americas.sgi.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
This is under CAP_SYS_ADMIN, but Smatch complains that mask comes
from the user and the test for "mask > 0xf" can underflow.
The fix is simple: amd_set_subcaches() should hand down not an 'int'
but an 'unsigned long' like it was originally indended to do.
Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com>
Acked-by: Borislav Petkov <bp@suse.de>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Daniel J Blueman <daniel@numascale-asia.com>
Link: http://lkml.kernel.org/r/20140121072209.GA22095@elgon.mountain
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The workaround for this Erratum is included in AGESA. But BIOSes
spun only after Jan2014 will have the fix (atleast server
versions of the chip). The erratum affects both embedded and
server platforms and since we cannot say with certainity that
ALL BIOSes on systems out in the field will have the fix, we
should probably insulate ourselves in case BIOS does not do the
right thing or someone is using old BIOSes.
Refer to Revision Guide for AMD F16h models 00h-0fh, document 51810
Rev. 3.04, November2013 for details on the Erratum.
Tested the patch on Fam16h server platform and it works fine.
Signed-off-by: Aravind Gopalakrishnan <Aravind.Gopalakrishnan@amd.com>
Cc: <hmh@hmh.eng.br>
Cc: <Kim.Naru@amd.com>
Cc: <Suravee.Suthikulpanit@amd.com>
Cc: <bp@suse.de>
Cc: <sherry.hurwitz@amd.com>
Link: http://lkml.kernel.org/r/1390515212-1824-1-git-send-email-Aravind.Gopalakrishnan@amd.com
[ Minor edits. ]
Signed-off-by: Ingo Molnar <mingo@kernel.org>
- ACPI core changes to make it create a struct acpi_device object for every
device represented in the ACPI tables during all namespace scans regardless
of the current status of that device. In accordance with this, ACPI hotplug
operations will not delete those objects, unless the underlying ACPI tables
go away.
- On top of the above, new sysfs attribute for ACPI device objects allowing
user space to check device status by triggering the execution of _STA for
its ACPI object. From Srinivas Pandruvada.
- ACPI core hotplug changes reducing code duplication, integrating the
PCI root hotplug with the core and reworking container hotplug.
- ACPI core simplifications making it use ACPI_COMPANION() in the code
"glueing" ACPI device objects to "physical" devices.
- ACPICA update to upstream version 20131218. This adds support for the
DBG2 and PCCT tables to ACPICA, fixes some bugs and improves debug
facilities. From Bob Moore, Lv Zheng and Betty Dall.
- Init code change to carry out the early ACPI initialization earlier.
That should allow us to use ACPI during the timekeeping initialization
and possibly to simplify the EFI initialization too. From Chun-Yi Lee.
- Clenups of the inclusions of ACPI headers in many places all over from
Lv Zheng and Rashika Kheria (work in progress).
- New helper for ACPI _DSM execution and rework of the code in drivers
that uses _DSM to execute it via the new helper. From Jiang Liu.
- New Win8 OSI blacklist entries from Takashi Iwai.
- Assorted ACPI fixes and cleanups from Al Stone, Emil Goode, Hanjun Guo,
Lan Tianyu, Masanari Iida, Oliver Neukum, Prarit Bhargava, Rashika Kheria,
Tang Chen, Zhang Rui.
- intel_pstate driver updates, including proper Baytrail support, from
Dirk Brandewie and intel_pstate documentation from Ramkumar Ramachandra.
- Generic CPU boost ("turbo") support for cpufreq from Lukasz Majewski.
- powernow-k6 cpufreq driver fixes from Mikulas Patocka.
- cpufreq core fixes and cleanups from Viresh Kumar, Jane Li, Mark Brown.
- Assorted cpufreq drivers fixes and cleanups from Anson Huang, John Tobias,
Paul Bolle, Paul Walmsley, Sachin Kamat, Shawn Guo, Viresh Kumar.
- cpuidle cleanups from Bartlomiej Zolnierkiewicz.
- Support for hibernation APM events from Bin Shi.
- Hibernation fix to avoid bringing up nonboot CPUs with ACPI EC disabled
during thaw transitions from Bjørn Mork.
- PM core fixes and cleanups from Ben Dooks, Leonardo Potenza, Ulf Hansson.
- PNP subsystem fixes and cleanups from Dmitry Torokhov, Levente Kurusa,
Rashika Kheria.
- New tool for profiling system suspend from Todd E Brandt and a cpupower
tool cleanup from One Thousand Gnomes.
/
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2.0.22 (GNU/Linux)
iQIcBAABCAAGBQJS3a1eAAoJEILEb/54YlRxnTgP/iGawvgjKWm6Qqp7WSIvd5gQ
zZ6q75C6Pc/W2fq1+OzVGnpCF8WYFy+nFDAXOvUHjIXuoxSwFcuW5l4aMckgl/0a
TXEWe9MJrCHHRfDApfFacCJ44U02bjJAD5vTyL/hKA+IHeinq4WCSojryYC+8jU0
cBrUIV0aNH8r5JR2WJNAyv/U29rXsDUOu0I4qTqZ4YaZT6AignMjtLXn1e9AH1Pn
DPZphTIo/HMnb+kgBOjt4snMk+ahVO9eCOxh/hH8ecnWExw9WynXoU5Nsna0tSZs
ssyHC7BYexD3oYsG8D52cFUpp4FCsJ0nFQNa2kw0LY+0FBNay43LySisKYHZPXEs
2WpESDv+/t7yhtnrvM+TtA7aBheKm2XMWGFSu/aERLE17jIidOkXKH5Y7ryYLNf/
uyRKxNS0NcZWZ0G+/wuY02jQYNkfYz3k/nTr8BAUItRBjdporGIRNEnR9gPzgCUC
uQhjXWMPulqubr8xbyefPWHTEzU2nvbXwTUWGjrBxSy8zkyy5arfqizUj+VG6afT
NsboANoMHa9b+xdzigSFdA3nbVK6xBjtU6Ywntk9TIpODKF5NgfARx0H+oSH+Zrj
32bMzgZtHw/lAbYsnQ9OnTY6AEWQYt6NMuVbTiLXrMHhM3nWwfg/XoN4nZqs6jPo
IYvE6WhQZU6L6fptGHFC
=dRf6
-----END PGP SIGNATURE-----
Merge tag 'pm+acpi-3.14-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm
Pull ACPI and power management updates from Rafael Wysocki:
"As far as the number of commits goes, the top spot belongs to ACPI
this time with cpufreq in the second position and a handful of PM
core, PNP and cpuidle updates. They are fixes and cleanups mostly, as
usual, with a couple of new features in the mix.
The most visible change is probably that we will create struct
acpi_device objects (visible in sysfs) for all devices represented in
the ACPI tables regardless of their status and there will be a new
sysfs attribute under those objects allowing user space to check that
status via _STA.
Consequently, ACPI device eject or generally hot-removal will not
delete those objects, unless the table containing the corresponding
namespace nodes is unloaded, which is extremely rare. Also ACPI
container hotplug will be handled quite a bit differently and cpufreq
will support CPU boost ("turbo") generically and not only in the
acpi-cpufreq driver.
Specifics:
- ACPI core changes to make it create a struct acpi_device object for
every device represented in the ACPI tables during all namespace
scans regardless of the current status of that device. In
accordance with this, ACPI hotplug operations will not delete those
objects, unless the underlying ACPI tables go away.
- On top of the above, new sysfs attribute for ACPI device objects
allowing user space to check device status by triggering the
execution of _STA for its ACPI object. From Srinivas Pandruvada.
- ACPI core hotplug changes reducing code duplication, integrating
the PCI root hotplug with the core and reworking container hotplug.
- ACPI core simplifications making it use ACPI_COMPANION() in the
code "glueing" ACPI device objects to "physical" devices.
- ACPICA update to upstream version 20131218. This adds support for
the DBG2 and PCCT tables to ACPICA, fixes some bugs and improves
debug facilities. From Bob Moore, Lv Zheng and Betty Dall.
- Init code change to carry out the early ACPI initialization
earlier. That should allow us to use ACPI during the timekeeping
initialization and possibly to simplify the EFI initialization too.
From Chun-Yi Lee.
- Clenups of the inclusions of ACPI headers in many places all over
from Lv Zheng and Rashika Kheria (work in progress).
- New helper for ACPI _DSM execution and rework of the code in
drivers that uses _DSM to execute it via the new helper. From
Jiang Liu.
- New Win8 OSI blacklist entries from Takashi Iwai.
- Assorted ACPI fixes and cleanups from Al Stone, Emil Goode, Hanjun
Guo, Lan Tianyu, Masanari Iida, Oliver Neukum, Prarit Bhargava,
Rashika Kheria, Tang Chen, Zhang Rui.
- intel_pstate driver updates, including proper Baytrail support,
from Dirk Brandewie and intel_pstate documentation from Ramkumar
Ramachandra.
- Generic CPU boost ("turbo") support for cpufreq from Lukasz
Majewski.
- powernow-k6 cpufreq driver fixes from Mikulas Patocka.
- cpufreq core fixes and cleanups from Viresh Kumar, Jane Li, Mark
Brown.
- Assorted cpufreq drivers fixes and cleanups from Anson Huang, John
Tobias, Paul Bolle, Paul Walmsley, Sachin Kamat, Shawn Guo, Viresh
Kumar.
- cpuidle cleanups from Bartlomiej Zolnierkiewicz.
- Support for hibernation APM events from Bin Shi.
- Hibernation fix to avoid bringing up nonboot CPUs with ACPI EC
disabled during thaw transitions from Bjørn Mork.
- PM core fixes and cleanups from Ben Dooks, Leonardo Potenza, Ulf
Hansson.
- PNP subsystem fixes and cleanups from Dmitry Torokhov, Levente
Kurusa, Rashika Kheria.
- New tool for profiling system suspend from Todd E Brandt and a
cpupower tool cleanup from One Thousand Gnomes"
* tag 'pm+acpi-3.14-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm: (153 commits)
thermal: exynos: boost: Automatic enable/disable of BOOST feature (at Exynos4412)
cpufreq: exynos4x12: Change L0 driver data to CPUFREQ_BOOST_FREQ
Documentation: cpufreq / boost: Update BOOST documentation
cpufreq: exynos: Extend Exynos cpufreq driver to support boost
cpufreq / boost: Kconfig: Support for software-managed BOOST
acpi-cpufreq: Adjust the code to use the common boost attribute
cpufreq: Add boost frequency support in core
intel_pstate: Add trace point to report internal state.
cpufreq: introduce cpufreq_generic_get() routine
ARM: SA1100: Create dummy clk_get_rate() to avoid build failures
cpufreq: stats: create sysfs entries when cpufreq_stats is a module
cpufreq: stats: free table and remove sysfs entry in a single routine
cpufreq: stats: remove hotplug notifiers
cpufreq: stats: handle cpufreq_unregister_driver() and suspend/resume properly
cpufreq: speedstep: remove unused speedstep_get_state
platform: introduce OF style 'modalias' support for platform bus
PM / tools: new tool for suspend/resume performance optimization
ACPI: fix module autoloading for ACPI enumerated devices
ACPI: add module autoloading support for ACPI enumerated devices
ACPI: fix create_modalias() return value handling
...
Since we keep the clock value linearly continuous on frequency change,
make sure the initial multiplier is 0, such that our initial value is 0.
Without this we compute the initial value at whatever the TSC has
managed to reach since power-on.
Reported-and-Tested-by: Markus Trippelsdorf <markus@trippelsdorf.de>
Fixes: 20d1c86a57 ("sched/clock, x86: Rewrite cyc2ns() to avoid the need to disable IRQs")
Cc: lenb@kernel.org
Cc: rjw@rjwysocki.net
Cc: Eliezer Tamir <eliezer.tamir@linux.intel.com>
Cc: rui.zhang@intel.com
Cc: jacob.jun.pan@linux.intel.com
Cc: Mike Galbraith <bitbucket@online.de>
Cc: hpa@zytor.com
Cc: paulmck@linux.vnet.ibm.com
Cc: John Stultz <john.stultz@linaro.org>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Arjan van de Ven <arjan@linux.intel.com>
Cc: Sasha Levin <sasha.levin@oracle.com>
Cc: dyoung@redhat.com
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/20140123094804.GP30183@twins.programming.kicks-ass.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Update X86 code to use NUMA_NO_NODE instead of MAX_NUMNODES while
calling memblock APIs, because memblock API will be changed to use
NUMA_NO_NODE and will produce warning during boot otherwise.
See:
https://lkml.org/lkml/2013/12/9/898
Signed-off-by: Grygorii Strashko <grygorii.strashko@ti.com>
Cc: Santosh Shilimkar <santosh.shilimkar@ti.com>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Cc: Tejun Heo <tj@kernel.org>
Cc: Yinghai Lu <yinghai@kernel.org>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The memblock current limit value is used to limit early boot memory
allocations below max low memory address by default, as the kernel can
access only to the low memory.
Hence, set memblock current limit value to the max mapped low memory
address instead of max mapped memory address.
Signed-off-by: Santosh Shilimkar <santosh.shilimkar@ti.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Grygorii Strashko <grygorii.strashko@ti.com>
Cc: Yinghai Lu <yinghai@kernel.org>
Cc: "Rafael J. Wysocki" <rjw@sisk.pl>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Christoph Lameter <cl@linux-foundation.org>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Paul Walmsley <paul@pwsan.com>
Cc: Pavel Machek <pavel@ucw.cz>
Cc: Russell King <linux@arm.linux.org.uk>
Cc: Tony Lindgren <tony@atomide.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Here's the big driver core and sysfs patch set for 3.14-rc1.
There's a lot of work here moving sysfs logic out into a "kernfs" to
allow other subsystems to also have a virtual filesystem with the same
attributes of sysfs (handle device disconnect, dynamic creation /
removal as needed / unneeded, etc. This is primarily being done for
the cgroups filesystem, but the goal is to also move debugfs to it when
it is ready, solving all of the known issues in that filesystem as well.
The code isn't completed yet, but all should be stable now (there is a
big section that was reverted due to problems found when testing.)
There's also some other smaller fixes, and a driver core addition that
allows for a "collection" of objects, that the DRM people will be using
soon (it's in this tree to make merges after -rc1 easier.)
All of this has been in linux-next with no reported issues.
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2.0.22 (GNU/Linux)
iEYEABECAAYFAlLdh0cACgkQMUfUDdst+ylv4QCfeDKDgLo4LsaBIIrFSxLoH/c7
UUsAoMPRwA0h8wy+BQcJAg4H4J4maKj3
=0pc0
-----END PGP SIGNATURE-----
Merge tag 'driver-core-3.14-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/driver-core
Pull driver core / sysfs patches from Greg KH:
"Here's the big driver core and sysfs patch set for 3.14-rc1.
There's a lot of work here moving sysfs logic out into a "kernfs" to
allow other subsystems to also have a virtual filesystem with the same
attributes of sysfs (handle device disconnect, dynamic creation /
removal as needed / unneeded, etc)
This is primarily being done for the cgroups filesystem, but the goal
is to also move debugfs to it when it is ready, solving all of the
known issues in that filesystem as well. The code isn't completed
yet, but all should be stable now (there is a big section that was
reverted due to problems found when testing)
There's also some other smaller fixes, and a driver core addition that
allows for a "collection" of objects, that the DRM people will be
using soon (it's in this tree to make merges after -rc1 easier)
All of this has been in linux-next with no reported issues"
* tag 'driver-core-3.14-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/driver-core: (113 commits)
kernfs: associate a new kernfs_node with its parent on creation
kernfs: add struct dentry declaration in kernfs.h
kernfs: fix get_active failure handling in kernfs_seq_*()
Revert "kernfs: fix get_active failure handling in kernfs_seq_*()"
Revert "kernfs: replace kernfs_node->u.completion with kernfs_root->deactivate_waitq"
Revert "kernfs: remove KERNFS_ACTIVE_REF and add kernfs_lockdep()"
Revert "kernfs: remove KERNFS_REMOVED"
Revert "kernfs: restructure removal path to fix possible premature return"
Revert "kernfs: invoke kernfs_unmap_bin_file() directly from __kernfs_remove()"
Revert "kernfs: remove kernfs_addrm_cxt"
Revert "kernfs: make kernfs_get_active() block if the node is deactivated but not removed"
Revert "kernfs: implement kernfs_{de|re}activate[_self]()"
Revert "kernfs, sysfs, driver-core: implement kernfs_remove_self() and its wrappers"
Revert "pci: use device_remove_file_self() instead of device_schedule_callback()"
Revert "scsi: use device_remove_file_self() instead of device_schedule_callback()"
Revert "s390: use device_remove_file_self() instead of device_schedule_callback()"
Revert "sysfs, driver-core: remove unused {sysfs|device}_schedule_callback_owner()"
Revert "kernfs: remove unnecessary NULL check in __kernfs_remove()"
kernfs: remove unnecessary NULL check in __kernfs_remove()
drivers/base: provide an infrastructure for componentised subsystems
...
Pull x86 cpufeature and mpx updates from Peter Anvin:
"This includes the basic infrastructure for MPX (Memory Protection
Extensions) support, but does not include MPX support itself. It is,
however, a prerequisite for KVM support for MPX, which I believe will
be pushed later this merge window by the KVM team.
This includes moving the functionality in
futex_atomic_cmpxchg_inatomic() into a new function in uaccess.h so it
can be reused - this will be used by the final MPX patches.
The actual MPX functionality (map management and so on) will be pushed
in a future merge window, when ready"
* 'x86/mpx' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/intel/mpx: Remove unused LWP structure
x86, mpx: Add MPX related opcodes to the x86 opcode map
x86: replace futex_atomic_cmpxchg_inatomic() with user_atomic_cmpxchg_inatomic
x86: add user_atomic_cmpxchg_inatomic at uaccess.h
x86, xsave: Support eager-only xsave features, add MPX support
x86, cpufeature: Define the Intel MPX feature flag
Pull x86 kernel address space randomization support from Peter Anvin:
"This enables kernel address space randomization for x86"
* 'x86-kaslr-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86, kaslr: Clarify RANDOMIZE_BASE_MAX_OFFSET
x86, kaslr: Remove unused including <linux/version.h>
x86, kaslr: Use char array to gain sizeof sanity
x86, kaslr: Add a circular multiply for better bit diffusion
x86, kaslr: Mix entropy sources together as needed
x86/relocs: Add percpu fixup for GNU ld 2.23
x86, boot: Rename get_flags() and check_flags() to *_cpuflags()
x86, kaslr: Raise the maximum virtual address to -1 GiB on x86_64
x86, kaslr: Report kernel offset on panic
x86, kaslr: Select random position from e820 maps
x86, kaslr: Provide randomness functions
x86, kaslr: Return location from decompress_kernel
x86, boot: Move CPU flags out of cpucheck
x86, relocs: Add more per-cpu gold special cases
Pull leftover x86 fixes from Ingo Molnar:
"Two leftover fixes that did not make it into v3.13"
* 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86: Add check for number of available vectors before CPU down
x86, cpu, amd: Add workaround for family 16h, erratum 793
Pull x86 RAS changes from Ingo Molnar:
- SCI reporting for other error types not only correctable ones
- GHES cleanups
- Add the functionality to override error reporting agents as some
machines are sporting a new extended error logging capability which,
if done properly in the BIOS, makes a corresponding EDAC module
redundant
- PCIe AER tracepoint severity levels fix
- Error path correction for the mce device init
- MCE timer fix
- Add more flexibility to the error injection (EINJ) debugfs interface
* 'x86-ras-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86, mce: Fix mce_start_timer semantics
ACPI, APEI, GHES: Cleanup ghes memory error handling
ACPI, APEI: Cleanup alignment-aware accesses
ACPI, APEI, GHES: Do not report only correctable errors with SCI
ACPI, APEI, EINJ: Changes to the ACPI/APEI/EINJ debugfs interface
ACPI, eMCA: Combine eMCA/EDAC event reporting priority
EDAC, sb_edac: Modify H/W event reporting policy
EDAC: Add an edac_report parameter to EDAC
PCI, AER: Fix severity usage in aer trace event
x86, mce: Call put_device on device_register failure
Pull x86 microcode loader updates from Ingo Molnar:
"There are two main changes in this tree:
- AMD microcode early loading fixes
- some microcode loader source files reorganization"
* 'x86-microcode-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86, microcode: Move to a proper location
x86, microcode, AMD: Fix early ucode loading
x86, microcode: Share native MSR accessing variants
x86, ramdisk: Export relocated ramdisk VA
Pull x86 EFI changes from Ingo Molnar:
"This consists of two main parts:
- New static EFI runtime services virtual mapping layout which is
groundwork for kexec support on EFI (Borislav Petkov)
- EFI kexec support itself (Dave Young)"
* 'x86-efi-kexec-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (24 commits)
x86/efi: parse_efi_setup() build fix
x86: ksysfs.c build fix
x86/efi: Delete superfluous global variables
x86: Reserve setup_data ranges late after parsing memmap cmdline
x86: Export x86 boot_params to sysfs
x86: Add xloadflags bit for EFI runtime support on kexec
x86/efi: Pass necessary EFI data for kexec via setup_data
efi: Export EFI runtime memory mapping to sysfs
efi: Export more EFI table variables to sysfs
x86/efi: Cleanup efi_enter_virtual_mode() function
x86/efi: Fix off-by-one bug in EFI Boot Services reservation
x86/efi: Add a wrapper function efi_map_region_fixed()
x86/efi: Remove unused variables in __map_region()
x86/efi: Check krealloc return value
x86/efi: Runtime services virtual mapping
x86/mm/cpa: Map in an arbitrary pgd
x86/mm/pageattr: Add last levels of error path
x86/mm/pageattr: Add a PUD error unwinding path
x86/mm/pageattr: Add a PTE pagetable populating function
x86/mm/pageattr: Add a PMD pagetable populating function
...
Pull x86 TLB detection update from Ingo Molnar:
"A single change that extends our TLB cache size detection+reporting
code"
* 'x86-cpu-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86, cpu: Detect more TLB configuration
Pull x86 cleanups from Ingo Molnar:
"Misc cleanups"
* 'x86-cleanups-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86, cpu, amd: Fix a shadowed variable situation
um, x86: Fix vDSO build
x86: Delete non-required instances of include <linux/init.h>
x86, realmode: Pointer walk cleanups, pull out invariant use of __pa()
x86/traps: Clean up error exception handler definitions
Pull scheduler changes from Ingo Molnar:
- Add the initial implementation of SCHED_DEADLINE support: a real-time
scheduling policy where tasks that meet their deadlines and
periodically execute their instances in less than their runtime quota
see real-time scheduling and won't miss any of their deadlines.
Tasks that go over their quota get delayed (Available to privileged
users for now)
- Clean up and fix preempt_enable_no_resched() abuse all around the
tree
- Do sched_clock() performance optimizations on x86 and elsewhere
- Fix and improve auto-NUMA balancing
- Fix and clean up the idle loop
- Apply various cleanups and fixes
* 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (60 commits)
sched: Fix __sched_setscheduler() nice test
sched: Move SCHED_RESET_ON_FORK into attr::sched_flags
sched: Fix up attr::sched_priority warning
sched: Fix up scheduler syscall LTP fails
sched: Preserve the nice level over sched_setscheduler() and sched_setparam() calls
sched/core: Fix htmldocs warnings
sched/deadline: No need to check p if dl_se is valid
sched/deadline: Remove unused variables
sched/deadline: Fix sparse static warnings
m68k: Fix build warning in mac_via.h
sched, thermal: Clean up preempt_enable_no_resched() abuse
sched, net: Fixup busy_loop_us_clock()
sched, net: Clean up preempt_enable_no_resched() abuse
sched/preempt: Fix up missed PREEMPT_NEED_RESCHED folding
sched/preempt, locking: Rework local_bh_{dis,en}able()
sched/clock, x86: Avoid a runtime condition in native_sched_clock()
sched/clock: Fix up clear_sched_clock_stable()
sched/clock, x86: Use a static_key for sched_clock_stable
sched/clock: Remove local_irq_disable() from the clocks
sched/clock, x86: Rewrite cyc2ns() to avoid the need to disable IRQs
...
Pull perf updates from Ingo Molnar:
"Kernel side changes:
- Add Intel RAPL energy counter support (Stephane Eranian)
- Clean up uprobes (Oleg Nesterov)
- Optimize ring-buffer writes (Peter Zijlstra)
Tooling side changes, user visible:
- 'perf diff':
- Add column colouring improvements (Ramkumar Ramachandra)
- 'perf kvm':
- Add guest related improvements, including allowing to specify a
directory with guest specific /proc information (Dongsheng Yang)
- Add shell completion support (Ramkumar Ramachandra)
- Add '-v' option (Dongsheng Yang)
- Support --guestmount (Dongsheng Yang)
- 'perf probe':
- Support showing source code, asking for variables to be collected
at probe time and other 'perf probe' operations that use DWARF
information.
This supports only binaries with debugging information at this
time, detached debuginfo (aka debuginfo packages) support should
come in later patches (Masami Hiramatsu)
- 'perf record':
- Rename --no-delay option to --no-buffering, better reflecting its
purpose and freeing up '--delay' to take the place of
'--initial-delay', so that 'record' and 'stat' are consistent
(Arnaldo Carvalho de Melo)
- Default the -t/--thread option to no inheritance (Adrian Hunter)
- Make per-cpu mmaps the default (Adrian Hunter)
- 'perf report':
- Improve callchain processing performance (Frederic Weisbecker)
- Retain bfd reference to lookup source line numbers, greatly
optimizing, among other use cases, 'perf report -s srcline'
(Adrian Hunter)
- Improve callchain processing performance even more (Namhyung Kim)
- Add a perf.data file header window in the 'perf report' TUI,
associated with the 'i' hotkey, providing a counterpart to the
--header option in the stdio UI (Namhyung Kim)
- 'perf script':
- Add an option in 'perf script' to print the source line number
(Adrian Hunter)
- Add --header/--header-only options to 'script' and 'report', the
default is not tho show the header info, but as this has been the
default for some time, leave a single line explaining how to
obtain that information (Jiri Olsa)
- Add options to show comm, fork, exit and mmap PERF_RECORD_ events
(Namhyung Kim)
- Print callchains and symbols if they exist (David Ahern)
- 'perf timechart'
- Add backtrace support to CPU info
- Print pid along the name
- Add support for CPU topology
- Add new option --highlight'ing threads, be it by name or, if a
numeric value is provided, that run more than given duration
(Stanislav Fomichev)
- 'perf top':
- Make 'perf top -g' refer to callchains, for consistency with
other tools (David Ahern)
- 'perf trace':
- Handle old kernels where the "raw_syscalls" tracepoints were
called plain "syscalls" (David Ahern)
- Remove thread summary coloring, by Pekka Enberg.
- Honour -m option in 'trace', the tool was offering the option to
set the mmap size, but wasn't using it when doing the actual mmap
on the events file descriptors (Jiri Olsa)
- generic:
- Backport libtraceevent plugin support (trace-cmd repository, with
plugins for jbd2, hrtimer, kmem, kvm, mac80211, sched_switch,
function, xen, scsi, cfg80211 (Jiri Olsa)
- Print session information only if --stdio is given (Namhyung Kim)
Tooling side changes, developer visible (plumbing):
- Improve 'perf probe' exit path, release resources (Masami
Hiramatsu)
- Improve libtraceevent plugins exit path, allowing the registering
of an unregister handler to be called at exit time (Namhyung Kim)
- Add an alias to the build test makefile (make -C tools/perf
build-test) (Namhyung Kim)
- Get rid of die() and friends (good riddance!) in libtraceevent
(Namhyung Kim)
- Fix cross build problems related to pkgconfig and CROSS_COMPILE not
being propagated to the feature tests, leading to features being
tested in the host and then being enabled on the target (Mark
Rutland)
- Improve forked workload error reporting by sending the errno in the
signal data queueing integer field, using sigqueue and by doing the
signal setup in the evlist methods, removing open coded equivalents
in various tools (Arnaldo Carvalho de Melo)
- Do more auto exit cleanup chores in the 'evlist' destructor, so
that the tools don't have to all do that sequence (Arnaldo Carvalho
de Melo)
- Pack 'struct perf_session_env' and 'struct trace' (Arnaldo Carvalho
de Melo)
- Add test for building detached source tarballs (Arnaldo Carvalho de
Melo)
- Move some header files (tools/perf/ to tools/include/ to make them
available to other tools/ dwelling codebases (Namhyung Kim)
- Move logic to warn about kptr_restrict'ed kernels to separate
function in 'report' (Arnaldo Carvalho de Melo)
- Move hist browser selection code to separate function (Arnaldo
Carvalho de Melo)
- Move histogram entries collapsing to separate function (Arnaldo
Carvalho de Melo)
- Introduce evlist__for_each() & friends (Arnaldo Carvalho de Melo)
- Automate setup of FEATURE_CHECK_(C|LD)FLAGS-all variables (Jiri
Olsa)
- Move arch setup into seprate Makefile (Jiri Olsa)
- Make libtraceevent install target quieter (Jiri Olsa)
- Make tests/make output more compact (Jiri Olsa)
- Ignore generated files in feature-checks (Chunwei Chen)
- Introduce pevent_filter_strerror() in libtraceevent, similar in
purpose to libc's strerror() function (Namhyung Kim)
- Use perf_data_file methods to write output file in 'record' and
'inject' (Jiri Olsa)
- Use pr_*() functions where applicable in 'report' (Namhyumg Kim)
- Add 'machine' 'addr_location' struct to have full picture (machine,
thread, map, symbol, addr) for a (partially) resolved address,
reducing function signatures (Arnaldo Carvalho de Melo)
- Reduce code duplication in the histogram entry creation/insertion
(Arnaldo Carvalho de Melo)
- Auto allocate annotation histogram data structures (Arnaldo
Carvalho de Melo)
- No need to test against NULL before calling free, also set freed
memory in struct pointers to NULL, to help fixing use after free
bugs (Arnaldo Carvalho de Melo)
- Rename some struct DSO binary_type related members and methods, to
clarify its purpose and need for differentiation (symtab_type, ie
one is about the files .text, CFI, etc, i.e. its binary contents,
and the other is about where the symbol table came from (Arnaldo
Carvalho de Melo)
- Convert to new topic libraries, starting with an API one (sysfs,
debugfs, etc), renaming liblk in the process (Borislav Petkov)
- Get rid of some more panic() like error handling in libtraceevent.
(Namhyung Kim)
- Get rid of panic() like calls in libtraceevent (Namyung Kim)
- Start carving out symbol parsing routines (perf, just moving
routines to topic files in tools/lib/symbol/, tools that want to
use it need to integrate it directly, ie no
tools/lib/symbol/Makefile is provided (Arnaldo Carvalho de Melo)
- Assorted refactoring patches, moving code around and adding utility
evlist methods that will be used in the IPT patchset (Adrian
Hunter)
- Assorted mmap_pages handling fixes (Adrian Hunter)
- Several man pages typo fixes (Dongsheng Yang)
- Get rid of several die() calls in libtraceevent (Namhyung Kim)
- Use basename() in a more robust way, to avoid problems related to
different system library implementations for that function
(Stephane Eranian)
- Remove open coded management of short_name_allocated member (Adrian
Hunter)
- Several cleanups in the "dso" methods, constifying some parameters
and renaming some fields to clarify its purpose (Arnaldo Carvalho
de Melo)
- Add per-feature check flags, fixing libunwind related build
problems on some architectures (Jean Pihet)
- Do not disable source line lookup just because of one failure.
(Adrian Hunter)
- Several 'perf kvm' man page corrections (Dongsheng Yang)
- Correct the message in feature-libnuma checking, swowing the right
devel package names for various distros (Dongsheng Yang)
- Polish 'readn()' function and introduce its counterpart,
'writen()' (Jiri Olsa)
- Start moving timechart state from global variables to a 'perf_tool'
derived 'timechart' struct (Arnaldo Carvalho de Melo)
... and lots of fixes and improvements I forgot to list"
* 'perf-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (282 commits)
perf tools: Remove unnecessary callchain cursor state restore on unmatch
perf callchain: Spare double comparison of callchain first entry
perf tools: Do proper comm override error handling
perf symbols: Export elf_section_by_name and reuse
perf probe: Release all dynamically allocated parameters
perf probe: Release allocated probe_trace_event if failed
perf tools: Add 'build-test' make target
tools lib traceevent: Unregister handler when xen plugin is unloaded
tools lib traceevent: Unregister handler when scsi plugin is unloaded
tools lib traceevent: Unregister handler when jbd2 plugin is is unloaded
tools lib traceevent: Unregister handler when cfg80211 plugin is unloaded
tools lib traceevent: Unregister handler when mac80211 plugin is unloaded
tools lib traceevent: Unregister handler when sched_switch plugin is unloaded
tools lib traceevent: Unregister handler when kvm plugin is unloaded
tools lib traceevent: Unregister handler when kmem plugin is unloaded
tools lib traceevent: Unregister handler when hrtimer plugin is unloaded
tools lib traceevent: Unregister handler when function plugin is unloaded
tools lib traceevent: Add pevent_unregister_print_function()
tools lib traceevent: Add pevent_unregister_event_handler()
tools lib traceevent: fix pointer-integer size mismatch
...
Pull IRQ changes from Ingo Molnar:
"The only change in this cycle is a CPU hotplug related spurious
warning fix"
* 'irq-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/irq: Fix kbuild warning in smp_irq_move_cleanup_interrupt()
x86/irq: Fix do_IRQ() interrupt warning for cpu hotplug retriggered irqs
If we aren't going to use the local APIC anyway, we obviously don't
care about its timer frequency.
Link: http://lkml.kernel.org/r/tip-rgm7xmg7k6qnjlw3ynkcjsmh@git.kernel.org
Reported-by: Fengguang Wu <fengguang.wu@intel.com>
Cc: Bin Gao <bin.gao@intel.com>
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
On AMD family 10h we see following error messages while waking up from
S3 for all non-boot CPUs leading to a failed IBS initialization:
Enabling non-boot CPUs ...
smpboot: Booting Node 0 Processor 1 APIC 0x1
[Firmware Bug]: cpu 1, try to use APIC500 (LVT offset 0) for vector 0x400, but the register is already in use for vector 0xf9 on another cpu
perf: IBS APIC setup failed on cpu #1
process: Switch to broadcast mode on CPU1
CPU1 is up
...
ACPI: Waking up from system sleep state S3
Reason for this is that during suspend the LVT offset for the IBS
vector gets lost and needs to be reinialized while resuming.
The offset is read from the IBSCTL msr. On family 10h the offset needs
to be 1 as offset 0 is used for the MCE threshold interrupt, but
firmware assings it for IBS to 0 too. The kernel needs to reprogram
the vector. The msr is a readonly node msr, but a new value can be
written via pci config space access. The reinitialization is
implemented for family 10h in setup_ibs_ctl() which is forced during
IBS setup.
This patch fixes IBS setup after waking up from S3 by adding
resume/supend hooks for the boot cpu which does the offset
reinitialization.
Marking it as stable to let distros pick up this fix.
Signed-off-by: Robert Richter <rric@kernel.org>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: <stable@vger.kernel.org> v3.2..
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: http://lkml.kernel.org/r/1389797849-5565-1-git-send-email-rric.net@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
On SoCs that have the calibration MSRs available, either there is no
PIT, HPET or PMTIMER to calibrate against, or the PIT/HPET/PMTIMER is
driven from the same clock as the TSC, so calibration is redundant and
just slows down the boot.
TSC rate is caculated by this formula:
<maximum core-clock to bus-clock ratio> * <maximum resolved frequency>
The ratio and the resolved frequency ID can be obtained from MSR.
See Intel 64 and IA-32 System Programming Guid section 16.12 and 30.11.5
for details.
Signed-off-by: Bin Gao <bin.gao@intel.com>
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
Link: http://lkml.kernel.org/n/tip-rgm7xmg7k6qnjlw3ynkcjsmh@git.kernel.org
Bugzilla: https://bugzilla.kernel.org/show_bug.cgi?id=64791
When a cpu is downed on a system, the irqs on the cpu are assigned to
other cpus. It is possible, however, that when a cpu is downed there
aren't enough free vectors on the remaining cpus to account for the
vectors from the cpu that is being downed.
This results in an interesting "overflow" condition where irqs are
"assigned" to a CPU but are not handled.
For example, when downing cpus on a 1-64 logical processor system:
<snip>
[ 232.021745] smpboot: CPU 61 is now offline
[ 238.480275] smpboot: CPU 62 is now offline
[ 245.991080] ------------[ cut here ]------------
[ 245.996270] WARNING: CPU: 0 PID: 0 at net/sched/sch_generic.c:264 dev_watchdog+0x246/0x250()
[ 246.005688] NETDEV WATCHDOG: p786p1 (ixgbe): transmit queue 0 timed out
[ 246.013070] Modules linked in: lockd sunrpc iTCO_wdt iTCO_vendor_support sb_edac ixgbe microcode e1000e pcspkr joydev edac_core lpc_ich ioatdma ptp mdio mfd_core i2c_i801 dca pps_core i2c_core wmi acpi_cpufreq isci libsas scsi_transport_sas
[ 246.037633] CPU: 0 PID: 0 Comm: swapper/0 Not tainted 3.12.0+ #14
[ 246.044451] Hardware name: Intel Corporation S4600LH ........../SVRBD-ROW_T, BIOS SE5C600.86B.01.08.0003.022620131521 02/26/2013
[ 246.057371] 0000000000000009 ffff88081fa03d40 ffffffff8164fbf6 ffff88081fa0ee48
[ 246.065728] ffff88081fa03d90 ffff88081fa03d80 ffffffff81054ecc ffff88081fa13040
[ 246.074073] 0000000000000000 ffff88200cce0000 0000000000000040 0000000000000000
[ 246.082430] Call Trace:
[ 246.085174] <IRQ> [<ffffffff8164fbf6>] dump_stack+0x46/0x58
[ 246.091633] [<ffffffff81054ecc>] warn_slowpath_common+0x8c/0xc0
[ 246.098352] [<ffffffff81054fb6>] warn_slowpath_fmt+0x46/0x50
[ 246.104786] [<ffffffff815710d6>] dev_watchdog+0x246/0x250
[ 246.110923] [<ffffffff81570e90>] ? dev_deactivate_queue.constprop.31+0x80/0x80
[ 246.119097] [<ffffffff8106092a>] call_timer_fn+0x3a/0x110
[ 246.125224] [<ffffffff8106280f>] ? update_process_times+0x6f/0x80
[ 246.132137] [<ffffffff81570e90>] ? dev_deactivate_queue.constprop.31+0x80/0x80
[ 246.140308] [<ffffffff81061db0>] run_timer_softirq+0x1f0/0x2a0
[ 246.146933] [<ffffffff81059a80>] __do_softirq+0xe0/0x220
[ 246.152976] [<ffffffff8165fedc>] call_softirq+0x1c/0x30
[ 246.158920] [<ffffffff810045f5>] do_softirq+0x55/0x90
[ 246.164670] [<ffffffff81059d35>] irq_exit+0xa5/0xb0
[ 246.170227] [<ffffffff8166062a>] smp_apic_timer_interrupt+0x4a/0x60
[ 246.177324] [<ffffffff8165f40a>] apic_timer_interrupt+0x6a/0x70
[ 246.184041] <EOI> [<ffffffff81505a1b>] ? cpuidle_enter_state+0x5b/0xe0
[ 246.191559] [<ffffffff81505a17>] ? cpuidle_enter_state+0x57/0xe0
[ 246.198374] [<ffffffff81505b5d>] cpuidle_idle_call+0xbd/0x200
[ 246.204900] [<ffffffff8100b7ae>] arch_cpu_idle+0xe/0x30
[ 246.210846] [<ffffffff810a47b0>] cpu_startup_entry+0xd0/0x250
[ 246.217371] [<ffffffff81646b47>] rest_init+0x77/0x80
[ 246.223028] [<ffffffff81d09e8e>] start_kernel+0x3ee/0x3fb
[ 246.229165] [<ffffffff81d0989f>] ? repair_env_string+0x5e/0x5e
[ 246.235787] [<ffffffff81d095a5>] x86_64_start_reservations+0x2a/0x2c
[ 246.242990] [<ffffffff81d0969f>] x86_64_start_kernel+0xf8/0xfc
[ 246.249610] ---[ end trace fb74fdef54d79039 ]---
[ 246.254807] ixgbe 0000:c2:00.0 p786p1: initiating reset due to tx timeout
[ 246.262489] ixgbe 0000:c2:00.0 p786p1: Reset adapter
Last login: Mon Nov 11 08:35:14 from 10.18.17.119
[root@(none) ~]# [ 246.792676] ixgbe 0000:c2:00.0 p786p1: detected SFP+: 5
[ 249.231598] ixgbe 0000:c2:00.0 p786p1: NIC Link is Up 10 Gbps, Flow Control: RX/TX
[ 246.792676] ixgbe 0000:c2:00.0 p786p1: detected SFP+: 5
[ 249.231598] ixgbe 0000:c2:00.0 p786p1: NIC Link is Up 10 Gbps, Flow Control: RX/TX
(last lines keep repeating. ixgbe driver is dead until module reload.)
If the downed cpu has more vectors than are free on the remaining cpus on the
system, it is possible that some vectors are "orphaned" even though they are
assigned to a cpu. In this case, since the ixgbe driver had a watchdog, the
watchdog fired and notified that something was wrong.
This patch adds a function, check_vectors(), to compare the number of vectors
on the CPU going down and compares it to the number of vectors available on
the system. If there aren't enough vectors for the CPU to go down, an
error is returned and propogated back to userspace.
v2: Do not need to look at percpu irqs
v3: Need to check affinity to prevent counting of MSIs in IOAPIC Lowest
Priority Mode
v4: Additional changes suggested by Gong Chen.
v5/v6/v7/v8: Updated comment text
Signed-off-by: Prarit Bhargava <prarit@redhat.com>
Link: http://lkml.kernel.org/r/1389613861-3853-1-git-send-email-prarit@redhat.com
Reviewed-by: Gong Chen <gong.chen@linux.intel.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Michel Lespinasse <walken@google.com>
Cc: Seiji Aguchi <seiji.aguchi@hds.com>
Cc: Yang Zhang <yang.z.zhang@Intel.com>
Cc: Paul Gortmaker <paul.gortmaker@windriver.com>
Cc: Janet Morgan <janet.morgan@intel.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Ruiv Wang <ruiv.wang@gmail.com>
Cc: Gong Chen <gong.chen@linux.intel.com>
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
Cc: <stable@vger.kernel.org>
Make disabled_cpu_apicid static and read_mostly, and fix a couple of
typos.
Reported-by: Ingo Molnar <mingo@kernel.org>
Link: http://lkml.kernel.org/r/20140115182511.GA22737@gmail.com
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
Cc: HATAYAMA Daisuke <d.hatayama@jp.fujitsu.com>
Add disable_cpu_apicid kernel parameter. To use this kernel parameter,
specify an initial APIC ID of the corresponding CPU you want to
disable.
This is mostly used for the kdump 2nd kernel to disable BSP to wake up
multiple CPUs without causing system reset or hang due to sending INIT
from AP to BSP.
Kdump users first figure out initial APIC ID of the BSP, CPU0 in the
1st kernel, for example from /proc/cpuinfo and then set up this kernel
parameter for the 2nd kernel using the obtained APIC ID.
However, doing this procedure at each boot time manually is awkward,
which should be automatically done by user-land service scripts, for
example, kexec-tools on fedora/RHEL distributions.
This design is more flexible than disabling BSP in kernel boot time
automatically in that in kernel boot time we have no choice but
referring to ACPI/MP table to obtain initial APIC ID for BSP, meaning
that the method is not applicable to the systems without such BIOS
tables.
One assumption behind this design is that users get initial APIC ID of
the BSP in still healthy state and so BSP is uniquely kept in
CPU0. Thus, through the kernel parameter, only one initial APIC ID can
be specified.
In a comparison with disabled_cpu_apicid, we use read_apic_id(), not
boot_cpu_physical_apicid, because on some platforms, the variable is
modified to the apicid reported as BSP through MP table and this
function is executed with the temporarily modified
boot_cpu_physical_apicid. As a result, disabled_cpu_apicid kernel
parameter doesn't work well for apicids of APs.
Fixing the wrong handling of boot_cpu_physical_apicid requires some
reviews and tests beyond some platforms and it could take some
time. The fix here is a kind of workaround to focus on the main topic
of this patch.
Signed-off-by: HATAYAMA Daisuke <d.hatayama@jp.fujitsu.com>
Link: http://lkml.kernel.org/r/20140115064458.1545.38775.stgit@localhost6.localdomain6
Signed-off-by: H. Peter Anvin <hpa@zytor.com>
Having u32 and struct cpuinfo_x86 * by the same name is not very smart,
although it was ok in this case due to the limited scope of u32 c and it
being used only once in there.
Fix this.
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: http://lkml.kernel.org/r/1389786735-16751-1-git-send-email-bp@alien8.de
Signed-off-by: H. Peter Anvin <hpa@zytor.com>
This adds the workaround for erratum 793 as a precaution in case not
every BIOS implements it. This addresses CVE-2013-6885.
Erratum text:
[Revision Guide for AMD Family 16h Models 00h-0Fh Processors,
document 51810 Rev. 3.04 November 2013]
793 Specific Combination of Writes to Write Combined Memory Types and
Locked Instructions May Cause Core Hang
Description
Under a highly specific and detailed set of internal timing
conditions, a locked instruction may trigger a timing sequence whereby
the write to a write combined memory type is not flushed, causing the
locked instruction to stall indefinitely.
Potential Effect on System
Processor core hang.
Suggested Workaround
BIOS should set MSR
C001_1020[15] = 1b.
Fix Planned
No fix planned
[ hpa: updated description, fixed typo in MSR name ]
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: http://lkml.kernel.org/r/20140114230711.GS29865@pd.tnic
Tested-by: Aravind Gopalakrishnan <aravind.gopalakrishnan@amd.com>
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
Currently we do a read, a dummy write and a final read to fetch
the error code. The value from the final read is taken.
This is not the recommended way and leads to corrupted/lost ESR
values.
Intel(c) 64 and IA-32 Architectures Software Developer's Manual,
Combined Volumes 1, 2ABC, 3ABC, Section 10.5.3 states:
Before attempt to read from the ESR, software should first
write to it. (The value written does not affect the values read
subsequently; only zero may be written in x2APIC mode.) This
write clears any previously logged errors and updates the ESR
with any errors detected since the last write to the ESR.
This write also rearms the APIC error interrupt triggering
mechanism.
This patch removes the first read such that we are conform with
the manual.
On my (very old) Pentium MMX SMP system this patch fixes the
issue that APIC errors:
a) are not always reported and
b) are reported with false error numbers.
Signed-off-by: Richard Weinberger <richard@nod.at>
Cc: seiji.aguchi@hds.com
Cc: rientjes@google.com
Cc: konrad.wilk@oracle.com
Cc: bp@alien8.de
Cc: Yinghai Lu <yinghai@kernel.org>
Link: http://lkml.kernel.org/r/1389685487-20872-1-git-send-email-richard@nod.at
Signed-off-by: Ingo Molnar <mingo@kernel.org>
We've grown a bunch of microcode loader files all prefixed with
"microcode_". They should be under cpu/ because this is strictly
CPU-related functionality so do that and drop the prefix since they're
in their own directory now which gives that prefix. :)
While at it, drop MICROCODE_INTEL_LIB config item and stash the
functionality under CONFIG_MICROCODE_INTEL as it was its only user.
Signed-off-by: Borislav Petkov <bp@suse.de>
Tested-by: Aravind Gopalakrishnan <Aravind.Gopalakrishnan@amd.com>
The original idea to use the microcode cache for the APs doesn't pan out
because we do memory allocation there very early and with IRQs disabled
and we don't want to involve GFP_ATOMIC allocations. Not if it can be
helped.
Thus, extend the caching of the BSP patch approach to the APs and
iterate over the ucode in the initrd instead of using the cache. We
still save the relevant patches to it but later, right before we
jettison the initrd.
While at it, fix early ucode loading on 32-bit too.
Signed-off-by: Borislav Petkov <bp@suse.de>
Tested-by: Aravind Gopalakrishnan <Aravind.Gopalakrishnan@amd.com>
We want to use those in AMD's early loading path too. Also, add a
native_wrmsrl variant.
Signed-off-by: Borislav Petkov <bp@suse.de>
Tested-by: Aravind Gopalakrishnan <Aravind.Gopalakrishnan@amd.com>
The ramdisk can possibly get relocated if the whole image is not mapped.
And since we're going over it in the microcode loader and fishing out
the relevant microcode patches, we want access it at its new location.
Thus, export it.
Signed-off-by: Borislav Petkov <bp@suse.de>
Tested-by: Aravind Gopalakrishnan <Aravind.Gopalakrishnan@amd.com>
Use a ring-buffer like multi-version object structure which allows
always having a coherent object; we use this to avoid having to
disable IRQs while reading sched_clock() and avoids a problem when
getting an NMI while changing the cyc2ns data.
MAINLINE PRE POST
sched_clock_stable: 1 1 1
(cold) sched_clock: 329841 331312 257223
(cold) local_clock: 301773 310296 309889
(warm) sched_clock: 38375 38247 25280
(warm) local_clock: 100371 102713 85268
(warm) rdtsc: 27340 27289 24247
sched_clock_stable: 0 0 0
(cold) sched_clock: 382634 372706 301224
(cold) local_clock: 396890 399275 399870
(warm) sched_clock: 38194 38124 25630
(warm) local_clock: 143452 148698 129629
(warm) rdtsc: 27345 27365 24307
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Link: http://lkml.kernel.org/n/tip-s567in1e5ekq2nlyhn8f987r@git.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Fengguang Wu's 0day kernel build service reported the following build warning:
arch/x86/kernel/apic/io_apic.c:2211
smp_irq_move_cleanup_interrupt() warn: always true condition '(irq <= -1) => (0-u32max <= (-1))'
because irq is defined as an unsigned int instead of an int.
Fix this trivial error by redefining irq as a signed int. The
remaining consumers of the int are okay.
Signed-off-by: Prarit Bhargava <prarit@redhat.com>
Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Cc: Sebastian Andrzej Siewior <sebastian@breakpoint.cc>
Cc: Joerg Roedel <joro@8bytes.org>
Cc: Fengguang Wu <fengguang.wu@intel.com>
Link: http://lkml.kernel.org/r/1389620420-7110-1-git-send-email-prarit@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
There are no __cycles_2_ns() users outside of arch/x86/kernel/tsc.c,
so move it there.
There are no cycles_2_ns() users.
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/n/tip-01lslnavfgo3kmbo4532zlcj@git.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
* acpica: (21 commits)
ACPICA: Update version to 20131218.
ACPICA: Utilities: Cleanup declarations of the acpi_gbl_debug_file global.
ACPICA: Linuxize: Cleanup spaces after special macro invocations.
ACPICA: Interpreter: Add additional debug info for an error case.
ACPICA: Update ACPI example code to make it an actual working program.
ACPICA: Add an error message if the Debugger fails initialization.
ACPICA: Conditionally define a local variable that is used for debug only.
ACPICA: Parser: Updates/fixes for debug output.
ACPICA: Enhance ACPI warning for memory/IO address conflicts.
ACPICA: Update several debug statements - no functional change.
ACPICA: Improve exception handling for GPE block installation.
ACPICA: Add helper macros to extract bus/segment numbers from HEST table.
ACPICA: Tables: Add full support for the PCCT table, update table definition.
ACPICA: Tables: Add full support for the DBG2 table.
ACPICA: Add option to favor 32-bit FADT addresses.
ACPICA: Cleanup the option of forcing the use of the RSDT.
ACPICA: Back port and refine validation of the XSDT root table.
ACPICA: Linux Header: Remove unused OSL prototypes.
ACPICA: Remove unused ACPI_FREE_BUFFER macro. No functional change.
ACPICA: Disassembler: Improve pathname support for emitted External() statements.
...
* acpi-cleanup: (22 commits)
ACPI / tables: Return proper error codes from acpi_table_parse() and fix comment.
ACPI / tables: Check if id is NULL in acpi_table_parse()
ACPI / proc: Include appropriate header file in proc.c
ACPI / EC: Remove unused functions and add prototype declaration in internal.h
ACPI / dock: Include appropriate header file in dock.c
ACPI / PCI: Include appropriate header file in pci_link.c
ACPI / PCI: Include appropriate header file in pci_slot.c
ACPI / EC: Mark the function acpi_ec_add_debugfs() as static in ec_sys.c
ACPI / NVS: Include appropriate header file in nvs.c
ACPI / OSL: Mark the function acpi_table_checksum() as static
ACPI / processor: initialize a variable to silence compiler warning
ACPI / processor: use ACPI_COMPANION() to get ACPI device
ACPI: correct minor typos
ACPI / sleep: Drop redundant acpi_disabled check
ACPI / dock: Drop redundant acpi_disabled check
ACPI / table: Replace '1' with specific error return values
ACPI: remove trailing whitespace
ACPI / IBFT: Fix incorrect <acpi/acpi.h> inclusion in iSCSI boot firmware module
ACPI / i915: Fix incorrect <acpi/acpi.h> inclusions via <linux/acpi_io.h>
SFI / ACPI: Fix warnings reported during builds with W=1
...
Conflicts:
drivers/acpi/nvs.c
drivers/hwmon/asus_atk0110.c
So mce_start_timer() has a 'cpu' argument which is supposed to mean to
start a timer on that cpu. However, the code currently starts a timer on
the *current* cpu the function runs on and causes the sanity-check in
mce_timer_fn to fire:
WARNING: CPU: 0 PID: 0 at arch/x86/kernel/cpu/mcheck/mce.c:1286 mce_timer_fn
because it is running on the wrong cpu.
This was triggered by Prarit Bhargava <prarit@redhat.com> by offlining
all the cpus in succession.
Then, we were fiddling with the CMCI storm settings when starting the
timer whereas there's no need for that - if there's storm happening
on this newly restarted cpu, we're going to be in normal CMCI mode
initially and then when the CMCI interrupt starts firing, we're going to
go to the polling mode with the timer real soon.
Signed-off-by: Borislav Petkov <bp@suse.de>
Tested-by: Prarit Bhargava <prarit@redhat.com>
Cc: Tony Luck <tony.luck@intel.com>
Reviewed-by: Chen, Gong <gong.chen@linux.intel.com>
Link: http://lkml.kernel.org/r/1387722156-5511-1-git-send-email-prarit@redhat.com
During heavy CPU-hotplug operations the following spurious kernel warnings
can trigger:
do_IRQ: No ... irq handler for vector (irq -1)
[ See: https://bugzilla.kernel.org/show_bug.cgi?id=64831 ]
When downing a cpu it is possible that there are unhandled irqs
left in the APIC IRR register. The following code path shows
how the problem can occur:
1. CPU 5 is to go down.
2. cpu_disable() on CPU 5 executes with interrupt flag cleared
by local_irq_save() via stop_machine().
3. IRQ 12 asserts on CPU 5, setting IRR but not ISR because
interrupt flag is cleared (CPU unabled to handle the irq)
4. IRQs are migrated off of CPU 5, and the vectors' irqs are set
to -1. 5. stop_machine() finishes cpu_disable()
6. cpu_die() for CPU 5 executes in normal context.
7. CPU 5 attempts to handle IRQ 12 because the IRR is set for
IRQ 12. The code attempts to find the vector's IRQ and cannot
because it has been set to -1. 8. do_IRQ() warning displays
warning about CPU 5 IRQ 12.
I added a debug printk to output which CPU & vector was
retriggered and discovered that that we are getting bogus
events. I see a 100% correlation between this debug printk in
fixup_irqs() and the do_IRQ() warning.
This patchset resolves this by adding definitions for
VECTOR_UNDEFINED(-1) and VECTOR_RETRIGGERED(-2) and modifying
the code to use them.
Fixes: https://bugzilla.kernel.org/show_bug.cgi?id=64831
Signed-off-by: Prarit Bhargava <prarit@redhat.com>
Reviewed-by: Rui Wang <rui.y.wang@intel.com>
Cc: Michel Lespinasse <walken@google.com>
Cc: Seiji Aguchi <seiji.aguchi@hds.com>
Cc: Yang Zhang <yang.z.zhang@Intel.com>
Cc: Paul Gortmaker <paul.gortmaker@windriver.com>
Cc: janet.morgan@Intel.com
Cc: tony.luck@Intel.com
Cc: ruiv.wang@gmail.com
Link: http://lkml.kernel.org/r/1388938252-16627-1-git-send-email-prarit@redhat.com
[ Cleaned up the code a bit. ]
Signed-off-by: Ingo Molnar <mingo@kernel.org>
This patch adds support for the Intel RAPL energy counter
PP1 (Power Plane 1).
On client processors, it usually corresponds to the
energy consumption of the builtin graphic card. That
is why the sysfs event is called energy-gpu.
New event:
- name: power/energy-gpu/
- code: event=0x4
- unit: 2^-32 Joules
On processors without graphics, this should count 0.
The patch only enables this event on client processors.
Reviewed-by: Maria Dimakopoulou <maria.n.dimakopoulou@gmail.com>
Signed-off-by: Stephane Eranian <eranian@google.com>
Cc: ak@linux.intel.com
Cc: acme@redhat.com
Cc: jolsa@redhat.com
Cc: zheng.z.yan@intel.com
Cc: bp@alien8.de
Cc: vincent.weaver@maine.edu
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1389176153-3128-3-git-send-email-eranian@google.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Function tracing callbacks expect to have the ftrace_ops that registered it
passed to them, not the address of the variable that holds the ftrace_ops
that registered it.
Use a mov instead of a lea to store the ftrace_ops into the parameter
of the function tracing callback.
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Reviewed-by: Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com>
Link: http://lkml.kernel.org/r/20131113152004.459787f9@gandalf.local.home
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
Cc: <stable@vger.kernel.org> # v3.8+
Current Intel SOC cores use a MailBox Interface (MBI) to provide access to
configuration registers on devices (called units) connected to the system
fabric. This is a support driver that implements access to this interface on
those platforms that can enumerate the device using PCI. Initial support is for
BayTrail, for which port definitons are provided. This is a requirement for
implementing platform specific features (e.g. RAPL driver requires this to
perform platform specific power management using the registers in PUNIT).
Dependant modules should select IOSF_MBI in their respective Kconfig
configuraiton. Serialized access is handled by all exported routines with
spinlocks.
The API includes 3 functions for access to unit registers:
int iosf_mbi_read(u8 port, u8 opcode, u32 offset, u32 *mdr)
int iosf_mbi_write(u8 port, u8 opcode, u32 offset, u32 mdr)
int iosf_mbi_modify(u8 port, u8 opcode, u32 offset, u32 mdr, u32 mask)
port: indicating the unit being accessed
opcode: the read or write port specific opcode
offset: the register offset within the port
mdr: the register data to be read, written, or modified
mask: bit locations in mdr to change
Returns nonzero on error
Note: GPU code handles access to the GFX unit. Therefore access to that unit
with this driver is disallowed to avoid conflicts.
Signed-off-by: David E. Box <david.e.box@linux.intel.com>
Link: http://lkml.kernel.org/r/1389216471-734-1-git-send-email-david.e.box@linux.intel.com
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
Cc: Rafael J. Wysocki <rjw@rjwysocki.net>
Cc: Matthew Garrett <mjg59@srcf.ucam.org>
This change adds a runtime option that will force ACPICA to use the
RSDT instead of the XSDT. Although the ACPI spec requires that an XSDT
be used instead of the RSDT, the XSDT has been found to be corrupt or
ill-formed on some machines.
This option is already in the Linux kernel. When it is back ported to
ACPICA, code is re-written to follow ACPICA coding style. This patch
is the generation of the integration.
Signed-off-by: Lv Zheng <lv.zheng@intel.com>
Signed-off-by: Bob Moore <robert.moore@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
None of these files are actually using any __init type directives
and hence don't need to include <linux/init.h>. Most are just a
left over from __devinit and __cpuinit removal, or simply due to
code getting copied from one driver to the next.
[ hpa: undid incorrect removal from arch/x86/kernel/head_32.S ]
Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
Link: http://lkml.kernel.org/r/1389054026-12947-1-git-send-email-paul.gortmaker@windriver.com
Signed-off-by: H. Peter Anvin <hpa@zytor.com>