A small number of functions that are used in a device replace
procedure when the operation is resumed at mount time are unable
to pass the same root pointer that would be used in the regular
(ioctl) context. And since the root pointer is not required, only
the fs_info is, the root pointer argument is replaced with the
fs_info pointer argument.
Signed-off-by: Stefan Behrens <sbehrens@giantdisaster.de>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
This new function is used by the device replace procedure in
a later patch.
Signed-off-by: Stefan Behrens <sbehrens@giantdisaster.de>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
This is required for the device replace procedure in a later step.
Two calling functions also had to be changed to have the fs_info
pointer: repair_io_failure() and scrub_setup_recheck_block().
Signed-off-by: Stefan Behrens <sbehrens@giantdisaster.de>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
This is required for the device replace procedure in a later step.
Signed-off-by: Stefan Behrens <sbehrens@giantdisaster.de>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
The new function btrfs_find_device_missing_or_by_path() will be
used for the device replace procedure. This function itself calls
the second new function btrfs_find_device_by_path().
Unfortunately, it is not possible to currently make the rest of the
code use these functions as well, since all functions that look
similar at first view are all a little bit different in what they
are doing. But in the future, new code could benefit from these
two new functions, and currently, device replace uses them.
Signed-off-by: Stefan Behrens <sbehrens@giantdisaster.de>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
Some code to open block devices, to read the superblock and to
handle errors was repeated multiple times in 3 places, and the
following patch makes use of it as well. This code is now moved
into a subfunction.
Signed-off-by: Stefan Behrens <sbehrens@giantdisaster.de>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
Just move some code into functions to make everything more readable.
Signed-off-by: Stefan Behrens <sbehrens@giantdisaster.de>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
In the scrub repair code, the code is changed to handle memory
allocation errors a little bit smarter. The change is to handle
it just like a read error. This simplifies the code and removes
a couple of lines of code, since the code to handle read errors
is there anyway.
Signed-off-by: Stefan Behrens <sbehrens@giantdisaster.de>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
In case that disk blocks need to be repaired (rewritten), the
current code at first (for simplicity reasons) reads all alternate
mirrors in the first step, afterwards selects the best one in a
second step. This is now changed to read one alternate mirror
after the other and to leave the loop early when a perfect mirror
is found.
Signed-off-by: Stefan Behrens <sbehrens@giantdisaster.de>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
With the modified design (in order to support the devive replace
procedure) it is necessary to alloc the page array dynamically.
The reason is that pages are reused. At first a page is used for
the bio to read the data from the filesystem, then the same page
is reused for the bio that writes the data to the target disk.
Since the read process and the write process are completely
decoupled, this requires a new concept of refcounts and get/put
functions for pages, and it requires to use newly created pages
for each read bio which are freed after the write operation
is finished.
Signed-off-by: Stefan Behrens <sbehrens@giantdisaster.de>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
The block device is removed from the scrub context state structure.
The scrub code as it is used for the device replace procedure reads
the source data from whereever it is optimal. The source device might
even be gone (disconnected, for instance due to a hardware failure).
Or the drive can be so faulty so that the device replace procedure
tries to avoid access to the faulty source drive as much as possible,
and only if all other mirrors are damaged, as a last resort, the
source disk is accessed.
The modified scrub code operates as if it would handle the source
drive and thereby generates an exact copy of the source disk on the
target disk, even if the source disk is not present at all. Therefore
the block device pointer to the source disk is removed in the scrub
context struct and moved into the lower level scope of scrub_bio,
fixup and page structures where the block device context is known.
Signed-off-by: Stefan Behrens <sbehrens@giantdisaster.de>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
The device replace procedure makes use of the scrub code. The scrub
code is the most efficient code to read the allocated data of a disk,
i.e. it reads sequentially in order to avoid disk head movements, it
skips unallocated blocks, it uses read ahead mechanisms, and it
contains all the code to detect and repair defects.
This commit is a first preparation step to adapt the scrub code to
be shareable for the device replace procedure.
The block device will be removed from the scrub context state
structure in a later step. It used to be the source block device.
The scrub code as it is used for the device replace procedure reads
the source data from whereever it is optimal. The source device might
even be gone (disconnected, for instance due to a hardware failure).
Or the drive can be so faulty so that the device replace procedure
tries to avoid access to the faulty source drive as much as possible,
and only if all other mirrors are damaged, as a last resort, the
source disk is accessed.
The modified scrub code operates as if it would handle the source
drive and thereby generates an exact copy of the source disk on the
target disk, even if the source disk is not present at all. Therefore
the block device pointer to the source disk is removed in a later
patch, and therefore the context structure is renamed (this is the
goal of the current patch) to reflect that no source block device
scope is there anymore.
Summary:
This first preparation step consists of a textual substitution of the
term "dev" to the term "ctx" whereever the scrub context is used.
Signed-off-by: Stefan Behrens <sbehrens@giantdisaster.de>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
Since we've kill the bigger one volume_mutex, we need to add devices
list mutex back.
Signed-off-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
- 'nr' is no more used.
- btrfs_btree_balance_dirty() and __btrfs_btree_balance_dirty() can share
a bunch of code.
Signed-off-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
When __merge_refs merges two refs, it is also needed to merge the
inode_list of both refs. Otherwise we have missed backrefs and memory
leaks. This happens for example if two inodes share an extent and
both lie in the same leaf and thus also have the same parent.
Signed-off-by: Alexander Block <ablock84@googlemail.com>
Reviewed-by: Jan Schmidt <list.btrfs@jan-o-sch.net>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
Even if the hole punching is executed, the modification time of the
file is not updated.
So, current time is set to inode.
Signed-off-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
Someone who is root or capable(CAP_SYS_ADMIN) could corrupt the
superblock and make Btrfs printk("%s") crash while holding the
uuid_mutex since nobody forces a limit on the string. Since the
uuid_mutex is significant, the system would be unusable
afterwards.
Signed-off-by: Stefan Behrens <sbehrens@giantdisaster.de>
Reviewed-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
When creating a snapshot, failing to commit a transaction can end up
with aborting the transaction, following by doing a cleanup for it, where
we'll free all snapshots pending to disk.
So we check it and avoid double free on pending snapshots.
Signed-off-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
When committing a transaction, we may bail out of running delayed refs
due to ENOSPC, and then abort the current transaction to flip into readonly.
But we'll hit a deadlock on ref head's lock since we forget to release
its lock and other cleanup stuff.
Signed-off-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
Just use WARN_ON rather than an if containing only WARN_ON(1).
A simplified version of the semantic patch that makes this transformation
is as follows: (http://coccinelle.lip6.fr/)
// <smpl>
@@
expression e;
@@
- if (e) WARN_ON(1);
+ WARN_ON(e);
// </smpl>
Signed-off-by: Julia Lawall <Julia.Lawall@lip6.fr>
Reviewed-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
Use WARN rather than printk followed by WARN_ON(1), for conciseness.
A simplified version of the semantic patch that makes this transformation
is as follows: (http://coccinelle.lip6.fr/)
// <smpl>
@@
expression list es;
@@
-printk(
+WARN(1,
es);
-WARN_ON(1);
// </smpl>
Signed-off-by: Julia Lawall <Julia.Lawall@lip6.fr>
Reviewed-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
If we set BTRFS_INODE_NEEDS_FULL_SYNC, we should log all the extent,
but now we forget to take it into account, and set a wrong max key,
if so, we will skip the file extent metadata when doing logging. Fix it.
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
We forget to protect the modified_extents list, fix it.
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Reviewed-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
There are two types of the file extent - inline extent and regular extent,
When we log file extents, we didn't take inline extent into account, fix it.
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Reviewed-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
Consider the following case:
Task1 Task2
start_transaction
commit_transaction
check pending snapshots list and the
list is empty.
add pending snapshot into list
skip the delalloc flush
end_transaction
...
And then the problem that the snapshot is different with the source subvolume
happen.
This patch fixes the above problem by flush all pending stuffs when all the
other tasks end the transaction.
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
If we flush inodes with pending delalloc in a transaction, we may join
the same transaction handler more than 2 times.
The reason is:
Task use_count of trans handle
commit_transaction 1
|-> btrfs_start_delalloc_inodes 1
|-> run_delalloc_nocow 1
|-> join_transaction 2
|-> cow_file_range 2
|-> join_transaction 3
In fact, cow_file_range needn't join the transaction again because the caller
have joined the transaction, so we fix this problem by this way.
Reported-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
btrfs_wait_ordered_range expects for 'len' instead of 'end'.
Signed-off-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
When we log new names, we need to log just enough to recreate the inode
during log replay, and there is no need to log extents along with it.
This actually fixes a bug revealed by xfstests 241, where it shows
that we're logging some extents that have not updated metadata,
so we don't get proper EXTENT_DATA items to be copied to log tree.
Signed-off-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
The current behavior is to allow mounting or remounting a filesystem
writeable in degraded mode if at least one writeable device is
present.
The next failed write access to a missing device which is above
the tolerance of the configured level of redundancy results in an
read-only enforcement. Even without this, the next time
barrier_all_devices() is called and more devices are missing than
tolerable, the switch to read-only mode takes place.
In order to behave predictably and to provide proper feedback to
the user at mount time, this patch compares the number of missing
devices with the number of devices that are tolerated to be missing
according to the configured RAID level. If more devices are missing
than tolerated, e.g. if two devices are missing in case of RAID1,
only a read-only mount and remount is allowed.
Signed-off-by: Stefan Behrens <sbehrens@giantdisaster.de>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
Remove an invalid size check up from btrfs_shrink_dev().
The new size should not larger than the device->total_bytes as it was
already verified before coming to here(i.e. new_size < old_size).
Remove invalid check up for btrfs_shrink_dev().
Signed-off-by: Jie Liu <jeff.liu@oracle.com>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
Though the process of the ordered extents is a bit different with the delalloc inode
flush, but we can see it as a subset of the delalloc inode flush, so we also handle
them by flush workers.
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
The process of the ordered operations is similar to the delalloc inode flush, so
we handle them by flush workers.
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
This patch introduce a new worker pool named "flush_workers", and if we
want to force all the inode with pending delalloc to the disks, we can
queue those inodes into the work queue of the worker pool, in this way,
those inodes will be flushed by multi-task.
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
Dave gave me an image of a very full file system that would abort the
transaction because it ran out of space while committing the transaction.
This is because we would think there was plenty of room to create a snapshot
even though the global reserve was not full. This happens because we
calculate the global reserve size before we unpin any space, so after we
unpin the space we allow reservations to occur even though we haven't
reserved all of the space for our global reserve. Fix this by adding to the
global reserve while unpinning in order to make sure we always have enough
space to do our work. With this patch we no longer end up with an aborted
transaction, we return ENOSPC properly to the person trying to create the
snapshot. Thanks,
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
The argument 'tree_mod_log' is not necessary since all of callers enable it.
Signed-off-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
Since we don't use MOD_LOG_KEY_REMOVE_WHILE_MOVING to add nritems
during rewinding, we should insert a MOD_LOG_KEY_REMOVE operation first.
Signed-off-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
Key MOD_LOG_KEY_REMOVE_WHILE_MOVING means that we're doing memmove inside
an extent buffer node, and the node's number of items remains unchanged
(unless we are inserting a single pointer, but we have MOD_LOG_KEY_ADD for that).
So we don't need to increase node's number of items during rewinding,
otherwise we may get an node larger than leafsize and cause general protection
errors later.
Here is the details,
- If we do memory move for inserting a single pointer, we need to
add node's nritems by one, and we honor MOD_LOG_KEY_ADD for adding.
- If we do memory move for deleting a single pointer, we need to
decrease node's nritems by one, and we honor MOD_LOG_KEY_REMOVE for
deleting.
- If we do memory move for balance left/right, we need to decrease
node's nritems, and we honor MOD_LOG_KEY_REMOVE for balaning.
Signed-off-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
When we find a bitmap free space entry, we may check the previous extent
entry covers the offset or not. But if we find this entry is also a bitmap
entry, we will continue to check the previous entry of the current one by
a while loop. It is unnecessary because it is impossible that the extent
entry which is in front of a bitmap entry can cover the offset of the entry
after that bitmap entry.
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Reviewed-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
Alex reported a problem where we were writing between chunks on a rbd
device. The thing is we do bio_add_page using logical offsets, but the
physical offset may be different. So when we map the bio now check to see
if the bio is still ok with the physical offset, and if it is not split the
bio up and redo the bio_add_page with the physical sector. This fixes the
problem for Alex and doesn't affect performance in the normal case. Thanks,
Reported-and-tested-by: Alex Elder <elder@inktank.com>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
In some places(such as: evicting inode), we just can not flush the reserved
space of delalloc, flushing the delayed directory index and delayed inode
is OK, but we don't try to flush those things and just go back when there is
no enough space to be reserved. This patch fixes this problem.
We defined 3 types of the flush operations: NO_FLUSH, FLUSH_LIMIT and FLUSH_ALL.
If we can in the transaction, we should not flush anything, or the deadlock
would happen, so use NO_FLUSH. If we flushing the reserved space of delalloc
would cause deadlock, use FLUSH_LIMIT. In the other cases, FLUSH_ALL is used,
and we will flush all things.
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
The comment is not coincident with the code. Fix it.
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
div_factor{_fine} has been implemented for two times, cleanup it.
And I move them into a independent file named math.h because they are
common math functions.
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
The matrix-keymap module is currently lacking a proper module license,
add one so we don't have this module tainting the entire kernel. This
issue has been present since commit 1932811f42 ("Input: matrix-keymap
- uninline and prepare for device tree support")
Signed-off-by: Florian Fainelli <florian@openwrt.org>
CC: stable@vger.kernel.org # v3.5+
Signed-off-by: Dmitry Torokhov <dmitry.torokhov@gmail.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pull networking fixes from David Miller:
1) Netlink socket dumping had several missing verifications and checks.
In particular, address comparisons in the request byte code
interpreter could access past the end of the address in the
inet_request_sock.
Also, address family and address prefix lengths were not validated
properly at all.
This means arbitrary applications can read past the end of certain
kernel data structures.
Fixes from Neal Cardwell.
2) ip_check_defrag() operates in contexts where we're in the process
of, or about to, input the packet into the real protocols
(specifically macvlan and AF_PACKET snooping).
Unfortunately, it does a pskb_may_pull() which can modify the
backing packet data which is not legal if the SKB is shared. It
very much can be shared in this context.
Deal with the possibility that the SKB is segmented by using
skb_copy_bits().
Fix from Johannes Berg based upon a report by Eric Leblond.
* git://git.kernel.org/pub/scm/linux/kernel/git/davem/net:
ipv4: ip_check_defrag must not modify skb before unsharing
inet_diag: validate port comparison byte code to prevent unsafe reads
inet_diag: avoid unsafe and nonsensical prefix matches in inet_diag_bc_run()
inet_diag: validate byte code to prevent oops in inet_diag_bc_run()
inet_diag: fix oops for IPv4 AF_INET6 TCP SYN-RECV state
This reverts commits a50915394f and
d7c3b937bd.
This is a revert of a revert of a revert. In addition, it reverts the
even older i915 change to stop using the __GFP_NO_KSWAPD flag due to the
original commits in linux-next.
It turns out that the original patch really was bogus, and that the
original revert was the correct thing to do after all. We thought we
had fixed the problem, and then reverted the revert, but the problem
really is fundamental: waking up kswapd simply isn't the right thing to
do, and direct reclaim sometimes simply _is_ the right thing to do.
When certain allocations fail, we simply should try some direct reclaim,
and if that fails, fail the allocation. That's the right thing to do
for THP allocations, which can easily fail, and the GPU allocations want
to do that too.
So starting kswapd is sometimes simply wrong, and removing the flag that
said "don't start kswapd" was a mistake. Let's hope we never revisit
this mistake again - and certainly not this many times ;)
Acked-by: Mel Gorman <mgorman@suse.de>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
ip_check_defrag() might be called from af_packet within the
RX path where shared SKBs are used, so it must not modify
the input SKB before it has unshared it for defragmentation.
Use skb_copy_bits() to get the IP header and only pull in
everything later.
The same is true for the other caller in macvlan as it is
called from dev->rx_handler which can also get a shared SKB.
Reported-by: Eric Leblond <eric@regit.org>
Cc: stable@vger.kernel.org
Signed-off-by: Johannes Berg <johannes.berg@intel.com>
Signed-off-by: David S. Miller <davem@davemloft.net>