The use of strict_strtoul() is not preferred, because strict_strtoul() is
obsolete. Thus, kstrtoul() should be used.
Signed-off-by: Jingoo Han <jg1.han@samsung.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Previously, there was bio_clone() but it only allocated from the fs bio
set; as a result various users were open coding it and using
__bio_clone().
This changes bio_clone() to become bio_clone_bioset(), and then we add
bio_clone() and bio_clone_kmalloc() as wrappers around it, making use of
the functionality the last patch adedd.
This will also help in a later patch changing how bio cloning works.
Signed-off-by: Kent Overstreet <koverstreet@google.com>
CC: Jens Axboe <axboe@kernel.dk>
CC: NeilBrown <neilb@suse.de>
CC: Alasdair Kergon <agk@redhat.com>
CC: Boaz Harrosh <bharrosh@panasas.com>
CC: Jeff Garzik <jeff@garzik.org>
Acked-by: Jeff Garzik <jgarzik@redhat.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
REQ_HARDBARRIER is deprecated. Remove spurious uses in the following
users. Please note that other than osdblk, all other uses were
already spurious before deprecation.
* osdblk: osdblk_rq_fn() won't receive any request with
REQ_HARDBARRIER set. Remove the test for it.
* pktcdvd: use of REQ_HARDBARRIER in pkt_generic_packet() doesn't mean
anything. Removed.
* aic7xxx_old: Setting MSG_ORDERED_Q_TAG on REQ_HARDBARRIER is
spurious. Removed.
* sas_scsi_host: Setting TASK_ATTR_ORDERED on REQ_HARDBARRIER is
spurious. Removed.
* scsi_tcq: The ordered tag path wasn't being used anyway. Removed.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Boaz Harrosh <bharrosh@panasas.com>
Cc: James Bottomley <James.Bottomley@suse.de>
Cc: Peter Osterlund <petero2@telia.com>
Signed-off-by: Jens Axboe <jaxboe@fusionio.com>
Barrier is deemed too heavy and will soon be replaced by FLUSH/FUA
requests. Deprecate barrier. All REQ_HARDBARRIERs are failed with
-EOPNOTSUPP and blk_queue_ordered() is replaced with simpler
blk_queue_flush().
blk_queue_flush() takes combinations of REQ_FLUSH and FUA. If a
device has write cache and can flush it, it should set REQ_FLUSH. If
the device can handle FUA writes, it should also set REQ_FUA.
All blk_queue_ordered() users are converted.
* ORDERED_DRAIN is mapped to 0 which is the default value.
* ORDERED_DRAIN_FLUSH is mapped to REQ_FLUSH.
* ORDERED_DRAIN_FLUSH_FUA is mapped to REQ_FLUSH | REQ_FUA.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Boaz Harrosh <bharrosh@panasas.com>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: Nick Piggin <npiggin@kernel.dk>
Cc: Michael S. Tsirkin <mst@redhat.com>
Cc: Jeremy Fitzhardinge <jeremy@xensource.com>
Cc: Chris Wright <chrisw@sous-sol.org>
Cc: FUJITA Tomonori <fujita.tomonori@lab.ntt.co.jp>
Cc: Geert Uytterhoeven <Geert.Uytterhoeven@sonycom.com>
Cc: David S. Miller <davem@davemloft.net>
Cc: Alasdair G Kergon <agk@redhat.com>
Cc: Pierre Ossman <drzeus@drzeus.cx>
Cc: Stefan Weinhuber <wein@de.ibm.com>
Signed-off-by: Jens Axboe <jaxboe@fusionio.com>
Remove all the trivial wrappers for the cmd_type and cmd_flags fields in
struct requests. This allows much easier grepping for different request
types instead of unwinding through macros.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <jaxboe@fusionio.com>
percpu.h is included by sched.h and module.h and thus ends up being
included when building most .c files. percpu.h includes slab.h which
in turn includes gfp.h making everything defined by the two files
universally available and complicating inclusion dependencies.
percpu.h -> slab.h dependency is about to be removed. Prepare for
this change by updating users of gfp and slab facilities include those
headers directly instead of assuming availability. As this conversion
needs to touch large number of source files, the following script is
used as the basis of conversion.
http://userweb.kernel.org/~tj/misc/slabh-sweep.py
The script does the followings.
* Scan files for gfp and slab usages and update includes such that
only the necessary includes are there. ie. if only gfp is used,
gfp.h, if slab is used, slab.h.
* When the script inserts a new include, it looks at the include
blocks and try to put the new include such that its order conforms
to its surrounding. It's put in the include block which contains
core kernel includes, in the same order that the rest are ordered -
alphabetical, Christmas tree, rev-Xmas-tree or at the end if there
doesn't seem to be any matching order.
* If the script can't find a place to put a new include (mostly
because the file doesn't have fitting include block), it prints out
an error message indicating which .h file needs to be added to the
file.
The conversion was done in the following steps.
1. The initial automatic conversion of all .c files updated slightly
over 4000 files, deleting around 700 includes and adding ~480 gfp.h
and ~3000 slab.h inclusions. The script emitted errors for ~400
files.
2. Each error was manually checked. Some didn't need the inclusion,
some needed manual addition while adding it to implementation .h or
embedding .c file was more appropriate for others. This step added
inclusions to around 150 files.
3. The script was run again and the output was compared to the edits
from #2 to make sure no file was left behind.
4. Several build tests were done and a couple of problems were fixed.
e.g. lib/decompress_*.c used malloc/free() wrappers around slab
APIs requiring slab.h to be added manually.
5. The script was run on all .h files but without automatically
editing them as sprinkling gfp.h and slab.h inclusions around .h
files could easily lead to inclusion dependency hell. Most gfp.h
inclusion directives were ignored as stuff from gfp.h was usually
wildly available and often used in preprocessor macros. Each
slab.h inclusion directive was examined and added manually as
necessary.
6. percpu.h was updated not to include slab.h.
7. Build test were done on the following configurations and failures
were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my
distributed build env didn't work with gcov compiles) and a few
more options had to be turned off depending on archs to make things
build (like ipr on powerpc/64 which failed due to missing writeq).
* x86 and x86_64 UP and SMP allmodconfig and a custom test config.
* powerpc and powerpc64 SMP allmodconfig
* sparc and sparc64 SMP allmodconfig
* ia64 SMP allmodconfig
* s390 SMP allmodconfig
* alpha SMP allmodconfig
* um on x86_64 SMP allmodconfig
8. percpu.h modifications were reverted so that it could be applied as
a separate patch and serve as bisection point.
Given the fact that I had only a couple of failures from tests on step
6, I'm fairly confident about the coverage of this conversion patch.
If there is a breakage, it's likely to be something in one of the arch
headers which should be easily discoverable easily on most builds of
the specific arch.
Signed-off-by: Tejun Heo <tj@kernel.org>
Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
Passing the attribute to the low level IO functions allows all kinds
of cleanups, by sharing low level IO code without requiring
an own function for every piece of data.
Also drivers can extend the attributes with own data fields
and use that in the low level function.
This makes the class attributes the same as sysdev_class attributes
and plain attributes.
This will allow further cleanups in drivers.
Full tree sweep converting all users.
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
call blk_queue_stack_limits() to copy queue limits from
the underline osd scsi_device. This is absolutely needed
because osdblk cannot sleep when allocating a lower-request and
therefore cannot be bouncing.
TODO: Dynamic changes of limits to the lower device queue
will not reflect in the upper driver
Signed-off-by: Boaz Harrosh <bharrosh@panasas.com>
Submitted driver exports a block device of the form /dev/osdblkX,
where X is a decimal number.
It does that by mounting a stacking block device on top
of an osd object. For example, if you create a 2G object
on an OSD device, you can then use this module to present
that 2G object as a Linux block device.
See inside patch for exact documentation.
[Sitting at linux-next helped fix proper Kconfig dependency
for this driver, thanks to Randy Dunlap]
Signed-off-by: Jeff Garzik <jgarzik@redhat.com>
Signed-off-by: Boaz Harrosh <bharrosh@panasas.com>