mirror of
https://github.com/torvalds/linux.git
synced 2024-11-14 16:12:02 +00:00
7c9026b2b0
433 Commits
Author | SHA1 | Message | Date | |
---|---|---|---|---|
Linus Torvalds
|
9ea925c806 |
Updates for timers and timekeeping:
- Core: - Overhaul of posix-timers in preparation of removing the workaround for periodic timers which have signal delivery ignored. - Remove the historical extra jiffie in msleep() msleep() adds an extra jiffie to the timeout value to ensure minimal sleep time. The timer wheel ensures minimal sleep time since the large rewrite to a non-cascading wheel, but the extra jiffie in msleep() remained unnoticed. Remove it. - Make the timer slack handling correct for realtime tasks. The procfs interface is inconsistent and does neither reflect reality nor conforms to the man page. Show the correct 0 slack for real time tasks and enforce it at the core level instead of having inconsistent individual checks in various timer setup functions. - The usual set of updates and enhancements all over the place. - Drivers: - Allow the ACPI PM timer to be turned off during suspend - No new drivers - The usual updates and enhancements in various drivers -----BEGIN PGP SIGNATURE----- iQJHBAABCgAxFiEEQp8+kY+LLUocC4bMphj1TA10mKEFAmbn7jQTHHRnbHhAbGlu dXRyb25peC5kZQAKCRCmGPVMDXSYobqnD/9COlU0nwsulABI/aNIrsh6iYvnCC9v 14CcNta7Qn+157Wfw9BWOyHdNhR1/fPCXE8jJ71zTyIOeW27HV2JyTtxTwe9ZcdK ViHAaj7YcIjcVUEC3StCoRCPnvLslEw4qJA5AOQuDyMivdQn+YVa2c0baJxKaXZt xk4HZdMj4NAS0jRKnoZSwtKW/+Oz6rR4GAWrZo+Zs1/8ur3HfqnQfi8lJ1hJtLLW V7XDCVRvamVi6Ah3ocYPPp/1P6yeQDA1ge9aMddqaza5STWISXRtSnFMUmYP3rbS FaL8TyL+ilfny8pkGB2WlG6nLuSbtvogtdEh1gG1k1RmZt44kAtk8ba/KiWFPBSb zK9cjojRMBS71f9G4kmb5F4rnXoLsg1YbD1Nzhz3wq2Cs1Z90dc2QwMren0zoQ1x Fn56ueRyAiagBlnrSaKyso/2RvqJTNoSdi3RkpjYeAph0UoDCqvTvKjGAf1mWiw1 T/1lUWSVqWHnzZbM7XXzzajIN9bl6A7bbqlcAJ2O9vZIDt7273DG+bQym9Vh6Why 0LTGGERHxzKBsG7WRg+2Gmvv6S18UPKRo8tLtlA758rHlFuPTZCShWrIriwSNl1K Hxon+d4BparSnm1h9W/NHPKJA574UbWRCBjdk58IkAj8DxZZY4ORD9SMP+ggkV7G F6p9cgoDNP9KFg== =jE0N -----END PGP SIGNATURE----- Merge tag 'timers-core-2024-09-16' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull timer updates from Thomas Gleixner: "Core: - Overhaul of posix-timers in preparation of removing the workaround for periodic timers which have signal delivery ignored. - Remove the historical extra jiffie in msleep() msleep() adds an extra jiffie to the timeout value to ensure minimal sleep time. The timer wheel ensures minimal sleep time since the large rewrite to a non-cascading wheel, but the extra jiffie in msleep() remained unnoticed. Remove it. - Make the timer slack handling correct for realtime tasks. The procfs interface is inconsistent and does neither reflect reality nor conforms to the man page. Show the correct 0 slack for real time tasks and enforce it at the core level instead of having inconsistent individual checks in various timer setup functions. - The usual set of updates and enhancements all over the place. Drivers: - Allow the ACPI PM timer to be turned off during suspend - No new drivers - The usual updates and enhancements in various drivers" * tag 'timers-core-2024-09-16' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (43 commits) ntp: Make sure RTC is synchronized when time goes backwards treewide: Fix wrong singular form of jiffies in comments cpu: Use already existing usleep_range() timers: Rename next_expiry_recalc() to be unique platform/x86:intel/pmc: Fix comment for the pmc_core_acpi_pm_timer_suspend_resume function clocksource/drivers/jcore: Use request_percpu_irq() clocksource/drivers/cadence-ttc: Add missing clk_disable_unprepare in ttc_setup_clockevent clocksource/drivers/asm9260: Add missing clk_disable_unprepare in asm9260_timer_init clocksource/drivers/qcom: Add missing iounmap() on errors in msm_dt_timer_init() clocksource/drivers/ingenic: Use devm_clk_get_enabled() helpers platform/x86:intel/pmc: Enable the ACPI PM Timer to be turned off when suspended clocksource: acpi_pm: Add external callback for suspend/resume clocksource/drivers/arm_arch_timer: Using for_each_available_child_of_node_scoped() dt-bindings: timer: rockchip: Add rk3576 compatible timers: Annotate possible non critical data race of next_expiry timers: Remove historical extra jiffie for timeout in msleep() hrtimer: Use and report correct timerslack values for realtime tasks hrtimer: Annotate hrtimer_cpu_base_.*_expiry() for sparse. timers: Add sparse annotation for timer_sync_wait_running(). signal: Replace BUG_ON()s ... |
||
Thomas Gleixner
|
2f7eedca6c |
Merge branch 'linus' into timers/core
To update with the latest fixes. |
||
Anna-Maria Behnsen
|
662a1bfb90 |
cpu: Use already existing usleep_range()
usleep_range() is a wrapper arount usleep_range_state() which hands in TASK_UNTINTERRUPTIBLE as state argument. Use already exising wrapper usleep_range(). No functional change. Signed-off-by: Anna-Maria Behnsen <anna-maria@linutronix.de> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Frederic Weisbecker <frederic@kernel.org> Link: https://lore.kernel.org/all/20240904-devel-anna-maria-b4-timers-flseep-v1-2-e98760256370@linutronix.de |
||
Thorsten Blum
|
8db70faeab |
cpu: Fix W=1 build kernel-doc warning
Building the kernel with W=1 generates the following warning: kernel/cpu.c:2693: warning: This comment starts with '/**', but isn't a kernel-doc comment. The function topology_is_core_online() is a simple helper function and doesn't need a kernel-doc comment. Use a normal comment instead. Signed-off-by: Thorsten Blum <thorsten.blum@toblux.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Link: https://lore.kernel.org/all/20240825221152.71951-2-thorsten.blum@toblux.com |
||
Thomas Gleixner
|
eb876ea724 |
Merge branch 'linus' into smp/core
Pull in upstream changes so further patches don't conflict. |
||
Nysal Jan K.A
|
6c17ea1f3e |
cpu/SMT: Enable SMT only if a core is online
If a core is offline then enabling SMT should not online CPUs of
this core. By enabling SMT, what is intended is either changing the SMT
value from "off" to "on" or setting the SMT level (threads per core) from a
lower to higher value.
On PowerPC the ppc64_cpu utility can be used, among other things, to
perform the following functions:
ppc64_cpu --cores-on # Get the number of online cores
ppc64_cpu --cores-on=X # Put exactly X cores online
ppc64_cpu --offline-cores=X[,Y,...] # Put specified cores offline
ppc64_cpu --smt={on|off|value} # Enable, disable or change SMT level
If the user has decided to offline certain cores, enabling SMT should
not online CPUs in those cores. This patch fixes the issue and changes
the behaviour as described, by introducing an arch specific function
topology_is_core_online(). It is currently implemented only for PowerPC.
Fixes:
|
||
Jiaxun Yang
|
2dce993165 |
cpu/hotplug: Provide weak fallback for arch_cpuhp_init_parallel_bringup()
CONFIG_HOTPLUG_PARALLEL expects the architecture to implement arch_cpuhp_init_parallel_bringup() to decide whether paralllel hotplug is possible and to do the necessary architecture specific initialization. There are architectures which can enable it unconditionally and do not require architecture specific initialization. Provide a weak fallback for arch_cpuhp_init_parallel_bringup() so that such architectures are not forced to implement empty stub functions. Signed-off-by: Jiaxun Yang <jiaxun.yang@flygoat.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Link: https://lore.kernel.org/all/20240716-loongarch-hotplug-v3-2-af59b3bb35c8@flygoat.com |
||
Jiaxun Yang
|
c0e81a455e |
cpu/hotplug: Make HOTPLUG_PARALLEL independent of HOTPLUG_SMT
Provide stub functions for SMT related parallel bring up functions so that HOTPLUG_PARALLEL can work without HOTPLUG_SMT. Signed-off-by: Jiaxun Yang <jiaxun.yang@flygoat.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Link: https://lore.kernel.org/all/20240716-loongarch-hotplug-v3-1-af59b3bb35c8@flygoat.com |
||
Linus Torvalds
|
98896d8795 |
- Unrelated x86/cc changes queued here to avoid ugly cross-merges and
conflicts: - Carve out CPU hotplug function declarations into a separate header with the goal to be able to use the lockdep assertions in a more flexible manner - As a result, refactor cacheinfo code after carving out a function to return the cache ID associated with a given cache level - Cleanups - Add support to be able to kexec TDX guests. For that - Expand ACPI MADT CPU offlining support - Add machinery to prepare CoCo guests memory before kexec-ing into a new kernel - Cleanup, readjust and massage related code -----BEGIN PGP SIGNATURE----- iQIzBAABCgAdFiEEzv7L6UO9uDPlPSfHEsHwGGHeVUoFAmaVCYoACgkQEsHwGGHe VUoi6g//Up/4vMzcjqzrndXfl0aP+NpK4zNud+ZPP4Qza2yPhKydniMvkWVQ8DTx jQaGk/tJDeFG6ofOzGkmBGyuZzuO4D7E0XFyXZZeVgSvdk2Af5vaWu1D3e4i4MiM Ox4H8NtWnC4MozP0hos4qB0vtYaBWVJkNvIXDVF6162zLwEmbuyrpFe3glscwIxv hMZR/C47RHcEeOb7yA4m/gJ+AqMe9OKradoNJkkfDpnYr6CYsbmpY09or2WYuvoI 0gevkIe6Q9HMcq3CQl6/pR8IgbA5VmGi7iCiE1ihgTPwR3AaU8llzBqYdSgezFrk 68A7oGeUZQeifQgjwkreZclMtsGEeGWVOB0Bh3Jgr6uaWGFXtpydi/hc73wbTz+F IazKQcKQYjaPW/9UG+0+cFTQlCgQ+WxwqAsN1uqzL6gMgmC9B+TM//xzk5nVxpOd ouf8T85tyceIPCKepGE/bWEHYYCjfbqBMyQT6RHmxUKbb1/PIsbzN26cenkZmPXT cpwurWVG7mRQJRqTrsS+D+opP1h/jOdkpwGlBfl1s0sX6RZuMFBk+7TlMMs61Cyo PWtrLV7Dr369cuXE72wIgfBAao2AS8kFshc7Atokq7/XfL9cCWHeqIcu7yvParP5 WY43YQv8XPGI7ZnPqULByTY0Wxg8TFk8whamx97kEp8uy2HmbQU= =k+T+ -----END PGP SIGNATURE----- Merge tag 'x86_cc_for_v6.11_rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull x86 confidential computing updates from Borislav Petkov: "Unrelated x86/cc changes queued here to avoid ugly cross-merges and conflicts: - Carve out CPU hotplug function declarations into a separate header with the goal to be able to use the lockdep assertions in a more flexible manner - As a result, refactor cacheinfo code after carving out a function to return the cache ID associated with a given cache level - Cleanups Add support to be able to kexec TDX guests: - Expand ACPI MADT CPU offlining support - Add machinery to prepare CoCo guests memory before kexec-ing into a new kernel - Cleanup, readjust and massage related code" * tag 'x86_cc_for_v6.11_rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (24 commits) ACPI: tables: Print MULTIPROC_WAKEUP when MADT is parsed x86/acpi: Add support for CPU offlining for ACPI MADT wakeup method x86/mm: Introduce kernel_ident_mapping_free() x86/smp: Add smp_ops.stop_this_cpu() callback x86/acpi: Do not attempt to bring up secondary CPUs in the kexec case x86/acpi: Rename fields in the acpi_madt_multiproc_wakeup structure x86/mm: Do not zap page table entries mapping unaccepted memory table during kdump x86/mm: Make e820__end_ram_pfn() cover E820_TYPE_ACPI ranges x86/tdx: Convert shared memory back to private on kexec x86/mm: Add callbacks to prepare encrypted memory for kexec x86/tdx: Account shared memory x86/mm: Return correct level from lookup_address() if pte is none x86/mm: Make x86_platform.guest.enc_status_change_*() return an error x86/kexec: Keep CR4.MCE set during kexec for TDX guest x86/relocate_kernel: Use named labels for less confusion cpu/hotplug, x86/acpi: Disable CPU offlining for ACPI MADT wakeup cpu/hotplug: Add support for declaring CPU offlining not supported x86/apic: Mark acpi_mp_wake_* variables as __ro_after_init x86/acpi: Extract ACPI MADT wakeup code into a separate file x86/kexec: Remove spurious unconditional JMP from from identity_mapped() ... |
||
Linus Torvalds
|
c89d780cc1 |
arm64 updates for 6.11:
* Virtual CPU hotplug support for arm64 ACPI systems * cpufeature infrastructure cleanups and making the FEAT_ECBHB ID bits visible to guests * CPU errata: expand the speculative SSBS workaround to more CPUs * arm64 ACPI: - acpi=nospcr option to disable SPCR as default console for arm64 - Move some ACPI code (cpuidle, FFH) to drivers/acpi/arm64/ * GICv3, use compile-time PMR values: optimise the way regular IRQs are masked/unmasked when GICv3 pseudo-NMIs are used, removing the need for a static key in fast paths by using a priority value chosen dynamically at boot time * arm64 perf updates: - Rework of the IMX PMU driver to enable support for I.MX95 - Enable support for tertiary match groups in the CMN PMU driver - Initial refactoring of the CPU PMU code to prepare for the fixed instruction counter introduced by Arm v9.4 - Add missing PMU driver MODULE_DESCRIPTION() strings - Hook up DT compatibles for recent CPU PMUs * arm64 kselftest updates: - Kernel mode NEON fp-stress - Cleanups, spelling mistakes * arm64 Documentation update with a minor clarification on TBI * Miscellaneous: - Fix missing IPI statistics - Implement raw_smp_processor_id() using thread_info rather than a per-CPU variable (better code generation) - Make MTE checking of in-kernel asynchronous tag faults conditional on KASAN being enabled - Minor cleanups, typos -----BEGIN PGP SIGNATURE----- iQIzBAABCgAdFiEE5RElWfyWxS+3PLO2a9axLQDIXvEFAmaQKN4ACgkQa9axLQDI XvE0Nw/+JZ6OEQ+DMUHXZfbWanvn1p0nVOoEV3MYVpOeQK1ILYCoDapatLNIlet0 wcja7tohKbL1ifc7GOqlkitu824LMlotncrdOBycRqb/4C5KuJ+XhygFv5hGfX0T Uh2zbo4w52FPPEUMICfEAHrKT3QB9tv7f66xeUNbWWFqUn3rY02/ZVQVVdw6Zc0e fVYWGUUoQDR7+9hRkk6tnYw3+9YFVAUAbLWk+DGrW7WsANi6HuJ/rBMibwFI6RkG SZDZHum6vnwx0Dj9H7WrYaQCvUMm7AlckhQGfPbIFhUk6pWysfJtP5Qk49yiMl7p oRk/GrSXpiKumuetgTeOHbokiE1Nb8beXx0OcsjCu4RrIaNipAEpH1AkYy5oiKoT 9vKZErMDtQgd96JHFVaXc+A3D2kxVfkc1u7K3TEfVRnZFV7CN+YL+61iyZ+uLxVi d9xrAmwRsWYFVQzlZG3NWvSeQBKisUA1L8JROlzWc/NFDwTqDGIt/zS4pZNL3+OM EXW0LyKt7Ijl6vPXKCXqrODRrPlcLc66VMZxofZOl0/dEqyJ+qLL4GUkWZu8lTqO BqydYnbTSjiDg/ntWjTrD0uJ8c40Qy7KTPEdaPqEIQvkDEsUGlOnhAQjHrnGNb9M psZtpDW2xm7GykEOcd6rgSz4Xeky2iLsaR4Wc7FTyDS0YRmeG44= =ob2k -----END PGP SIGNATURE----- Merge tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux Pull arm64 updates from Catalin Marinas: "The biggest part is the virtual CPU hotplug that touches ACPI, irqchip. We also have some GICv3 optimisation for pseudo-NMIs that has been queued via the arm64 tree. Otherwise the usual perf updates, kselftest, various small cleanups. Core: - Virtual CPU hotplug support for arm64 ACPI systems - cpufeature infrastructure cleanups and making the FEAT_ECBHB ID bits visible to guests - CPU errata: expand the speculative SSBS workaround to more CPUs - GICv3, use compile-time PMR values: optimise the way regular IRQs are masked/unmasked when GICv3 pseudo-NMIs are used, removing the need for a static key in fast paths by using a priority value chosen dynamically at boot time ACPI: - 'acpi=nospcr' option to disable SPCR as default console for arm64 - Move some ACPI code (cpuidle, FFH) to drivers/acpi/arm64/ Perf updates: - Rework of the IMX PMU driver to enable support for I.MX95 - Enable support for tertiary match groups in the CMN PMU driver - Initial refactoring of the CPU PMU code to prepare for the fixed instruction counter introduced by Arm v9.4 - Add missing PMU driver MODULE_DESCRIPTION() strings - Hook up DT compatibles for recent CPU PMUs Kselftest updates: - Kernel mode NEON fp-stress - Cleanups, spelling mistakes Miscellaneous: - arm64 Documentation update with a minor clarification on TBI - Fix missing IPI statistics - Implement raw_smp_processor_id() using thread_info rather than a per-CPU variable (better code generation) - Make MTE checking of in-kernel asynchronous tag faults conditional on KASAN being enabled - Minor cleanups, typos" * tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux: (69 commits) selftests: arm64: tags: remove the result script selftests: arm64: tags_test: conform test to TAP output perf: add missing MODULE_DESCRIPTION() macros arm64: smp: Fix missing IPI statistics irqchip/gic-v3: Fix 'broken_rdists' unused warning when !SMP and !ACPI ACPI: Add acpi=nospcr to disable ACPI SPCR as default console on ARM64 Documentation: arm64: Update memory.rst for TBI arm64/cpufeature: Replace custom macros with fields from ID_AA64PFR0_EL1 KVM: arm64: Replace custom macros with fields from ID_AA64PFR0_EL1 perf: arm_pmuv3: Include asm/arm_pmuv3.h from linux/perf/arm_pmuv3.h perf: arm_v6/7_pmu: Drop non-DT probe support perf/arm: Move 32-bit PMU drivers to drivers/perf/ perf: arm_pmuv3: Drop unnecessary IS_ENABLED(CONFIG_ARM64) check perf: arm_pmuv3: Avoid assigning fixed cycle counter with threshold arm64: Kconfig: Fix dependencies to enable ACPI_HOTPLUG_CPU perf: imx_perf: add support for i.MX95 platform perf: imx_perf: fix counter start and config sequence perf: imx_perf: refactor driver for imx93 perf: imx_perf: let the driver manage the counter usage rather the user perf: imx_perf: add macro definitions for parsing config attr ... |
||
Linus Torvalds
|
0eff0491e7 |
A small set of SMP/CPU hotplug updates:
- Reverse the order of iteration when freezing secondary CPUs for hibernation. This avoids that drivers like the Intel uncore performance counter have to transfer the assignement of handling the per package uncore events for every CPU in a package, which is a considerable speedup on larger systems. - Add a missing destroy_work_on_stack() invocation in smp_call_on_cpu() to prevent debug objects to emit a false positive warning when the stack is freed. - Small cleanups in comments and a str_plural() conversion -----BEGIN PGP SIGNATURE----- iQJHBAABCgAxFiEEQp8+kY+LLUocC4bMphj1TA10mKEFAmaUNnYTHHRnbHhAbGlu dXRyb25peC5kZQAKCRCmGPVMDXSYocjbEACqfc8EkTEJczAMbAaq7Nq7jYGRt5e8 UyWpbnT1re63TAiGUEAr7pPJd6ucXAwPOHBt0V+j1HIr2UsaGT2/cfnlSipR68xh UmqPxXpuba+JeZDS0Bf6gRXKYBogVWFgjP8cp+f9IKr6xMgwJc7ujB9mX0YKmIgz bDoaFS+NFSD1ZS7tuidLqfU9UmJYRDRhyZg124HwDXG20zHR2CHgP4QQ2bHOvxZU LKbdjoHBmGtkLomS+R1UxsT+onsnE0c1EN37LX0mUE5L1YbUTcbZlXLLG7T35jOO rvai+EKVbA2KUAtrM/LZ8WZ0Lt5DTjMrouyzv6of7N2WljijdlxMb04sXl7kdng+ rohRfDB6yNhQhEnDx6fd+IP/JCpPCctCmkN/QbvMBfnRnTe1yNg/gmnWaY3RAHNM GBifAxSEosMn7AMnSs/or6DAVNHVxI3Ms+r4Xb/o1JvGx7PXiBULh1Nww5WdxmBl IraXNR/R0qXUokXmNtJrq3aG/SepKWAc0BJJc3b6zA9tf5rsizTaxetTVZLS6jOX /DHJOOgAlLRDZdE53YpdL3HVVTdM/BDSM0xpMO7uxdJ4laJ9s+7dFGk9KXxu24qM 6dIG6hn7D9XT0q05sP+r7qO0ygIe0Qorg5bA+xgvpYdPNrVfQpjzkj5jwkspvk+l 5/gpTUmVm8Vwhw== =M4eq -----END PGP SIGNATURE----- Merge tag 'smp-core-2024-07-14' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull CPU hotplug updates from Thomas Gleixner: "A small set of SMP/CPU hotplug updates: - Reverse the order of iteration when freezing secondary CPUs for hibernation. This avoids that drivers like the Intel uncore performance counter have to transfer the assignement of handling the per package uncore events for every CPU in a package, which is a considerable speedup on larger systems. - Add a missing destroy_work_on_stack() invocation in smp_call_on_cpu() to prevent debug objects to emit a false positive warning when the stack is freed. - Small cleanups in comments and a str_plural() conversion" * tag 'smp-core-2024-07-14' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: smp: Add missing destroy_work_on_stack() call in smp_call_on_cpu() cpu/hotplug: Reverse order of iteration in freeze_secondary_cpus() smp: Use str_plural() to fix Coccinelle warnings cpu/hotplug: Fix typo in comment |
||
James Morse
|
4e1a7df454 |
cpumask: Add enabled cpumask for present CPUs that can be brought online
The 'offline' file in sysfs shows all offline CPUs, including those that aren't present. User-space is expected to remove not-present CPUs from this list to learn which CPUs could be brought online. CPUs can be present but not-enabled. These CPUs can't be brought online until the firmware policy changes, which comes with an ACPI notification that will register the CPUs. With only the offline and present files, user-space is unable to determine which CPUs it can try to bring online. Add a new CPU mask that shows this based on all the registered CPUs. Signed-off-by: James Morse <james.morse@arm.com> Tested-by: Miguel Luis <miguel.luis@oracle.com> Tested-by: Vishnu Pajjuri <vishnu@os.amperecomputing.com> Tested-by: Jianyong Wu <jianyong.wu@arm.com> Acked-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Russell King (Oracle) <rmk+kernel@armlinux.org.uk> Reviewed-by: Gavin Shan <gshan@redhat.com> Signed-off-by: Jonathan Cameron <Jonathan.Cameron@huawei.com> Link: https://lore.kernel.org/r/20240529133446.28446-20-Jonathan.Cameron@huawei.com Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> |
||
Huacai Chen
|
6ef8eb5125 |
cpu: Fix broken cmdline "nosmp" and "maxcpus=0"
After the rework of "Parallel CPU bringup", the cmdline "nosmp" and "maxcpus=0" parameters are not working anymore. These parameters set setup_max_cpus to zero and that's handed to bringup_nonboot_cpus(). The code there does a decrement before checking for zero, which brings it into the negative space and brings up all CPUs. Add a zero check at the beginning of the function to prevent this. [ tglx: Massaged change log ] Fixes: |
||
Kirill A. Shutemov
|
66e48e491d |
cpu/hotplug, x86/acpi: Disable CPU offlining for ACPI MADT wakeup
ACPI MADT doesn't allow to offline a CPU after it has been woken up. Currently, CPU hotplug is prevented based on the confidential computing attribute which is set for Intel TDX. But TDX is not the only possible user of the wake up method. Any platform that uses ACPI MADT wakeup method cannot offline CPU. Disable CPU offlining on ACPI MADT wakeup enumeration. This has no visible effects for users: currently, TDX guest is the only platform that uses the ACPI MADT wakeup method. Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Tested-by: Tao Liu <ltao@redhat.com> Link: https://lore.kernel.org/r/20240614095904.1345461-5-kirill.shutemov@linux.intel.com |
||
Kirill A. Shutemov
|
1037e4c53e |
cpu/hotplug: Add support for declaring CPU offlining not supported
The ACPI MADT mailbox wakeup method doesn't allow to offline a CPU after it has been woken up. Currently, offlining is prevented based on the confidential computing attribute which is set for Intel TDX. But TDX is not the only possible user of the wake up method. The MADT wakeup can be implemented outside of a confidential computing environment. Offline support is a property of the wakeup method, not the CoCo implementation. Introduce cpu_hotplug_disable_offlining() that can be called to indicate that CPU offlining should be disabled. This function is going to replace CC_ATTR_HOTPLUG_DISABLED for ACPI MADT wakeup method. Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Tested-by: Tao Liu <ltao@redhat.com> Link: https://lore.kernel.org/r/20240614095904.1345461-4-kirill.shutemov@linux.intel.com |
||
Stanislav Spassov
|
fde78e4673 |
cpu/hotplug: Reverse order of iteration in freeze_secondary_cpus()
Whenever CPU hotplug state callbacks are registered, the startup callback is invoked on CPUs that have already reached the provided state in order of ascending CPU IDs. In freeze_secondary_cpus() the teardown of CPUs happens in the same are invoked in the same order. This is known to make a difference is the current implementation of these callbacks in arch/x86/events/intel/uncore.c: - uncore_event_cpu_online() designates the first CPU it is invoked for on each package as the uncore event collector for that package - uncore_event_cpu_offline() if the CPU being offlined is the event collector for its package, transfers that responsibility over to the next (by ascending CPU id) one in the same package With the current order of CPU teardowns in freeze_secondary_cpus(), the latter ends up doing the ownership transfer work on every single CPU. That work involves a synchronize_rcu() call, ultimately unnecessarily degrading the performance of CPU offlining. To address this make freeze_secondary_cpus() iterate through the CPUs in reverse order, so that the teardown happens in order of descending CPU IDs. [ tglx: Massage change log ] Signed-off-by: Stanislav Spassov <stanspas@amazon.de> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Link: https://lore.kernel.org/r/20240524160449.48594-1-stanspas@amazon.de |
||
Yuntao Wang
|
932d847639 |
cpu/hotplug: Fix dynstate assignment in __cpuhp_setup_state_cpuslocked()
Commit |
||
Linus Torvalds
|
de6fef50ea |
cgroup: Changes for v6.10
- The locking around cpuset hotplug processing has always been a bit of mess which was worked around by making hotplug processing asynchronous. The asynchronity isn't great and led to other issues. We tried to make the behavior synchronous a while ago but that led to lockdep splats. Waiman took another stab at cleaning up and making it synchronous. The patch has been in -next for well over a month and there haven't been any complaints, so fingers crossed. - Tracepoints added to help understanding rstat lock contentions. - A bunch of minor changes - doc updates, code cleanups and selftests. -----BEGIN PGP SIGNATURE----- iIQEABYKACwWIQTfIjM1kS57o3GsC/uxYfJx3gVYGQUCZkUrFA4cdGpAa2VybmVs Lm9yZwAKCRCxYfJx3gVYGfTyAQCwd0aNQOqaKRhJGtWYShqV/aYzurCy1Z2tB9/3 dkdy9gD7BHNk6kZQEbT97RrHPIduFansLtc76VziACibWBuomgg= =2DNQ -----END PGP SIGNATURE----- Merge tag 'cgroup-for-6.10' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup Pull cgroup updates from Tejun Heo: - The locking around cpuset hotplug processing has always been a bit of mess which was worked around by making hotplug processing asynchronous. The asynchronity isn't great and led to other issues. We tried to make the behavior synchronous a while ago but that led to lockdep splats. Waiman took another stab at cleaning up and making it synchronous. The patch has been in -next for well over a month and there haven't been any complaints, so fingers crossed. - Tracepoints added to help understanding rstat lock contentions. - A bunch of minor changes - doc updates, code cleanups and selftests. * tag 'cgroup-for-6.10' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup: (24 commits) cgroup/rstat: add cgroup_rstat_cpu_lock helpers and tracepoints selftests/cgroup: Drop define _GNU_SOURCE docs: cgroup-v1: Update page cache removal functions selftests/cgroup: fix uninitialized variables in test_zswap.c selftests/cgroup: cpu_hogger init: use {} instead of {NULL} selftests/cgroup: fix clang warnings: uninitialized fd variable selftests/cgroup: fix clang build failures for abs() calls cgroup/cpuset: Remove outdated comment in sched_partition_write() cgroup/cpuset: Fix incorrect top_cpuset flags cgroup/cpuset: Avoid clearing CS_SCHED_LOAD_BALANCE twice cgroup/cpuset: Statically initialize more members of top_cpuset cgroup: Avoid unnecessary looping in cgroup_no_v1() cgroup, legacy_freezer: update comment for freezer_css_offline() docs, cgroup: add entries for pids to cgroup-v2.rst cgroup: don't call cgroup1_pidlist_destroy_all() for v2 cgroup_freezer: update comment for freezer_css_online() cgroup/rstat: desc member cgrp in cgroup_rstat_flush_release cgroup/rstat: add cgroup_rstat_lock helpers and tracepoints cgroup/pids: Remove superfluous zeroing docs: cgroup-v1: Fix description for css_online ... |
||
Sean Christopherson
|
ce0abef6a1 |
cpu: Ignore "mitigations" kernel parameter if CPU_MITIGATIONS=n
Explicitly disallow enabling mitigations at runtime for kernels that were built with CONFIG_CPU_MITIGATIONS=n, as some architectures may omit code entirely if mitigations are disabled at compile time. E.g. on x86, a large pile of Kconfigs are buried behind CPU_MITIGATIONS, and trying to provide sane behavior for retroactively enabling mitigations is extremely difficult, bordering on impossible. E.g. page table isolation and call depth tracking require build-time support, BHI mitigations will still be off without additional kernel parameters, etc. [ bp: Touchups. ] Signed-off-by: Sean Christopherson <seanjc@google.com> Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de> Acked-by: Borislav Petkov (AMD) <bp@alien8.de> Link: https://lore.kernel.org/r/20240420000556.2645001-3-seanjc@google.com |
||
Sean Christopherson
|
fe42754b94 |
cpu: Re-enable CPU mitigations by default for !X86 architectures
Rename x86's to CPU_MITIGATIONS, define it in generic code, and force it
on for all architectures exception x86. A recent commit to turn
mitigations off by default if SPECULATION_MITIGATIONS=n kinda sorta
missed that "cpu_mitigations" is completely generic, whereas
SPECULATION_MITIGATIONS is x86-specific.
Rename x86's SPECULATIVE_MITIGATIONS instead of keeping both and have it
select CPU_MITIGATIONS, as having two configs for the same thing is
unnecessary and confusing. This will also allow x86 to use the knob to
manage mitigations that aren't strictly related to speculative
execution.
Use another Kconfig to communicate to common code that CPU_MITIGATIONS
is already defined instead of having x86's menu depend on the common
CPU_MITIGATIONS. This allows keeping a single point of contact for all
of x86's mitigations, and it's not clear that other architectures *want*
to allow disabling mitigations at compile-time.
Fixes:
|
||
Sean Christopherson
|
f337a6a21e |
x86/cpu: Actually turn off mitigations by default for SPECULATION_MITIGATIONS=n
Initialize cpu_mitigations to CPU_MITIGATIONS_OFF if the kernel is built
with CONFIG_SPECULATION_MITIGATIONS=n, as the help text quite clearly
states that disabling SPECULATION_MITIGATIONS is supposed to turn off all
mitigations by default.
│ If you say N, all mitigations will be disabled. You really
│ should know what you are doing to say so.
As is, the kernel still defaults to CPU_MITIGATIONS_AUTO, which results in
some mitigations being enabled in spite of SPECULATION_MITIGATIONS=n.
Fixes:
|
||
Waiman Long
|
2125c0034c |
cgroup/cpuset: Make cpuset hotplug processing synchronous
Since commit 3a5a6d0c2b03("cpuset: don't nest cgroup_mutex inside get_online_cpus()"), cpuset hotplug was done asynchronously via a work function. This is to avoid recursive locking of cgroup_mutex. Since then, the cgroup locking scheme has changed quite a bit. A cpuset_mutex was introduced to protect cpuset specific operations. The cpuset_mutex is then replaced by a cpuset_rwsem. With commit |
||
Linus Torvalds
|
ca7e917769 |
Rework of APIC enumeration and topology evaluation:
The current implementation has a couple of shortcomings: - It fails to handle hybrid systems correctly. - The APIC registration code which handles CPU number assignents is in the middle of the APIC code and detached from the topology evaluation. - The various mechanisms which enumerate APICs, ACPI, MPPARSE and guest specific ones, tweak global variables as they see fit or in case of XENPV just hack around the generic mechanisms completely. - The CPUID topology evaluation code is sprinkled all over the vendor code and reevaluates global variables on every hotplug operation. - There is no way to analyze topology on the boot CPU before bringing up the APs. This causes problems for infrastructure like PERF which needs to size certain aspects upfront or could be simplified if that would be possible. - The APIC admission and CPU number association logic is incomprehensible and overly complex and needs to be kept around after boot instead of completing this right after the APIC enumeration. This update addresses these shortcomings with the following changes: - Rework the CPUID evaluation code so it is common for all vendors and provides information about the APIC ID segments in a uniform way independent of the number of segments (Thread, Core, Module, ..., Die, Package) so that this information can be computed instead of rewriting global variables of dubious value over and over. - A few cleanups and simplifcations of the APIC, IO/APIC and related interfaces to prepare for the topology evaluation changes. - Seperation of the parser stages so the early evaluation which tries to find the APIC address can be seperately overridden from the late evaluation which enumerates and registers the local APIC as further preparation for sanitizing the topology evaluation. - A new registration and admission logic which - encapsulates the inner workings so that parsers and guest logic cannot longer fiddle in it - uses the APIC ID segments to build topology bitmaps at registration time - provides a sane admission logic - allows to detect the crash kernel case, where CPU0 does not run on the real BSP, automatically. This is required to prevent sending INIT/SIPI sequences to the real BSP which would reset the whole machine. This was so far handled by a tedious command line parameter, which does not even work in nested crash scenarios. - Associates CPU number after the enumeration completed and prevents the late registration of APICs, which was somehow tolerated before. - Converting all parsers and guest enumeration mechanisms over to the new interfaces. This allows to get rid of all global variable tweaking from the parsers and enumeration mechanisms and sanitizes the XEN[PV] handling so it can use CPUID evaluation for the first time. - Mopping up existing sins by taking the information from the APIC ID segment bitmaps. This evaluates hybrid systems correctly on the boot CPU and allows for cleanups and fixes in the related drivers, e.g. PERF. The series has been extensively tested and the minimal late fallout due to a broken ACPI/MADT table has been addressed by tightening the admission logic further. -----BEGIN PGP SIGNATURE----- iQJHBAABCgAxFiEEQp8+kY+LLUocC4bMphj1TA10mKEFAmXuDawTHHRnbHhAbGlu dXRyb25peC5kZQAKCRCmGPVMDXSYobE7EACngItF+UOTCoCV6och2lL6HVoIdZD1 Y5oaAgD+WzQSz/lBkH6b9kZSyvjlMo6O9GlnGX+ii+VUnijDp4VrspnxbJDaKEq3 gOfsSg2Tk+ps50HqMcZawjjBYJb/TmvKwEV2XuzIBPOONSWLNjvN7nBSzLl1eF9/ 8uCE39/8aB5K3GXryRyXdo2uLu6eHTVC0aYFu/kLX1/BbVqF5NMD3sz9E9w8+D/U MIIMEMXy4Fn+P2o0vVH+gjUlwI76mJbB1WqCX/sqbVacXrjl3KfNJRiisTFIOOYV 8o+rIV0ef5X9xmZqtOXAdyZQzj++Gwmz9+4TU1M4YHtS7UkYn6AluOjvVekCc+gc qXE3WhqKfCK2/carRMLQxAMxNeRylkZG+Wuv1Qtyjpe9JX2dTqtems0f4DMp9DKf b7InO3z39kJanpqcUG2Sx+GWanetfnX+0Ho2Moqu6Xi+2ATr1PfMG/Wyr5/WWOfV qApaHSTwa+J43mSzP6BsXngEv085EHSGM5tPe7u46MCYFqB21+bMl+qH82KjMkOe c6uZovFQMmX2WBlqJSYGVCH+Jhgvqq8HFeRs19Hd4enOt3e6LE3E74RBVD1AyfLV 1b/m8tYB/o871ZlEZwDCGVrV/LNnA7PxmFpq5ZHLpUt39g2/V0RH1puBVz1e97pU YsTT7hBCUYzgjQ== =/5oR -----END PGP SIGNATURE----- Merge tag 'x86-apic-2024-03-10' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull x86 APIC updates from Thomas Gleixner: "Rework of APIC enumeration and topology evaluation. The current implementation has a couple of shortcomings: - It fails to handle hybrid systems correctly. - The APIC registration code which handles CPU number assignents is in the middle of the APIC code and detached from the topology evaluation. - The various mechanisms which enumerate APICs, ACPI, MPPARSE and guest specific ones, tweak global variables as they see fit or in case of XENPV just hack around the generic mechanisms completely. - The CPUID topology evaluation code is sprinkled all over the vendor code and reevaluates global variables on every hotplug operation. - There is no way to analyze topology on the boot CPU before bringing up the APs. This causes problems for infrastructure like PERF which needs to size certain aspects upfront or could be simplified if that would be possible. - The APIC admission and CPU number association logic is incomprehensible and overly complex and needs to be kept around after boot instead of completing this right after the APIC enumeration. This update addresses these shortcomings with the following changes: - Rework the CPUID evaluation code so it is common for all vendors and provides information about the APIC ID segments in a uniform way independent of the number of segments (Thread, Core, Module, ..., Die, Package) so that this information can be computed instead of rewriting global variables of dubious value over and over. - A few cleanups and simplifcations of the APIC, IO/APIC and related interfaces to prepare for the topology evaluation changes. - Seperation of the parser stages so the early evaluation which tries to find the APIC address can be seperately overridden from the late evaluation which enumerates and registers the local APIC as further preparation for sanitizing the topology evaluation. - A new registration and admission logic which - encapsulates the inner workings so that parsers and guest logic cannot longer fiddle in it - uses the APIC ID segments to build topology bitmaps at registration time - provides a sane admission logic - allows to detect the crash kernel case, where CPU0 does not run on the real BSP, automatically. This is required to prevent sending INIT/SIPI sequences to the real BSP which would reset the whole machine. This was so far handled by a tedious command line parameter, which does not even work in nested crash scenarios. - Associates CPU number after the enumeration completed and prevents the late registration of APICs, which was somehow tolerated before. - Converting all parsers and guest enumeration mechanisms over to the new interfaces. This allows to get rid of all global variable tweaking from the parsers and enumeration mechanisms and sanitizes the XEN[PV] handling so it can use CPUID evaluation for the first time. - Mopping up existing sins by taking the information from the APIC ID segment bitmaps. This evaluates hybrid systems correctly on the boot CPU and allows for cleanups and fixes in the related drivers, e.g. PERF. The series has been extensively tested and the minimal late fallout due to a broken ACPI/MADT table has been addressed by tightening the admission logic further" * tag 'x86-apic-2024-03-10' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (76 commits) x86/topology: Ignore non-present APIC IDs in a present package x86/apic: Build the x86 topology enumeration functions on UP APIC builds too smp: Provide 'setup_max_cpus' definition on UP too smp: Avoid 'setup_max_cpus' namespace collision/shadowing x86/bugs: Use fixed addressing for VERW operand x86/cpu/topology: Get rid of cpuinfo::x86_max_cores x86/cpu/topology: Provide __num_[cores|threads]_per_package x86/cpu/topology: Rename topology_max_die_per_package() x86/cpu/topology: Rename smp_num_siblings x86/cpu/topology: Retrieve cores per package from topology bitmaps x86/cpu/topology: Use topology logical mapping mechanism x86/cpu/topology: Provide logical pkg/die mapping x86/cpu/topology: Simplify cpu_mark_primary_thread() x86/cpu/topology: Mop up primary thread mask handling x86/cpu/topology: Use topology bitmaps for sizing x86/cpu/topology: Let XEN/PV use topology from CPUID/MADT x86/xen/smp_pv: Count number of vCPUs early x86/cpu/topology: Assign hotpluggable CPUIDs during init x86/cpu/topology: Reject unknown APIC IDs on ACPI hotplug x86/topology: Add a mechanism to track topology via APIC IDs ... |
||
Linus Torvalds
|
d08c407f71 |
A large set of updates and features for timers and timekeeping:
- The hierarchical timer pull model When timer wheel timers are armed they are placed into the timer wheel of a CPU which is likely to be busy at the time of expiry. This is done to avoid wakeups on potentially idle CPUs. This is wrong in several aspects: 1) The heuristics to select the target CPU are wrong by definition as the chance to get the prediction right is close to zero. 2) Due to #1 it is possible that timers are accumulated on a single target CPU 3) The required computation in the enqueue path is just overhead for dubious value especially under the consideration that the vast majority of timer wheel timers are either canceled or rearmed before they expire. The timer pull model avoids the above by removing the target computation on enqueue and queueing timers always on the CPU on which they get armed. This is achieved by having separate wheels for CPU pinned timers and global timers which do not care about where they expire. As long as a CPU is busy it handles both the pinned and the global timers which are queued on the CPU local timer wheels. When a CPU goes idle it evaluates its own timer wheels: - If the first expiring timer is a pinned timer, then the global timers can be ignored as the CPU will wake up before they expire. - If the first expiring timer is a global timer, then the expiry time is propagated into the timer pull hierarchy and the CPU makes sure to wake up for the first pinned timer. The timer pull hierarchy organizes CPUs in groups of eight at the lowest level and at the next levels groups of eight groups up to the point where no further aggregation of groups is required, i.e. the number of levels is log8(NR_CPUS). The magic number of eight has been established by experimention, but can be adjusted if needed. In each group one busy CPU acts as the migrator. It's only one CPU to avoid lock contention on remote timer wheels. The migrator CPU checks in its own timer wheel handling whether there are other CPUs in the group which have gone idle and have global timers to expire. If there are global timers to expire, the migrator locks the remote CPU timer wheel and handles the expiry. Depending on the group level in the hierarchy this handling can require to walk the hierarchy downwards to the CPU level. Special care is taken when the last CPU goes idle. At this point the CPU is the systemwide migrator at the top of the hierarchy and it therefore cannot delegate to the hierarchy. It needs to arm its own timer device to expire either at the first expiring timer in the hierarchy or at the first CPU local timer, which ever expires first. This completely removes the overhead from the enqueue path, which is e.g. for networking a true hotpath and trades it for a slightly more complex idle path. This has been in development for a couple of years and the final series has been extensively tested by various teams from silicon vendors and ran through extensive CI. There have been slight performance improvements observed on network centric workloads and an Intel team confirmed that this allows them to power down a die completely on a mult-die socket for the first time in a mostly idle scenario. There is only one outstanding ~1.5% regression on a specific overloaded netperf test which is currently investigated, but the rest is either positive or neutral performance wise and positive on the power management side. - Fixes for the timekeeping interpolation code for cross-timestamps: cross-timestamps are used for PTP to get snapshots from hardware timers and interpolated them back to clock MONOTONIC. The changes address a few corner cases in the interpolation code which got the math and logic wrong. - Simplifcation of the clocksource watchdog retry logic to automatically adjust to handle larger systems correctly instead of having more incomprehensible command line parameters. - Treewide consolidation of the VDSO data structures. - The usual small improvements and cleanups all over the place. -----BEGIN PGP SIGNATURE----- iQJHBAABCgAxFiEEQp8+kY+LLUocC4bMphj1TA10mKEFAmXuAN0THHRnbHhAbGlu dXRyb25peC5kZQAKCRCmGPVMDXSYoVKXEADIR45rjR1Xtz32js7B53Y65O4WNoOQ 6/ycWcswuGzg/h4QUpPSJ6gOGVmKSWwZi4n0P/VadCiXGSPPm0aUKsoRUt9DZsPY mtj2wjCSXKXiyhTl9OtrZME86ZAIGO1dQXa/sOHsiP5PCjgQkD0b5CYi1+B6eHDt 1/Uo2Tb9g8VAPppq20V5Uo93GrPf642oyi3FCFrR1M112Uuak5DmqHJYiDpreNcG D5SgI+ykSiaUaVyHifvqijoJk0rYXkqEC6evl02477lJ/X0vVo2/M8XPS95BxHST s5Iruo4rP+qeAy8QvhZpoPX59fO0m/AgA7cf77XXAtOpVdLH+bs4ILsEbouAIOtv lsmRkcYt+TpvrZFHPAxks+6g3afuROiDtxD5sXXpVWxvofi8FwWqubdlqdsbw9MP ZCTNyzNyKL47QeDwBfSynYUL1RSyqsphtIwk4oeQklH9rwMAnW21hi30z15hQ0pQ FOVkmcwi79JNvl/G+jRkDzw7r8/zcHshWdSjyUM04CDjjnCDjQOFWSIjEPwbQjjz S4HXpJKJW963dBgs9Z84/Ctw1GwoBk1qedDWDJE1257Qvmo/Wpe/7GddWcazOGnN RRFMzGPbOqBDbjtErOKGU+iCisgNEvz2XK+TI16uRjWde7DxZpiTVYgNDrZ+/Pyh rQ23UBms6ZRR+A== =iQlu -----END PGP SIGNATURE----- Merge tag 'timers-core-2024-03-10' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull timer updates from Thomas Gleixner: "A large set of updates and features for timers and timekeeping: - The hierarchical timer pull model When timer wheel timers are armed they are placed into the timer wheel of a CPU which is likely to be busy at the time of expiry. This is done to avoid wakeups on potentially idle CPUs. This is wrong in several aspects: 1) The heuristics to select the target CPU are wrong by definition as the chance to get the prediction right is close to zero. 2) Due to #1 it is possible that timers are accumulated on a single target CPU 3) The required computation in the enqueue path is just overhead for dubious value especially under the consideration that the vast majority of timer wheel timers are either canceled or rearmed before they expire. The timer pull model avoids the above by removing the target computation on enqueue and queueing timers always on the CPU on which they get armed. This is achieved by having separate wheels for CPU pinned timers and global timers which do not care about where they expire. As long as a CPU is busy it handles both the pinned and the global timers which are queued on the CPU local timer wheels. When a CPU goes idle it evaluates its own timer wheels: - If the first expiring timer is a pinned timer, then the global timers can be ignored as the CPU will wake up before they expire. - If the first expiring timer is a global timer, then the expiry time is propagated into the timer pull hierarchy and the CPU makes sure to wake up for the first pinned timer. The timer pull hierarchy organizes CPUs in groups of eight at the lowest level and at the next levels groups of eight groups up to the point where no further aggregation of groups is required, i.e. the number of levels is log8(NR_CPUS). The magic number of eight has been established by experimention, but can be adjusted if needed. In each group one busy CPU acts as the migrator. It's only one CPU to avoid lock contention on remote timer wheels. The migrator CPU checks in its own timer wheel handling whether there are other CPUs in the group which have gone idle and have global timers to expire. If there are global timers to expire, the migrator locks the remote CPU timer wheel and handles the expiry. Depending on the group level in the hierarchy this handling can require to walk the hierarchy downwards to the CPU level. Special care is taken when the last CPU goes idle. At this point the CPU is the systemwide migrator at the top of the hierarchy and it therefore cannot delegate to the hierarchy. It needs to arm its own timer device to expire either at the first expiring timer in the hierarchy or at the first CPU local timer, which ever expires first. This completely removes the overhead from the enqueue path, which is e.g. for networking a true hotpath and trades it for a slightly more complex idle path. This has been in development for a couple of years and the final series has been extensively tested by various teams from silicon vendors and ran through extensive CI. There have been slight performance improvements observed on network centric workloads and an Intel team confirmed that this allows them to power down a die completely on a mult-die socket for the first time in a mostly idle scenario. There is only one outstanding ~1.5% regression on a specific overloaded netperf test which is currently investigated, but the rest is either positive or neutral performance wise and positive on the power management side. - Fixes for the timekeeping interpolation code for cross-timestamps: cross-timestamps are used for PTP to get snapshots from hardware timers and interpolated them back to clock MONOTONIC. The changes address a few corner cases in the interpolation code which got the math and logic wrong. - Simplifcation of the clocksource watchdog retry logic to automatically adjust to handle larger systems correctly instead of having more incomprehensible command line parameters. - Treewide consolidation of the VDSO data structures. - The usual small improvements and cleanups all over the place" * tag 'timers-core-2024-03-10' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (62 commits) timer/migration: Fix quick check reporting late expiry tick/sched: Fix build failure for CONFIG_NO_HZ_COMMON=n vdso/datapage: Quick fix - use asm/page-def.h for ARM64 timers: Assert no next dyntick timer look-up while CPU is offline tick: Assume timekeeping is correctly handed over upon last offline idle call tick: Shut down low-res tick from dying CPU tick: Split nohz and highres features from nohz_mode tick: Move individual bit features to debuggable mask accesses tick: Move got_idle_tick away from common flags tick: Assume the tick can't be stopped in NOHZ_MODE_INACTIVE mode tick: Move broadcast cancellation up to CPUHP_AP_TICK_DYING tick: Move tick cancellation up to CPUHP_AP_TICK_DYING tick: Start centralizing tick related CPU hotplug operations tick/sched: Don't clear ts::next_tick again in can_stop_idle_tick() tick/sched: Rename tick_nohz_stop_sched_tick() to tick_nohz_full_stop_tick() tick: Use IS_ENABLED() whenever possible tick/sched: Remove useless oneshot ifdeffery tick/nohz: Remove duplicate between lowres and highres handlers tick/nohz: Remove duplicate between tick_nohz_switch_to_nohz() and tick_setup_sched_timer() hrtimer: Select housekeeping CPU during migration ... |
||
Ingo Molnar
|
4c8a498541 |
smp: Avoid 'setup_max_cpus' namespace collision/shadowing
bringup_nonboot_cpus() gets passed the 'setup_max_cpus' variable in init/main.c - which is also the name of the parameter, shadowing the name. To reduce confusion and to allow the 'setup_max_cpus' value to be #defined in the <linux/smp.h> header, use the 'max_cpus' name for the function parameter name. Signed-off-by: Ingo Molnar <mingo@kernel.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-kernel@vger.kernel.org |
||
Frederic Weisbecker
|
500f8f9bce |
tick: Assume timekeeping is correctly handed over upon last offline idle call
The timekeeping duty is handed over from the outgoing CPU on stop machine, then the oneshot tick is stopped right after. Therefore it's guaranteed that the current CPU isn't the timekeeper upon its last call to idle. Besides, calling tick_nohz_idle_stop_tick() while the dying CPU goes into idle suggests that the tick is going to be stopped while it is actually stopped already from the appropriate CPU hotplug state. Remove the confusing call and the obsolete case handling and convert it to a sanity check that verifies the above assumption. Signed-off-by: Frederic Weisbecker <frederic@kernel.org> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Link: https://lore.kernel.org/r/20240225225508.11587-16-frederic@kernel.org |
||
Frederic Weisbecker
|
ef8969bb55 |
tick: Move broadcast cancellation up to CPUHP_AP_TICK_DYING
The broadcast shutdown code is executed through a random explicit call within stop machine from the outgoing CPU. However the tick broadcast is a midware between the tick callback and the clocksource, therefore it makes more sense to shut it down after the tick callback and before the clocksource drivers. Move it instead to the common tick shutdown CPU hotplug state where related operations can be ordered from highest to lowest level. Signed-off-by: Frederic Weisbecker <frederic@kernel.org> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Link: https://lore.kernel.org/r/20240225225508.11587-10-frederic@kernel.org |
||
Frederic Weisbecker
|
3ad6eb0683 |
tick: Start centralizing tick related CPU hotplug operations
During the CPU offlining process, the various timer tick features are shut down from scattered places, sometimes from teardown callbacks on stop machine, sometimes through explicit calls, sometimes from the control CPU after the CPU died. The reason why these shutdown operations are spread around is not always clear and it makes the tick lifecycle hard to follow. The tick should be shut down in order from highest to lowest level: On stop machine from the dying CPU (high-level): 1) Hand-over the timekeeping duty (tick_handover_do_timer()) 2) Cancel the tick implementation called by the clockevent callback (tick_cancel_sched_timer()) 3) Shutdown broadcasting (tick_offline_cpu() / tick_broadcast_offline()) On stop machine from the dying CPU (low-level): 4) Shutdown clockevents drivers (CPUHP_AP_*_TIMER_STARTING states) From the control CPU after the CPU died (low-level): 5) Shutdown/unregister/cleanup clockevents for the dead CPU (tick_cleanup_dead_cpu()) Instead the current order is 2, 4 (both from CPU hotplug states), then 1 and 3 through direct calls. This layout and order don't make much sense. The operations 1, 2, 3 should be gathered together and in order. Sort this situation with creating a new TICK shut-down CPU hotplug state and start with introducing the timekeeping duty hand-over there. The state must precede hrtimers migration because the tick hrtimer will be stopped from it in a further patch. Signed-off-by: Frederic Weisbecker <frederic@kernel.org> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Link: https://lore.kernel.org/r/20240225225508.11587-8-frederic@kernel.org |
||
Max Kellermann
|
266e957864 |
cpu: Remove stray semicolon
This syntax error was introduced by commit |
||
Alexey Dobriyan
|
da92df490e |
cpu: Mark cpu_possible_mask as __ro_after_init
cpu_possible_mask is by definition "cpus which could be hotplugged without reboot". It's a property which is fixed after kernel enumerates the hardware configuration. Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Link: https://lore.kernel.org/r/41cd78af-92a3-4f23-8c7a-4316a04a66d8@p183 |
||
Li Zhijian
|
effe6d278e |
kernel/cpu: Convert snprintf() to sysfs_emit()
Per filesystems/sysfs.rst, show() should only use sysfs_emit() or sysfs_emit_at() when formatting the value to be returned to user space. coccinelle complains that there are still a couple of functions that use snprintf(). Convert them to sysfs_emit(). No functional change intended. Signed-off-by: Li Zhijian <lizhijian@fujitsu.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Link: https://lore.kernel.org/r/20240116045151.3940401-40-lizhijian@fujitsu.com |
||
Randy Dunlap
|
ef7e585bf4 |
cpu/hotplug: Delete an extraneous kernel-doc description
struct cpuhp_cpu_state has an extraneous kernel-doc comment for @cpu. There is no struct member by that name, so remove the comment to prevent the kernel-doc warning: kernel/cpu.c:85: warning: Excess struct member 'cpu' description in 'cpuhp_cpu_state' Signed-off-by: Randy Dunlap <rdunlap@infradead.org> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Link: https://lore.kernel.org/r/20240114030615.30441-1-rdunlap@infradead.org |
||
Linus Torvalds
|
d30e51aa7b |
slab updates for 6.8
-----BEGIN PGP SIGNATURE-----
iQEzBAABCAAdFiEEe7vIQRWZI0iWSE3xu+CwddJFiJoFAmWWu9EACgkQu+CwddJF
iJpXvQf/aGL7uEY57VpTm0t4gPwoZ9r2P89HxI/nQs9XgVzDcBmVp/cC0LDvSdcm
t91kJO538KeGjMgvlhLMTEuoShH5FlPs6cOwrGAYUoAGa4NwiOpGvliGky+nNHqY
w887ZgSzVLq0UOuSvn86N6enumMvewt4V+872+OWo6O1HWOJhC0SgHTIa8QPQtwb
yZ9BghO5IqMRXiZEsSIwyO+tQHcaU6l2G5huFXzgMFUhkQqAB9KTFc3h6rYI+i80
L4ppNXo2KNPGTDRb9dA8LNMWgvmfjhCb7chs8o1zSY2PwZlkzOix7EUBLCAIbc/2
EIaFC8AsZjfT47D1t72r8QpHB+C14Q==
=J+E7
-----END PGP SIGNATURE-----
Merge tag 'slab-for-6.8' of git://git.kernel.org/pub/scm/linux/kernel/git/vbabka/slab
Pull slab updates from Vlastimil Babka:
- SLUB: delayed freezing of CPU partial slabs (Chengming Zhou)
Freezing is an operation involving double_cmpxchg() that makes a slab
exclusive for a particular CPU. Chengming noticed that we use it also
in situations where we are not yet installing the slab as the CPU
slab, because freezing also indicates that the slab is not on the
shared list. This results in redundant freeze/unfreeze operation and
can be avoided by marking separately the shared list presence by
reusing the PG_workingset flag.
This approach neatly avoids the issues described in
|
||
Vlastimil Babka
|
70da1d01ed |
cpu/hotplug: remove CPUHP_SLAB_PREPARE hooks
The CPUHP_SLAB_PREPARE hooks are only used by SLAB which is removed. SLUB defines them as NULL, so we can remove those altogether. Acked-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: David Rientjes <rientjes@google.com> Tested-by: David Rientjes <rientjes@google.com> Reviewed-by: Hyeonggon Yoo <42.hyeyoo@gmail.com> Tested-by: Hyeonggon Yoo <42.hyeyoo@gmail.com> Signed-off-by: Vlastimil Babka <vbabka@suse.cz> |
||
Linus Torvalds
|
b0014556a2 |
- Do the push of pending hrtimers away from a CPU which is being
offlined earlier in the offlining process in order to prevent a deadlock -----BEGIN PGP SIGNATURE----- iQIzBAABCgAdFiEEzv7L6UO9uDPlPSfHEsHwGGHeVUoFAmVaB28ACgkQEsHwGGHe VUr3ZBAAwOLL5vimHB3Y59cTRLPN+zGKhzyVLMLnbkKs4sGJ+9srP4HLX4Q9PoAb kR9Hzq90+48YuyLe+S/R2pvm1x88K33spS+4w4fl3x6EeToqvUlop2GPuMS2yzXY yECdqCLEd3Q6DeI8hN35lv899qyfGSD+6WxezLCT+uwx6AMHljMAsDy2249UtMZv 1bqZnYCtN2zv3MQuV1uli/AVxTDv4vXcumza17inuw0IpEA26Wz2kWruxeyZnUXU /sWZudUdhiErfg428ok3oTL1BOwPzyiIWjhN2MzqlKFmyp463DwV7KoAc3SxYINE 8qbODN93CFdnU6h29+VQoRxO9vcmWL6w7A/Swc9ar/0/Qnt7H9JdzUKtJ4+EaTCY /IpRWcNcX4WI6BKuHHl6kOBvX3YW77PKaIsxj8JDNZTMk6rq6lMGi+tIaVsAki92 3MQZ9+Lkm0baykIZAWz4jajbA98KvJMeJ60qZQI6sWWdpyrncEqG9pH/ulkLY4aZ gT94LiRpdwT0LWrX0J6xPMTNi9NYWjdB/uyo6Drer42SB9J7ol4rAbOxs50srG8i z46VGDtgWz6C5MSkonhQqrpGzc/HF9xCWVVSF1UENT4K+2W55JhJrDZBs5XCPJiz Bj8T3Maz7wcVkA41DA7C5xlVed+ST1ID8/4y5cWImnrmWOdG5Zw= =Tekh -----END PGP SIGNATURE----- Merge tag 'timers_urgent_for_v6.7_rc2' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull timer fix from Borislav Petkov: - Do the push of pending hrtimers away from a CPU which is being offlined earlier in the offlining process in order to prevent a deadlock * tag 'timers_urgent_for_v6.7_rc2' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: hrtimers: Push pending hrtimers away from outgoing CPU earlier |
||
Thomas Gleixner
|
5c0930ccaa |
hrtimers: Push pending hrtimers away from outgoing CPU earlier
|
||
Linus Torvalds
|
1e0c505e13 |
asm-generic updates for v6.7
The ia64 architecture gets its well-earned retirement as planned, now that there is one last (mostly) working release that will be maintained as an LTS kernel. The architecture specific system call tables are updated for the added map_shadow_stack() syscall and to remove references to the long-gone sys_lookup_dcookie() syscall. -----BEGIN PGP SIGNATURE----- iQIzBAABCgAdFiEEiK/NIGsWEZVxh/FrYKtH/8kJUicFAmVC40IACgkQYKtH/8kJ Uidhmw/9EX+aWSXGoObJ3fngaNSMw+PmrEuP8qEKBHxfKHcCdX3hc451Oh4GlhaQ tru91pPwgNvN2/rfoKusxT+V4PemGIzfNni/04rp+P0kvmdw5otQ2yNhsQNsfVmq XGWvkxF4P2GO6bkjjfR/1dDq7GtlyXtwwPDKeLbYb6TnJOZjtx+EAN27kkfSn1Ms R4Sa3zJ+DfHUmHL5S9g+7UD/CZ5GfKNmIskI4Mz5GsfoUz/0iiU+Bge/9sdcdSJQ kmbLy5YnVzfooLZ3TQmBFsO3iAMWb0s/mDdtyhqhTVmTUshLolkPYyKnPFvdupyv shXcpEST2XJNeaDRnL2K4zSCdxdbnCZHDpjfl9wfioBg7I8NfhXKpf1jYZHH1de4 LXq8ndEFEOVQw/zSpYWfQq1sux8Jiqr+UK/ukbVeFWiGGIUs91gEWtPAf8T0AZo9 ujkJvaWGl98O1g5wmBu0/dAR6QcFJMDfVwbmlIFpU8O+MEaz6X8mM+O5/T0IyTcD eMbAUjj4uYcU7ihKzHEv/0SS9Of38kzff67CLN5k8wOP/9NlaGZ78o1bVle9b52A BdhrsAefFiWHp1jT6Y9Rg4HOO/TguQ9e6EWSKOYFulsiLH9LEFaB9RwZLeLytV0W vlAgY9rUW77g1OJcb7DoNv33nRFuxsKqsnz3DEIXtgozo9CzbYI= =H1vH -----END PGP SIGNATURE----- Merge tag 'asm-generic-6.7' of git://git.kernel.org/pub/scm/linux/kernel/git/arnd/asm-generic Pull ia64 removal and asm-generic updates from Arnd Bergmann: - The ia64 architecture gets its well-earned retirement as planned, now that there is one last (mostly) working release that will be maintained as an LTS kernel. - The architecture specific system call tables are updated for the added map_shadow_stack() syscall and to remove references to the long-gone sys_lookup_dcookie() syscall. * tag 'asm-generic-6.7' of git://git.kernel.org/pub/scm/linux/kernel/git/arnd/asm-generic: hexagon: Remove unusable symbols from the ptrace.h uapi asm-generic: Fix spelling of architecture arch: Reserve map_shadow_stack() syscall number for all architectures syscalls: Cleanup references to sys_lookup_dcookie() Documentation: Drop or replace remaining mentions of IA64 lib/raid6: Drop IA64 support Documentation: Drop IA64 from feature descriptions kernel: Drop IA64 support from sig_fault handlers arch: Remove Itanium (IA-64) architecture |
||
Linus Torvalds
|
2656821f1f |
RCU pull request for v6.7
This pull request contains the following branches: rcu/torture: RCU torture, locktorture and generic torture infrastructure updates that include various fixes, cleanups and consolidations. Among the user visible things, ftrace dumps can now be found into their own file, and module parameters get better documented and reported on dumps. rcu/fixes: Generic and misc fixes all over the place. Some highlights: * Hotplug handling has seen some light cleanups and comments. * An RCU barrier can now be triggered through sysfs to serialize memory stress testing and avoid OOM. * Object information is now dumped in case of invalid callback invocation. * Also various SRCU issues, too hard to trigger to deserve urgent pull requests, have been fixed. rcu/docs: RCU documentation updates rcu/refscale: RCU reference scalability test minor fixes and doc improvements. rcu/tasks: RCU tasks minor fixes rcu/stall: Stall detection updates. Introduce RCU CPU Stall notifiers that allows a subsystem to provide informations to help debugging. Also cure some false positive stalls. -----BEGIN PGP SIGNATURE----- iQIzBAABCgAdFiEEd76+gtGM8MbftQlOhSRUR1COjHcFAmU21h0ACgkQhSRUR1CO jHdUgA/+Myy5K5OxNrqlF/gIK+flOSg635RyZ0DBx8OMXZ/fAg9qRI+PKt5I4Lha eXAg6EtmwSgHmIbjcg8WzsvwniEsqqjOF+n1qil447fHUI2Qqw6c7fIm/MXQkeHJ qA7CODDRtsAnwnjmTteasmMeGV0bmXDENxhNrAZBFnVkRgTqfyDbFcn+nxOaPK6b fmbKvnB07WUg1KOV8/MbEtAZPb8QgHo58bXSZRKjKkiqRQWB/D3On+tShFK7SYJi wIqQ96MLyUXLaIWQ47v6xEO4PZO+3o1wAryvP1DRdb5UrPjO6yKFfQaoo5Mza92G zhBJhnXkVvCoNoCU7GKJIDV54SgDHaB6Sf1GN5cjwfujOkLuGCyg0CpKktCGm7uH n3X66PVep608Uj2Y/pAo/hv3Hbv7lCu4nfrERvVLG9YoxUvTJDsKmBv+SF/g2mxF rHqFa39HUPr1yHA5WjqOQS3lLdqCXEGKvNi6zXCvOceiDbHbiJFkBo6p8TVrbSMX FCOWZ3LoE+6uiLu/lLOEroTjeBd8GhDh1LgWgyVK7o0LhP1018DSBolrpcSwnmOo Q/E4G2x+aPWs+5NTOmMGOIPY70khKQIM3c8YZelSRffJBo6O3yV68h6X45NQxYvx keLvrDaza8h4hKwaof/QaX4ZJgTOZ0xjpawr1vR0hbK8LNtPrUw= =cVD7 -----END PGP SIGNATURE----- Merge tag 'rcu-next-v6.7' of git://git.kernel.org/pub/scm/linux/kernel/git/frederic/linux-dynticks Pull RCU updates from Frederic Weisbecker: - RCU torture, locktorture and generic torture infrastructure updates that include various fixes, cleanups and consolidations. Among the user visible things, ftrace dumps can now be found into their own file, and module parameters get better documented and reported on dumps. - Generic and misc fixes all over the place. Some highlights: * Hotplug handling has seen some light cleanups and comments * An RCU barrier can now be triggered through sysfs to serialize memory stress testing and avoid OOM * Object information is now dumped in case of invalid callback invocation * Also various SRCU issues, too hard to trigger to deserve urgent pull requests, have been fixed - RCU documentation updates - RCU reference scalability test minor fixes and doc improvements. - RCU tasks minor fixes - Stall detection updates. Introduce RCU CPU Stall notifiers that allows a subsystem to provide informations to help debugging. Also cure some false positive stalls. * tag 'rcu-next-v6.7' of git://git.kernel.org/pub/scm/linux/kernel/git/frederic/linux-dynticks: (56 commits) srcu: Only accelerate on enqueue time locktorture: Check the correct variable for allocation failure srcu: Fix callbacks acceleration mishandling rcu: Comment why callbacks migration can't wait for CPUHP_RCUTREE_PREP rcu: Standardize explicit CPU-hotplug calls rcu: Conditionally build CPU-hotplug teardown callbacks rcu: Remove references to rcu_migrate_callbacks() from diagrams rcu: Assume rcu_report_dead() is always called locally rcu: Assume IRQS disabled from rcu_report_dead() rcu: Use rcu_segcblist_segempty() instead of open coding it rcu: kmemleak: Ignore kmemleak false positives when RCU-freeing objects srcu: Fix srcu_struct node grpmask overflow on 64-bit systems torture: Convert parse-console.sh to mktemp rcutorture: Traverse possible cpu to set maxcpu in rcu_nocb_toggle() rcutorture: Replace schedule_timeout*() 1-jiffy waits with HZ/20 torture: Add kvm.sh --debug-info argument locktorture: Rename readers_bind/writers_bind to bind_readers/bind_writers doc: Catch-up update for locktorture module parameters locktorture: Add call_rcu_chains module parameter locktorture: Add new module parameters to lock_torture_print_module_parms() ... |
||
Linus Torvalds
|
eb55307e67 |
X86 core code updates:
- Limit the hardcoded topology quirk for Hygon CPUs to those which have a model ID less than 4. The newer models have the topology CPUID leaf 0xB correctly implemented and are not affected. - Make SMT control more robust against enumeration failures SMT control was added to allow controlling SMT at boottime or runtime. The primary purpose was to provide a simple mechanism to disable SMT in the light of speculation attack vectors. It turned out that the code is sensible to enumeration failures and worked only by chance for XEN/PV. XEN/PV has no real APIC enumeration which means the primary thread mask is not set up correctly. By chance a XEN/PV boot ends up with smp_num_siblings == 2, which makes the hotplug control stay at its default value "enabled". So the mask is never evaluated. The ongoing rework of the topology evaluation caused XEN/PV to end up with smp_num_siblings == 1, which sets the SMT control to "not supported" and the empty primary thread mask causes the hotplug core to deny the bringup of the APS. Make the decision logic more robust and take 'not supported' and 'not implemented' into account for the decision whether a CPU should be booted or not. - Fake primary thread mask for XEN/PV Pretend that all XEN/PV vCPUs are primary threads, which makes the usage of the primary thread mask valid on XEN/PV. That is consistent with because all of the topology information on XEN/PV is fake or even non-existent. - Encapsulate topology information in cpuinfo_x86 Move the randomly scattered topology data into a separate data structure for readability and as a preparatory step for the topology evaluation overhaul. - Consolidate APIC ID data type to u32 It's fixed width hardware data and not randomly u16, int, unsigned long or whatever developers decided to use. - Cure the abuse of cpuinfo for persisting logical IDs. Per CPU cpuinfo is used to persist the logical package and die IDs. That's really not the right place simply because cpuinfo is subject to be reinitialized when a CPU goes through an offline/online cycle. Use separate per CPU data for the persisting to enable the further topology management rework. It will be removed once the new topology management is in place. - Provide a debug interface for inspecting topology information Useful in general and extremly helpful for validating the topology management rework in terms of correctness or "bug" compatibility. -----BEGIN PGP SIGNATURE----- iQJHBAABCgAxFiEEQp8+kY+LLUocC4bMphj1TA10mKEFAmU+yX0THHRnbHhAbGlu dXRyb25peC5kZQAKCRCmGPVMDXSYoROUD/4vlvKEcpm9rbI5DzLcaq4DFHKbyEZF cQtzuOSM/9vTc9DHnuoNNLl9TWSYxiVYnejf3E21evfsqspYlzbTH8bId9XBCUid 6B68AJW842M2erNuwj0b0HwF1z++zpDmBDyhGOty/KQhoM8pYOHMvntAmbzJbuso Dgx6BLVFcboTy6RwlfRa0EE8f9W5V+JbmG/VBDpdyCInal7VrudoVFZmWQnPIft7 zwOJpAoehkp8OKq7geKDf79yWxu9a1sNPd62HtaVEvfHwehHqE6OaMLss1us+0vT SJ/D6gmRQBOwcXaZL0wL1dG7Km9Et4AisOvzhXGvTa5b2D5oljVoqJ7V7FTf5g3u y3aqWbeUJzERUbeJt1HoGVAKyA4GtZOvg+TNIysf6F1Z4khl9alfa9jiqjj4g1au zgItq/ZMBEBmJ7X4FxQUEUVBG2CDsEidyNBDRcimWQUDfBakV/iCs0suD8uu8ZOD K5jMx8Hi2+xFx7r1YqsfsyMBYOf/zUZw65RbNe+kI992JbJ9nhcODbnbo5MlAsyv vcqlK5FwXgZ4YAC8dZHU/tyTiqAW7oaOSkqKwTP5gcyNEqsjQHV//q6v+uqtjfYn 1C4oUsRHT2vJiV9ktNJTA4GQHIYF4geGgpG8Ih2SjXsSzdGtUd3DtX1iq0YiLEOk eHhYsnniqsYB5g== =xrz8 -----END PGP SIGNATURE----- Merge tag 'x86-core-2023-10-29-v2' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull x86 core updates from Thomas Gleixner: - Limit the hardcoded topology quirk for Hygon CPUs to those which have a model ID less than 4. The newer models have the topology CPUID leaf 0xB correctly implemented and are not affected. - Make SMT control more robust against enumeration failures SMT control was added to allow controlling SMT at boottime or runtime. The primary purpose was to provide a simple mechanism to disable SMT in the light of speculation attack vectors. It turned out that the code is sensible to enumeration failures and worked only by chance for XEN/PV. XEN/PV has no real APIC enumeration which means the primary thread mask is not set up correctly. By chance a XEN/PV boot ends up with smp_num_siblings == 2, which makes the hotplug control stay at its default value "enabled". So the mask is never evaluated. The ongoing rework of the topology evaluation caused XEN/PV to end up with smp_num_siblings == 1, which sets the SMT control to "not supported" and the empty primary thread mask causes the hotplug core to deny the bringup of the APS. Make the decision logic more robust and take 'not supported' and 'not implemented' into account for the decision whether a CPU should be booted or not. - Fake primary thread mask for XEN/PV Pretend that all XEN/PV vCPUs are primary threads, which makes the usage of the primary thread mask valid on XEN/PV. That is consistent with because all of the topology information on XEN/PV is fake or even non-existent. - Encapsulate topology information in cpuinfo_x86 Move the randomly scattered topology data into a separate data structure for readability and as a preparatory step for the topology evaluation overhaul. - Consolidate APIC ID data type to u32 It's fixed width hardware data and not randomly u16, int, unsigned long or whatever developers decided to use. - Cure the abuse of cpuinfo for persisting logical IDs. Per CPU cpuinfo is used to persist the logical package and die IDs. That's really not the right place simply because cpuinfo is subject to be reinitialized when a CPU goes through an offline/online cycle. Use separate per CPU data for the persisting to enable the further topology management rework. It will be removed once the new topology management is in place. - Provide a debug interface for inspecting topology information Useful in general and extremly helpful for validating the topology management rework in terms of correctness or "bug" compatibility. * tag 'x86-core-2023-10-29-v2' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (23 commits) x86/apic, x86/hyperv: Use u32 in hv_snp_boot_ap() too x86/cpu: Provide debug interface x86/cpu/topology: Cure the abuse of cpuinfo for persisting logical ids x86/apic: Use u32 for wakeup_secondary_cpu[_64]() x86/apic: Use u32 for [gs]et_apic_id() x86/apic: Use u32 for phys_pkg_id() x86/apic: Use u32 for cpu_present_to_apicid() x86/apic: Use u32 for check_apicid_used() x86/apic: Use u32 for APIC IDs in global data x86/apic: Use BAD_APICID consistently x86/cpu: Move cpu_l[l2]c_id into topology info x86/cpu: Move logical package and die IDs into topology info x86/cpu: Remove pointless evaluation of x86_coreid_bits x86/cpu: Move cu_id into topology info x86/cpu: Move cpu_core_id into topology info hwmon: (fam15h_power) Use topology_core_id() scsi: lpfc: Use topology_core_id() x86/cpu: Move cpu_die_id into topology info x86/cpu: Move phys_proc_id into topology info x86/cpu: Encapsulate topology information in cpuinfo_x86 ... |
||
Ran Xiaokai
|
38685e2a04 |
cpu/hotplug: Don't offline the last non-isolated CPU
If a system has isolated CPUs via the "isolcpus=" command line parameter, then an attempt to offline the last housekeeping CPU will result in a WARN_ON() when rebuilding the scheduler domains and a subsequent panic due to and unhandled empty CPU mas in partition_sched_domains_locked(). cpuset_hotplug_workfn() rebuild_sched_domains_locked() ndoms = generate_sched_domains(&doms, &attr); cpumask_and(doms[0], top_cpuset.effective_cpus, housekeeping_cpumask(HK_FLAG_DOMAIN)); Thus results in an empty CPU mask which triggers the warning and then the subsequent crash: WARNING: CPU: 4 PID: 80 at kernel/sched/topology.c:2366 build_sched_domains+0x120c/0x1408 Call trace: build_sched_domains+0x120c/0x1408 partition_sched_domains_locked+0x234/0x880 rebuild_sched_domains_locked+0x37c/0x798 rebuild_sched_domains+0x30/0x58 cpuset_hotplug_workfn+0x2a8/0x930 Unable to handle kernel paging request at virtual address fffe80027ab37080 partition_sched_domains_locked+0x318/0x880 rebuild_sched_domains_locked+0x37c/0x798 Aside of the resulting crash, it does not make any sense to offline the last last housekeeping CPU. Prevent this by masking out the non-housekeeping CPUs when selecting a target CPU for initiating the CPU unplug operation via the work queue. Suggested-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Ran Xiaokai <ran.xiaokai@zte.com.cn> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Link: https://lore.kernel.org/r/202310171709530660462@zte.com.cn |
||
Thomas Gleixner
|
d91bdd96b5 |
cpu/SMT: Make SMT control more robust against enumeration failures
The SMT control mechanism got added as speculation attack vector
mitigation. The implemented logic relies on the primary thread mask to
be set up properly.
This turns out to be an issue with XEN/PV guests because their CPU hotplug
mechanics do not enumerate APICs and therefore the mask is never correctly
populated.
This went unnoticed so far because by chance XEN/PV ends up with
smp_num_siblings == 2. So smt_hotplug_control stays at its default value
CPU_SMT_ENABLED and the primary thread mask is never evaluated in the
context of CPU hotplug.
This stopped "working" with the upcoming overhaul of the topology
evaluation which legitimately provides a fake topology for XEN/PV. That
sets smp_num_siblings to 1, which causes the core CPU hot-plug core to
refuse to bring up the APs.
This happens because smt_hotplug_control is set to CPU_SMT_NOT_SUPPORTED
which causes cpu_smt_allowed() to evaluate the unpopulated primary thread
mask with the conclusion that all non-boot CPUs are not valid to be
plugged.
Make cpu_smt_allowed() more robust and take CPU_SMT_NOT_SUPPORTED and
CPU_SMT_NOT_IMPLEMENTED into account. Rename it to cpu_bootable() while at
it as that makes it more clear what the function is about.
The primary mask issue on x86 XEN/PV needs to be addressed separately as
there are users outside of the CPU hotplug code too.
Fixes:
|
||
Frederic Weisbecker
|
a28ab03b49 |
rcu: Comment why callbacks migration can't wait for CPUHP_RCUTREE_PREP
The callbacks migration is performed through an explicit call from
the hotplug control CPU right after the death of the target CPU and
before proceeding with the CPUHP_ teardown functions.
This is unusual but necessary and yet uncommented. Summarize the reason
as explained in the changelog of:
|
||
Frederic Weisbecker
|
448e9f34d9 |
rcu: Standardize explicit CPU-hotplug calls
rcu_report_dead() and rcutree_migrate_callbacks() have their headers in rcupdate.h while those are pure rcutree calls, like the other CPU-hotplug functions. Also rcu_cpu_starting() and rcu_report_dead() have different naming conventions while they mirror each other's effects. Fix the headers and propose a naming that relates both functions and aligns with the prefix of other rcutree CPU-hotplug functions. Reviewed-by: Paul E. McKenney <paulmck@kernel.org> Signed-off-by: Frederic Weisbecker <frederic@kernel.org> |
||
Frederic Weisbecker
|
c964c1f5ee |
rcu: Assume rcu_report_dead() is always called locally
rcu_report_dead() has to be called locally by the CPU that is going to exit the RCU state machine. Passing a cpu argument here is error-prone and leaves the possibility for a racy remote call. Use local access instead. Reviewed-by: Paul E. McKenney <paulmck@kernel.org> Signed-off-by: Frederic Weisbecker <frederic@kernel.org> |
||
Ard Biesheuvel
|
cf8e865810 |
arch: Remove Itanium (IA-64) architecture
The Itanium architecture is obsolete, and an informal survey [0] reveals that any residual use of Itanium hardware in production is mostly HP-UX or OpenVMS based. The use of Linux on Itanium appears to be limited to enthusiasts that occasionally boot a fresh Linux kernel to see whether things are still working as intended, and perhaps to churn out some distro packages that are rarely used in practice. None of the original companies behind Itanium still produce or support any hardware or software for the architecture, and it is listed as 'Orphaned' in the MAINTAINERS file, as apparently, none of the engineers that contributed on behalf of those companies (nor anyone else, for that matter) have been willing to support or maintain the architecture upstream or even be responsible for applying the odd fix. The Intel firmware team removed all IA-64 support from the Tianocore/EDK2 reference implementation of EFI in 2018. (Itanium is the original architecture for which EFI was developed, and the way Linux supports it deviates significantly from other architectures.) Some distros, such as Debian and Gentoo, still maintain [unofficial] ia64 ports, but many have dropped support years ago. While the argument is being made [1] that there is a 'for the common good' angle to being able to build and run existing projects such as the Grid Community Toolkit [2] on Itanium for interoperability testing, the fact remains that none of those projects are known to be deployed on Linux/ia64, and very few people actually have access to such a system in the first place. Even if there were ways imaginable in which Linux/ia64 could be put to good use today, what matters is whether anyone is actually doing that, and this does not appear to be the case. There are no emulators widely available, and so boot testing Itanium is generally infeasible for ordinary contributors. GCC still supports IA-64 but its compile farm [3] no longer has any IA-64 machines. GLIBC would like to get rid of IA-64 [4] too because it would permit some overdue code cleanups. In summary, the benefits to the ecosystem of having IA-64 be part of it are mostly theoretical, whereas the maintenance overhead of keeping it supported is real. So let's rip off the band aid, and remove the IA-64 arch code entirely. This follows the timeline proposed by the Debian/ia64 maintainer [5], which removes support in a controlled manner, leaving IA-64 in a known good state in the most recent LTS release. Other projects will follow once the kernel support is removed. [0] https://lore.kernel.org/all/CAMj1kXFCMh_578jniKpUtx_j8ByHnt=s7S+yQ+vGbKt9ud7+kQ@mail.gmail.com/ [1] https://lore.kernel.org/all/0075883c-7c51-00f5-2c2d-5119c1820410@web.de/ [2] https://gridcf.org/gct-docs/latest/index.html [3] https://cfarm.tetaneutral.net/machines/list/ [4] https://lore.kernel.org/all/87bkiilpc4.fsf@mid.deneb.enyo.de/ [5] https://lore.kernel.org/all/ff58a3e76e5102c94bb5946d99187b358def688a.camel@physik.fu-berlin.de/ Acked-by: Tony Luck <tony.luck@intel.com> Signed-off-by: Ard Biesheuvel <ardb@kernel.org> |
||
Thomas Gleixner
|
2b8272ff4a |
cpu/hotplug: Prevent self deadlock on CPU hot-unplug
Xiongfeng reported and debugged a self deadlock of the task which initiates and controls a CPU hot-unplug operation vs. the CFS bandwidth timer. CPU1 CPU2 T1 sets cfs_quota starts hrtimer cfs_bandwidth 'period_timer' T1 is migrated to CPU2 T1 initiates offlining of CPU1 Hotplug operation starts ... 'period_timer' expires and is re-enqueued on CPU1 ... take_cpu_down() CPU1 shuts down and does not handle timers anymore. They have to be migrated in the post dead hotplug steps by the control task. T1 runs the post dead offline operation T1 is scheduled out T1 waits for 'period_timer' to expire T1 waits there forever if it is scheduled out before it can execute the hrtimer offline callback hrtimers_dead_cpu(). Cure this by delegating the hotplug control operation to a worker thread on an online CPU. This takes the initiating user space task, which might be affected by the bandwidth timer, completely out of the picture. Reported-by: Xiongfeng Wang <wangxiongfeng2@huawei.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Tested-by: Yu Liao <liaoyu15@huawei.com> Acked-by: Vincent Guittot <vincent.guittot@linaro.org> Cc: stable@vger.kernel.org Link: https://lore.kernel.org/lkml/8e785777-03aa-99e1-d20e-e956f5685be6@huawei.com Link: https://lore.kernel.org/r/87h6oqdq0i.ffs@tglx |
||
Zhang Rui
|
52b38b7ad5 |
cpu/SMT: Fix cpu_smt_possible() comment
Commit
|
||
Michael Ellerman
|
7f48405c3c |
cpu/SMT: Allow enabling partial SMT states via sysfs
Add support to the /sys/devices/system/cpu/smt/control interface for enabling a specified number of SMT threads per core, including partial SMT states where not all threads are brought online. The current interface accepts "on" and "off", to enable either 1 or all SMT threads per core. This commit allows writing an integer, between 1 and the number of SMT threads supported by the machine. Writing 1 is a synonym for "off", 2 or more enables SMT with the specified number of threads. When reading the file, if all threads are online "on" is returned, to avoid changing behaviour for existing users. If some other number of threads is online then the integer value is returned. Architectures like x86 only supporting 1 thread or all threads, should not define CONFIG_SMT_NUM_THREADS_DYNAMIC. Architecture supporting partial SMT states, like PowerPC, should define it. [ ldufour: Slightly reword the commit's description ] [ ldufour: Remove switch() in __store_smt_control() ] [ ldufour: Rix build issue in control_show() ] Reported-by: kernel test robot <lkp@intel.com> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au> Signed-off-by: Laurent Dufour <ldufour@linux.ibm.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Tested-by: Zhang Rui <rui.zhang@intel.com> Link: https://lore.kernel.org/r/20230705145143.40545-8-ldufour@linux.ibm.com |
||
Michael Ellerman
|
38253464bc |
cpu/SMT: Create topology_smt_thread_allowed()
Some architectures allows partial SMT states, i.e. when not all SMT threads are brought online. To support that, add an architecture helper which checks whether a given CPU is allowed to be brought online depending on how many SMT threads are currently enabled. Since this is only applicable to architecture supporting partial SMT, only these architectures should select the new configuration variable CONFIG_SMT_NUM_THREADS_DYNAMIC. For the other architectures, not supporting the partial SMT states, there is no need to define topology_cpu_smt_allowed(), the generic code assumed that all the threads are allowed or only the primary ones. Call the helper from cpu_smt_enable(), and cpu_smt_allowed() when SMT is enabled, to check if the particular thread should be onlined. Notably, also call it from cpu_smt_disable() if CPU_SMT_ENABLED, to allow offlining some threads to move from a higher to lower number of threads online. [ ldufour: Slightly reword the commit's description ] [ ldufour: Introduce CONFIG_SMT_NUM_THREADS_DYNAMIC ] Suggested-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au> Signed-off-by: Laurent Dufour <ldufour@linux.ibm.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Tested-by: Zhang Rui <rui.zhang@intel.com> Link: https://lore.kernel.org/r/20230705145143.40545-7-ldufour@linux.ibm.com |
||
Laurent Dufour
|
91b4a7dbfe |
cpu/SMT: Remove topology_smt_supported()
Since the maximum number of threads is now passed to cpu_smt_set_num_threads(), checking that value is enough to know whether SMT is supported. Suggested-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Laurent Dufour <ldufour@linux.ibm.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Tested-by: Zhang Rui <rui.zhang@intel.com> Link: https://lore.kernel.org/r/20230705145143.40545-6-ldufour@linux.ibm.com |