Save a compound_head call.
Link: https://lkml.kernel.org/r/20240411061713.1847574-7-alexs@kernel.org
Signed-off-by: Alex Shi (tencent) <alexs@kernel.org>
Reviewed-by: David Hildenbrand <david@redhat.com>
Cc: Izik Eidus <izik.eidus@ravellosystems.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Chris Wright <chrisw@sous-sol.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Use ksm_get_folio() and save 2 compound_head calls.
Link: https://lkml.kernel.org/r/20240411061713.1847574-6-alexs@kernel.org
Signed-off-by: Alex Shi (tencent) <alexs@kernel.org>
Reviewed-by: David Hildenbrand <david@redhat.com>
Cc: Izik Eidus <izik.eidus@ravellosystems.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Chris Wright <chrisw@sous-sol.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Pages in stable tree are all single normal page, so uses ksm_get_folio()
and folio_set_stable_node(), also saves 3 calls to compound_head().
Link: https://lkml.kernel.org/r/20240411061713.1847574-5-alexs@kernel.org
Signed-off-by: Alex Shi (tencent) <alexs@kernel.org>
Reviewed-by: David Hildenbrand <david@redhat.com>
Cc: Izik Eidus <izik.eidus@ravellosystems.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Chris Wright <chrisw@sous-sol.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Turn set_page_stable_node() into a wrapper folio_set_stable_node, and then
use it to replace the former. we will merge them together after all place
converted to folio.
Link: https://lkml.kernel.org/r/20240411061713.1847574-4-alexs@kernel.org
Signed-off-by: Alex Shi (tencent) <alexs@kernel.org>
Reviewed-by: David Hildenbrand <david@redhat.com>
Cc: Izik Eidus <izik.eidus@ravellosystems.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Chris Wright <chrisw@sous-sol.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
To save 2 compound_head calls.
Link: https://lkml.kernel.org/r/20240411061713.1847574-3-alexs@kernel.org
Signed-off-by: Alex Shi (tencent) <alexs@kernel.org>
Reviewed-by: David Hildenbrand <david@redhat.com>
Cc: Izik Eidus <izik.eidus@ravellosystems.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Chris Wright <chrisw@sous-sol.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Patch series "transfer page to folio in KSM".
This is the first part of page to folio transfer on KSM. Since only
single page could be stored in KSM, we could safely transfer stable tree
pages to folios.
This patchset could reduce ksm.o 57kbytes from 2541776 bytes on latest
akpm/mm-stable branch with CONFIG_DEBUG_VM enabled. It pass the KSM
testing in LTP and kernel selftest.
Thanks for Matthew Wilcox and David Hildenbrand's suggestions and
comments!
This patch (of 10):
The ksm only contains single pages, so we could add a new func
ksm_get_folio for get_ksm_page to use folio instead of pages to save a
couple of compound_head calls.
After all caller replaced, get_ksm_page will be removed.
Link: https://lkml.kernel.org/r/20240411061713.1847574-1-alexs@kernel.org
Link: https://lkml.kernel.org/r/20240411061713.1847574-2-alexs@kernel.org
Signed-off-by: Alex Shi (tencent) <alexs@kernel.org>
Reviewed-by: David Hildenbrand <david@redhat.com>
Cc: Izik Eidus <izik.eidus@ravellosystems.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Chris Wright <chrisw@sous-sol.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Let's simplify and only print the page mapcount: we already print the
large folio mapcount and the entire folio mapcount for large folios
separately; that should be sufficient to figure out what's happening.
While at it, print the page mapcount also if it had an underflow,
filtering out only typed pages.
Link: https://lkml.kernel.org/r/20240409192301.907377-18-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Cc: Chris Zankel <chris@zankel.net>
Cc: Hugh Dickins <hughd@google.com>
Cc: John Paul Adrian Glaubitz <glaubitz@physik.fu-berlin.de>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Max Filippov <jcmvbkbc@gmail.com>
Cc: Miaohe Lin <linmiaohe@huawei.com>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Naoya Horiguchi <nao.horiguchi@gmail.com>
Cc: Peter Xu <peterx@redhat.com>
Cc: Richard Chang <richardycc@google.com>
Cc: Rich Felker <dalias@libc.org>
Cc: Ryan Roberts <ryan.roberts@arm.com>
Cc: Yang Shi <shy828301@gmail.com>
Cc: Yin Fengwei <fengwei.yin@intel.com>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Cc: Zi Yan <ziy@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
We want to limit the use of page_mapcount() to the places where it is
absolutely necessary. Let's convert migrate_vma_check_page() to work on a
folio internally so we can remove the page_mapcount() usage.
Note that we reject any large folios.
There is a lot more folio conversion to be had, but that has to wait for
another day. No functional change intended.
Link: https://lkml.kernel.org/r/20240409192301.907377-15-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Cc: Chris Zankel <chris@zankel.net>
Cc: Hugh Dickins <hughd@google.com>
Cc: John Paul Adrian Glaubitz <glaubitz@physik.fu-berlin.de>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Max Filippov <jcmvbkbc@gmail.com>
Cc: Miaohe Lin <linmiaohe@huawei.com>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Naoya Horiguchi <nao.horiguchi@gmail.com>
Cc: Peter Xu <peterx@redhat.com>
Cc: Richard Chang <richardycc@google.com>
Cc: Rich Felker <dalias@libc.org>
Cc: Ryan Roberts <ryan.roberts@arm.com>
Cc: Yang Shi <shy828301@gmail.com>
Cc: Yin Fengwei <fengwei.yin@intel.com>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Cc: Zi Yan <ziy@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
We want to limit the use of page_mapcount() to the places where it is
absolutely necessary.
Let's use folio_mapcount() instead of filemap_unaccount_folio().
No functional change intended, because we're only dealing with small
folios.
Link: https://lkml.kernel.org/r/20240409192301.907377-14-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Cc: Chris Zankel <chris@zankel.net>
Cc: Hugh Dickins <hughd@google.com>
Cc: John Paul Adrian Glaubitz <glaubitz@physik.fu-berlin.de>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Max Filippov <jcmvbkbc@gmail.com>
Cc: Miaohe Lin <linmiaohe@huawei.com>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Naoya Horiguchi <nao.horiguchi@gmail.com>
Cc: Peter Xu <peterx@redhat.com>
Cc: Richard Chang <richardycc@google.com>
Cc: Rich Felker <dalias@libc.org>
Cc: Ryan Roberts <ryan.roberts@arm.com>
Cc: Yang Shi <shy828301@gmail.com>
Cc: Yin Fengwei <fengwei.yin@intel.com>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Cc: Zi Yan <ziy@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
We want to limit the use of page_mapcount() to the places where it is
absolutely necessary. In add_page_for_migration(), we actually want to
check if the folio is mapped shared, to reject such folios. So let's use
folio_likely_mapped_shared() instead.
For small folios, fully mapped THP, and hugetlb folios, there is no change.
For partially mapped, shared THP, we should now do a better job at
rejecting such folios.
Link: https://lkml.kernel.org/r/20240409192301.907377-12-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Cc: Chris Zankel <chris@zankel.net>
Cc: Hugh Dickins <hughd@google.com>
Cc: John Paul Adrian Glaubitz <glaubitz@physik.fu-berlin.de>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Max Filippov <jcmvbkbc@gmail.com>
Cc: Miaohe Lin <linmiaohe@huawei.com>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Naoya Horiguchi <nao.horiguchi@gmail.com>
Cc: Peter Xu <peterx@redhat.com>
Cc: Richard Chang <richardycc@google.com>
Cc: Rich Felker <dalias@libc.org>
Cc: Ryan Roberts <ryan.roberts@arm.com>
Cc: Yang Shi <shy828301@gmail.com>
Cc: Yin Fengwei <fengwei.yin@intel.com>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Cc: Zi Yan <ziy@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
We want to limit the use of page_mapcount() to the places where it is
absolutely necessary.
For tracing purposes, we use page_mapcount() in
__alloc_contig_migrate_range(). Adding that mapcount to total_mapped
sounds strange: total_migrated and total_reclaimed would count each page
only once, not multiple times.
But then, isolate_migratepages_range() adds each folio only once to the
list. So for large folios, we would query the mapcount of the first page
of the folio, which doesn't make too much sense for large folios.
Let's simply use folio_mapped() * folio_nr_pages(), which makes more sense
as nr_migratepages is also incremented by the number of pages in the folio
in case of successful migration.
Link: https://lkml.kernel.org/r/20240409192301.907377-11-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Cc: Chris Zankel <chris@zankel.net>
Cc: Hugh Dickins <hughd@google.com>
Cc: John Paul Adrian Glaubitz <glaubitz@physik.fu-berlin.de>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Max Filippov <jcmvbkbc@gmail.com>
Cc: Miaohe Lin <linmiaohe@huawei.com>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Naoya Horiguchi <nao.horiguchi@gmail.com>
Cc: Peter Xu <peterx@redhat.com>
Cc: Richard Chang <richardycc@google.com>
Cc: Rich Felker <dalias@libc.org>
Cc: Ryan Roberts <ryan.roberts@arm.com>
Cc: Yang Shi <shy828301@gmail.com>
Cc: Yin Fengwei <fengwei.yin@intel.com>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Cc: Zi Yan <ziy@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
We want to limit the use of page_mapcount() to the places where it is
absolutely necessary. We can only unmap full folios; page_mapped(), which
we check here, is translated to folio_mapped() -- based on
folio_mapcount(). So let's print the folio mapcount instead.
Link: https://lkml.kernel.org/r/20240409192301.907377-10-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Cc: Chris Zankel <chris@zankel.net>
Cc: Hugh Dickins <hughd@google.com>
Cc: John Paul Adrian Glaubitz <glaubitz@physik.fu-berlin.de>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Max Filippov <jcmvbkbc@gmail.com>
Cc: Miaohe Lin <linmiaohe@huawei.com>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Naoya Horiguchi <nao.horiguchi@gmail.com>
Cc: Peter Xu <peterx@redhat.com>
Cc: Richard Chang <richardycc@google.com>
Cc: Rich Felker <dalias@libc.org>
Cc: Ryan Roberts <ryan.roberts@arm.com>
Cc: Yang Shi <shy828301@gmail.com>
Cc: Yin Fengwei <fengwei.yin@intel.com>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Cc: Zi Yan <ziy@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
We want to limit the use of page_mapcount() to the places where it is
absolutely necessary. Let's similarly check for folio_mapcount()
underflows instead of page_mapcount() underflows like we do in
zap_present_folio_ptes() now.
Instead of the VM_BUG_ON(), we should actually be doing something like
print_bad_pte(). For now, let's keep it simple and use WARN_ON_ONCE(),
performing that check independently of DEBUG_VM.
Link: https://lkml.kernel.org/r/20240409192301.907377-9-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Cc: Chris Zankel <chris@zankel.net>
Cc: Hugh Dickins <hughd@google.com>
Cc: John Paul Adrian Glaubitz <glaubitz@physik.fu-berlin.de>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Max Filippov <jcmvbkbc@gmail.com>
Cc: Miaohe Lin <linmiaohe@huawei.com>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Naoya Horiguchi <nao.horiguchi@gmail.com>
Cc: Peter Xu <peterx@redhat.com>
Cc: Richard Chang <richardycc@google.com>
Cc: Rich Felker <dalias@libc.org>
Cc: Ryan Roberts <ryan.roberts@arm.com>
Cc: Yang Shi <shy828301@gmail.com>
Cc: Yin Fengwei <fengwei.yin@intel.com>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Cc: Zi Yan <ziy@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
We want to limit the use of page_mapcount() to the places where it is
absolutely necessary. In zap_present_folio_ptes(), let's simply check the
folio mapcount(). If there is some issue, it will underflow at some point
either way when unmapping.
As indicated already in commit 10ebac4f95 ("mm/memory: optimize
unmap/zap with PTE-mapped THP"), we already documented "If we ever have a
cheap folio_mapcount(), we might just want to check for underflows
there.".
There is no change for small folios. For large folios, we'll now catch
more underflows when batch-unmapping, because instead of only testing the
mapcount of the first subpage, we'll test if the folio mapcount
underflows.
Link: https://lkml.kernel.org/r/20240409192301.907377-8-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Cc: Chris Zankel <chris@zankel.net>
Cc: Hugh Dickins <hughd@google.com>
Cc: John Paul Adrian Glaubitz <glaubitz@physik.fu-berlin.de>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Max Filippov <jcmvbkbc@gmail.com>
Cc: Miaohe Lin <linmiaohe@huawei.com>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Naoya Horiguchi <nao.horiguchi@gmail.com>
Cc: Peter Xu <peterx@redhat.com>
Cc: Richard Chang <richardycc@google.com>
Cc: Rich Felker <dalias@libc.org>
Cc: Ryan Roberts <ryan.roberts@arm.com>
Cc: Yang Shi <shy828301@gmail.com>
Cc: Yin Fengwei <fengwei.yin@intel.com>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Cc: Zi Yan <ziy@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Let's track the mapcount of large folios in a single value. The mapcount
of a large folio currently corresponds to the sum of the entire mapcount
and all page mapcounts.
This sum is what we actually want to know in folio_mapcount() and it is
also sufficient for implementing folio_mapped().
With PTE-mapped THP becoming more important and more widely used, we want
to avoid looping over all pages of a folio just to obtain the mapcount of
large folios. The comment "In the common case, avoid the loop when no
pages mapped by PTE" in folio_total_mapcount() does no longer hold for
mTHP that are always mapped by PTE.
Further, we are planning on using folio_mapcount() more frequently, and
might even want to remove page mapcounts for large folios in some kernel
configs. Therefore, allow for reading the mapcount of large folios
efficiently and atomically without looping over any pages.
Maintain the mapcount also for hugetlb pages for simplicity. Use the new
mapcount to implement folio_mapcount() and folio_mapped(). Make
page_mapped() simply call folio_mapped(). We can now get rid of
folio_large_is_mapped().
_nr_pages_mapped is now only used in rmap code and for debugging purposes.
Keep folio_nr_pages_mapped() around, but document that its use should be
limited to rmap internals and debugging purposes.
This change implies one additional atomic add/sub whenever
mapping/unmapping (parts of) a large folio.
As we now batch RMAP operations for PTE-mapped THP during fork(), during
unmap/zap, and when PTE-remapping a PMD-mapped THP, and we adjust the
large mapcount for a PTE batch only once, the added overhead in the common
case is small. Only when unmapping individual pages of a large folio
(e.g., during COW), the overhead might be bigger in comparison, but it's
essentially one additional atomic operation.
Note that before the new mapcount would overflow, already our refcount
would overflow: each mapping requires a folio reference. Extend the
focumentation of folio_mapcount().
Link: https://lkml.kernel.org/r/20240409192301.907377-5-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Yin Fengwei <fengwei.yin@intel.com>
Cc: Chris Zankel <chris@zankel.net>
Cc: Hugh Dickins <hughd@google.com>
Cc: John Paul Adrian Glaubitz <glaubitz@physik.fu-berlin.de>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Max Filippov <jcmvbkbc@gmail.com>
Cc: Miaohe Lin <linmiaohe@huawei.com>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Naoya Horiguchi <nao.horiguchi@gmail.com>
Cc: Peter Xu <peterx@redhat.com>
Cc: Richard Chang <richardycc@google.com>
Cc: Rich Felker <dalias@libc.org>
Cc: Ryan Roberts <ryan.roberts@arm.com>
Cc: Yang Shi <shy828301@gmail.com>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Cc: Zi Yan <ziy@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Let's add a fast-path for small folios to all relevant rmap functions.
Note that only RMAP_LEVEL_PTE applies.
This is a preparation for tracking the mapcount of large folios in a
single value.
Link: https://lkml.kernel.org/r/20240409192301.907377-4-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Yin Fengwei <fengwei.yin@intel.com>
Cc: Chris Zankel <chris@zankel.net>
Cc: Hugh Dickins <hughd@google.com>
Cc: John Paul Adrian Glaubitz <glaubitz@physik.fu-berlin.de>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Max Filippov <jcmvbkbc@gmail.com>
Cc: Miaohe Lin <linmiaohe@huawei.com>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Naoya Horiguchi <nao.horiguchi@gmail.com>
Cc: Peter Xu <peterx@redhat.com>
Cc: Richard Chang <richardycc@google.com>
Cc: Rich Felker <dalias@libc.org>
Cc: Ryan Roberts <ryan.roberts@arm.com>
Cc: Yang Shi <shy828301@gmail.com>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Cc: Zi Yan <ziy@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
follow_pte() is now our main function to lookup PTEs in VM_PFNMAP/VM_IO
VMAs. Let's perform some more sanity checks to make this exported
function harder to abuse.
Further, extend the doc a bit, it still focuses on the KVM use case with
MMU notifiers. Drop the KVM+follow_pfn() comment, follow_pfn() is no
more, and we have other users nowadays.
Also extend the doc regarding refcounted pages and the interaction with
MMU notifiers.
KVM is one example that uses MMU notifiers and can deal with refcounted
pages properly. VFIO is one example that doesn't use MMU notifiers, and
to prevent use-after-free, rejects refcounted pages: pfn_valid(pfn) &&
!PageReserved(pfn_to_page(pfn)). Protection changes are less of a concern
for users like VFIO: the behavior is similar to longterm-pinning a page,
and getting the PTE protection changed afterwards.
The primary concern with refcounted pages is use-after-free, which callers
should be aware of.
Link: https://lkml.kernel.org/r/20240410155527.474777-4-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Cc: Alex Williamson <alex.williamson@redhat.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Fei Li <fei1.li@intel.com>
Cc: Gerald Schaefer <gerald.schaefer@linux.ibm.com>
Cc: Heiko Carstens <hca@linux.ibm.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Sean Christopherson <seanjc@google.com>
Cc: Yonghua Huang <yonghua.huang@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
... and centralize the VM_IO/VM_PFNMAP sanity check in there. We'll
now also perform these sanity checks for direct follow_pte()
invocations.
For generic_access_phys(), we might now check multiple times: nothing to
worry about, really.
Link: https://lkml.kernel.org/r/20240410155527.474777-3-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Acked-by: Sean Christopherson <seanjc@google.com> [KVM]
Cc: Alex Williamson <alex.williamson@redhat.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Fei Li <fei1.li@intel.com>
Cc: Gerald Schaefer <gerald.schaefer@linux.ibm.com>
Cc: Heiko Carstens <hca@linux.ibm.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Yonghua Huang <yonghua.huang@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
During reviewing a patch to fix the race condition between
free_swap_and_cache() and swapoff() [1], it was found that the document
about how to prevent racing with swapoff isn't clear enough. Especially
RCU read lock can prevent swapoff from freeing data structures. So, the
document is added as comments.
[1] https://lore.kernel.org/linux-mm/c8fe62d0-78b8-527a-5bef-ee663ccdc37a@huawei.com/
Link: https://lkml.kernel.org/r/20240407065450.498821-1-ying.huang@intel.com
Signed-off-by: "Huang, Ying" <ying.huang@intel.com>
Reviewed-by: Ryan Roberts <ryan.roberts@arm.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Miaohe Lin <linmiaohe@huawei.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Minchan Kim <minchan@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
accountable_mapping() can return bool, so change it.
Link: https://lkml.kernel.org/r/20240407063843.804274-1-gehao@kylinos.cn
Signed-off-by: Hao Ge <gehao@kylinos.cn>
Cc: Liam R. Howlett <Liam.Howlett@oracle.com>
Cc: Lorenzo Stoakes <lstoakes@gmail.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
vma_wants_writenotify() should return bool, so change it.
Link: https://lkml.kernel.org/r/20240407062653.803142-1-gehao@kylinos.cn
Signed-off-by: Hao Ge <gehao@kylinos.cn>
Cc: Liam R. Howlett <Liam.Howlett@oracle.com>
Cc: Lorenzo Stoakes <lstoakes@gmail.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
The current implementation treats emulated memory devices, such as CXL1.1
type3 memory, as normal DRAM when they are emulated as normal memory
(E820_TYPE_RAM). However, these emulated devices have different
characteristics than traditional DRAM, making it important to distinguish
them. Thus, we modify the tiered memory initialization process to
introduce a delay specifically for CPUless NUMA nodes. This delay ensures
that the memory tier initialization for these nodes is deferred until HMAT
information is obtained during the boot process. Finally, demotion tables
are recalculated at the end.
* late_initcall(memory_tier_late_init);
Some device drivers may have initialized memory tiers between
`memory_tier_init()` and `memory_tier_late_init()`, potentially bringing
online memory nodes and configuring memory tiers. They should be
excluded in the late init.
* Handle cases where there is no HMAT when creating memory tiers
There is a scenario where a CPUless node does not provide HMAT
information. If no HMAT is specified, it falls back to using the
default DRAM tier.
* Introduce another new lock `default_dram_perf_lock` for adist
calculation In the current implementation, iterating through CPUlist
nodes requires holding the `memory_tier_lock`. However,
`mt_calc_adistance()` will end up trying to acquire the same lock,
leading to a potential deadlock. Therefore, we propose introducing a
standalone `default_dram_perf_lock` to protect `default_dram_perf_*`.
This approach not only avoids deadlock but also prevents holding a large
lock simultaneously.
* Upgrade `set_node_memory_tier` to support additional cases, including
default DRAM, late CPUless, and hot-plugged initializations. To cover
hot-plugged memory nodes, `mt_calc_adistance()` and
`mt_find_alloc_memory_type()` are moved into `set_node_memory_tier()` to
handle cases where memtype is not initialized and where HMAT information
is available.
* Introduce `default_memory_types` for those memory types that are not
initialized by device drivers. Because late initialized memory and
default DRAM memory need to be managed, a default memory type is created
for storing all memory types that are not initialized by device drivers
and as a fallback.
Link: https://lkml.kernel.org/r/20240405000707.2670063-3-horenchuang@bytedance.com
Signed-off-by: Ho-Ren (Jack) Chuang <horenchuang@bytedance.com>
Signed-off-by: Hao Xiang <hao.xiang@bytedance.com>
Reviewed-by: "Huang, Ying" <ying.huang@intel.com>
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Cc: Alistair Popple <apopple@nvidia.com>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Dave Jiang <dave.jiang@intel.com>
Cc: Gregory Price <gourry.memverge@gmail.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Ravi Jonnalagadda <ravis.opensrc@micron.com>
Cc: SeongJae Park <sj@kernel.org>
Cc: Tejun Heo <tj@kernel.org>
Cc: Vishal Verma <vishal.l.verma@intel.com>
Cc: Jonathan Cameron <Jonathan.Cameron@huawie.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Patch series "Improved Memory Tier Creation for CPUless NUMA Nodes", v11.
When a memory device, such as CXL1.1 type3 memory, is emulated as normal
memory (E820_TYPE_RAM), the memory device is indistinguishable from normal
DRAM in terms of memory tiering with the current implementation. The
current memory tiering assigns all detected normal memory nodes to the
same DRAM tier. This results in normal memory devices with different
attributions being unable to be assigned to the correct memory tier,
leading to the inability to migrate pages between different types of
memory.
https://lore.kernel.org/linux-mm/PH0PR08MB7955E9F08CCB64F23963B5C3A860A@PH0PR08MB7955.namprd08.prod.outlook.com/T/
This patchset automatically resolves the issues. It delays the
initialization of memory tiers for CPUless NUMA nodes until they obtain
HMAT information and after all devices are initialized at boot time,
eliminating the need for user intervention. If no HMAT is specified, it
falls back to using `default_dram_type`.
Example usecase:
We have CXL memory on the host, and we create VMs with a new system memory
device backed by host CXL memory. We inject CXL memory performance
attributes through QEMU, and the guest now sees memory nodes with
performance attributes in HMAT. With this change, we enable the guest
kernel to construct the correct memory tiering for the memory nodes.
This patch (of 2):
Since different memory devices require finding, allocating, and putting
memory types, these common steps are abstracted in this patch, enhancing
the scalability and conciseness of the code.
Link: https://lkml.kernel.org/r/20240405000707.2670063-1-horenchuang@bytedance.com
Link: https://lkml.kernel.org/r/20240405000707.2670063-2-horenchuang@bytedance.com
Signed-off-by: Ho-Ren (Jack) Chuang <horenchuang@bytedance.com>
Reviewed-by: "Huang, Ying" <ying.huang@intel.com>
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawie.com>
Cc: Alistair Popple <apopple@nvidia.com>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Dave Jiang <dave.jiang@intel.com>
Cc: Gregory Price <gourry.memverge@gmail.com>
Cc: Hao Xiang <hao.xiang@bytedance.com>
Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Ravi Jonnalagadda <ravis.opensrc@micron.com>
Cc: SeongJae Park <sj@kernel.org>
Cc: Tejun Heo <tj@kernel.org>
Cc: Vishal Verma <vishal.l.verma@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Both callers already have a folio; pass it in and save a few calls to
compound_head().
Link: https://lkml.kernel.org/r/20240405153228.2563754-6-willy@infradead.org
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Reviewed-by: Zi Yan <ziy@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
It's now obvious that __folio_put_small() and __folio_put_large() do
almost exactly the same thing. Inline them both into __folio_put().
Link: https://lkml.kernel.org/r/20240405153228.2563754-5-willy@infradead.org
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Reviewed-by: Zi Yan <ziy@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
destroy_large_folio() has only one caller, move its contents there.
Link: https://lkml.kernel.org/r/20240405153228.2563754-4-willy@infradead.org
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Reviewed-by: Zi Yan <ziy@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
The pcp_allowed_order() check in free_the_page() was only being skipped by
__folio_put_small() which is about to be rearranged.
Link: https://lkml.kernel.org/r/20240405153228.2563754-3-willy@infradead.org
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Reviewed-by: Zi Yan <ziy@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Patch series "Clean up __folio_put()".
With all the changes over the last few years, __folio_put_small and
__folio_put_large have become almost identical to each other ... except
you can't tell because they're spread over two files. Rearrange it all so
that you can tell, and then inline them both into __folio_put().
This patch (of 5):
free_unref_folios() can now handle non-hugetlb large folios, so keep
normal large folios in the batch. hugetlb folios still need to be handled
specially.
[peterx@redhat.com: fix panic]
Link: https://lkml.kernel.org/r/ZikjPB0Dt5HA8-uL@x1n
Link: https://lkml.kernel.org/r/20240405153228.2563754-1-willy@infradead.org
Link: https://lkml.kernel.org/r/20240405153228.2563754-2-willy@infradead.org
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Signed-off-by: Peter Xu <peterx@redhat.com>
Reviewed-by: Zi Yan <ziy@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Remove four hidden calls to compound_head(). Also exit early if the
filesystem block size is >= PAGE_SIZE instead of just equal to PAGE_SIZE.
Link: https://lkml.kernel.org/r/20240405180038.2618624-1-willy@infradead.org
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Reviewed-by: Pankaj Raghav <p.raghav@samsung.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
The hugetlb_cma code passes 0 in the order_per_bit argument to
cma_declare_contiguous_nid (the alignment, computed using the page order,
is correctly passed in).
This causes a bit in the cma allocation bitmap to always represent a 4k
page, making the bitmaps potentially very large, and slower.
It would create bitmaps that would be pretty big. E.g. for a 4k page
size on x86, hugetlb_cma=64G would mean a bitmap size of (64G / 4k) / 8
== 2M. With HUGETLB_PAGE_ORDER as order_per_bit, as intended, this
would be (64G / 2M) / 8 == 4k. So, that's quite a difference.
Also, this restricted the hugetlb_cma area to ((PAGE_SIZE <<
MAX_PAGE_ORDER) * 8) * PAGE_SIZE (e.g. 128G on x86) , since
bitmap_alloc uses normal page allocation, and is thus restricted by
MAX_PAGE_ORDER. Specifying anything about that would fail the CMA
initialization.
So, correctly pass in the order instead.
Link: https://lkml.kernel.org/r/20240404162515.527802-2-fvdl@google.com
Fixes: cf11e85fc0 ("mm: hugetlb: optionally allocate gigantic hugepages using cma")
Signed-off-by: Frank van der Linden <fvdl@google.com>
Acked-by: Roman Gushchin <roman.gushchin@linux.dev>
Acked-by: David Hildenbrand <david@redhat.com>
Cc: Marek Szyprowski <m.szyprowski@samsung.com>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
cma_init_reserved_mem uses IS_ALIGNED to check if the size represented by
one bit in the cma allocation bitmask is aligned with
CMA_MIN_ALIGNMENT_BYTES (pageblock size).
However, this is too strict, as this will fail if order_per_bit >
pageblock_order, which is a valid configuration.
We could check IS_ALIGNED both ways, but since both numbers are powers of
two, no check is needed at all.
Link: https://lkml.kernel.org/r/20240404162515.527802-1-fvdl@google.com
Fixes: de9e14eebf ("drivers: dma-contiguous: add initialization from device tree")
Signed-off-by: Frank van der Linden <fvdl@google.com>
Acked-by: David Hildenbrand <david@redhat.com>
Cc: Marek Szyprowski <m.szyprowski@samsung.com>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Roman Gushchin <roman.gushchin@linux.dev>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
hugetlb_wp() can use the struct vm_fault passed in from hugetlb_fault().
This alleviates the stack by consolidating 5 variables into a single
struct.
[vishal.moola@gmail.com: simplify hugetlb_wp() arguments]
Link: https://lkml.kernel.org/r/ZhQtoFNZBNwBCeXn@fedora
Link: https://lkml.kernel.org/r/20240401202651.31440-4-vishal.moola@gmail.com
Signed-off-by: Vishal Moola (Oracle) <vishal.moola@gmail.com>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Muchun Song <muchun.song@linux.dev>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
hugetlb_no_page() can use the struct vm_fault passed in from
hugetlb_fault(). This alleviates the stack by consolidating 7
variables into a single struct.
[vishal.moola@gmail.com: simplify hugetlb_no_page() arguments]
Link: https://lkml.kernel.org/r/ZhQtN8y5zud8iI1u@fedora
Link: https://lkml.kernel.org/r/20240401202651.31440-3-vishal.moola@gmail.com
Signed-off-by: Vishal Moola (Oracle) <vishal.moola@gmail.com>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Muchun Song <muchun.song@linux.dev>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Patch series "Hugetlb fault path to use struct vm_fault", v2.
This patchset converts the hugetlb fault path to use struct vm_fault.
This helps make the code more readable, and alleviates the stack by
allowing us to consolidate many fault-related variables into an individual
pointer.
This patch (of 3):
Now that hugetlb_fault() has a vm_fault available for fault tracking, use
it throughout. This cleans up the code by removing 2 variables, and
prepares hugetlb_fault() to take in a struct vm_fault argument.
Link: https://lkml.kernel.org/r/20240401202651.31440-1-vishal.moola@gmail.com
Link: https://lkml.kernel.org/r/20240401202651.31440-2-vishal.moola@gmail.com
Signed-off-by: Vishal Moola (Oracle) <vishal.moola@gmail.com>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Reviewed-by: Muchun Song <muchun.song@linux.dev>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Let's fixup the remaining comments to consistently call that thing
"GUP-fast". With this change, we consistently call it "GUP-fast".
Link: https://lkml.kernel.org/r/20240402125516.223131-4-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Mike Rapoport (IBM) <rppt@kernel.org>
Reviewed-by: Jason Gunthorpe <jgg@nvidia.com>
Reviewed-by: John Hubbard <jhubbard@nvidia.com>
Cc: Peter Xu <peterx@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Nowadays, we call it "GUP-fast", the external interface includes functions
like "get_user_pages_fast()", and we renamed all internal functions to
reflect that as well.
Let's make the config option reflect that.
Link: https://lkml.kernel.org/r/20240402125516.223131-3-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Mike Rapoport (IBM) <rppt@kernel.org>
Reviewed-by: Jason Gunthorpe <jgg@nvidia.com>
Reviewed-by: John Hubbard <jhubbard@nvidia.com>
Cc: Peter Xu <peterx@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Patch series "mm/gup: consistently call it GUP-fast".
Some cleanups around function names, comments and the config option of
"GUP-fast" -- GUP without "lock" safety belts on.
With this cleanup it's easy to judge which functions are GUP-fast
specific. We now consistently call it "GUP-fast", avoiding mixing it with
"fast GUP", "lockless", or simply "gup" (which I always considered
confusing in the ode).
So the magic now happens in functions that contain "gup_fast", whereby
gup_fast() is the entry point into that magic. Comments consistently
reference either "GUP-fast" or "gup_fast()".
This patch (of 3):
Let's consistently call the "fast-only" part of GUP "GUP-fast" and rename
all relevant internal functions to start with "gup_fast", to make it
clearer that this is not ordinary GUP. The current mixture of "lockless",
"gup" and "gup_fast" is confusing.
Further, avoid the term "huge" when talking about a "leaf" -- for example,
we nowadays check pmd_leaf() because pmd_huge() is gone. For the
"hugepd"/"hugepte" stuff, it's part of the name ("is_hugepd"), so that
stays.
What remains is the "external" interface:
* get_user_pages_fast_only()
* get_user_pages_fast()
* pin_user_pages_fast()
The high-level internal functions for GUP-fast (+slow fallback) are now:
* internal_get_user_pages_fast() -> gup_fast_fallback()
* lockless_pages_from_mm() -> gup_fast()
The basic GUP-fast walker functions:
* gup_pgd_range() -> gup_fast_pgd_range()
* gup_p4d_range() -> gup_fast_p4d_range()
* gup_pud_range() -> gup_fast_pud_range()
* gup_pmd_range() -> gup_fast_pmd_range()
* gup_pte_range() -> gup_fast_pte_range()
* gup_huge_pgd() -> gup_fast_pgd_leaf()
* gup_huge_pud() -> gup_fast_pud_leaf()
* gup_huge_pmd() -> gup_fast_pmd_leaf()
The weird hugepd stuff:
* gup_huge_pd() -> gup_fast_hugepd()
* gup_hugepte() -> gup_fast_hugepte()
The weird devmap stuff:
* __gup_device_huge_pud() -> gup_fast_devmap_pud_leaf()
* __gup_device_huge_pmd -> gup_fast_devmap_pmd_leaf()
* __gup_device_huge() -> gup_fast_devmap_leaf()
* undo_dev_pagemap() -> gup_fast_undo_dev_pagemap()
Helper functions:
* unpin_user_pages_lockless() -> gup_fast_unpin_user_pages()
* gup_fast_folio_allowed() is already properly named
* gup_fast_permitted() is already properly named
With "gup_fast()", we now even have a function that is referred to in
comment in mm/mmu_gather.c.
Link: https://lkml.kernel.org/r/20240402125516.223131-1-david@redhat.com
Link: https://lkml.kernel.org/r/20240402125516.223131-2-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Jason Gunthorpe <jgg@nvidia.com>
Reviewed-by: Mike Rapoport (IBM) <rppt@kernel.org>
Reviewed-by: John Hubbard <jhubbard@nvidia.com>
Cc: Peter Xu <peterx@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
While this function returned a folio, it was still using __alloc_pages()
and __free_pages(). Use __folio_alloc() and put_folio() instead. This
actually removes a call to compound_head(), but more importantly, it
prepares us for the move to memdescs.
Link: https://lkml.kernel.org/r/20240402200656.913841-1-willy@infradead.org
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Reviewed-by: Sidhartha Kumar <sidhartha.kumar@oracle.com>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Reviewed-by: Muchun Song <muchun.song@linux.dev>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
We don't actually use any parts of struct page; all we do is check the
value of the pointer. So give the pointer the appropriate name & type.
Link: https://lkml.kernel.org/r/20240402201659.918308-1-willy@infradead.org
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Reviewed-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Rework madvise_cold_or_pageout_pte_range() to avoid splitting any large
folio that is fully and contiguously mapped in the pageout/cold vm range.
This change means that large folios will be maintained all the way to swap
storage. This both improves performance during swap-out, by eliding the
cost of splitting the folio, and sets us up nicely for maintaining the
large folio when it is swapped back in (to be covered in a separate
series).
Folios that are not fully mapped in the target range are still split, but
note that behavior is changed so that if the split fails for any reason
(folio locked, shared, etc) we now leave it as is and move to the next pte
in the range and continue work on the proceeding folios. Previously any
failure of this sort would cause the entire operation to give up and no
folios mapped at higher addresses were paged out or made cold. Given
large folios are becoming more common, this old behavior would have likely
lead to wasted opportunities.
While we are at it, change the code that clears young from the ptes to use
ptep_test_and_clear_young(), via the new mkold_ptes() batch helper
function. This is more efficent than get_and_clear/modify/set, especially
for contpte mappings on arm64, where the old approach would require
unfolding/refolding and the new approach can be done in place.
Link: https://lkml.kernel.org/r/20240408183946.2991168-8-ryan.roberts@arm.com
Signed-off-by: Ryan Roberts <ryan.roberts@arm.com>
Reviewed-by: Barry Song <v-songbaohua@oppo.com>
Acked-by: David Hildenbrand <david@redhat.com>
Cc: Barry Song <21cnbao@gmail.com>
Cc: Chris Li <chrisl@kernel.org>
Cc: Gao Xiang <xiang@kernel.org>
Cc: "Huang, Ying" <ying.huang@intel.com>
Cc: Kefeng Wang <wangkefeng.wang@huawei.com>
Cc: Lance Yang <ioworker0@gmail.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Yang Shi <shy828301@gmail.com>
Cc: Yu Zhao <yuzhao@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Now that swap supports storing all mTHP sizes, avoid splitting large
folios before swap-out. This benefits performance of the swap-out path by
eliding split_folio_to_list(), which is expensive, and also sets us up for
swapping in large folios in a future series.
If the folio is partially mapped, we continue to split it since we want to
avoid the extra IO overhead and storage of writing out pages
uneccessarily.
THP_SWPOUT and THP_SWPOUT_FALLBACK counters should continue to count
events only for PMD-mappable folios to avoid user confusion. THP_SWPOUT
already has the appropriate guard. Add a guard for THP_SWPOUT_FALLBACK.
It may be appropriate to add per-size counters in future.
Link: https://lkml.kernel.org/r/20240408183946.2991168-7-ryan.roberts@arm.com
Signed-off-by: Ryan Roberts <ryan.roberts@arm.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Barry Song <v-songbaohua@oppo.com>
Cc: Barry Song <21cnbao@gmail.com>
Cc: Chris Li <chrisl@kernel.org>
Cc: Gao Xiang <xiang@kernel.org>
Cc: "Huang, Ying" <ying.huang@intel.com>
Cc: Kefeng Wang <wangkefeng.wang@huawei.com>
Cc: Lance Yang <ioworker0@gmail.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Yang Shi <shy828301@gmail.com>
Cc: Yu Zhao <yuzhao@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Multi-size THP enables performance improvements by allocating large,
pte-mapped folios for anonymous memory. However I've observed that on an
arm64 system running a parallel workload (e.g. kernel compilation) across
many cores, under high memory pressure, the speed regresses. This is due
to bottlenecking on the increased number of TLBIs added due to all the
extra folio splitting when the large folios are swapped out.
Therefore, solve this regression by adding support for swapping out mTHP
without needing to split the folio, just like is already done for
PMD-sized THP. This change only applies when CONFIG_THP_SWAP is enabled,
and when the swap backing store is a non-rotating block device. These are
the same constraints as for the existing PMD-sized THP swap-out support.
Note that no attempt is made to swap-in (m)THP here - this is still done
page-by-page, like for PMD-sized THP. But swapping-out mTHP is a
prerequisite for swapping-in mTHP.
The main change here is to improve the swap entry allocator so that it can
allocate any power-of-2 number of contiguous entries between [1, (1 <<
PMD_ORDER)]. This is done by allocating a cluster for each distinct order
and allocating sequentially from it until the cluster is full. This
ensures that we don't need to search the map and we get no fragmentation
due to alignment padding for different orders in the cluster. If there is
no current cluster for a given order, we attempt to allocate a free
cluster from the list. If there are no free clusters, we fail the
allocation and the caller can fall back to splitting the folio and
allocates individual entries (as per existing PMD-sized THP fallback).
The per-order current clusters are maintained per-cpu using the existing
infrastructure. This is done to avoid interleving pages from different
tasks, which would prevent IO being batched. This is already done for the
order-0 allocations so we follow the same pattern.
As is done for order-0 per-cpu clusters, the scanner now can steal order-0
entries from any per-cpu-per-order reserved cluster. This ensures that
when the swap file is getting full, space doesn't get tied up in the
per-cpu reserves.
This change only modifies swap to be able to accept any order mTHP. It
doesn't change the callers to elide doing the actual split. That will be
done in separate changes.
Link: https://lkml.kernel.org/r/20240408183946.2991168-6-ryan.roberts@arm.com
Signed-off-by: Ryan Roberts <ryan.roberts@arm.com>
Reviewed-by: "Huang, Ying" <ying.huang@intel.com>
Cc: Barry Song <21cnbao@gmail.com>
Cc: Barry Song <v-songbaohua@oppo.com>
Cc: Chris Li <chrisl@kernel.org>
Cc: David Hildenbrand <david@redhat.com>
Cc: Gao Xiang <xiang@kernel.org>
Cc: Kefeng Wang <wangkefeng.wang@huawei.com>
Cc: Lance Yang <ioworker0@gmail.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Yang Shi <shy828301@gmail.com>
Cc: Yu Zhao <yuzhao@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
We are about to allow swap storage of any mTHP size. To prepare for that,
let's change get_swap_pages() to take a folio order parameter instead of
nr_pages. This makes the interface self-documenting; a power-of-2 number
of pages must be provided. We will also need the order internally so this
simplifies accessing it.
Link: https://lkml.kernel.org/r/20240408183946.2991168-5-ryan.roberts@arm.com
Signed-off-by: Ryan Roberts <ryan.roberts@arm.com>
Reviewed-by: "Huang, Ying" <ying.huang@intel.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Cc: Barry Song <21cnbao@gmail.com>
Cc: Barry Song <v-songbaohua@oppo.com>
Cc: Chris Li <chrisl@kernel.org>
Cc: Gao Xiang <xiang@kernel.org>
Cc: Kefeng Wang <wangkefeng.wang@huawei.com>
Cc: Lance Yang <ioworker0@gmail.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Yang Shi <shy828301@gmail.com>
Cc: Yu Zhao <yuzhao@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
struct percpu_cluster stores the index of cpu's current cluster and the
offset of the next entry that will be allocated for the cpu. These two
pieces of information are redundant because the cluster index is just
(offset / SWAPFILE_CLUSTER). The only reason for explicitly keeping the
cluster index is because the structure used for it also has a flag to
indicate "no cluster". However this data structure also contains a spin
lock, which is never used in this context, as a side effect the code
copies the spinlock_t structure, which is questionable coding practice in
my view.
So let's clean this up and store only the next offset, and use a sentinal
value (SWAP_NEXT_INVALID) to indicate "no cluster". SWAP_NEXT_INVALID is
chosen to be 0, because 0 will never be seen legitimately; The first page
in the swap file is the swap header, which is always marked bad to prevent
it from being allocated as an entry. This also prevents the cluster to
which it belongs being marked free, so it will never appear on the free
list.
This change saves 16 bytes per cpu. And given we are shortly going to
extend this mechanism to be per-cpu-AND-per-order, we will end up saving
16 * 9 = 144 bytes per cpu, which adds up if you have 256 cpus in the
system.
Link: https://lkml.kernel.org/r/20240408183946.2991168-4-ryan.roberts@arm.com
Signed-off-by: Ryan Roberts <ryan.roberts@arm.com>
Reviewed-by: "Huang, Ying" <ying.huang@intel.com>
Cc: Barry Song <21cnbao@gmail.com>
Cc: Barry Song <v-songbaohua@oppo.com>
Cc: Chris Li <chrisl@kernel.org>
Cc: David Hildenbrand <david@redhat.com>
Cc: Gao Xiang <xiang@kernel.org>
Cc: Kefeng Wang <wangkefeng.wang@huawei.com>
Cc: Lance Yang <ioworker0@gmail.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Yang Shi <shy828301@gmail.com>
Cc: Yu Zhao <yuzhao@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Now that we no longer have a convenient flag in the cluster to determine
if a folio is large, free_swap_and_cache() will take a reference and lock
a large folio much more often, which could lead to contention and (e.g.)
failure to split large folios, etc.
Let's solve that problem by batch freeing swap and cache with a new
function, free_swap_and_cache_nr(), to free a contiguous range of swap
entries together. This allows us to first drop a reference to each swap
slot before we try to release the cache folio. This means we only try to
release the folio once, only taking the reference and lock once - much
better than the previous 512 times for the 2M THP case.
Contiguous swap entries are gathered in zap_pte_range() and
madvise_free_pte_range() in a similar way to how present ptes are already
gathered in zap_pte_range().
While we are at it, let's simplify by converting the return type of both
functions to void. The return value was used only by zap_pte_range() to
print a bad pte, and was ignored by everyone else, so the extra reporting
wasn't exactly guaranteed. We will still get the warning with most of the
information from get_swap_device(). With the batch version, we wouldn't
know which pte was bad anyway so could print the wrong one.
[ryan.roberts@arm.com: fix a build warning on parisc]
Link: https://lkml.kernel.org/r/20240409111840.3173122-1-ryan.roberts@arm.com
Link: https://lkml.kernel.org/r/20240408183946.2991168-3-ryan.roberts@arm.com
Signed-off-by: Ryan Roberts <ryan.roberts@arm.com>
Acked-by: David Hildenbrand <david@redhat.com>
Cc: Barry Song <21cnbao@gmail.com>
Cc: Barry Song <v-songbaohua@oppo.com>
Cc: Chris Li <chrisl@kernel.org>
Cc: Gao Xiang <xiang@kernel.org>
Cc: "Huang, Ying" <ying.huang@intel.com>
Cc: Kefeng Wang <wangkefeng.wang@huawei.com>
Cc: Lance Yang <ioworker0@gmail.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Yang Shi <shy828301@gmail.com>
Cc: Yu Zhao <yuzhao@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Patch series "Swap-out mTHP without splitting", v7.
This series adds support for swapping out multi-size THP (mTHP) without
needing to first split the large folio via
split_huge_page_to_list_to_order(). It closely follows the approach
already used to swap-out PMD-sized THP.
There are a couple of reasons for swapping out mTHP without splitting:
- Performance: It is expensive to split a large folio and under
extreme memory pressure some workloads regressed performance when
using 64K mTHP vs 4K small folios because of this extra cost in the
swap-out path. This series not only eliminates the regression but
makes it faster to swap out 64K mTHP vs 4K small folios.
- Memory fragmentation avoidance: If we can avoid splitting a large
folio memory is less likely to become fragmented, making it easier to
re-allocate a large folio in future.
- Performance: Enables a separate series [7] to swap-in whole mTHPs,
which means we won't lose the TLB-efficiency benefits of mTHP once the
memory has been through a swap cycle.
I've done what I thought was the smallest change possible, and as a
result, this approach is only employed when the swap is backed by a
non-rotating block device (just as PMD-sized THP is supported today).
Discussion against the RFC concluded that this is sufficient.
Performance Testing
===================
I've run some swap performance tests on Ampere Altra VM (arm64) with 8
CPUs. The VM is set up with a 35G block ram device as the swap device and
the test is run from inside a memcg limited to 40G memory. I've then run
`usemem` from vm-scalability with 70 processes, each allocating and
writing 1G of memory. I've repeated everything 6 times and taken the mean
performance improvement relative to 4K page baseline:
| alloc size | baseline | + this series |
| | mm-unstable (~v6.9-rc1) | |
|:-----------|------------------------:|------------------------:|
| 4K Page | 0.0% | 1.3% |
| 64K THP | -13.6% | 46.3% |
| 2M THP | 91.4% | 89.6% |
So with this change, the 64K swap performance goes from a 14% regression to a
46% improvement. While 2M shows a small regression I'm confident that this is
just noise.
[1] https://lore.kernel.org/linux-mm/20231010142111.3997780-1-ryan.roberts@arm.com/
[2] https://lore.kernel.org/linux-mm/20231017161302.2518826-1-ryan.roberts@arm.com/
[3] https://lore.kernel.org/linux-mm/20231025144546.577640-1-ryan.roberts@arm.com/
[4] https://lore.kernel.org/linux-mm/20240311150058.1122862-1-ryan.roberts@arm.com/
[5] https://lore.kernel.org/linux-mm/20240327144537.4165578-1-ryan.roberts@arm.com/
[6] https://lore.kernel.org/linux-mm/20240403114032.1162100-1-ryan.roberts@arm.com/
[7] https://lore.kernel.org/linux-mm/20240304081348.197341-1-21cnbao@gmail.com/
[8] https://lore.kernel.org/linux-mm/CAGsJ_4yMOow27WDvN2q=E4HAtDd2PJ=OQ5Pj9DG+6FLWwNuXUw@mail.gmail.com/
[9] https://lore.kernel.org/linux-mm/579d5127-c763-4001-9625-4563a9316ac3@redhat.com/
This patch (of 7):
As preparation for supporting small-sized THP in the swap-out path,
without first needing to split to order-0, Remove the CLUSTER_FLAG_HUGE,
which, when present, always implies PMD-sized THP, which is the same as
the cluster size.
The only use of the flag was to determine whether a swap entry refers to a
single page or a PMD-sized THP in swap_page_trans_huge_swapped(). Instead
of relying on the flag, we now pass in order, which originates from the
folio's order. This allows the logic to work for folios of any order.
The one snag is that one of the swap_page_trans_huge_swapped() call sites
does not have the folio. But it was only being called there to shortcut a
call __try_to_reclaim_swap() in some cases. __try_to_reclaim_swap() gets
the folio and (via some other functions) calls
swap_page_trans_huge_swapped(). So I've removed the problematic call site
and believe the new logic should be functionally equivalent.
That said, removing the fast path means that we will take a reference and
trylock a large folio much more often, which we would like to avoid. The
next patch will solve this.
Removing CLUSTER_FLAG_HUGE also means we can remove split_swap_cluster()
which used to be called during folio splitting, since
split_swap_cluster()'s only job was to remove the flag.
Link: https://lkml.kernel.org/r/20240408183946.2991168-1-ryan.roberts@arm.com
Link: https://lkml.kernel.org/r/20240408183946.2991168-2-ryan.roberts@arm.com
Signed-off-by: Ryan Roberts <ryan.roberts@arm.com>
Reviewed-by: "Huang, Ying" <ying.huang@intel.com>
Acked-by: Chris Li <chrisl@kernel.org>
Acked-by: David Hildenbrand <david@redhat.com>
Cc: Barry Song <21cnbao@gmail.com>
Cc: Gao Xiang <xiang@kernel.org>
Cc: Kefeng Wang <wangkefeng.wang@huawei.com>
Cc: Lance Yang <ioworker0@gmail.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Yang Shi <shy828301@gmail.com>
Cc: Yu Zhao <yuzhao@google.com>
Cc: Barry Song <v-songbaohua@oppo.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Commit 44042b4498 ("mm/page_alloc: allow high-order pages to be stored
on the per-cpu lists") extends the PCP allocator to store THP pages, and
it determines whether to cache THP pages in PCP by comparing with
pageblock_order. But the pageblock_order is not always equal to THP
order. It might also be MAX_PAGE_ORDER, which could prevent PCP from
caching THP pages.
Therefore, using HPAGE_PMD_ORDER instead to determine the need for caching
THP for PCP will fix this issue
Link: https://lkml.kernel.org/r/a25c9e14cd03907d5978b60546a69e6aa3fc2a7d.1712151833.git.baolin.wang@linux.alibaba.com
Fixes: 44042b4498 ("mm/page_alloc: allow high-order pages to be stored on the per-cpu lists")
Signed-off-by: Baolin Wang <baolin.wang@linux.alibaba.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Mel Gorman <mgorman@techsingularity.net>
Reviewed-by: Barry Song <baohua@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Replace the use of pages with folios. Saves a few calls to
compound_head() and removes some uses of obsolete functions.
Link: https://lkml.kernel.org/r/20240403171838.1445826-8-willy@infradead.org
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Reviewed-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Vishal Moola (Oracle) <vishal.moola@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Pull folios from the page cache instead of pages. Half of this work had
been done already, but we were still operating on pages for a large chunk
of this function. There is no attempt in this patch to handle large
folios that are smaller than a THP; that will have to wait for a future
patch.
[willy@infradead.org: the unlikely() is embedded in IS_ERR()]
Link: https://lkml.kernel.org/r/ZhIWX8K0E2tSyMSr@casper.infradead.org
Link: https://lkml.kernel.org/r/20240403171838.1445826-7-willy@infradead.org
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Use new_folio throughout where we had been using hpage.
Link: https://lkml.kernel.org/r/20240403171838.1445826-6-willy@infradead.org
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Reviewed-by: Vishal Moola (Oracle) <vishal.moola@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>