We need to hold the mmap_sem for write to initiatate mlock()/munlock()
because we may need to merge/split vmas. However, this can lead to very
long lock hold times attempting to fault in a large memory region to mlock
it into memory. This can hold off other faults against the mm
[multithreaded tasks] and other scans of the mm, such as via /proc. To
alleviate this, downgrade the mmap_sem to read mode during the population
of the region for locking. This is especially the case if we need to
reclaim memory to lock down the region. We [probably?] don't need to do
this for unlocking as all of the pages should be resident--they're already
mlocked.
Now, the caller's of the mlock functions [mlock_fixup() and
mlock_vma_pages_range()] expect the mmap_sem to be returned in write mode.
Changing all callers appears to be way too much effort at this point.
So, restore write mode before returning. Note that this opens a window
where the mmap list could change in a multithreaded process. So, at least
for mlock_fixup(), where we could be called in a loop over multiple vmas,
we check that a vma still exists at the start address and that vma still
covers the page range [start,end). If not, we return an error, -EAGAIN,
and let the caller deal with it.
Return -EAGAIN from mlock_vma_pages_range() function and mlock_fixup() if
the vma at 'start' disappears or changes so that the page range
[start,end) is no longer contained in the vma. Again, let the caller deal
with it. Looks like only sys_remap_file_pages() [via mmap_region()]
should actually care.
With this patch, I no longer see processes like ps(1) blocked for seconds
or minutes at a time waiting for a large [multiple gigabyte] region to be
locked down. However, I occassionally see delays while unlocking or
unmapping a large mlocked region. Should we also downgrade the mmap_sem
for the unlock path?
Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com>
Signed-off-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Make sure that mlocked pages also live on the unevictable LRU, so kswapd
will not scan them over and over again.
This is achieved through various strategies:
1) add yet another page flag--PG_mlocked--to indicate that
the page is locked for efficient testing in vmscan and,
optionally, fault path. This allows early culling of
unevictable pages, preventing them from getting to
page_referenced()/try_to_unmap(). Also allows separate
accounting of mlock'd pages, as Nick's original patch
did.
Note: Nick's original mlock patch used a PG_mlocked
flag. I had removed this in favor of the PG_unevictable
flag + an mlock_count [new page struct member]. I
restored the PG_mlocked flag to eliminate the new
count field.
2) add the mlock/unevictable infrastructure to mm/mlock.c,
with internal APIs in mm/internal.h. This is a rework
of Nick's original patch to these files, taking into
account that mlocked pages are now kept on unevictable
LRU list.
3) update vmscan.c:page_evictable() to check PageMlocked()
and, if vma passed in, the vm_flags. Note that the vma
will only be passed in for new pages in the fault path;
and then only if the "cull unevictable pages in fault
path" patch is included.
4) add try_to_unlock() to rmap.c to walk a page's rmap and
ClearPageMlocked() if no other vmas have it mlocked.
Reuses as much of try_to_unmap() as possible. This
effectively replaces the use of one of the lru list links
as an mlock count. If this mechanism let's pages in mlocked
vmas leak through w/o PG_mlocked set [I don't know that it
does], we should catch them later in try_to_unmap(). One
hopes this will be rare, as it will be relatively expensive.
Original mm/internal.h, mm/rmap.c and mm/mlock.c changes:
Signed-off-by: Nick Piggin <npiggin@suse.de>
splitlru: introduce __get_user_pages():
New munlock processing need to GUP_FLAGS_IGNORE_VMA_PERMISSIONS.
because current get_user_pages() can't grab PROT_NONE pages theresore it
cause PROT_NONE pages can't munlock.
[akpm@linux-foundation.org: fix this for pagemap-pass-mm-into-pagewalkers.patch]
[akpm@linux-foundation.org: untangle patch interdependencies]
[akpm@linux-foundation.org: fix things after out-of-order merging]
[hugh@veritas.com: fix page-flags mess]
[lee.schermerhorn@hp.com: fix munlock page table walk - now requires 'mm']
[kosaki.motohiro@jp.fujitsu.com: build fix]
[kosaki.motohiro@jp.fujitsu.com: fix truncate race and sevaral comments]
[kosaki.motohiro@jp.fujitsu.com: splitlru: introduce __get_user_pages()]
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com>
Cc: Nick Piggin <npiggin@suse.de>
Cc: Dave Hansen <dave@linux.vnet.ibm.com>
Cc: Matt Mackall <mpm@selenic.com>
Signed-off-by: Hugh Dickins <hugh@veritas.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Halesh says:
Please find the below testcase provide to test mlock.
Test Case :
===========================
#include <sys/resource.h>
#include <stdio.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <unistd.h>
#include <sys/mman.h>
#include <fcntl.h>
#include <errno.h>
#include <stdlib.h>
int main(void)
{
int fd,ret, i = 0;
char *addr, *addr1 = NULL;
unsigned int page_size;
struct rlimit rlim;
if (0 != geteuid())
{
printf("Execute this pgm as root\n");
exit(1);
}
/* create a file */
if ((fd = open("mmap_test.c",O_RDWR|O_CREAT,0755)) == -1)
{
printf("cant create test file\n");
exit(1);
}
page_size = sysconf(_SC_PAGE_SIZE);
/* set the MEMLOCK limit */
rlim.rlim_cur = 2000;
rlim.rlim_max = 2000;
if ((ret = setrlimit(RLIMIT_MEMLOCK,&rlim)) != 0)
{
printf("Cant change limit values\n");
exit(1);
}
addr = 0;
while (1)
{
/* map a page into memory each time*/
if ((addr = (char *) mmap(addr,page_size, PROT_READ |
PROT_WRITE,MAP_SHARED,fd,0)) == MAP_FAILED)
{
printf("cant do mmap on file\n");
exit(1);
}
if (0 == i)
addr1 = addr;
i++;
errno = 0;
/* lock the mapped memory pagewise*/
if ((ret = mlock((char *)addr, 1500)) == -1)
{
printf("errno value is %d\n", errno);
printf("cant lock maped region\n");
exit(1);
}
addr = addr + page_size;
}
}
======================================================
This testcase results in an mlock() failure with errno 14 that is EFAULT,
but it has nowhere been specified that mlock() will return EFAULT. When I
tested the same on older kernels like 2.6.18, I got the correct result i.e
errno 12 (ENOMEM).
I think in source code mlock(2), setting errno ENOMEM has been missed in
do_mlock() , on mlock_fixup() failure.
SUSv3 requires the following behavior frmo mlock(2).
[ENOMEM]
Some or all of the address range specified by the addr and
len arguments does not correspond to valid mapped pages
in the address space of the process.
[EAGAIN]
Some or all of the memory identified by the operation could not
be locked when the call was made.
This rule isn't so nice and slighly strange. but many people think
POSIX/SUS compliance is important.
Reported-by: Halesh Sadashiv <halesh.sadashiv@ap.sony.com>
Tested-by: Halesh Sadashiv <halesh.sadashiv@ap.sony.com>
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: <stable@kernel.org> [2.6.25.x, 2.6.26.x]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Fix a bug in mm/mlock.c on 32-bit architectures that prevents a user from
locking more than 4GB of shared memory, or allocating more than 4GB of
shared memory in hugepages, when rlim[RLIMIT_MEMLOCK] is set to
RLIM_INFINITY.
Signed-off-by: Herbert van den Bergh <herbert.van.den.bergh@oracle.com>
Acked-by: Chris Mason <chris.mason@oracle.com>
Cc: <stable@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
First thing mm.h does is including sched.h solely for can_do_mlock() inline
function which has "current" dereference inside. By dealing with can_do_mlock()
mm.h can be detached from sched.h which is good. See below, why.
This patch
a) removes unconditional inclusion of sched.h from mm.h
b) makes can_do_mlock() normal function in mm/mlock.c
c) exports can_do_mlock() to not break compilation
d) adds sched.h inclusions back to files that were getting it indirectly.
e) adds less bloated headers to some files (asm/signal.h, jiffies.h) that were
getting them indirectly
Net result is:
a) mm.h users would get less code to open, read, preprocess, parse, ... if
they don't need sched.h
b) sched.h stops being dependency for significant number of files:
on x86_64 allmodconfig touching sched.h results in recompile of 4083 files,
after patch it's only 3744 (-8.3%).
Cross-compile tested on
all arm defconfigs, all mips defconfigs, all powerpc defconfigs,
alpha alpha-up
arm
i386 i386-up i386-defconfig i386-allnoconfig
ia64 ia64-up
m68k
mips
parisc parisc-up
powerpc powerpc-up
s390 s390-up
sparc sparc-up
sparc64 sparc64-up
um-x86_64
x86_64 x86_64-up x86_64-defconfig x86_64-allnoconfig
as well as my two usual configs.
Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
mm is defined as vma->vm_mm, so use that.
Acked-by: Hugh Dickins <hugh@veritas.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
- Move capable() from sched.h to capability.h;
- Use <linux/capability.h> where capable() is used
(in include/, block/, ipc/, kernel/, a few drivers/,
mm/, security/, & sound/;
many more drivers/ to go)
Signed-off-by: Randy Dunlap <rdunlap@xenotime.net>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Initial git repository build. I'm not bothering with the full history,
even though we have it. We can create a separate "historical" git
archive of that later if we want to, and in the meantime it's about
3.2GB when imported into git - space that would just make the early
git days unnecessarily complicated, when we don't have a lot of good
infrastructure for it.
Let it rip!