gfs2_fallocate was calling gfs2_write_alloc_required() once at the start of
the function. This caused problems since gfs2_write_alloc_required used a
long unsigned int for the len, but gfs2_fallocate could allocate a much
larger amount. This patch will move the call into the loop where the
chunks are actually allocated and zeroed out. This will keep the allocation
size under the limit, and also allow gfs2_fallocate to quickly skip over
sections of the file that are already completely allocated.
fallcate_chunk was also not correctly setting the file size. It was using the
len veriable to find the last block written to, but by the time it was setting
the size, the len variable had already been decremented to 0.
Signed-off-by: Benjamin Marzinski <bmarzins@redhat.com>
Signed-off-by: Steven Whitehouse <swhiteho@redhat.com>
The FITRIM ioctl provides an alternative way to send discard requests to
the underlying device. Using the discard mount option results in every
freed block generating a discard request to the block device. This can
be slow, since many block devices can only process discard requests of
larger sizes, and also such operations can be time consuming.
Rather than using the discard mount option, FITRIM allows a sweep of the
filesystem on an occasional basis, and also to optionally avoid sending
down discard requests for smaller regions.
In GFS2 FITRIM will work at resource group granularity. There is a flag
for each resource group which keeps track of which resource groups have
been trimmed. This flag is reset whenever a deallocation occurs in the
resource group, and set whenever a successful FITRIM of that resource
group has taken place. This helps to reduce repeated discard requests
for the same block ranges, again improving performance.
Signed-off-by: Steven Whitehouse <swhiteho@redhat.com>
* git://git.kernel.org/pub/scm/linux/kernel/git/steve/gfs2-3.0-nmw:
GFS2: local functions should be static
GFS2: We only need one ACL getting function
GFS2: Fix multi-block allocation
GFS2: decouple quota allocations from block allocations
GFS2: split function rgblk_search
GFS2: Fix up "off by one" in the previous patch
GFS2: move toward a generic multi-block allocator
GFS2: O_(D)SYNC support for fallocate
GFS2: remove vestigial al_alloced
GFS2: combine gfs2_alloc_block and gfs2_alloc_di
GFS2: Add non-try locks back to get_local_rgrp
GFS2: f_ra is always valid in dir readahead function
GFS2: Fix very unlikley memory leak in ACL xattr code
GFS2: More automated code analysis fixes
GFS2: Add readahead to sequential directory traversal
GFS2: Fix up REQ flags
This patch separates the code pertaining to allocations into two
parts: quota-related information and block reservations.
This patch also moves all the block reservation structure allocations to
function gfs2_inplace_reserve to simplify the code, and moves
the frees to function gfs2_inplace_release.
Signed-off-by: Bob Peterson <rpeterso@redhat.com>
Signed-off-by: Steven Whitehouse <swhiteho@redhat.com>
Add sync of metadata after fallocate for O_SYNC files to ensure that we
meet expectations for everything being on disk in this case.
Unfortunately, the offset and len parameters are modified during the
course of the fallocate function, so I've had to add a couple of new
variables to call generic_write_sync() at the end.
I know that potentially this will sync data as well within the range,
but I think that is a fairly harmless side-effect overall, since we
would not normally expect there to be any dirty data within the range in
question.
Signed-off-by: Steven Whitehouse <swhiteho@redhat.com>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: Benjamin Marzinski <bmarzins@redhat.com>
A potentially uninitialised variable, some unreachable code,
and the main part of this, fixing the error path in the
unlink function.
Signed-off-by: Steven Whitehouse <swhiteho@redhat.com>
This patch adds read-ahead capability to GFS2's
directory hash table management. It greatly improves
performance for some directory operations. For example:
In one of my file systems that has 1000 directories, each
of which has 1000 files, time to execute a recursive
ls (time ls -fR /mnt/gfs2 > /dev/null) was reduced
from 2m2.814s on a stock kernel to 0m45.938s.
Signed-off-by: Bob Peterson <rpeterso@redhat.com>
Signed-off-by: Steven Whitehouse <swhiteho@redhat.com>
* 'for-next' of git://git.kernel.org/pub/scm/linux/kernel/git/hch/vfs-queue: (21 commits)
leases: fix write-open/read-lease race
nfs: drop unnecessary locking in llseek
ext4: replace cut'n'pasted llseek code with generic_file_llseek_size
vfs: add generic_file_llseek_size
vfs: do (nearly) lockless generic_file_llseek
direct-io: merge direct_io_walker into __blockdev_direct_IO
direct-io: inline the complete submission path
direct-io: separate map_bh from dio
direct-io: use a slab cache for struct dio
direct-io: rearrange fields in dio/dio_submit to avoid holes
direct-io: fix a wrong comment
direct-io: separate fields only used in the submission path from struct dio
vfs: fix spinning prevention in prune_icache_sb
vfs: add a comment to inode_permission()
vfs: pass all mask flags check_acl and posix_acl_permission
vfs: add hex format for MAY_* flag values
vfs: indicate that the permission functions take all the MAY_* flags
compat: sync compat_stats with statfs.
vfs: add "device" tag to /proc/self/mountstats
cleanup: vfs: small comment fix for block_invalidatepage
...
Fix up trivial conflict in fs/gfs2/file.c (llseek changes)
The i_mutex lock use of generic _file_llseek hurts. Independent processes
accessing the same file synchronize over a single lock, even though
they have no need for synchronization at all.
Under high utilization this can cause llseek to scale very poorly on larger
systems.
This patch does some rethinking of the llseek locking model:
First the 64bit f_pos is not necessarily atomic without locks
on 32bit systems. This can already cause races with read() today.
This was discussed on linux-kernel in the past and deemed acceptable.
The patch does not change that.
Let's look at the different seek variants:
SEEK_SET: Doesn't really need any locking.
If there's a race one writer wins, the other loses.
For 32bit the non atomic update races against read()
stay the same. Without a lock they can also happen
against write() now. The read() race was deemed
acceptable in past discussions, and I think if it's
ok for read it's ok for write too.
=> Don't need a lock.
SEEK_END: This behaves like SEEK_SET plus it reads
the maximum size too. Reading the maximum size would have the
32bit atomic problem. But luckily we already have a way to read
the maximum size without locking (i_size_read), so we
can just use that instead.
Without i_mutex there is no synchronization with write() anymore,
however since the write() update is atomic on 64bit it just behaves
like another racy SEEK_SET. On non atomic 32bit it's the same
as SEEK_SET.
=> Don't need a lock, but need to use i_size_read()
SEEK_CUR: This has a read-modify-write race window
on the same file. One could argue that any application
doing unsynchronized seeks on the same file is already broken.
But for the sake of not adding a regression here I'm
using the file->f_lock to synchronize this. Using this
lock is much better than the inode mutex because it doesn't
synchronize between processes.
=> So still need a lock, but can use a f_lock.
This patch implements this new scheme in generic_file_llseek.
I dropped generic_file_llseek_unlocked and changed all callers.
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
GFS2's fallocate code currently goes through the page cache. Since it's only
writing to the end of the file or to holes in it, it doesn't need to, and it
was causing issues on low memory environments. This patch pulls in some of
Steve's block allocation work, and uses it to simply allocate the blocks for
the file, and zero them out at allocation time. It provides a slight
performance increase, and it dramatically simplifies the code.
Signed-off-by: Benjamin Marzinski <bmarzins@redhat.com>
Signed-off-by: Steven Whitehouse <swhiteho@redhat.com>
This patch brings gfs2's ->page_mkwrite uptodate with respect to the
expectations set by the VM. Also added is a check to wait if the fs
is frozen, before we attempt to get a glock. This will only work on
the node which initiates the freeze, but thats ok since the transaction
lock will still provide the expected barrier on other nodes.
The major change here is that we return a locked page now, except when
we don't return a page at all (error cases). This removes the race
which required rechecking the page after it was returned.
Signed-off-by: Steven Whitehouse <swhiteho@redhat.com>
Cc: Nick Piggin <npiggin@kernel.dk>
Unfortunately, it is not enough to just ignore locked buffers during
the AIL flush from fsync. We need to be able to ignore all buffers
which are locked, dirty or pinned at this stage as they might have
been added subsequent to the log flush earlier in the fsync function.
In addition, this means that we no longer need to rely on i_mutex to
keep out writes during fsync, so we can, as a side-effect, remove
that protection too.
Signed-off-by: Steven Whitehouse <swhiteho@redhat.com>
Tested-By: Abhijith Das <adas@redhat.com>
This means that after the initial allocation for any inode, the
last used resource group is cached in the inode for future use.
This drastically reduces the number of lookups of resource
groups in the common case, and this the contention on that
data structure.
The allocation algorithm is the same as previously, except that we
always check to see if the goal block is within the cached rgrp
first before going to the rbtree to look one up.
Signed-off-by: Steven Whitehouse <swhiteho@redhat.com>
We need to take the inode's glock whenever the inode's size
is referenced, otherwise it might not be uptodate. Even
though generic_file_llseek_unlocked() doesn't implement
SEEK_DATA, SEEK_HOLE directly, it does reference the inode's
size in those cases, so we need to add them to the list
of origins which need the glock.
Signed-off-by: Steven Whitehouse <swhiteho@redhat.com>
Cc: Andi Kleen <ak@linux.intel.com>
The aim of this patch is to use the newly enhanced ->dirty_inode()
super block operation to deal with atime updates, rather than
piggy backing that code into ->write_inode() as is currently
done.
The net result is a simplification of the code in various places
and a reduction of the number of gfs2_dinode_out() calls since
this is now implied by ->dirty_inode().
Some of the mark_inode_dirty() calls have been moved under glocks
in order to take advantage of then being able to avoid locking in
->dirty_inode() when we already have suitable locks.
One consequence is that generic_write_end() now correctly deals
with file size updates, so that we do not need a separate check
for that afterwards. This also, indirectly, means that fdatasync
should work correctly on GFS2 - the current code always syncs the
metadata whether it needs to or not.
Has survived testing with postmark (with and without atime) and
also fsx.
Signed-off-by: Steven Whitehouse <swhiteho@redhat.com>
Journaled data requires that a complete flush of all dirty data for
the file is done, in order that the ail flush which comes after
will succeed.
Also the recently enhanced bug trap can trigger falsely in case
an ail flush from fsync races with a page read. This updates the
bug trap such that it will ignore buffers which are locked and
only trigger on dirty and/or pinned buffers when the ail flush
is run from fsync. The original bug trap is retained when ail
flush is run from ->go_sync()
Signed-off-by: Steven Whitehouse <swhiteho@redhat.com>
Now that the data writing is part of fsync proper, we can split
the waiting part out and do it later on. This reduces the
number of waits that we do during fsync on average.
There is also no need to take the i_mutex unless we are flushing
metadata to disk, so we can move that to within the metadata
flushing code.
Signed-off-by: Steven Whitehouse <swhiteho@redhat.com>
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs-2.6: (107 commits)
vfs: use ERR_CAST for err-ptr tossing in lookup_instantiate_filp
isofs: Remove global fs lock
jffs2: fix IN_DELETE_SELF on overwriting rename() killing a directory
fix IN_DELETE_SELF on overwriting rename() on ramfs et.al.
mm/truncate.c: fix build for CONFIG_BLOCK not enabled
fs:update the NOTE of the file_operations structure
Remove dead code in dget_parent()
AFS: Fix silly characters in a comment
switch d_add_ci() to d_splice_alias() in "found negative" case as well
simplify gfs2_lookup()
jfs_lookup(): don't bother with . or ..
get rid of useless dget_parent() in btrfs rename() and link()
get rid of useless dget_parent() in fs/btrfs/ioctl.c
fs: push i_mutex and filemap_write_and_wait down into ->fsync() handlers
drivers: fix up various ->llseek() implementations
fs: handle SEEK_HOLE/SEEK_DATA properly in all fs's that define their own llseek
Ext4: handle SEEK_HOLE/SEEK_DATA generically
Btrfs: implement our own ->llseek
fs: add SEEK_HOLE and SEEK_DATA flags
reiserfs: make reiserfs default to barrier=flush
...
Fix up trivial conflicts in fs/xfs/linux-2.6/xfs_super.c due to the new
shrinker callout for the inode cache, that clashed with the xfs code to
start the periodic workers later.
Btrfs needs to be able to control how filemap_write_and_wait_range() is called
in fsync to make it less of a painful operation, so push down taking i_mutex and
the calling of filemap_write_and_wait() down into the ->fsync() handlers. Some
file systems can drop taking the i_mutex altogether it seems, like ext3 and
ocfs2. For correctness sake I just pushed everything down in all cases to make
sure that we keep the current behavior the same for everybody, and then each
individual fs maintainer can make up their mind about what to do from there.
Thanks,
Acked-by: Jan Kara <jack@suse.cz>
Signed-off-by: Josef Bacik <josef@redhat.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
This adds S_NOSEC support to GFS2. We set/reset the flag either when
a user calls setattr or when we have just regained the glock
from another node. The flag is only set if there are no xattrs
on the inode and there is no suid bit set.
Signed-off-by: Steven Whitehouse <swhiteho@redhat.com>
Reviewed-by: Andi Kleen <ak@linux.intel.com>
Cc: Al Viro <viro@ZenIV.linux.org.uk>
The GFS2 fallocate code chooses a target size to for allocating chunks of
space. Whenever it can't find any resource groups with enough space free, it
halves its target. Since this target is in bytes, eventually it will no longer
be a multiple of blksize. As long as there is more space available in the
resource group than the target, this isn't a problem, since gfs2 will use the
actual space available, which is always a multiple of blksize. However,
when gfs couldn't fallocate a bigger chunk than the target, it was using the
non-blksize aligned number. This caused a BUG in later code that required
blksize aligned offsets. GFS2 now ensures that bytes is always a multiple of
blksize
Signed-off-by: Benjamin Marzinski <bmarzins@redhat.com>
Signed-off-by: Steven Whitehouse <swhiteho@redhat.com>
This patch is designed to clean up GFS2's fsync
implementation and ensure that it really does get everything on
disk. Since ->write_inode() has been updated, we can call that
via the vfs library function sync_inode_metadata() and the only
remaining thing that has to be done is to ensure that we get
any revoke records in the log after the inode has been written back.
Signed-off-by: Steven Whitehouse <swhiteho@redhat.com>
GFS2 was relying on the writepage code to write out the zeroed data for
fallocate. However, with FALLOC_FL_KEEP_SIZE set, this may be past i_size.
If it is, it will be ignored. To work around this, gfs2 now calls
write_dirty_buffer directly on the buffer_heads when FALLOC_FL_KEEP_SIZE
is set, and it's writing past i_size.
This version is just a cleanup of my last version
Signed-off-by: Benjamin Marzinski <bmarzins@redhat.com>
Signed-off-by: Steven Whitehouse <swhiteho@redhat.com>
And give it a kernel-doc comment.
[akpm@linux-foundation.org: btrfs changed in linux-next]
Signed-off-by: Serge E. Hallyn <serge.hallyn@canonical.com>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: Daniel Lezcano <daniel.lezcano@free.fr>
Acked-by: David Howells <dhowells@redhat.com>
Cc: James Morris <jmorris@namei.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
GFS2 fallocate wasn't properly checking if a blocks were already allocated.
In write_empty_blocks(), if a page didn't have buffer_heads attached, GFS2
was always treating it as if there were no blocks allocated for that page.
GFS2 now calls gfs2_block_map() to check if the blocks are allocated before
writing them out.
Signed-off-by: Benjamin Marzinski <bmarzins@redhat.com>
Signed-off-by: Steven Whitehouse <swhiteho@redhat.com>
This patch ensures that we always wait for glock demotion when
dropping flocks on a file in order to prevent any race
conditions associated with further flock calls or closing
the file.
Signed-off-by: Steven Whitehouse <swhiteho@redhat.com>
The mmap system call grabs a glock when an update to atime maybe
required. It does this in order to ensure that the flags on the
inode are uptodate, but since it will only mark atime for a future
update, an exclusive lock is not required here (one will be taken
later when the actual update is performed).
Also, the lock can be skipped when the mount is marked noatime in
addition to the original check which only looked at the noatime
flag for the inode itself.
This should increase the scalability of the mmap call when multiple
nodes are all mmaping the same file.
Reported-by: Scooter Morris <scooter@cgl.ucsf.edu>
Signed-off-by: Steven Whitehouse <swhiteho@redhat.com>
Currently all filesystems except XFS implement fallocate asynchronously,
while XFS forced a commit. Both of these are suboptimal - in case of O_SYNC
I/O we really want our allocation on disk, especially for the !KEEP_SIZE
case where we actually grow the file with user-visible zeroes. On the
other hand always commiting the transaction is a bad idea for fast-path
uses of fallocate like for example in recent Samba versions. Given
that block allocation is a data plane operation anyway change it from
an inode operation to a file operation so that we have the file structure
available that lets us check for O_SYNC.
This also includes moving the code around for a few of the filesystems,
and remove the already unnedded S_ISDIR checks given that we only wire
up fallocate for regular files.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
The caller allocated it, the caller should free it.
The only issue so far is that we could change the flp pointer even on an
error return if the fl_change callback failed. But we can simply move
the flp assignment after the fl_change invocation, as the callers don't
care about the flp return value if the setlease call failed.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We modified setlease to require the caller to allocate the new lease in
the case of creating a new lease, but forgot to fix up the filesystem
methods.
Cc: Steven Whitehouse <swhiteho@redhat.com>
Cc: Steve French <sfrench@samba.org>
Cc: Trond Myklebust <Trond.Myklebust@netapp.com>
Signed-off-by: J. Bruce Fields <bfields@redhat.com>
Acked-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* 'llseek' of git://git.kernel.org/pub/scm/linux/kernel/git/arnd/bkl:
vfs: make no_llseek the default
vfs: don't use BKL in default_llseek
llseek: automatically add .llseek fop
libfs: use generic_file_llseek for simple_attr
mac80211: disallow seeks in minstrel debug code
lirc: make chardev nonseekable
viotape: use noop_llseek
raw: use explicit llseek file operations
ibmasmfs: use generic_file_llseek
spufs: use llseek in all file operations
arm/omap: use generic_file_llseek in iommu_debug
lkdtm: use generic_file_llseek in debugfs
net/wireless: use generic_file_llseek in debugfs
drm: use noop_llseek
* 'vfs' of git://git.kernel.org/pub/scm/linux/kernel/git/arnd/bkl: (30 commits)
BKL: remove BKL from freevxfs
BKL: remove BKL from qnx4
autofs4: Only declare function when CONFIG_COMPAT is defined
autofs: Only declare function when CONFIG_COMPAT is defined
ncpfs: Lock socket in ncpfs while setting its callbacks
fs/locks.c: prepare for BKL removal
BKL: Remove BKL from ncpfs
BKL: Remove BKL from OCFS2
BKL: Remove BKL from squashfs
BKL: Remove BKL from jffs2
BKL: Remove BKL from ecryptfs
BKL: Remove BKL from afs
BKL: Remove BKL from USB gadgetfs
BKL: Remove BKL from autofs4
BKL: Remove BKL from isofs
BKL: Remove BKL from fat
BKL: Remove BKL from ext2 filesystem
BKL: Remove BKL from do_new_mount()
BKL: Remove BKL from cgroup
BKL: Remove BKL from NTFS
...
All file_operations should get a .llseek operation so we can make
nonseekable_open the default for future file operations without a
.llseek pointer.
The three cases that we can automatically detect are no_llseek, seq_lseek
and default_llseek. For cases where we can we can automatically prove that
the file offset is always ignored, we use noop_llseek, which maintains
the current behavior of not returning an error from a seek.
New drivers should normally not use noop_llseek but instead use no_llseek
and call nonseekable_open at open time. Existing drivers can be converted
to do the same when the maintainer knows for certain that no user code
relies on calling seek on the device file.
The generated code is often incorrectly indented and right now contains
comments that clarify for each added line why a specific variant was
chosen. In the version that gets submitted upstream, the comments will
be gone and I will manually fix the indentation, because there does not
seem to be a way to do that using coccinelle.
Some amount of new code is currently sitting in linux-next that should get
the same modifications, which I will do at the end of the merge window.
Many thanks to Julia Lawall for helping me learn to write a semantic
patch that does all this.
===== begin semantic patch =====
// This adds an llseek= method to all file operations,
// as a preparation for making no_llseek the default.
//
// The rules are
// - use no_llseek explicitly if we do nonseekable_open
// - use seq_lseek for sequential files
// - use default_llseek if we know we access f_pos
// - use noop_llseek if we know we don't access f_pos,
// but we still want to allow users to call lseek
//
@ open1 exists @
identifier nested_open;
@@
nested_open(...)
{
<+...
nonseekable_open(...)
...+>
}
@ open exists@
identifier open_f;
identifier i, f;
identifier open1.nested_open;
@@
int open_f(struct inode *i, struct file *f)
{
<+...
(
nonseekable_open(...)
|
nested_open(...)
)
...+>
}
@ read disable optional_qualifier exists @
identifier read_f;
identifier f, p, s, off;
type ssize_t, size_t, loff_t;
expression E;
identifier func;
@@
ssize_t read_f(struct file *f, char *p, size_t s, loff_t *off)
{
<+...
(
*off = E
|
*off += E
|
func(..., off, ...)
|
E = *off
)
...+>
}
@ read_no_fpos disable optional_qualifier exists @
identifier read_f;
identifier f, p, s, off;
type ssize_t, size_t, loff_t;
@@
ssize_t read_f(struct file *f, char *p, size_t s, loff_t *off)
{
... when != off
}
@ write @
identifier write_f;
identifier f, p, s, off;
type ssize_t, size_t, loff_t;
expression E;
identifier func;
@@
ssize_t write_f(struct file *f, const char *p, size_t s, loff_t *off)
{
<+...
(
*off = E
|
*off += E
|
func(..., off, ...)
|
E = *off
)
...+>
}
@ write_no_fpos @
identifier write_f;
identifier f, p, s, off;
type ssize_t, size_t, loff_t;
@@
ssize_t write_f(struct file *f, const char *p, size_t s, loff_t *off)
{
... when != off
}
@ fops0 @
identifier fops;
@@
struct file_operations fops = {
...
};
@ has_llseek depends on fops0 @
identifier fops0.fops;
identifier llseek_f;
@@
struct file_operations fops = {
...
.llseek = llseek_f,
...
};
@ has_read depends on fops0 @
identifier fops0.fops;
identifier read_f;
@@
struct file_operations fops = {
...
.read = read_f,
...
};
@ has_write depends on fops0 @
identifier fops0.fops;
identifier write_f;
@@
struct file_operations fops = {
...
.write = write_f,
...
};
@ has_open depends on fops0 @
identifier fops0.fops;
identifier open_f;
@@
struct file_operations fops = {
...
.open = open_f,
...
};
// use no_llseek if we call nonseekable_open
////////////////////////////////////////////
@ nonseekable1 depends on !has_llseek && has_open @
identifier fops0.fops;
identifier nso ~= "nonseekable_open";
@@
struct file_operations fops = {
... .open = nso, ...
+.llseek = no_llseek, /* nonseekable */
};
@ nonseekable2 depends on !has_llseek @
identifier fops0.fops;
identifier open.open_f;
@@
struct file_operations fops = {
... .open = open_f, ...
+.llseek = no_llseek, /* open uses nonseekable */
};
// use seq_lseek for sequential files
/////////////////////////////////////
@ seq depends on !has_llseek @
identifier fops0.fops;
identifier sr ~= "seq_read";
@@
struct file_operations fops = {
... .read = sr, ...
+.llseek = seq_lseek, /* we have seq_read */
};
// use default_llseek if there is a readdir
///////////////////////////////////////////
@ fops1 depends on !has_llseek && !nonseekable1 && !nonseekable2 && !seq @
identifier fops0.fops;
identifier readdir_e;
@@
// any other fop is used that changes pos
struct file_operations fops = {
... .readdir = readdir_e, ...
+.llseek = default_llseek, /* readdir is present */
};
// use default_llseek if at least one of read/write touches f_pos
/////////////////////////////////////////////////////////////////
@ fops2 depends on !fops1 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @
identifier fops0.fops;
identifier read.read_f;
@@
// read fops use offset
struct file_operations fops = {
... .read = read_f, ...
+.llseek = default_llseek, /* read accesses f_pos */
};
@ fops3 depends on !fops1 && !fops2 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @
identifier fops0.fops;
identifier write.write_f;
@@
// write fops use offset
struct file_operations fops = {
... .write = write_f, ...
+ .llseek = default_llseek, /* write accesses f_pos */
};
// Use noop_llseek if neither read nor write accesses f_pos
///////////////////////////////////////////////////////////
@ fops4 depends on !fops1 && !fops2 && !fops3 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @
identifier fops0.fops;
identifier read_no_fpos.read_f;
identifier write_no_fpos.write_f;
@@
// write fops use offset
struct file_operations fops = {
...
.write = write_f,
.read = read_f,
...
+.llseek = noop_llseek, /* read and write both use no f_pos */
};
@ depends on has_write && !has_read && !fops1 && !fops2 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @
identifier fops0.fops;
identifier write_no_fpos.write_f;
@@
struct file_operations fops = {
... .write = write_f, ...
+.llseek = noop_llseek, /* write uses no f_pos */
};
@ depends on has_read && !has_write && !fops1 && !fops2 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @
identifier fops0.fops;
identifier read_no_fpos.read_f;
@@
struct file_operations fops = {
... .read = read_f, ...
+.llseek = noop_llseek, /* read uses no f_pos */
};
@ depends on !has_read && !has_write && !fops1 && !fops2 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @
identifier fops0.fops;
@@
struct file_operations fops = {
...
+.llseek = noop_llseek, /* no read or write fn */
};
===== End semantic patch =====
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Cc: Julia Lawall <julia@diku.dk>
Cc: Christoph Hellwig <hch@infradead.org>
This prepares the removal of the big kernel lock from the
file locking code. We still use the BKL as long as fs/lockd
uses it and ceph might sleep, but we can flip the definition
to a private spinlock as soon as that's done.
All users outside of fs/lockd get converted to use
lock_flocks() instead of lock_kernel() where appropriate.
Based on an earlier patch to use a spinlock from Matthew
Wilcox, who has attempted this a few times before, the
earliest patch from over 10 years ago turned it into
a semaphore, which ended up being slower than the BKL
and was subsequently reverted.
Someone should do some serious performance testing when
this becomes a spinlock, since this has caused problems
before. Using a spinlock should be at least as good
as the BKL in theory, but who knows...
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Acked-by: Matthew Wilcox <willy@linux.intel.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Trond Myklebust <trond.myklebust@fys.uio.no>
Cc: "J. Bruce Fields" <bfields@fieldses.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Miklos Szeredi <mszeredi@suse.cz>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: John Kacur <jkacur@redhat.com>
Cc: Sage Weil <sage@newdream.net>
Cc: linux-kernel@vger.kernel.org
Cc: linux-fsdevel@vger.kernel.org
Some of the functions in GFS2 were not reserving space in the transaction for
the resource group header and the resource groups bitblocks that get added
when you do allocation. GFS2 now makes sure to reserve space for the
resource group header and either all the bitblocks in the resource group, or
one for each block that it may allocate, whichever is smaller using the new
gfs2_rg_blocks() inline function.
Signed-off-by: Benjamin Marzinski <bmarzins@redhat.com>
Signed-off-by: Steven Whitehouse <swhiteho@redhat.com>
With the update of the truncate code, ip->i_disksize and
inode->i_size are merely copies of each other. This means
we can remove ip->i_disksize and use inode->i_size exclusively
reducing the size of a GFS2 inode by 8 bytes.
Signed-off-by: Steven Whitehouse <swhiteho@redhat.com>
Function gfs2_write_alloc_required always returned zero as its
return code. Therefore, it doesn't need to return a return code
at all. Given that, we can use the return value to return whether
or not the dinode needs block allocations rather than passing
that value in, which in turn simplifies a bunch of error checking.
Signed-off-by: Bob Peterson <rpeterso@redhat.com>
Signed-off-by: Steven Whitehouse <swhiteho@redhat.com>
We should be checking for the ownership of the file for which
flags are being set, rather than just for write access.
Reported-by: Dan Rosenberg <dan.j.rosenberg@gmail.com>
Signed-off-by: Steven Whitehouse <swhiteho@redhat.com>
gfs2_lock() will skip locks on file which have mode set to 02666. This is a problem in cases where the mode of the file is changed after a process has obtained a lock on the file. Such a lock will be skipped and will result in a BUG in locks_remove_flock().
gfs2_lock() should skip the check for mandatory locks when unlocking a file.
Signed-off-by: Sachin Prabhu <sprabhu@redhat.com>
Signed-off-by: Steven Whitehouse <swhiteho@redhat.com>
The VFS reads the inode size during generic_file_aio_write() but
with no locking around it. In order to get the expected result
from O_APPEND opens, this patch updated the inode size before
calling generic_file_aio_write()
There is of course still a race here, in that there is nothing to
prevent another node coming in and extending the file in the
mean time. On the other hand, when used with file locking this
will ensure that the expected results are obtained.
Signed-off-by: Steven Whitehouse <swhiteho@redhat.com>
* mark struct vm_area_struct::vm_ops as const
* mark vm_ops in AGP code
But leave TTM code alone, something is fishy there with global vm_ops
being used.
Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This has been on my list for some time. We need to change the way
in which we handle extended attributes to allow faster file creation
times (by reducing the number of transactions required) and the
extended attribute code is the main obstacle to this.
In addition to that, the VFS provides a way to demultiplex the xattr
calls which we ought to be using, rather than rolling our own. This
patch changes the GFS2 code to use that VFS feature and as a result
the code shrinks by a couple of hundred lines or so, and becomes
easier to read.
I'm planning on doing further clean up work in this area, but this
patch is a good start. The cleaned up code also uses the more usual
"xattr" shorthand, I plan to eliminate the use of "eattr" eventually
and in the mean time it serves as a flag as to which bits of the code
have been updated.
Signed-off-by: Steven Whitehouse <swhiteho@redhat.com>
GFS2 currently does not support mandatory flocks. An flock() call with
LOCK_MAND triggers unexpected behavior because gfs2 is not checking for
this lock type. This patch corrects that.
Signed-off-by: Abhi Das <adas@redhat.com>
Signed-off-by: Steven Whitehouse <swhiteho@redhat.com>
This patch renames the ops_*.c files which have no counterpart
without the ops_ prefix in order to shorten the name and make
it more readable. In addition, ops_address.h (which was very
small) is moved into inode.h and inode.h is cleaned up by
adding extern where required.
Signed-off-by: Steven Whitehouse <swhiteho@redhat.com>