There are precedences of trap number being referred to as
trap_nr. However thread struct refers trap number as trap_no.
Change it to trap_nr.
Also use enum instead of left-over literals for trap values.
This is pure cleanup, no functional change intended.
Suggested-by: Ingo Molnar <mingo@eltu.hu>
Signed-off-by: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Ananth N Mavinakayanahalli <ananth@in.ibm.com>
Cc: Jim Keniston <jkenisto@linux.vnet.ibm.com>
Cc: Linux-mm <linux-mm@kvack.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Arnaldo Carvalho de Melo <acme@infradead.org>
Cc: Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/20120312092555.5379.942.sendpatchset@srdronam.in.ibm.com
[ Fixed the math-emu build ]
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Factor out IA32 (compatibility instruction set) from 32-bit address
space in the thread_info flags; this is a precondition patch for x32
support.
Originally-by: H. J. Lu <hjl.tools@gmail.com>
Signed-off-by: H. Peter Anvin <hpa@zytor.com>
Link: http://lkml.kernel.org/n/tip-4pr1xnnksprt7t0h3w5fw4rv@git.kernel.org
This makes us recognize when we try to restore FPU state that matches
what we already have in the FPU on this CPU, and avoids the restore
entirely if so.
To do this, we add two new data fields:
- a percpu 'fpu_owner_task' variable that gets written any time we
update the "has_fpu" field, and thus acts as a kind of back-pointer
to the task that owns the CPU. The exception is when we save the FPU
state as part of a context switch - if the save can keep the FPU
state around, we leave the 'fpu_owner_task' variable pointing at the
task whose FP state still remains on the CPU.
- a per-thread 'last_cpu' field, that indicates which CPU that thread
used its FPU on last. We update this on every context switch
(writing an invalid CPU number if the last context switch didn't
leave the FPU in a lazily usable state), so we know that *that*
thread has done nothing else with the FPU since.
These two fields together can be used when next switching back to the
task to see if the CPU still matches: if 'fpu_owner_task' matches the
task we are switching to, we know that no other task (or kernel FPU
usage) touched the FPU on this CPU in the meantime, and if the current
CPU number matches the 'last_cpu' field, we know that this thread did no
other FP work on any other CPU, so the FPU state on the CPU must match
what was saved on last context switch.
In that case, we can avoid the 'f[x]rstor' entirely, and just clear the
CR0.TS bit.
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This moves the bit that indicates whether a thread has ownership of the
FPU from the TS_USEDFPU bit in thread_info->status to a word of its own
(called 'has_fpu') in task_struct->thread.has_fpu.
This fixes two independent bugs at the same time:
- changing 'thread_info->status' from the scheduler causes nasty
problems for the other users of that variable, since it is defined to
be thread-synchronous (that's what the "TS_" part of the naming was
supposed to indicate).
So perfectly valid code could (and did) do
ti->status |= TS_RESTORE_SIGMASK;
and the compiler was free to do that as separate load, or and store
instructions. Which can cause problems with preemption, since a task
switch could happen in between, and change the TS_USEDFPU bit. The
change to TS_USEDFPU would be overwritten by the final store.
In practice, this seldom happened, though, because the 'status' field
was seldom used more than once, so gcc would generally tend to
generate code that used a read-modify-write instruction and thus
happened to avoid this problem - RMW instructions are naturally low
fat and preemption-safe.
- On x86-32, the current_thread_info() pointer would, during interrupts
and softirqs, point to a *copy* of the real thread_info, because
x86-32 uses %esp to calculate the thread_info address, and thus the
separate irq (and softirq) stacks would cause these kinds of odd
thread_info copy aliases.
This is normally not a problem, since interrupts aren't supposed to
look at thread information anyway (what thread is running at
interrupt time really isn't very well-defined), but it confused the
heck out of irq_fpu_usable() and the code that tried to squirrel
away the FPU state.
(It also caused untold confusion for us poor kernel developers).
It also turns out that using 'task_struct' is actually much more natural
for most of the call sites that care about the FPU state, since they
tend to work with the task struct for other reasons anyway (ie
scheduling). And the FPU data that we are going to save/restore is
found there too.
Thanks to Arjan Van De Ven <arjan@linux.intel.com> for pointing us to
the %esp issue.
Cc: Arjan van de Ven <arjan@linux.intel.com>
Reported-and-tested-by: Raphael Prevost <raphael@buro.asia>
Acked-and-tested-by: Suresh Siddha <suresh.b.siddha@intel.com>
Tested-by: Peter Anvin <hpa@zytor.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Several fields in struct cpuinfo_x86 were not defined for the
!SMP case, likely to save space. However, those fields still
have some meaning for UP, and keeping them allows some #ifdef
removal from other files. The additional size of the UP kernel
from this change is not significant enough to worry about
keeping up the distinction:
text data bss dec hex filename
4737168 506459 972040 6215667 5ed7f3 vmlinux.o.before
4737444 506459 972040 6215943 5ed907 vmlinux.o.after
for a difference of 276 bytes for an example UP config.
If someone wants those 276 bytes back badly then it should
be implemented in a cleaner way.
Signed-off-by: Kevin Winchester <kjwinchester@gmail.com>
Cc: Steffen Persvold <sp@numascale.com>
Link: http://lkml.kernel.org/r/1324428742-12498-1-git-send-email-kjwinchester@gmail.com
Signed-off-by: Ingo Molnar <mingo@elte.hu>
I got a request to make it easier to determine the microcode
update level on Intel CPUs. This patch adds a new "microcode"
field to /proc/cpuinfo.
The microcode level is also outputed on fatal machine checks
together with the other CPUID model information.
I removed the respective code from the microcode update driver,
it just reads the field from cpu_data. Also when the microcode
is updated it fills in the new values too.
I had to add a memory barrier to native_cpuid to prevent it
being optimized away when the result is not used.
This turns out to clean up further code which already got this
information manually. This is done in followon patches.
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Acked-by: H. Peter Anvin <hpa@zytor.com>
Link: http://lkml.kernel.org/r/1318466795-7393-1-git-send-email-andi@firstfloor.org
Signed-off-by: Ingo Molnar <mingo@elte.hu>
...and make it static
no functional change
cc: x86@kernel.org
Acked-by: H. Peter Anvin <hpa@linux.intel.com>
Signed-off-by: Len Brown <len.brown@intel.com>
* 'idle-release' of git://git.kernel.org/pub/scm/linux/kernel/git/lenb/linux-idle-2.6:
x86 idle: deprecate mwait_idle() and "idle=mwait" cmdline param
x86 idle: deprecate "no-hlt" cmdline param
x86 idle APM: deprecate CONFIG_APM_CPU_IDLE
x86 idle floppy: deprecate disable_hlt()
x86 idle: EXPORT_SYMBOL(default_idle, pm_idle) only when APM demands it
x86 idle: clarify AMD erratum 400 workaround
idle governor: Avoid lock acquisition to read pm_qos before entering idle
cpuidle: menu: fixed wrapping timers at 4.294 seconds
The workaround for AMD erratum 400 uses the term "c1e" falsely suggesting:
1. Intel C1E is somehow involved
2. All AMD processors with C1E are involved
Use the string "amd_c1e" instead of simply "c1e" to clarify that
this workaround is specific to AMD's version of C1E.
Use the string "e400" to clarify that the workaround is specific
to AMD processors with Erratum 400.
This patch is text-substitution only, with no functional change.
cc: x86@kernel.org
Acked-by: Borislav Petkov <borislav.petkov@amd.com>
Signed-off-by: Len Brown <len.brown@intel.com>
cpu_info is already with per_cpu, We can take llc_shared_map out
of cpu_info, and declare it as per_cpu variable directly.
So later referencing could be simple and directly instead of
diving to find cpu_info at first.
Also could make smp_store_cpu_info() much simple to avoid to do
save and restore trick.
Signed-off-by: Yinghai Lu <yinghai@kernel.org>
Cc: Hans Rosenfeld <hans.rosenfeld@amd.com>
Cc: Alok N Kataria <akataria@vmware.com>
Cc: Stephen Hemminger <shemminger@vyatta.com>
Cc: Hans J. Koch <hjk@linutronix.de>
Cc: Tejun Heo <tj@kernel.org>
Cc: Borislav Petkov <borislav.petkov@amd.com>
Cc: Andreas Herrmann <andreas.herrmann3@amd.com>
Cc: Robert Richter <robert.richter@amd.com>
Cc: Suresh Siddha <suresh.b.siddha@intel.com>
LKML-Reference: <4D3A16E8.5020608@kernel.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
* 'idle-release' of git://git.kernel.org/pub/scm/linux/kernel/git/lenb/linux-idle-2.6:
cpuidle/x86/perf: fix power:cpu_idle double end events and throw cpu_idle events from the cpuidle layer
intel_idle: open broadcast clock event
cpuidle: CPUIDLE_FLAG_CHECK_BM is omap3_idle specific
cpuidle: CPUIDLE_FLAG_TLB_FLUSHED is specific to intel_idle
cpuidle: delete unused CPUIDLE_FLAG_SHALLOW, BALANCED, DEEP definitions
SH, cpuidle: delete use of NOP CPUIDLE_FLAGS_SHALLOW
cpuidle: delete NOP CPUIDLE_FLAG_POLL
ACPI: processor_idle: delete use of NOP CPUIDLE_FLAGs
cpuidle: Rename X86 specific idle poll state[0] from C0 to POLL
ACPI, intel_idle: Cleanup idle= internal variables
cpuidle: Make cpuidle_enable_device() call poll_idle_init()
intel_idle: update Sandy Bridge core C-state residency targets
Having four variables for the same thing:
idle_halt, idle_nomwait, force_mwait and boot_option_idle_overrides
is rather confusing and unnecessary complex.
if idle= boot param is passed, only set up one variable:
boot_option_idle_overrides
Introduces following functional changes/fixes:
- intel_idle driver does not register if any idle=xy
boot param is passed.
- processor_idle.c will also not register a cpuidle driver
and get active if idle=halt is passed.
Before a cpuidle driver with one (C1, halt) state got registered
Now the default_idle function will be used which finally uses
the same idle call to enter sleep state (safe_halt()), but
without registering a whole cpuidle driver.
That means idle= param will always avoid cpuidle drivers to register
with one exception (same behavior as before):
idle=nomwait
may still register acpi_idle cpuidle driver, but C1 will not use
mwait, but hlt. This can be a workaround for IO based deeper sleep
states where C1 mwait causes problems.
Signed-off-by: Thomas Renninger <trenn@suse.de>
cc: x86@kernel.org
Signed-off-by: Len Brown <len.brown@intel.com>
Replace all uses of current_cpu_data with this_cpu operations on the
per cpu structure cpu_info. The scala accesses are replaced with the
matching this_cpu ops which results in smaller and more efficient
code.
In the long run, it might be a good idea to remove cpu_data() macro
too and use per_cpu macro directly.
tj: updated description
Cc: Yinghai Lu <yinghai@kernel.org>
Cc: Ingo Molnar <mingo@elte.hu>
Acked-by: H. Peter Anvin <hpa@zytor.com>
Acked-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Christoph Lameter <cl@linux.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
* 'x86-idle-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
x86, hotplug: In the MWAIT case of play_dead, CLFLUSH the cache line
x86, hotplug: Move WBINVD back outside the play_dead loop
x86, hotplug: Use mwait to offline a processor, fix the legacy case
x86, mwait: Move mwait constants to a common header file
Get compute unit information from CPUID Fn8000_001E_EBX.
(See AMD CPUID Specification - publication # 25481, revision 2.34,
September 2010.)
Note that each core on a compute unit still has a core_id of its own.
Signed-off-by: Andreas Herrmann <andreas.herrmann3@amd.com>
LKML-Reference: <20100930123857.GE20545@loge.amd.com>
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
The code in native_play_dead() has a number of problems:
1. We should use MWAIT when available, to put ourselves into a deeper
sleep state.
2. We use the existence of CLFLUSH to determine if WBINVD is safe, but
that is totally bogus -- WBINVD is 486+, whereas CLFLUSH is a much
later addition.
3. We should do WBINVD inside the loop, just in case of something like
setting an A bit on page tables. Pointed out by Arjan van de Ven.
This code is based in part of a previous patch by Venki Pallipadi, but
unlike that patch this one keeps all the detection code local instead
of pre-caching a bunch of information. We're shutting down the CPU;
there is absolutely no hurry.
This patch moves all the code to C and deletes the global
wbinvd_halt() which is broken anyway.
Originally-by: Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
Reviewed-by: Arjan van de Ven <arjan@linux.intel.com>
Cc: Len Brown <lenb@kernel.org>
Cc: Venkatesh Pallipadi <venki@google.com>
Cc: Peter Zijlstra <a.p.zijlstra@chello.hl>
LKML-Reference: <20090522232230.162239000@intel.com>
%cr4 is 64-bit in 64-bit mode (although the upper 32-bits are currently reserved).
Use unsigned long for the temporary variable to get the right size.
Signed-off-by: Brian Gerst <brgerst@gmail.com>
Acked-by: Pekka Enberg <penberg@kernel.org>
Cc: Suresh Siddha <suresh.b.siddha@intel.com>
LKML-Reference: <1283563039-3466-2-git-send-email-brgerst@gmail.com>
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
Accomodate the original C1E-aware idle routine to the different times
during boot when the BIOS enables C1E. While at it, remove the synthetic
CPUID flag in favor of a single global setting which denotes C1E status
on the system.
[ hpa: changed c1e_enabled to be a bool; clarified cpu bit 3:21 comment ]
Signed-off-by: Michal Schmidt <mschmidt@redhat.com>
LKML-Reference: <20100727165335.GA11630@aftab>
Signed-off-by: Borislav Petkov <borislav.petkov@amd.com>
Signed-off-by: H. Peter Anvin <hpa@zytor.com>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Use the AMD errata checking framework instead of open-coding the test.
Signed-off-by: Hans Rosenfeld <hans.rosenfeld@amd.com>
LKML-Reference: <1280336972-865982-3-git-send-email-hans.rosenfeld@amd.com>
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
Remove check_c1e_idle() and use the new AMD errata checking framework
instead.
Signed-off-by: Hans Rosenfeld <hans.rosenfeld@amd.com>
LKML-Reference: <1280336972-865982-2-git-send-email-hans.rosenfeld@amd.com>
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
Errata are defined using the AMD_LEGACY_ERRATUM() or AMD_OSVW_ERRATUM()
macros. The latter is intended for newer errata that have an OSVW id
assigned, which it takes as first argument. Both take a variable number
of family-specific model-stepping ranges created by AMD_MODEL_RANGE().
Iff an erratum has an OSVW id, OSVW is available on the CPU, and the
OSVW id is known to the hardware, it is used to determine whether an
erratum is present. Otherwise, the model-stepping ranges are matched
against the current CPU to find out whether the erratum applies.
For certain special errata, the code using this framework might have to
conduct further checks to make sure an erratum is really (not) present.
Signed-off-by: Hans Rosenfeld <hans.rosenfeld@amd.com>
LKML-Reference: <1280336972-865982-1-git-send-email-hans.rosenfeld@amd.com>
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
Allow the x86 arch to have early exception processing for the purpose
of debugging via the kgdb.
Signed-off-by: Jan Kiszka <jan.kiszka@web.de>
Signed-off-by: Jason Wessel <jason.wessel@windriver.com>
* 'x86-fpu-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
x86, fpu: Use static_cpu_has() to implement use_xsave()
x86: Add new static_cpu_has() function using alternatives
x86, fpu: Use the proper asm constraint in use_xsave()
x86, fpu: Unbreak FPU emulation
x86: Introduce 'struct fpu' and related API
x86: Eliminate TS_XSAVE
x86-32: Don't set ignore_fpu_irq in simd exception
x86: Merge kernel_math_error() into math_error()
x86: Merge simd_math_error() into math_error()
x86-32: Rework cache flush denied handler
Fix trivial conflict in arch/x86/kernel/process.c
* 'x86-cpu-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
x86, hypervisor: add missing <linux/module.h>
Modify the VMware balloon driver for the new x86_hyper API
x86, hypervisor: Export the x86_hyper* symbols
x86: Clean up the hypervisor layer
x86, HyperV: fix up the license to mshyperv.c
x86: Detect running on a Microsoft HyperV system
x86, cpu: Make APERF/MPERF a normal table-driven flag
x86, k8: Fix build error when K8_NB is disabled
x86, cacheinfo: Disable index in all four subcaches
x86, cacheinfo: Make L3 cache info per node
x86, cacheinfo: Reorganize AMD L3 cache structure
x86, cacheinfo: Turn off L3 cache index disable feature in virtualized environments
x86, cacheinfo: Unify AMD L3 cache index disable checking
cpufreq: Unify sysfs attribute definition macros
powernow-k8: Fix frequency reporting
x86, cpufreq: Add APERF/MPERF support for AMD processors
x86: Unify APERF/MPERF support
powernow-k8: Add core performance boost support
x86, cpu: Add AMD core boosting feature flag to /proc/cpuinfo
Fix up trivial conflicts in arch/x86/kernel/cpu/intel_cacheinfo.c and
drivers/cpufreq/cpufreq_ondemand.c
Currently all fpu state access is through tsk->thread.xstate. Since we wish
to generalize fpu access to non-task contexts, wrap the state in a new
'struct fpu' and convert existing access to use an fpu API.
Signal frame handlers are not converted to the API since they will remain
task context only things.
Signed-off-by: Avi Kivity <avi@redhat.com>
Acked-by: Suresh Siddha <suresh.b.siddha@intel.com>
LKML-Reference: <1273135546-29690-3-git-send-email-avi@redhat.com>
Signed-off-by: H. Peter Anvin <hpa@zytor.com>
Clean up the hypervisor layer and the hypervisor drivers, using an ops
structure instead of an enumeration with if statements.
The identity of the hypervisor, if needed, can be tested by testing
the pointer value in x86_hyper.
The MS-HyperV private state is moved into a normal global variable
(it's per-system state, not per-CPU state). Being a normal bss
variable, it will be left at all zero on non-HyperV platforms, and so
can generally be tested for HyperV-specific features without
additional qualification.
Signed-off-by: H. Peter Anvin <hpa@zytor.com>
Acked-by: Greg KH <greg@kroah.com>
Cc: Hank Janssen <hjanssen@microsoft.com>
Cc: Alok Kataria <akataria@vmware.com>
Cc: Ky Srinivasan <ksrinivasan@novell.com>
LKML-Reference: <4BE49778.6060800@zytor.com>
This patch integrates HyperV detection within the framework currently
used by VmWare. With this patch, we can avoid having to replicate the
HyperV detection code in each of the Microsoft HyperV drivers.
Reworked and tweaked by Greg K-H to build properly.
Signed-off-by: K. Y. Srinivasan <ksrinivasan@novell.com>
LKML-Reference: <20100506190841.GA1605@kroah.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Vadim Rozenfeld <vrozenfe@redhat.com>
Cc: Avi Kivity <avi@redhat.com>
Cc: Gleb Natapov <gleb@redhat.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Alexey Dobriyan <adobriyan@gmail.com>
Cc: "K.Prasad" <prasad@linux.vnet.ibm.com>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Stephane Eranian <eranian@google.com>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Alan Cox <alan@linux.intel.com>
Cc: Haiyang Zhang <haiyangz@microsoft.com>
Cc: Hank Janssen <hjanssen@microsoft.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
Signed-off-by: H. Peter Anvin <hpa@zytor.com>
Implement ptrace-block-step using TIF_BLOCKSTEP which will set
DEBUGCTLMSR_BTF when set for a task while preserving any other
DEBUGCTLMSR bits.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
LKML-Reference: <20100325135414.017536066@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Support for the PMU's BTS features has been upstreamed in
v2.6.32, but we still have the old and disabled ptrace-BTS,
as Linus noticed it not so long ago.
It's buggy: TIF_DEBUGCTLMSR is trampling all over that MSR without
regard for other uses (perf) and doesn't provide the flexibility
needed for perf either.
Its users are ptrace-block-step and ptrace-bts, since ptrace-bts
was never used and ptrace-block-step can be implemented using a
much simpler approach.
So axe all 3000 lines of it. That includes the *locked_memory*()
APIs in mm/mlock.c as well.
Reported-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Roland McGrath <roland@redhat.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Markus Metzger <markus.t.metzger@intel.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
LKML-Reference: <20100325135413.938004390@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
When the user enables breakpoints through dr7, he can choose
between "local" or "global" enable bits but given how linux is
implemented, both have the same effect.
That said we don't keep track how the user enabled the breakpoints
so when the user requests the dr7 value, we only translate the
"enabled" status using the global enabled bits. It means that if
the user enabled a breakpoint using the local enabled bit, reading
back dr7 will set the global bit and clear the local one.
Apps like Wine expect a full dr7 POKEUSER/PEEKUSER match for emulated
softwares that implement old reverse engineering protection schemes.
We fix that by keeping track of the whole dr7 value given by the user
in the thread structure to drop this bug. We'll think about
something more proper later.
This fixes a 2.6.32 - 2.6.33-x ptrace regression.
Reported-and-tested-by: Michael Stefaniuc <mstefani@redhat.com>
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Acked-by: K.Prasad <prasad@linux.vnet.ibm.com>
Cc: Alan Stern <stern@rowland.harvard.edu>
Cc: Maneesh Soni <maneesh@linux.vnet.ibm.com>
Cc: Alexandre Julliard <julliard@winehq.org>
Cc: Rafael J. Wysocki <rjw@sisk.pl>
Cc: Maciej Rutecki <maciej.rutecki@gmail.com>
xsave_cntxt_init() does something like:
cpuid(0xd, ..); // find out what features FP/SSE/.. etc are supported
xsetbv(); // enable the features known to OS
cpuid(0xd, ..); // find out the size of the context for features enabled
Depending on what features get enabled in xsetbv(), value of the
cpuid.eax=0xd.ecx=0.ebx changes correspondingly (representing the
size of the context that is enabled).
As we don't have volatile keyword for native_cpuid(), gcc 4.1.2
optimizes away the second cpuid and the kernel continues to use
the cpuid information obtained before xsetbv(), ultimately leading to kernel
crash on processors supporting more state than the legacy FP/SSE.
Add "volatile" for native_cpuid().
Signed-off-by: Suresh Siddha <suresh.b.siddha@intel.com>
LKML-Reference: <1261009542.2745.55.camel@sbs-t61.sc.intel.com>
Cc: stable@kernel.org
Signed-off-by: H. Peter Anvin <hpa@zytor.com>
Conflicts:
arch/x86/kernel/kprobes.c
kernel/trace/Makefile
Merge reason: hw-breakpoints perf integration is looking
good in testing and in reviews, plus conflicts
are mounting up - so merge & resolve.
Signed-off-by: Ingo Molnar <mingo@elte.hu>
This patch rebase the implementation of the breakpoints API on top of
perf events instances.
Each breakpoints are now perf events that handle the
register scheduling, thread/cpu attachment, etc..
The new layering is now made as follows:
ptrace kgdb ftrace perf syscall
\ | / /
\ | / /
/
Core breakpoint API /
/
| /
| /
Breakpoints perf events
|
|
Breakpoints PMU ---- Debug Register constraints handling
(Part of core breakpoint API)
|
|
Hardware debug registers
Reasons of this rewrite:
- Use the centralized/optimized pmu registers scheduling,
implying an easier arch integration
- More powerful register handling: perf attributes (pinned/flexible
events, exclusive/non-exclusive, tunable period, etc...)
Impact:
- New perf ABI: the hardware breakpoints counters
- Ptrace breakpoints setting remains tricky and still needs some per
thread breakpoints references.
Todo (in the order):
- Support breakpoints perf counter events for perf tools (ie: implement
perf_bpcounter_event())
- Support from perf tools
Changes in v2:
- Follow the perf "event " rename
- The ptrace regression have been fixed (ptrace breakpoint perf events
weren't released when a task ended)
- Drop the struct hw_breakpoint and store generic fields in
perf_event_attr.
- Separate core and arch specific headers, drop
asm-generic/hw_breakpoint.h and create linux/hw_breakpoint.h
- Use new generic len/type for breakpoint
- Handle off case: when breakpoints api is not supported by an arch
Changes in v3:
- Fix broken CONFIG_KVM, we need to propagate the breakpoint api
changes to kvm when we exit the guest and restore the bp registers
to the host.
Changes in v4:
- Drop the hw_breakpoint_restore() stub as it is only used by KVM
- EXPORT_SYMBOL_GPL hw_breakpoint_restore() as KVM can be built as a
module
- Restore the breakpoints unconditionally on kvm guest exit:
TIF_DEBUG_THREAD doesn't anymore cover every cases of running
breakpoints and vcpu->arch.switch_db_regs might not always be
set when the guest used debug registers.
(Waiting for a reliable optimization)
Changes in v5:
- Split-up the asm-generic/hw-breakpoint.h moving to
linux/hw_breakpoint.h into a separate patch
- Optimize the breakpoints restoring while switching from kvm guest
to host. We only want to restore the state if we have active
breakpoints to the host, otherwise we don't care about messed-up
address registers.
- Add asm/hw_breakpoint.h to Kbuild
- Fix bad breakpoint type in trace_selftest.c
Changes in v6:
- Fix wrong header inclusion in trace.h (triggered a build
error with CONFIG_FTRACE_SELFTEST
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Prasad <prasad@linux.vnet.ibm.com>
Cc: Alan Stern <stern@rowland.harvard.edu>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Jan Kiszka <jan.kiszka@web.de>
Cc: Jiri Slaby <jirislaby@gmail.com>
Cc: Li Zefan <lizf@cn.fujitsu.com>
Cc: Avi Kivity <avi@redhat.com>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Masami Hiramatsu <mhiramat@redhat.com>
Cc: Paul Mundt <lethal@linux-sh.org>
This patch fixes two issues in the procfs stack information on
x86-64 linux.
The 32 bit loader compat_do_execve did not store stack
start. (this was figured out by Alexey Dobriyan).
The stack information on a x64_64 kernel always shows 0 kbyte
stack usage, because of a missing implementation of the KSTK_ESP
macro which always returned -1.
The new implementation now returns the right value.
Signed-off-by: Stefani Seibold <stefani@seibold.net>
Cc: Americo Wang <xiyou.wangcong@gmail.com>
Cc: Alexey Dobriyan <adobriyan@gmail.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Andrew Morton <akpm@linux-foundation.org>
LKML-Reference: <1257240160.4889.24.camel@wall-e>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Conflicts:
kernel/Makefile
kernel/trace/Makefile
kernel/trace/trace.h
samples/Makefile
Merge reason: We need to be uptodate with the perf events development
branch because we plan to rewrite the breakpoints API on top of
perf events.
* 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip: (37 commits)
sched: Fix SD_POWERSAVING_BALANCE|SD_PREFER_LOCAL vs SD_WAKE_AFFINE
sched: Stop buddies from hogging the system
sched: Add new wakeup preemption mode: WAKEUP_RUNNING
sched: Fix TASK_WAKING & loadaverage breakage
sched: Disable wakeup balancing
sched: Rename flags to wake_flags
sched: Clean up the load_idx selection in select_task_rq_fair
sched: Optimize cgroup vs wakeup a bit
sched: x86: Name old_perf in a unique way
sched: Implement a gentler fair-sleepers feature
sched: Add SD_PREFER_LOCAL
sched: Add a few SYNC hint knobs to play with
sched: Fix sync wakeups again
sched: Add WF_FORK
sched: Rename sync arguments
sched: Rename select_task_rq() argument
sched: Feature to disable APERF/MPERF cpu_power
x86: sched: Provide arch implementations using aperf/mperf
x86: Add generic aperf/mperf code
x86: Move APERF/MPERF into a X86_FEATURE
...
Fix up trivial conflict in arch/x86/include/asm/processor.h due to
nearby addition of amd_get_nb_id() declaration from the EDAC merge.
Signed-off-by: Andreas Herrmann <andreas.herrmann3@amd.com>
Signed-off-by: Borislav Petkov <borislav.petkov@amd.com>
Acked-by: H. Peter Anvin <hpa@zytor.com>
Move some of the aperf/mperf code out from the cpufreq driver
thingy so that other people can enjoy it too.
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
Cc: Yanmin <yanmin_zhang@linux.intel.com>
Cc: Dave Jones <davej@redhat.com>
Cc: Len Brown <len.brown@intel.com>
Cc: Yinghai Lu <yhlu.kernel@gmail.com>
Cc: cpufreq@vger.kernel.org
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
LKML-Reference: <new-submission>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
* 'x86-cpu-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip: (22 commits)
x86: Fix code patching for paravirt-alternatives on 486
x86, msr: change msr-reg.o to obj-y, and export its symbols
x86: Use hard_smp_processor_id() to get apic id for AMD K8 cpus
x86, sched: Workaround broken sched domain creation for AMD Magny-Cours
x86, mcheck: Use correct cpumask for shared bank4
x86, cacheinfo: Fixup L3 cache information for AMD multi-node processors
x86: Fix CPU llc_shared_map information for AMD Magny-Cours
x86, msr: Fix msr-reg.S compilation with gas 2.16.1, on 32-bit too
x86: Move kernel_fpu_using to irq_fpu_usable in asm/i387.h
x86, msr: fix msr-reg.S compilation with gas 2.16.1
x86, msr: Export the register-setting MSR functions via /dev/*/msr
x86, msr: Create _on_cpu helpers for {rw,wr}msr_safe_regs()
x86, msr: Have the _safe MSR functions return -EIO, not -EFAULT
x86, msr: CFI annotations, cleanups for msr-reg.S
x86, asm: Make _ASM_EXTABLE() usable from assembly code
x86, asm: Add 32-bit versions of the combined CFI macros
x86, AMD: Disable wrongly set X86_FEATURE_LAHF_LM CPUID bit
x86, msr: Rewrite AMD rd/wrmsr variants
x86, msr: Add rd/wrmsr interfaces with preset registers
x86: add specific support for Intel Atom architecture
...
As reported in <http://bugs.debian.org/511703> and
<http://bugs.debian.org/515982>, kernels with paravirt-alternatives
enabled crash in text_poke_early() on at least some 486-class
processors.
The problem is that text_poke_early() itself uses inline functions
affected by paravirt-alternatives and so will modify instructions that
have already been prefetched. Pentium and later processors will
invalidate the prefetched instructions in this case, but 486-class
processors do not.
Change sync_core() to limit prefetching on 486-class (and 386-class)
processors, and move the call to sync_core() above the call to the
modifiable local_irq_restore().
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
LKML-Reference: <1252547631.3423.134.camel@localhost>
Signed-off-by: H. Peter Anvin <hpa@zytor.com>
Pack aligned things together into a special section to minimize
padding holes.
Suggested-by: Eric Dumazet <eric.dumazet@gmail.com>
Signed-off-by: Jeremy Fitzhardinge <jeremy.fitzhardinge@citrix.com>
Cc: Tejun Heo <tj@kernel.org>
LKML-Reference: <4AA035C0.9070202@goop.org>
[ queued up in tip:x86/asm because it depends on this commit:
x86/i386: Make sure stack-protector segment base is cache aligned ]
Signed-off-by: Ingo Molnar <mingo@elte.hu>
The Intel Optimization Reference Guide says:
In Intel Atom microarchitecture, the address generation unit
assumes that the segment base will be 0 by default. Non-zero
segment base will cause load and store operations to experience
a delay.
- If the segment base isn't aligned to a cache line
boundary, the max throughput of memory operations is
reduced to one [e]very 9 cycles.
[...]
Assembly/Compiler Coding Rule 15. (H impact, ML generality)
For Intel Atom processors, use segments with base set to 0
whenever possible; avoid non-zero segment base address that is
not aligned to cache line boundary at all cost.
We can't avoid having a non-zero base for the stack-protector
segment, but we can make it cache-aligned.
Signed-off-by: Jeremy Fitzhardinge <jeremy.fitzhardinge@citrix.com>
Cc: <stable@kernel.org>
LKML-Reference: <4AA01893.6000507@goop.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>