NILFS2 uses another DAT inode during garbage collection to ensure
atomicity and consistency of the DAT in the transient state. This
twin inode is called GCDAT.
This adds functions to initialize the GCDAT and to switch page caches
and B-tree node caches between these two inodes.
Signed-off-by: Seiji Kihara <kihara.seiji@lab.ntt.co.jp>
Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
Signed-off-by: Yoshiji Amagai <amagai.yoshiji@lab.ntt.co.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This adds recovery function on mount.
Usually the recovery is achieved by just finding the latest super
root. When logs without checkpoints were appended for data sync
operations after the latest super root, the recovery function will
perform roll forwarding and reconstruct new log(s) with a super root.
Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Chris Mason pointed out that there is a missed sync issue in
nilfs_writepages():
On Wed, 17 Dec 2008 21:52:55 -0500, Chris Mason wrote:
> It looks like nilfs_writepage ignores WB_SYNC_NONE, which is used by
> do_sync_mapping_range().
where WB_SYNC_NONE in do_sync_mapping_range() was replaced with
WB_SYNC_ALL by Nick's patch (commit:
ee53a891f4).
This fixes the problem by letting nilfs_writepages() write out the log of
file data within the range if sync_mode is WB_SYNC_ALL.
This involves removal of nilfs_file_aio_write() which was previously
needed to ensure O_SYNC sync writes.
Cc: Chris Mason <chris.mason@oracle.com>
Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This adds the segment constructor (also called log writer).
The segment constructor collects dirty buffers for every dirty inode,
makes summaries of the buffers, assigns disk block addresses to the
buffers, and then submits BIOs for the buffers.
Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This adds the segment buffer which is used to constuct logs.
[akpm@linux-foundation.org: BIO_RW_SYNC got removed]
Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This adds super block operations for the nilfs2 file system.
Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This adds functions on the_nilfs object, which keeps shared resources and
states among a read/write mount and snapshots mounts going individually.
the_nilfs is allocated per block device; it is created when user first
mount a snapshot or a read/write mount on the device, then it is reused
for successive mounts. It will be freed when all mount instances on the
device are detached.
Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This adds pathname operations, most of which comes from the ext2 file
system.
Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This adds directory handling functions, most of which comes from the ext2
file system.
Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
Signed-off-by: Yoshiji Amagai <amagai.yoshiji@lab.ntt.co.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This adds primitives for regular file handling.
Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This adds a meta data file which stores the allocation state of segments.
[konishi.ryusuke@lab.ntt.co.jp: fix wrong counting of checkpoints and dirty segments]
Signed-off-by: Koji Sato <sato.koji@lab.ntt.co.jp>
Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This adds a meta data file which holds checkpoint entries in its data
blocks.
Signed-off-by: Koji Sato <sato.koji@lab.ntt.co.jp>
Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This adds a meta data file which stores on-disk inodes in its data blocks.
Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
Signed-off-by: Yoshiji Amagai <amagai.yoshiji@lab.ntt.co.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This adds the disk address translation file (DAT) whose primary function
is to convert virtual disk block numbers to actual disk block numbers.
The virtual block numbers of NILFS are associated with checkpoint
generation numbers, and this file also provides functions to manage the
lifetime information of each virtual block number.
Signed-off-by: Koji Sato <sato.koji@lab.ntt.co.jp>
Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This adds common functions to allocate or deallocate entries with bitmaps
on a meta data file. This feature is used by the DAT and ifile.
Signed-off-by: Koji Sato <sato.koji@lab.ntt.co.jp>
Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
Signed-off-by: Yoshiji Amagai <amagai.yoshiji@lab.ntt.co.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This adds the meta data file, which serves common buffer functions to the
DAT, sufile, cpfile, ifile, and so forth.
Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This adds common routines for buffer/page operations used in B-tree
node caches, meta data files, or segment constructor (log writer).
NILFS uses copy functions for buffers and pages due to the following
reasons:
1) Relocation required for COW
Since NILFS changes address of on-disk blocks, moving buffers
in page cache is needed for the buffers which are not addressed
by a file offset. If buffer size is smaller than page size,
this involves partial copy of pages.
2) Freezing mmapped pages
NILFS calculates checksums for each log to ensure its validity.
If page data changes after the checksum calculation, this validity
check will not work correctly. To avoid this failure for mmaped
pages, NILFS freezes their data by copying.
3) Copy-on-write for DAT pages
NILFS makes clones of DAT page caches in a copy-on-write manner
during GC processes, and this ensures atomicity and consistency
of the DAT in the transient state.
In addition, NILFS uses two obsolete functions, nilfs_mark_buffer_dirty()
and nilfs_clear_page_dirty() respectively.
* nilfs_mark_buffer_dirty() was required to avoid NULL pointer
dereference faults:
Since the page cache of B-tree node pages or data page cache of pseudo
inodes does not have a valid mapping->host, calling mark_buffer_dirty()
for their buffers causes the fault; it calls __mark_inode_dirty(NULL)
through __set_page_dirty().
* nilfs_clear_page_dirty() was needed in the two cases:
1) For B-tree node pages and data pages of the dat/gcdat, NILFS2 clears
page dirty flags when it copies back pages from the cloned cache
(gcdat->{i_mapping,i_btnode_cache}) to its original cache
(dat->{i_mapping,i_btnode_cache}).
2) Some B-tree operations like insertion or deletion may dispose buffers
in dirty state, and this needs to cancel the dirty state of their
pages. clear_page_dirty_for_io() caused faults because it does not
clear the dirty tag on the page cache.
Signed-off-by: Seiji Kihara <kihara.seiji@lab.ntt.co.jp>
Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This adds block mappings using direct pointers which are stored in the
i_bmap array of inode.
Signed-off-by: Koji Sato <sato.koji@lab.ntt.co.jp>
Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This adds declarations and functions of NILFS2 B-tree.
Two variants are integrated in the NILFS2 B-tree. The B-tree for the most
files points to the child nodes or data blocks with virtual block
addresses, whereas the B-tree of the DAT uses actual block addresses.
Signed-off-by: Koji Sato <sato.koji@lab.ntt.co.jp>
Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This adds structures and operations for the block mapping (bmap for
short). NILFS2 uses direct mappings for short files or B-tree based
mappings for longer files.
Every on-disk data block is held with inodes and managed through this
block mapping. The nilfs_bmap structure and a set of functions here
provide this capability to the NILFS2 inode.
[penberg@cs.helsinki.fi: remove a bunch of bmap wrapper macros]
[akpm@linux-foundation.org: coding-style fixes]
Signed-off-by: Koji Sato <sato.koji@lab.ntt.co.jp>
Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
Signed-off-by: Pekka Enberg <penberg@cs.helsinki.fi>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This adds the following common structures of the NILFS2 file system.
* nilfs_inode_info structure:
gives on-memory inode.
* nilfs_sb_info structure:
keeps per-mount state and a special inode for the ifile.
This structure is attached to the super_block structure.
* the_nilfs structure:
keeps shared state and locks among a read/write mount and snapshot
mounts. This keeps special inodes for the sufile, cpfile, dat, and
another dat inode used during GC (gcdat). This also has a hash table
of dummy inodes to cache disk blocks during GC (gcinodes).
* nilfs_transaction_info structure:
keeps per task state while nilfs is writing logs or doing indivisible
inode or namespace operations. This structure is used to identify
context during log making and store nest level of the lock which
ensures atomicity of file system operations.
Signed-off-by: Koji Sato <sato.koji@lab.ntt.co.jp>
Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>