In commit 3891a04aaf ("x86-64, espfix: Don't leak bits 31:16 of %esp
returning..") the "ESPFix Area" was added to the page table dump special
sections. That area, though, has a limited amount of entries printed.
The EFI runtime services are, unfortunately, located in-between the
espfix area and the high kernel memory mapping. Due to the enforced
limitation for the espfix area, the EFI mappings won't be printed in the
page table dump.
To make the ESP runtime service mappings visible again, provide them a
dedicated entry.
Signed-off-by: Mathias Krause <minipli@googlemail.com>
Acked-by: Borislav Petkov <bp@suse.de>
Cc: H. Peter Anvin <hpa@zytor.com>
Signed-off-by: Matt Fleming <matt.fleming@intel.com>
The 32 bit and 64 bit implementations differ in their __init annotations
for some functions referenced from the common EFI code. Namely, the 32
bit variant is missing some of the __init annotations the 64 bit variant
has.
To solve the colliding annotations, mark the corresponding functions in
efi_32.c as initialization code, too -- as it is such.
Actually, quite a few more functions are only used during initialization
and therefore can be marked __init. They are therefore annotated, too.
Also add the __init annotation to the prototypes in the efi.h header so
users of those functions will see it's meant as initialization code
only.
This patch also fixes the "prelog" typo. ("prologue" / "epilogue" might
be more appropriate but this is C code after all, not an opera! :D)
Signed-off-by: Mathias Krause <minipli@googlemail.com>
Signed-off-by: Matt Fleming <matt.fleming@intel.com>
Commit 3f4a7836e3 ("x86/efi: Rip out phys_efi_get_time()") left
set_virtual_address_map as the only runtime service needed with a
phys mapping but missed to update the preceding comment. Fix that.
Signed-off-by: Mathias Krause <minipli@googlemail.com>
Signed-off-by: Matt Fleming <matt.fleming@intel.com>
This variable was accidentally exported, even though it's only used in
this compilation unit and only during initialization.
Remove the bogus export, make the variable static instead and mark it
as __initdata.
Fixes: 200001eb14 ("x86 boot: only pick up additional EFI memmap...")
Cc: Paul Jackson <pj@sgi.com>
Signed-off-by: Mathias Krause <minipli@googlemail.com>
Signed-off-by: Matt Fleming <matt.fleming@intel.com>
If enter virtual mode failed due to some reason other than the efi call
the EFI_RUNTIME_SERVICES bit in efi.flags should be cleared thus users
of efi runtime services can check the bit and handle the case instead of
assume efi runtime is ok.
Per Matt, if efi call SetVirtualAddressMap fails we will be not sure
it's safe to make any assumptions about the state of the system. So
kernel panics instead of clears EFI_RUNTIME_SERVICES bit.
Signed-off-by: Dave Young <dyoung@redhat.com>
Signed-off-by: Matt Fleming <matt.fleming@intel.com>
noefi kernel param means actually disabling efi runtime, Per suggestion
from Leif Lindholm efi=noruntime should be better. But since noefi is
already used in X86 thus just adding another param efi=noruntime for
same purpose.
Signed-off-by: Dave Young <dyoung@redhat.com>
Signed-off-by: Matt Fleming <matt.fleming@intel.com>
There should be a generic function to parse params like a=b,c
Adding parse_option_str in lib/cmdline.c which will return true
if there's specified option set in the params.
Also updated efi=old_map parsing code to use the new function
Signed-off-by: Dave Young <dyoung@redhat.com>
Signed-off-by: Matt Fleming <matt.fleming@intel.com>
noefi param can be used for arches other than X86 later, thus move it
out of x86 platform code.
Signed-off-by: Dave Young <dyoung@redhat.com>
Signed-off-by: Matt Fleming <matt.fleming@intel.com>
Gracefully handle failures to allocate memory for the image, which might
be arbitrarily large.
efi_bgrt_init can fail in various ways as well, usually because the
BIOS-provided BGRT structure does not match expectations. Add
appropriate error messages rather than failing silently.
Reported-by: Srihari Vijayaraghavan <linux.bug.reporting@gmail.com>
Bugzilla: https://bugzilla.kernel.org/show_bug.cgi?id=81321
Signed-off-by: Josh Triplett <josh@joshtriplett.org>
Signed-off-by: Matt Fleming <matt.fleming@intel.com>
We need a way to customize the behaviour of the EFI boot stub, in
particular, we need a way to disable the "chunking" workaround, used
when reading files from the EFI System Partition.
One of my machines doesn't cope well when reading files in 1MB chunks to
a buffer above the 4GB mark - it appears that the "chunking" bug
workaround triggers another firmware bug. This was only discovered with
commit 4bf7111f50 ("x86/efi: Support initrd loaded above 4G"), and
that commit is perfectly valid. The symptom I observed was a corrupt
initrd rather than any kind of crash.
efi= is now used to specify EFI parameters in two very different
execution environments, the EFI boot stub and during kernel boot.
There is also a slight performance optimization by enabling efi=nochunk,
but that's offset by the fact that you're more likely to run into
firmware issues, at least on x86. This is the rationale behind leaving
the workaround enabled by default.
Also provide some documentation for EFI_READ_CHUNK_SIZE and why we're
using the current value of 1MB.
Tested-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Roy Franz <roy.franz@linaro.org>
Cc: Maarten Lankhorst <m.b.lankhorst@gmail.com>
Cc: Leif Lindholm <leif.lindholm@linaro.org>
Cc: Borislav Petkov <bp@suse.de>
Signed-off-by: Matt Fleming <matt.fleming@intel.com>
efi_set_rtc_mmss() is never used to set RTC due to bugs found
on many EFI platforms. It is set directly by mach_set_rtc_mmss().
Hence, remove unused efi_set_rtc_mmss() function.
Signed-off-by: Daniel Kiper <daniel.kiper@oracle.com>
Signed-off-by: Matt Fleming <matt.fleming@intel.com>
Remove redundant set_bit(EFI_MEMMAP, &efi.flags) call.
It is executed earlier in efi_memmap_init().
Signed-off-by: Daniel Kiper <daniel.kiper@oracle.com>
Signed-off-by: Matt Fleming <matt.fleming@intel.com>
Remove redundant set_bit(EFI_SYSTEM_TABLES, &efi.flags) call.
It is executed earlier in efi_systab_init().
Signed-off-by: Daniel Kiper <daniel.kiper@oracle.com>
Signed-off-by: Matt Fleming <matt.fleming@intel.com>
Introduce EFI_PARAVIRT flag. If it is set then kernel runs
on EFI platform but it has not direct control on EFI stuff
like EFI runtime, tables, structures, etc. If not this means
that Linux Kernel has direct access to EFI infrastructure
and everything runs as usual.
This functionality is used in Xen dom0 because hypervisor
has full control on EFI stuff and all calls from dom0 to
EFI must be requested via special hypercall which in turn
executes relevant EFI code in behalf of dom0.
Signed-off-by: Daniel Kiper <daniel.kiper@oracle.com>
Signed-off-by: Matt Fleming <matt.fleming@intel.com>
Do not access EFI memory map if it is not available. At least
Xen dom0 EFI implementation does not have an access to it.
Signed-off-by: Daniel Kiper <daniel.kiper@oracle.com>
Signed-off-by: Matt Fleming <matt.fleming@intel.com>
Use early_mem*() instead of early_io*() because all mapped EFI regions
are memory (usually RAM but they could also be ROM, EPROM, EEPROM, flash,
etc.) not I/O regions. Additionally, I/O family calls do not work correctly
under Xen in our case. early_ioremap() skips the PFN to MFN conversion
when building the PTE. Using it for memory will attempt to map the wrong
machine frame. However, all artificial EFI structures created under Xen
live in dom0 memory and should be mapped/unmapped using early_mem*() family
calls which map domain memory.
Signed-off-by: Daniel Kiper <daniel.kiper@oracle.com>
Cc: Leif Lindholm <leif.lindholm@linaro.org>
Cc: Mark Salter <msalter@redhat.com>
Signed-off-by: Matt Fleming <matt.fleming@intel.com>
It appears that the BayTrail-T class of hardware requires EFI in order
to powerdown and reboot and no other reliable method exists.
This quirk is generally applicable to all hardware that has the ACPI
Hardware Reduced bit set, since usually ACPI would be the preferred
method.
Cc: Len Brown <len.brown@intel.com>
Cc: Mark Salter <msalter@redhat.com>
Cc: "Rafael J. Wysocki" <rafael.j.wysocki@intel.com>
Signed-off-by: Matt Fleming <matt.fleming@intel.com>
In order for other archs (such as arm64) to be able to reuse the virtual
mode function call wrappers, move them to drivers/firmware/efi/runtime-wrappers.c.
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Matt Fleming <matt.fleming@intel.com>
The kbuild reports the following sparse errors,
>> arch/x86/platform/efi/quirks.c:242:23: sparse: incorrect type in >> argument 1 (different address spaces)
arch/x86/platform/efi/quirks.c:242:23: expected void [noderef] <asn:2>*addr
arch/x86/platform/efi/quirks.c:242:23: got void *[assigned] tablep
>> arch/x86/platform/efi/quirks.c:245:23: sparse: incorrect type in >> argument 1 (different address spaces)
arch/x86/platform/efi/quirks.c:245:23: expected void [noderef] <asn:2>*addr
arch/x86/platform/efi/quirks.c:245:23: got struct efi_setup_data *[assigned] data
Dave Young had made previous attempts to convert the early_iounmap()
calls to early_memunmap() but ran into merge conflicts with commit
9e5c33d7ae ("mm: create generic early_ioremap() support").
Now that we've got that commit in place we can switch to using
early_memunmap() since we're already using early_memremap() in
efi_reuse_config().
Cc: Dave Young <dyoung@redhat.com>
Cc: Saurabh Tangri <saurabh.tangri@intel.com>
Signed-off-by: Matt Fleming <matt.fleming@intel.com>
Currently, it's difficult to find all the workarounds that are
applied when running on EFI, because they're littered throughout
various code paths. This change moves all of them into a separate
file with the hope that it will be come the single location for all
our well documented quirks.
Signed-off-by: Saurabh Tangri <saurabh.tangri@intel.com>
Signed-off-by: Matt Fleming <matt.fleming@intel.com>
Now that 3.15 is released, this merges the 'next' branch into 'master',
bringing us to the normal situation where my 'master' branch is the
merge window.
* accumulated work in next: (6809 commits)
ufs: sb mutex merge + mutex_destroy
powerpc: update comments for generic idle conversion
cris: update comments for generic idle conversion
idle: remove cpu_idle() forward declarations
nbd: zero from and len fields in NBD_CMD_DISCONNECT.
mm: convert some level-less printks to pr_*
MAINTAINERS: adi-buildroot-devel is moderated
MAINTAINERS: add linux-api for review of API/ABI changes
mm/kmemleak-test.c: use pr_fmt for logging
fs/dlm/debug_fs.c: replace seq_printf by seq_puts
fs/dlm/lockspace.c: convert simple_str to kstr
fs/dlm/config.c: convert simple_str to kstr
mm: mark remap_file_pages() syscall as deprecated
mm: memcontrol: remove unnecessary memcg argument from soft limit functions
mm: memcontrol: clean up memcg zoneinfo lookup
mm/memblock.c: call kmemleak directly from memblock_(alloc|free)
mm/mempool.c: update the kmemleak stack trace for mempool allocations
lib/radix-tree.c: update the kmemleak stack trace for radix tree allocations
mm: introduce kmemleak_update_trace()
mm/kmemleak.c: use %u to print ->checksum
...
Pull x86 EFI updates from Peter Anvin:
"A collection of EFI changes. The perhaps most important one is to
fully save and restore the FPU state around each invocation of EFI
runtime, and to not choke on non-ASCII characters in the boot stub"
* 'x86-efi-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
efivars: Add compatibility code for compat tasks
efivars: Refactor sanity checking code into separate function
efivars: Stop passing a struct argument to efivar_validate()
efivars: Check size of user object
efivars: Use local variables instead of a pointer dereference
x86/efi: Save and restore FPU context around efi_calls (i386)
x86/efi: Save and restore FPU context around efi_calls (x86_64)
x86/efi: Implement a __efi_call_virt macro
x86, fpu: Extend the use of static_cpu_has_safe
x86/efi: Delete most of the efi_call* macros
efi: x86: Handle arbitrary Unicode characters
efi: Add get_dram_base() helper function
efi: Add shared printk wrapper for consistent prefixing
efi: create memory map iteration helper
efi: efi-stub-helper cleanup
For ioremapped efi memory aka old_map the virt addresses are not persistant
across kexec reboot. kexec-tools will read the runtime maps from sysfs then
pass them to 2nd kernel and assuming kexec efi boot is ok. This will cause
kexec boot failure.
To address this issue do not export runtime maps in case efi old_map so
userspace can use no efi boot instead.
Signed-off-by: Dave Young <dyoung@redhat.com>
Acked-by: Borislav Petkov <bp@suse.de>
Acked-by: Vivek Goyal <vgoyal@redhat.com>
Signed-off-by: Matt Fleming <matt.fleming@intel.com>
earlyprintk=efi,keep will cause kernel hangs while freeing initmem like
below:
VFS: Mounted root (ext4 filesystem) readonly on device 254:2.
devtmpfs: mounted
Freeing unused kernel memory: 880K (ffffffff817d4000 - ffffffff818b0000)
It is caused by efi earlyprintk use __init function which will be freed
later. Such as early_efi_write is marked as __init, also it will use
early_ioremap which is init function as well.
To fix this issue, I added early initcall early_efi_map_fb which maps
the whole efi fb for later use. OTOH, adding a wrapper function
early_efi_map which calls early_ioremap before ioremap is available.
With this patch applied efi boot ok with earlyprintk=efi,keep console=efi
Signed-off-by: Dave Young <dyoung@redhat.com>
Signed-off-by: Matt Fleming <matt.fleming@intel.com>
earlyprintk=efi,keep will cause kernel hangs while freeing initmem like
below:
VFS: Mounted root (ext4 filesystem) readonly on device 254:2.
devtmpfs: mounted
Freeing unused kernel memory: 880K (ffffffff817d4000 - ffffffff818b0000)
It is caused by efi earlyprintk use __init function which will be freed
later. Such as early_efi_write is marked as __init, also it will use
early_ioremap which is init function as well.
To fix this issue, I added early initcall early_efi_map_fb which maps
the whole efi fb for later use. OTOH, adding a wrapper function
early_efi_map which calls early_ioremap before ioremap is available.
With this patch applied efi boot ok with earlyprintk=efi,keep console=efi
Signed-off-by: Dave Young <dyoung@redhat.com>
Signed-off-by: Matt Fleming <matt.fleming@intel.com>
For i386, all the EFI system runtime services functions return efi_status_t
except efi_reset_system_system. Therefore, not all functions can be covered
by the same macro in case the macro needs to do more than calling the function
(i.e., return a value). The purpose of the __efi_call_virt macro is to be used
when no return value is expected.
For x86_64, this macro would not be needed as all the runtime services return
u64. However, the same code is used for both x86_64 and i386. Thus, the macro
__efi_call_virt is also defined to not break compilation.
Signed-off-by: Ricardo Neri <ricardo.neri-calderon@linux.intel.com>
Cc: Borislav Petkov <bp@suse.de>
Signed-off-by: Matt Fleming <matt.fleming@intel.com>
We really only need one phys and one virt function call, and then only
one assembly function to make firmware calls.
Since we are not using the C type system anyway, we're not really losing
much by deleting the macros apart from no longer having a check that
we are passing the correct number of parameters. The lack of duplicated
code seems like a worthwhile trade-off.
Cc: Ricardo Neri <ricardo.neri-calderon@linux.intel.com>
Cc: Borislav Petkov <bp@suse.de>
Signed-off-by: Matt Fleming <matt.fleming@intel.com>
In the thunk patches the 'attr' argument was dropped to
query_variable_info(). Restore it otherwise the firmware will return
EFI_INVALID_PARAMETER.
Signed-off-by: Matt Fleming <matt.fleming@intel.com>
Dan reported that phys_efi_get_time() is doing kmalloc(..., GFP_KERNEL)
under a spinlock which is very clearly a bug. Since phys_efi_get_time()
has no users let's just delete it instead of trying to fix it.
Note that since there are no users of phys_efi_get_time(), it is not
possible to actually trigger a GFP_KERNEL alloc under the spinlock.
Reported-by: Dan Carpenter <dan.carpenter@oracle.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Nathan Zimmer <nzimmer@sgi.com>
Cc: Matthew Garrett <mjg59@srcf.ucam.org>
Cc: Jan Beulich <JBeulich@suse.com>
Signed-off-by: Matt Fleming <matt.fleming@intel.com>
I was triggering a #GP(0) from userland when running with
CONFIG_EFI_MIXED and CONFIG_IA32_EMULATION, from what looked like
register corruption. Turns out that the mixed mode code was trashing the
contents of %ds, %es and %ss in __efi64_thunk().
Save and restore the contents of these segment registers across the call
to __efi64_thunk() so that we don't corrupt the CPU context.
Signed-off-by: Matt Fleming <matt.fleming@intel.com>
Alex reported hitting the following BUG after the EFI 1:1 virtual
mapping work was merged,
kernel BUG at arch/x86/mm/init_64.c:351!
invalid opcode: 0000 [#1] SMP
Call Trace:
[<ffffffff818aa71d>] init_extra_mapping_uc+0x13/0x15
[<ffffffff818a5e20>] uv_system_init+0x22b/0x124b
[<ffffffff8108b886>] ? clockevents_register_device+0x138/0x13d
[<ffffffff81028dbb>] ? setup_APIC_timer+0xc5/0xc7
[<ffffffff8108b620>] ? clockevent_delta2ns+0xb/0xd
[<ffffffff818a3a92>] ? setup_boot_APIC_clock+0x4a8/0x4b7
[<ffffffff8153d955>] ? printk+0x72/0x74
[<ffffffff818a1757>] native_smp_prepare_cpus+0x389/0x3d6
[<ffffffff818957bc>] kernel_init_freeable+0xb7/0x1fb
[<ffffffff81535530>] ? rest_init+0x74/0x74
[<ffffffff81535539>] kernel_init+0x9/0xff
[<ffffffff81541dfc>] ret_from_fork+0x7c/0xb0
[<ffffffff81535530>] ? rest_init+0x74/0x74
Getting this thing to work with the new mapping scheme would need more
work, so automatically switch to the old memmap layout for SGI UV.
Acked-by: Russ Anderson <rja@sgi.com>
Cc: Alex Thorlton <athorlton@sgi.com
Signed-off-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Matt Fleming <matt.fleming@intel.com>
Some firmware appears to enable interrupts during boot service calls,
even if we've explicitly disabled them prior to the call. This is
actually allowed per the UEFI spec because boottime services expect to
be called with interrupts enabled.
So that's fine, we just need to ensure that we disable them again in
efi_enter32() before switching to a 64-bit GDT, otherwise an interrupt
may fire causing a 32-bit IRQ handler to run after we've left
compatibility mode.
Despite efi_enter32() being called both for boottime and runtime
services, this really only affects boottime because the runtime services
callchain is executed with interrupts disabled. See efi_thunk().
Signed-off-by: Matt Fleming <matt.fleming@intel.com>
Add the Kconfig option and bump the kernel header version so that boot
loaders can check whether the handover code is available if they want.
The xloadflags field in the bzImage header is also updated to reflect
that the kernel supports both entry points by setting both of
XLF_EFI_HANDOVER_32 and XLF_EFI_HANDOVER_64 when CONFIG_EFI_MIXED=y.
XLF_CAN_BE_LOADED_ABOVE_4G is disabled so that the kernel text is
guaranteed to be addressable with 32-bits.
Note that no boot loaders should be using the bits set in xloadflags to
decide which entry point to jump to. The entire scheme is based on the
concept that 32-bit bootloaders always jump to ->handover_offset and
64-bit loaders always jump to ->handover_offset + 512. We set both bits
merely to inform the boot loader that it's safe to use the native
handover offset even if the machine type in the PE/COFF header claims
otherwise.
Signed-off-by: Matt Fleming <matt.fleming@intel.com>
Setup the runtime services based on whether we're booting in EFI native
mode or not. For non-native mode we need to thunk from 64-bit into
32-bit mode before invoking the EFI runtime services.
Using the runtime services after SetVirtualAddressMap() is slightly more
complicated because we need to ensure that all the addresses we pass to
the firmware are below the 4GB boundary so that they can be addressed
with 32-bit pointers, see efi_setup_page_tables().
Signed-off-by: Matt Fleming <matt.fleming@intel.com>
Implement the transition code to go from IA32e mode to protected mode in
the EFI boot stub. This is required to use 32-bit EFI services from a
64-bit kernel.
Since EFI boot stub is executed in an identity-mapped region, there's
not much we need to do before invoking the 32-bit EFI boot services.
However, we do reload the firmware's global descriptor table
(efi32_boot_gdt) in case things like timer events are still running in
the firmware.
Signed-off-by: Matt Fleming <matt.fleming@intel.com>
Both efi_free_boot_services() and efi_enter_virtual_mode() are invoked
from init/main.c, but only if the EFI runtime services are available.
This is not the case for non-native boots, e.g. where a 64-bit kernel is
booted with 32-bit EFI firmware.
Delete the dead code.
Acked-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Matt Fleming <matt.fleming@intel.com>
... into a kexec flavor for better code readability and simplicity. The
original one was getting ugly with ifdeffery.
Signed-off-by: Borislav Petkov <bp@suse.de>
Tested-by: Toshi Kani <toshi.kani@hp.com>
Signed-off-by: Matt Fleming <matt.fleming@intel.com>
Currently, running SetVirtualAddressMap() and passing the physical
address of the virtual map array was working only by a lucky coincidence
because the memory was present in the EFI page table too. Until Toshi
went and booted this on a big HP box - the krealloc() manner of resizing
the memmap we're doing did allocate from such physical addresses which
were not mapped anymore and boom:
http://lkml.kernel.org/r/1386806463.1791.295.camel@misato.fc.hp.com
One way to take care of that issue is to reimplement the krealloc thing
but with pages. We start with contiguous pages of order 1, i.e. 2 pages,
and when we deplete that memory (shouldn't happen all that often but you
know firmware) we realloc the next power-of-two pages.
Having the pages, it is much more handy and easy to map them into the
EFI page table with the already existing mapping code which we're using
for building the virtual mappings.
Thanks to Toshi Kani and Matt for the great debugging help.
Reported-by: Toshi Kani <toshi.kani@hp.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Tested-by: Toshi Kani <toshi.kani@hp.com>
Signed-off-by: Matt Fleming <matt.fleming@intel.com>
This is very useful for debugging issues with the recently added
pagetable switching code for EFI virtual mode.
Signed-off-by: Borislav Petkov <bp@suse.de>
Tested-by: Toshi Kani <toshi.kani@hp.com>
Signed-off-by: Matt Fleming <matt.fleming@intel.com>
Coalesce formats and remove spaces before tabs.
Move __initdata after the variable declaration.
Signed-off-by: Joe Perches <joe@perches.com>
Signed-off-by: Matt Fleming <matt.fleming@intel.com>
For now we only ensure about 5kb free space for avoiding our board
refusing boot. But the comment lies that we retain 50% space.
Signed-off-by: Madper Xie <cxie@redhat.com>
Signed-off-by: Matt Fleming <matt.fleming@intel.com>
It makes more sense to set the feature flag in the success path of the
detection function than it does to rely on the caller doing it. Apart
from it being more logical to group the code and data together, it sets
a much better example for new EFI architectures.
Signed-off-by: Matt Fleming <matt.fleming@intel.com>
As we grow support for more EFI architectures they're going to want the
ability to query which EFI features are available on the running system.
Instead of storing this information in an architecture-specific place,
stick it in the global 'struct efi', which is already the central
location for EFI state.
While we're at it, let's change the return value of efi_enabled() to be
bool and replace all references to 'facility' with 'feature', which is
the usual word used to describe the attributes of the running system.
Signed-off-by: Matt Fleming <matt.fleming@intel.com>
Madper reported seeing the following crash,
BUG: unable to handle kernel paging request at ffffffffff340003
IP: [<ffffffff81d85ba4>] efi_bgrt_init+0x9d/0x133
Call Trace:
[<ffffffff81d8525d>] efi_late_init+0x9/0xb
[<ffffffff81d68f59>] start_kernel+0x436/0x450
[<ffffffff81d6892c>] ? repair_env_string+0x5c/0x5c
[<ffffffff81d68120>] ? early_idt_handlers+0x120/0x120
[<ffffffff81d685de>] x86_64_start_reservations+0x2a/0x2c
[<ffffffff81d6871e>] x86_64_start_kernel+0x13e/0x14d
This is caused because the layout of the ACPI BGRT header on this system
doesn't match the definition from the ACPI spec, and so we get a bogus
physical address when dereferencing ->image_address in efi_bgrt_init().
Luckily the status field in the BGRT header clearly marks it as invalid,
so we can check that field and skip BGRT initialisation.
Reported-by: Madper Xie <cxie@redhat.com>
Suggested-by: Toshi Kani <toshi.kani@hp.com>
Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net>
Cc: Matthew Garrett <mjg59@srcf.ucam.org>
Cc: Josh Triplett <josh@joshtriplett.org>
Signed-off-by: Matt Fleming <matt.fleming@intel.com>
We do not enable the new efi memmap on 32-bit and thus we need to run
runtime_code_page_mkexec() unconditionally there. Fix that.
Reported-and-tested-by: Lejun Zhu <lejun.zhu@intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Matt Fleming <matt.fleming@intel.com>
CONFIG_X86_32 doesn't map the boot services regions into the EFI memory
map (see commit 700870119f ("x86, efi: Don't map Boot Services on
i386")), and so efi_lookup_mapped_addr() will fail to return a valid
address. Executing the ioremap() path in efi_bgrt_init() causes the
following warning on x86-32 because we're trying to ioremap() RAM,
WARNING: CPU: 0 PID: 0 at arch/x86/mm/ioremap.c:102 __ioremap_caller+0x2ad/0x2c0()
Modules linked in:
CPU: 0 PID: 0 Comm: swapper/0 Not tainted 3.13.0-0.rc5.git0.1.2.fc21.i686 #1
Hardware name: DellInc. Venue 8 Pro 5830/09RP78, BIOS A02 10/17/2013
00000000 00000000 c0c0df08 c09a5196 00000000 c0c0df38 c0448c1e c0b41310
00000000 00000000 c0b37bc1 00000066 c043bbfd c043bbfd 00e7dfe0 00073eff
00073eff c0c0df48 c0448ce2 00000009 00000000 c0c0df9c c043bbfd 00078d88
Call Trace:
[<c09a5196>] dump_stack+0x41/0x52
[<c0448c1e>] warn_slowpath_common+0x7e/0xa0
[<c043bbfd>] ? __ioremap_caller+0x2ad/0x2c0
[<c043bbfd>] ? __ioremap_caller+0x2ad/0x2c0
[<c0448ce2>] warn_slowpath_null+0x22/0x30
[<c043bbfd>] __ioremap_caller+0x2ad/0x2c0
[<c0718f92>] ? acpi_tb_verify_table+0x1c/0x43
[<c0719c78>] ? acpi_get_table_with_size+0x63/0xb5
[<c087cd5e>] ? efi_lookup_mapped_addr+0xe/0xf0
[<c043bc2b>] ioremap_nocache+0x1b/0x20
[<c0cb01c8>] ? efi_bgrt_init+0x83/0x10c
[<c0cb01c8>] efi_bgrt_init+0x83/0x10c
[<c0cafd82>] efi_late_init+0x8/0xa
[<c0c9bab2>] start_kernel+0x3ae/0x3c3
[<c0c9b53b>] ? repair_env_string+0x51/0x51
[<c0c9b378>] i386_start_kernel+0x12e/0x131
Switch to using early_memremap(), which won't trigger this warning, and
has the added benefit of more accurately conveying what we're trying to
do - map a chunk of memory.
This patch addresses the following bug report,
https://bugzilla.kernel.org/show_bug.cgi?id=67911
Reported-by: Adam Williamson <awilliam@redhat.com>
Cc: Josh Triplett <josh@joshtriplett.org>
Cc: Matthew Garrett <mjg59@srcf.ucam.org>
Cc: Rafael J. Wysocki <rjw@rjwysocki.net>
Signed-off-by: Matt Fleming <matt.fleming@intel.com>