One problem that has plagued us is that a user will use up all of his space with
data, remove a bunch of that data, and then try to create a bunch of small files
and run out of space. This happens because all the chunks were allocated for
data since the metadata requirements were so low. But now there's a bunch of
empty data block groups and not enough metadata space to do anything. This
patch solves this problem by automatically deleting empty block groups. If we
notice the used count go down to 0 when deleting or on mount notice that a block
group has a used count of 0 then we will queue it to be deleted.
When the cleaner thread runs we will double check to make sure the block group
is still empty and then we will delete it. This patch has the side effect of no
longer having a bunch of BUG_ON()'s in the chunk delete code, which will be
helpful for both this and relocate. Thanks,
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
This patch implement data repair function when direct read fails.
The detail of the implementation is:
- When we find the data is not right, we try to read the data from the other
mirror.
- When the io on the mirror ends, we will insert the endio work into the
dedicated btrfs workqueue, not common read endio workqueue, because the
original endio work is still blocked in the btrfs endio workqueue, if we
insert the endio work of the io on the mirror into that workqueue, deadlock
would happen.
- After we get right data, we write it back to the corrupted mirror.
- And if the data on the new mirror is still corrupted, we will try next
mirror until we read right data or all the mirrors are traversed.
- After the above work, we set the uptodate flag according to the result.
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
The current code would load checksum data for several times when we split
a whole direct read io because of the limit of the raid stripe, it would
make us search the csum tree for several times. In fact, it just wasted time,
and made the contention of the csum tree root be more serious. This patch
improves this problem by loading the data at once.
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
Last user removed in commit "btrfs: disable strict file flushes for
renames and truncates" (8d875f95da).
Signed-off-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Chris Mason <clm@fb.com>
inline data is stored from offset of @disk_bytenr in
struct btrfs_file_extent_item. So substracting total
size of struct btrfs_file_extent_item is wrong, fix it.
Signed-off-by: Wang Shilong <wangsl.fnst@cn.fujitsu.com>
Reviewed-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Chris Mason <clm@fb.com>
The nodesize and leafsize were never of different values. Unify the
usage and make nodesize the one. Cleanup the redundant checks and
helpers.
Shaves a few bytes from .text:
text data bss dec hex filename
852418 24560 23112 900090 dbbfa btrfs.ko.before
851074 24584 23112 898770 db6d2 btrfs.ko.after
Signed-off-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Chris Mason <clm@fb.com>
The naming is confusing, generic yet used for a specific cache. Add a
prefix 'ino_' or rename appropriately.
Signed-off-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Chris Mason <clm@fb.com>
Before I extended the no_quota arg to btrfs_dec/inc_ref because I didn't
understand how snapshot delete was using it and assumed that we needed the
quota operations there. With Mark's work this has turned out to be not the
case, we _always_ need to use no_quota for btrfs_dec/inc_ref, so just drop the
argument and make __btrfs_mod_ref call it's process function with no_quota set
always. Thanks,
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
When we mounted the filesystem after the crash, we got the following
message:
BTRFS error (device xxx): block group xxxx has wrong amount of free space
BTRFS error (device xxx): failed to load free space cache for block group xxx
It is because we didn't update the metadata of the allocated space (in extent
tree) until the file data was written into the disk. During this time, there was
no information about the allocated spaces in either the extent tree nor the
free space cache. when we wrote out the free space cache at this time (commit
transaction), those spaces were lost. In fact, only the free space that is
used to store the file data had this problem, the others didn't because
the metadata of them is updated in the same transaction context.
There are many methods which can fix the above problem
- track the allocated space, and write it out when we write out the free
space cache
- account the size of the allocated space that is used to store the file
data, if the size is not zero, don't write out the free space cache.
The first one is complex and may make the performance drop down.
This patch chose the second method, we use a per-block-group variant to
account the size of that allocated space. Besides that, we also introduce
a per-block-group read-write semaphore to avoid the race between
the allocation and the free space cache write out.
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
When cloning into a file, we were correctly replacing the extent
items in the target range and removing the extent maps. However
we weren't replacing the extent maps with new ones that point to
the new extents - as a consequence, an incremental fsync (when the
inode doesn't have the full sync flag) was a NOOP, since it relies
on the existence of extent maps in the modified list of the inode's
extent map tree, which was empty. Therefore add new extent maps to
reflect the target clone range.
A test case for xfstests follows.
Signed-off-by: Filipe David Borba Manana <fdmanana@gmail.com>
Signed-off-by: Chris Mason <clm@fb.com>
We are currently allocating space_info objects in an array when we
allocate space_info. When a user does something like:
# btrfs balance start -mconvert=raid1 -dconvert=raid1 /mnt
# btrfs balance start -mconvert=single -dconvert=single /mnt -f
# btrfs balance start -mconvert=raid1 -dconvert=raid1 /
We can end up with memory corruption since the kobject hasn't
been reinitialized properly and the name pointer was left set.
The rationale behind allocating them statically was to avoid
creating a separate kobject container that just contained the
raid type. It used the index in the array to determine the index.
Ultimately, though, this wastes more memory than it saves in all
but the most complex scenarios and introduces kobject lifetime
questions.
This patch allocates the kobjects dynamically instead. Note that
we also remove the kobject_get/put of the parent kobject since
kobject_add and kobject_del do that internally.
Signed-off-by: Jeff Mahoney <jeffm@suse.com>
Reported-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Chris Mason <clm@fb.com>
Delayed extent operations are triggered during transaction commits.
The goal is to queue up a healthly batch of changes to the extent
allocation tree and run through them in bulk.
This farms them off to async helper threads. The goal is to have the
bulk of the delayed operations being done in the background, but this is
also important to limit our stack footprint.
Signed-off-by: Chris Mason <clm@fb.com>
This exercises the various parts of the new qgroup accounting code. We do some
basic stuff and do some things with the shared refs to make sure all that code
works. I had to add a bunch of infrastructure because I needed to be able to
insert items into a fake tree without having to do all the hard work myself,
hopefully this will be usefull in the future. Thanks,
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
Currently qgroups account for space by intercepting delayed ref updates to fs
trees. It does this by adding sequence numbers to delayed ref updates so that
it can figure out how the tree looked before the update so we can adjust the
counters properly. The problem with this is that it does not allow delayed refs
to be merged, so if you say are defragging an extent with 5k snapshots pointing
to it we will thrash the delayed ref lock because we need to go back and
manually merge these things together. Instead we want to process quota changes
when we know they are going to happen, like when we first allocate an extent, we
free a reference for an extent, we add new references etc. This patch
accomplishes this by only adding qgroup operations for real ref changes. We
only modify the sequence number when we need to lookup roots for bytenrs, this
reduces the amount of churn on the sequence number and allows us to merge
delayed refs as we add them most of the time. This patch encompasses a bunch of
architectural changes
1) qgroup ref operations: instead of tracking qgroup operations through the
delayed refs we simply add new ref operations whenever we notice that we need to
when we've modified the refs themselves.
2) tree mod seq: we no longer have this separation of major/minor counters.
this makes the sequence number stuff much more sane and we can remove some
locking that was needed to protect the counter.
3) delayed ref seq: we now read the tree mod seq number and use that as our
sequence. This means each new delayed ref doesn't have it's own unique sequence
number, rather whenever we go to lookup backrefs we inc the sequence number so
we can make sure to keep any new operations from screwing up our world view at
that given point. This allows us to merge delayed refs during runtime.
With all of these changes the delayed ref stuff is a little saner and the qgroup
accounting stuff no longer goes negative in some cases like it was before.
Thanks,
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
Before applying this patch, the task had to reclaim the metadata space
by itself if the metadata space was not enough. And When the task started
the space reclamation, all the other tasks which wanted to reserve the
metadata space were blocked. At some cases, they would be blocked for
a long time, it made the performance fluctuate wildly.
So we introduce the background metadata space reclamation, when the space
is about to be exhausted, we insert a reclaim work into the workqueue, the
worker of the workqueue helps us to reclaim the reserved space at the
background. By this way, the tasks needn't reclaim the space by themselves at
most cases, and even if the tasks have to reclaim the space or are blocked
for the space reclamation, they will get enough space more quickly.
Here is my test result(Tested by compilebench):
Memory: 2GB
CPU: 2Cores * 1CPU
Partition: 40GB(SSD)
Test command:
# compilebench -D <mnt> -m
Without this patch:
intial create total runs 30 avg 54.36 MB/s (user 0.52s sys 2.44s)
compile total runs 30 avg 123.72 MB/s (user 0.13s sys 1.17s)
read compiled tree total runs 3 avg 81.15 MB/s (user 0.74s sys 4.89s)
delete compiled tree total runs 30 avg 5.32 seconds (user 0.35s sys 4.37s)
With this patch:
intial create total runs 30 avg 59.80 MB/s (user 0.52s sys 2.53s)
compile total runs 30 avg 151.44 MB/s (user 0.13s sys 1.11s)
read compiled tree total runs 3 avg 83.25 MB/s (user 0.76s sys 4.91s)
delete compiled tree total runs 30 avg 5.29 seconds (user 0.34s sys 4.34s)
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
The patch "Btrfs: fix protection between send and root deletion"
(18f687d538) does not actually prevent to delete the snapshot
and just takes care during background cleaning, but this seems rather
user unfriendly, this patch implements the idea presented in
http://www.spinics.net/lists/linux-btrfs/msg30813.html
- add an internal root_item flag to denote a dead root
- check if the send_in_progress is set and refuse to delete, otherwise
set the flag and proceed
- check the flag in send similar to the btrfs_root_readonly checks, for
all involved roots
The root lookup in send via btrfs_read_fs_root_no_name will check if the
root is really dead or not. If it is, ENOENT, aborted send. If it's
alive, it's protected by send_in_progress, send can continue.
CC: Miao Xie <miaox@cn.fujitsu.com>
CC: Wang Shilong <wangsl.fnst@cn.fujitsu.com>
Signed-off-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Chris Mason <clm@fb.com>
This started as debugging helper, to watch the effects of converting
between raid levels on multiple devices, but could be useful standalone.
In my case the usage filter was not finegrained enough and led to
converting too many chunks at once. Another example use is in connection
with drange+devid or vrange filters that allow to work with a specific
chunk or even with a chunk on a given device.
The limit filter applies last, the value of 0 means no limiting.
CC: Ilya Dryomov <idryomov@gmail.com>
CC: Hugo Mills <hugo@carfax.org.uk>
Signed-off-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Chris Mason <clm@fb.com>
Pull btrfs fixes from Chris Mason.
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs:
Btrfs: limit the path size in send to PATH_MAX
Btrfs: correctly set profile flags on seqlock retry
Btrfs: use correct key when repeating search for extent item
Btrfs: fix inode caching vs tree log
Btrfs: fix possible memory leaks in open_ctree()
Btrfs: avoid triggering bug_on() when we fail to start inode caching task
Btrfs: move btrfs_{set,clear}_and_info() to ctree.h
btrfs: replace error code from btrfs_drop_extents
btrfs: Change the hole range to a more accurate value.
btrfs: fix use-after-free in mount_subvol()
Pull second set of btrfs updates from Chris Mason:
"The most important changes here are from Josef, fixing a btrfs
regression in 3.14 that can cause corruptions in the extent allocation
tree when snapshots are in use.
Josef also fixed some deadlocks in send/recv and other assorted races
when balance is running"
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs: (23 commits)
Btrfs: fix compile warnings on on avr32 platform
btrfs: allow mounting btrfs subvolumes with different ro/rw options
btrfs: export global block reserve size as space_info
btrfs: fix crash in remount(thread_pool=) case
Btrfs: abort the transaction when we don't find our extent ref
Btrfs: fix EINVAL checks in btrfs_clone
Btrfs: fix unlock in __start_delalloc_inodes()
Btrfs: scrub raid56 stripes in the right way
Btrfs: don't compress for a small write
Btrfs: more efficient io tree navigation on wait_extent_bit
Btrfs: send, build path string only once in send_hole
btrfs: filter invalid arg for btrfs resize
Btrfs: send, fix data corruption due to incorrect hole detection
Btrfs: kmalloc() doesn't return an ERR_PTR
Btrfs: fix snapshot vs nocow writting
btrfs: Change the expanding write sequence to fix snapshot related bug.
btrfs: make device scan less noisy
btrfs: fix lockdep warning with reclaim lock inversion
Btrfs: hold the commit_root_sem when getting the commit root during send
Btrfs: remove transaction from send
...
Introduce a block group type bit for a global reserve and fill the space
info for SPACE_INFO ioctl. This should replace the newly added ioctl
(01e219e806) to get just the 'size' part
of the global reserve, while the actual usage can be now visible in the
'btrfs fi df' output during ENOSPC stress.
The unpatched userspace tools will show the blockgroup as 'unknown'.
CC: Jeff Mahoney <jeffm@suse.com>
CC: Josef Bacik <jbacik@fb.com>
Signed-off-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Chris Mason <clm@fb.com>
We currently rely too heavily on roots being read-only to save us from just
accessing root->commit_root. We can easily balance blocks out from underneath a
read only root, so to save us from getting screwed make sure we only access
root->commit_root under the commit root sem. Thanks,
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
Lets try this again. We can deadlock the box if we send on a box and try to
write onto the same fs with the app that is trying to listen to the send pipe.
This is because the writer could get stuck waiting for a transaction commit
which is being blocked by the send. So fix this by making sure looking at the
commit roots is always going to be consistent. We do this by keeping track of
which roots need to have their commit roots swapped during commit, and then
taking the commit_root_sem and swapping them all at once. Then make sure we
take a read lock on the commit_root_sem in cases where we search the commit root
to make sure we're always looking at a consistent view of the commit roots.
Previously we had problems with this because we would swap a fs tree commit root
and then swap the extent tree commit root independently which would cause the
backref walking code to screw up sometimes. With this patch we no longer
deadlock and pass all the weird send/receive corner cases. Thanks,
Reportedy-by: Hugo Mills <hugo@carfax.org.uk>
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
Pull btrfs changes from Chris Mason:
"This is a pretty long stream of bug fixes and performance fixes.
Qu Wenruo has replaced the btrfs async threads with regular kernel
workqueues. We'll keep an eye out for performance differences, but
it's nice to be using more generic code for this.
We still have some corruption fixes and other patches coming in for
the merge window, but this batch is tested and ready to go"
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs: (108 commits)
Btrfs: fix a crash of clone with inline extents's split
btrfs: fix uninit variable warning
Btrfs: take into account total references when doing backref lookup
Btrfs: part 2, fix incremental send's decision to delay a dir move/rename
Btrfs: fix incremental send's decision to delay a dir move/rename
Btrfs: remove unnecessary inode generation lookup in send
Btrfs: fix race when updating existing ref head
btrfs: Add trace for btrfs_workqueue alloc/destroy
Btrfs: less fs tree lock contention when using autodefrag
Btrfs: return EPERM when deleting a default subvolume
Btrfs: add missing kfree in btrfs_destroy_workqueue
Btrfs: cache extent states in defrag code path
Btrfs: fix deadlock with nested trans handles
Btrfs: fix possible empty list access when flushing the delalloc inodes
Btrfs: split the global ordered extents mutex
Btrfs: don't flush all delalloc inodes when we doesn't get s_umount lock
Btrfs: reclaim delalloc metadata more aggressively
Btrfs: remove unnecessary lock in may_commit_transaction()
Btrfs: remove the unnecessary flush when preparing the pages
Btrfs: just do dirty page flush for the inode with compression before direct IO
...
We didn't have a lock to protect the access to the delalloc inodes list, that is
we might access a empty delalloc inodes list if someone start flushing delalloc
inodes because the delalloc inodes were moved into a other list temporarily.
Fix it by wrapping the access with a lock.
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Josef Bacik <jbacik@fb.com>
When we create a snapshot, we just need wait the ordered extents in
the source fs/file root, but because we use the global mutex to protect
this ordered extents list of the source fs/file root to avoid accessing
a empty list, if someone got the mutex to access the ordered extents list
of the other fs/file root, we had to wait.
This patch splits the above global mutex, now every fs/file root has
its own mutex to protect its own list.
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Josef Bacik <jbacik@fb.com>
We needn't flush all delalloc inodes when we doesn't get s_umount lock,
or we would make the tasks wait for a long time.
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Josef Bacik <jbacik@fb.com>
If the snapshot creation happened after the nocow write but before the dirty
data flush, we would fail to flush the dirty data because of no space.
So we must keep track of when those nocow write operations start and when they
end, if there are nocow writers, the snapshot creators must wait. In order
to implement this function, I introduce btrfs_{start, end}_nocow_write(),
which is similar to mnt_{want,drop}_write().
These two functions are only used for nocow file write operations.
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Josef Bacik <jbacik@fb.com>
Since the "_struct" suffix is mainly used for distinguish the differnt
btrfs_work between the original and the newly created one,
there is no need using the suffix since all btrfs_workers are changed
into btrfs_workqueue.
Also this patch fixed some codes whose code style is changed due to the
too long "_struct" suffix.
Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Tested-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Josef Bacik <jbacik@fb.com>
Since all the btrfs_worker is replaced with the newly created
btrfs_workqueue, the old codes can be easily remove.
Signed-off-by: Quwenruo <quwenruo@cn.fujitsu.com>
Tested-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Josef Bacik <jbacik@fb.com>
Replace the fs_info->scrub_* with the newly created
btrfs_workqueue.
Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Tested-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Josef Bacik <jbacik@fb.com>
Replace the fs_info->qgroup_rescan_worker with the newly created
btrfs_workqueue.
Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Tested-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Josef Bacik <jbacik@fb.com>
Replace the fs_info->delayed_workers with the newly created
btrfs_workqueue.
Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Tested-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Josef Bacik <jbacik@fb.com>
Replace the fs_info->fixup_workers with the newly created
btrfs_workqueue.
Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Tested-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Josef Bacik <jbacik@fb.com>
Replace the fs_info->readahead_workers with the newly created
btrfs_workqueue.
Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Tested-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Josef Bacik <jbacik@fb.com>
Replace the fs_info->cache_workers with the newly created
btrfs_workqueue.
Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Tested-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Josef Bacik <jbacik@fb.com>
Replace the fs_info->rmw_workers with the newly created
btrfs_workqueue.
Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Tested-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Josef Bacik <jbacik@fb.com>
Replace the fs_info->endio_* workqueues with the newly created
btrfs_workqueue.
Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Tested-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Josef Bacik <jbacik@fb.com>
Replace the fs_info->submit_workers with the newly created
btrfs_workqueue.
Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Tested-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Josef Bacik <jbacik@fb.com>
Much like the fs_info->workers, replace the fs_info->submit_workers
use the same btrfs_workqueue.
Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Tested-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Josef Bacik <jbacik@fb.com>
Much like the fs_info->workers, replace the fs_info->delalloc_workers
use the same btrfs_workqueue.
Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Tested-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Josef Bacik <jbacik@fb.com>
Use the newly created btrfs_workqueue_struct to replace the original
fs_info->workers
Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Tested-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Josef Bacik <jbacik@fb.com>
We might commit the log sub-transaction which didn't contain the metadata we
logged. It was because we didn't record the log transid and just select
the current log sub-transaction to commit, but the right one might be
committed by the other task already. Actually, we needn't do anything
and it is safe that we go back directly in this case.
This patch improves the log sync by the above idea. We record the transid
of the log sub-transaction in which we log the metadata, and the transid
of the log sub-transaction we have committed. If the committed transid
is >= the transid we record when logging the metadata, we just go back.
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Josef Bacik <jbacik@fb.com>
It is possible that many tasks sync the log tree at the same time, but
only one task can do the sync work, the others will wait for it. But those
wait tasks didn't get the result of the log sync, and returned 0 when they
ended the wait. It caused those tasks skipped the error handle, and the
serious problem was they told the users the file sync succeeded but in
fact they failed.
This patch fixes this problem by introducing a log context structure,
we insert it into the a global list. When the sync fails, we will set
the error number of every log context in the list, then the waiting tasks
get the error number of the log context and handle the error if need.
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Josef Bacik <jbacik@fb.com>
The log trans id is initialized to be 0 every time we create a log tree,
and the log tree need be re-created after a new transaction is started,
it means the log trans id is unlikely to be a huge number, so we can use
signed integer instead of unsigned long integer to save a bit space.
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Josef Bacik <jbacik@fb.com>
During device replace test, we hit a null pointer deference (It was very easy
to reproduce it by running xfstests' btrfs/011 on the devices with the virtio
scsi driver). There were two bugs that caused this problem:
- We might allocate new chunks on the replaced device after we updated
the mapping tree. And we forgot to replace the source device in those
mapping of the new chunks.
- We might get the mapping information which including the source device
before the mapping information update. And then submit the bio which was
based on that mapping information after we freed the source device.
For the first bug, we can fix it by doing mapping tree update and source
device remove in the same context of the chunk mutex. The chunk mutex is
used to protect the allocable device list, the above method can avoid
the new chunk allocation, and after we remove the source device, all
the new chunks will be allocated on the new device. So it can fix
the first bug.
For the second bug, we need make sure all flighting bios are finished and
no new bios are produced during we are removing the source device. To fix
this problem, we introduced a global @bio_counter, we not only inc/dec
@bio_counter outsize of map_blocks, but also inc it before submitting bio
and dec @bio_counter when ending bios.
Since Raid56 is a little different and device replace dosen't support raid56
yet, it is not addressed in the patch and I add comments to make sure we will
fix it in the future.
Reported-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Signed-off-by: Wang Shilong <wangsl.fnst@cn.fujitsu.com>
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Josef Bacik <jbacik@fb.com>
Pull btrfs updates from Chris Mason:
"This is a pretty big pull, and most of these changes have been
floating in btrfs-next for a long time. Filipe's properties work is a
cool building block for inheriting attributes like compression down on
a per inode basis.
Jeff Mahoney kicked in code to export filesystem info into sysfs.
Otherwise, lots of performance improvements, cleanups and bug fixes.
Looks like there are still a few other small pending incrementals, but
I wanted to get the bulk of this in first"
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs: (149 commits)
Btrfs: fix spin_unlock in check_ref_cleanup
Btrfs: setup inode location during btrfs_init_inode_locked
Btrfs: don't use ram_bytes for uncompressed inline items
Btrfs: fix btrfs_search_slot_for_read backwards iteration
Btrfs: do not export ulist functions
Btrfs: rework ulist with list+rb_tree
Btrfs: fix memory leaks on walking backrefs failure
Btrfs: fix send file hole detection leading to data corruption
Btrfs: add a reschedule point in btrfs_find_all_roots()
Btrfs: make send's file extent item search more efficient
Btrfs: fix to catch all errors when resolving indirect ref
Btrfs: fix protection between walking backrefs and root deletion
btrfs: fix warning while merging two adjacent extents
Btrfs: fix infinite path build loops in incremental send
btrfs: undo sysfs when open_ctree() fails
Btrfs: fix snprintf usage by send's gen_unique_name
btrfs: fix defrag 32-bit integer overflow
btrfs: sysfs: list the NO_HOLES feature
btrfs: sysfs: don't show reserved incompat feature
btrfs: call permission checks earlier in ioctls and return EPERM
...
If we truncate an uncompressed inline item, ram_bytes isn't updated to reflect
the new size. The fixe uses the size directly from the item header when
reading uncompressed inlines, and also fixes truncate to update the
size as it goes.
Reported-by: Jens Axboe <axboe@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
CC: stable@vger.kernel.org
It is better that the position of the lock is close to the data which is
protected by it, because they may be in the same cache line, we will load
less cache lines when we access them. So we rearrange the members' position
of btrfs_space_info structure to make the lock be closer to the its data.
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Reviewed-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>