Boot-time processing often loops in the kernel longer than one might
prefer, which can prevent expedited grace periods from completing in
a timely manner. This in turn triggers a splat In nohz_full CPUs One
could argue that long-looping code should be fixed, but on the other hand,
boot time is a bit special.
This commit therefore removes the splat. Later commits will add the
splat back in, but in a way that removes false positives.
Reported-by: Borislav Petkov <bp@alien8.de>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Long ago, RCU used the stop-machine mechanism to implement expedited
grace periods, but no longer does so. This commit therefore removes
the no-longer-needed #includes of linux/stop_machine.h.
Link: https://lwn.net/Articles/805317/
Reported-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
The ->srcu_last_gp_end field is accessed from any CPU at any time
by synchronize_srcu(), so non-initialization references need to use
READ_ONCE() and WRITE_ONCE(). This commit therefore makes that change.
Reported-by: syzbot+08f3e9d26e5541e1ecf2@syzkaller.appspotmail.com
Acked-by: Marco Elver <elver@google.com>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Currently, force_qs_rnp() uses a for_each_leaf_node_possible_cpu()
loop containing a check of the current CPU's bit in ->qsmask.
This works, but this commit saves three lines by instead using
for_each_leaf_node_cpu_mask(), which combines the functionality of
for_each_leaf_node_possible_cpu() and leaf_node_cpu_bit(). This commit
also replaces the use of the local variable "bit" with rdp->grpmask.
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
This commit moves the rcu_{expedited,normal} definitions from
kernel/rcu/update.c to include/linux/rcupdate.h to make sure they are
in sync, and also to avoid the following warning from sparse:
kernel/ksysfs.c:150:5: warning: symbol 'rcu_expedited' was not declared. Should it be static?
kernel/ksysfs.c:167:5: warning: symbol 'rcu_normal' was not declared. Should it be static?
Signed-off-by: Ben Dooks <ben.dooks@codethink.co.uk>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Only tree_stall.h needs to get name from GP state, so this commit
moves the gp_state_names[] array and the gp_state_getname()
from kernel/rcu/tree.h and kernel/rcu/tree.c, respectively, to
kernel/rcu/tree_stall.h. While moving gp_state_names[], this commit
uses the GCC syntax to ensure that the right string is associated with
the right CPP macro.
Signed-off-by: Lai Jiangshan <jiangshanlai@gmail.com>
Signed-off-by: Lai Jiangshan <laijs@linux.alibaba.com>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
The call_rcu() function is an external RCU API that is declared in
include/linux/rcupdate.h. There is thus no point in redeclaring it
in kernel/rcu/tree.h, so this commit removes that redundant declaration.
Signed-off-by: Lai Jiangshan <jiangshanlai@gmail.com>
Signed-off-by: Lai Jiangshan <laijs@linux.alibaba.com>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
In the call to trace_rcu_utilization() at the start of the loop in
rcu_cpu_kthread(), "rcu_wait" is incorrect, plus this trace event needs
to be hoisted above the loop to balance with either the "rcu_wait" or
"rcu_yield", depending on how the loop exits. This commit therefore
makes these changes.
Signed-off-by: Lai Jiangshan <jiangshanlai@gmail.com>
Signed-off-by: Lai Jiangshan <laijs@linux.alibaba.com>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
The C preprocessor macros SRCU and TINY_RCU should instead be CONFIG_SRCU
and CONFIG_TINY_RCU, respectively in the #f in kernel/rcu/rcu.h. But
there is no harm when "TINY_RCU" is wrongly used, which are always
non-defined, which makes "!defined(TINY_RCU)" always true, which means
the code block is always included, and the included code block doesn't
cause any compilation error so far in CONFIG_TINY_RCU builds. It is
also the reason this change should not be taken in -stable.
This commit adds the needed "CONFIG_" prefix to both macros.
Not for -stable.
Signed-off-by: Lai Jiangshan <jiangshanlai@gmail.com>
Signed-off-by: Lai Jiangshan <laijs@linux.alibaba.com>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
In the current code, rcu_nmi_enter_common() might decide to turn on
the tick using tick_dep_set_cpu(), but be delayed just before doing so.
Then the grace-period kthread might notice that the CPU in question had
in fact gone through a quiescent state, thus turning off the tick using
tick_dep_clear_cpu(). The later invocation of tick_dep_set_cpu() would
then incorrectly leave the tick on.
This commit therefore enlists the aid of the leaf rcu_node structure's
->lock to ensure that decisions to enable or disable the tick are
carried out before they can be reversed.
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
This commit provides wrapper functions for uses of ->rcu_read_lock_nesting
to improve readability and to ease future changes to support inlining
of __rcu_read_lock() and __rcu_read_unlock().
Signed-off-by: Lai Jiangshan <laijs@linux.alibaba.com>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
The rcu_node structure's ->expmask field is updated only when holding the
->lock, but is also accessed locklessly. This means that all ->expmask
updates must use WRITE_ONCE() and all reads carried out without holding
->lock must use READ_ONCE(). This commit therefore changes the lockless
->expmask read in rcu_read_unlock_special() to use READ_ONCE().
Reported-by: syzbot+99f4ddade3c22ab0cf23@syzkaller.appspotmail.com
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Acked-by: Marco Elver <elver@google.com>
In rcu_preempt_deferred_qs_irqrestore(), ->rcu_read_unlock_special is
cleared one piece at a time. Given that the "if" statements in this
function use the copy in "special", this commit removes the clearing
of the individual pieces in favor of clearing ->rcu_read_unlock_special
in one go just after it has been determined to be non-zero.
Signed-off-by: Lai Jiangshan <laijs@linux.alibaba.com>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Currently, the .exp_hint flag is cleared in rcu_read_unlock_special(),
which works, but which can also prevent subsequent rcu_read_unlock() calls
from helping expedite the quiescent state needed by an ongoing expedited
RCU grace period. This commit therefore defers clearing of .exp_hint
from rcu_read_unlock_special() to rcu_preempt_deferred_qs_irqrestore(),
thus ensuring that intervening calls to rcu_read_unlock() have a chance
to help end the expedited grace period.
Signed-off-by: Lai Jiangshan <laijs@linux.alibaba.com>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
CONFIG_PREEMPTION and CONFIG_PREEMPT_RCU are always identical,
but some code depends on CONFIG_PREEMPTION to access to
rcu_preempt functionality. This patch changes CONFIG_PREEMPTION
to CONFIG_PREEMPT_RCU in these cases.
Signed-off-by: Lai Jiangshan <jiangshanlai@gmail.com>
Signed-off-by: Lai Jiangshan <laijs@linux.alibaba.com>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Now that the kfree_rcu() special-casing has been removed from tree RCU,
this commit removes kfree_call_rcu_nobatch() since it is no longer needed.
Signed-off-by: Joel Fernandes (Google) <joel@joelfernandes.org>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
This commit removes kfree_rcu() special-casing and the lazy-callback
handling from Tree RCU. It moves some of this special casing to Tiny RCU,
the removal of which will be the subject of later commits.
This results in a nice negative delta.
Suggested-by: Paul E. McKenney <paulmck@linux.ibm.com>
Signed-off-by: Joel Fernandes (Google) <joel@joelfernandes.org>
[ paulmck: Add slab.h #include, thanks to kbuild test robot <lkp@intel.com>. ]
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
This commit applies RCU's debug_objects debugging to the new batched
kfree_rcu() implementations. The object is queued at the kfree_rcu()
call and dequeued during reclaim.
Tested that enabling CONFIG_DEBUG_OBJECTS_RCU_HEAD successfully detects
double kfree_rcu() calls.
Signed-off-by: Joel Fernandes (Google) <joel@joelfernandes.org>
[ paulmck: Fix IRQ per kbuild test robot <lkp@intel.com> feedback. ]
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
During testing, it was observed that amount of memory consumed due
kfree_rcu() batching is 300-400MB. Previously we had only a single
head_free pointer pointing to the list of rcu_head(s) that are to be
freed after a grace period. Until this list is drained, we cannot queue
any more objects on it since such objects may not be ready to be
reclaimed when the worker thread eventually gets to drainin g the
head_free list.
We can do better by maintaining multiple lists as done by this patch.
Testing shows that memory consumption came down by around 100-150MB with
just adding another list. Adding more than 1 additional list did not
show any improvement.
Suggested-by: Paul E. McKenney <paulmck@linux.ibm.com>
Signed-off-by: Joel Fernandes (Google) <joel@joelfernandes.org>
[ paulmck: Code style and initialization handling. ]
[ paulmck: Fix field name, reported by kbuild test robot <lkp@intel.com>. ]
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Because the ->monitor_todo field is always protected by krcp->lock,
this commit downgrades from xchg() to non-atomic unmarked assignment
statements.
Signed-off-by: Joel Fernandes <joel@joelfernandes.org>
[ paulmck: Update to include early-boot kick code. ]
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
This test runs kfree_rcu() in a loop to measure performance of the new
kfree_rcu() batching functionality.
The following table shows results when booting with arguments:
rcuperf.kfree_loops=20000 rcuperf.kfree_alloc_num=8000
rcuperf.kfree_rcu_test=1 rcuperf.kfree_no_batch=X
rcuperf.kfree_no_batch=X # Grace Periods Test Duration (s)
X=1 (old behavior) 9133 11.5
X=0 (new behavior) 1732 12.5
On a 16 CPU system with the above boot parameters, we see that the total
number of grace periods that elapse during the test drops from 9133 when
not batching to 1732 when batching (a 5X improvement). The kfree_rcu()
flood itself slows down a bit when batching, though, as shown.
Note that the active memory consumption during the kfree_rcu() flood
does increase to around 200-250MB due to the batching (from around 50MB
without batching). However, this memory consumption is relatively
constant. In other words, the system is able to keep up with the
kfree_rcu() load. The memory consumption comes down considerably if
KFREE_DRAIN_JIFFIES is increased from HZ/50 to HZ/80. A later patch will
reduce memory consumption further by using multiple lists.
Also, when running the test, please disable CONFIG_DEBUG_PREEMPT and
CONFIG_PROVE_RCU for realistic comparisons with/without batching.
Signed-off-by: Joel Fernandes (Google) <joel@joelfernandes.org>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Recently a discussion about stability and performance of a system
involving a high rate of kfree_rcu() calls surfaced on the list [1]
which led to another discussion how to prepare for this situation.
This patch adds basic batching support for kfree_rcu(). It is "basic"
because we do none of the slab management, dynamic allocation, code
moving or any of the other things, some of which previous attempts did
[2]. These fancier improvements can be follow-up patches and there are
different ideas being discussed in those regards. This is an effort to
start simple, and build up from there. In the future, an extension to
use kfree_bulk and possibly per-slab batching could be done to further
improve performance due to cache-locality and slab-specific bulk free
optimizations. By using an array of pointers, the worker thread
processing the work would need to read lesser data since it does not
need to deal with large rcu_head(s) any longer.
Torture tests follow in the next patch and show improvements of around
5x reduction in number of grace periods on a 16 CPU system. More
details and test data are in that patch.
There is an implication with rcu_barrier() with this patch. Since the
kfree_rcu() calls can be batched, and may not be handed yet to the RCU
machinery in fact, the monitor may not have even run yet to do the
queue_rcu_work(), there seems no easy way of implementing rcu_barrier()
to wait for those kfree_rcu()s that are already made. So this means a
kfree_rcu() followed by an rcu_barrier() does not imply that memory will
be freed once rcu_barrier() returns.
Another implication is higher active memory usage (although not
run-away..) until the kfree_rcu() flooding ends, in comparison to
without batching. More details about this are in the second patch which
adds an rcuperf test.
Finally, in the near future we will get rid of kfree_rcu() special casing
within RCU such as in rcu_do_batch and switch everything to just
batching. Currently we don't do that since timer subsystem is not yet up
and we cannot schedule the kfree_rcu() monitor as the timer subsystem's
lock are not initialized. That would also mean getting rid of
kfree_call_rcu_nobatch() entirely.
[1] http://lore.kernel.org/lkml/20190723035725-mutt-send-email-mst@kernel.org
[2] https://lkml.org/lkml/2017/12/19/824
Cc: kernel-team@android.com
Cc: kernel-team@lge.com
Co-developed-by: Byungchul Park <byungchul.park@lge.com>
Signed-off-by: Byungchul Park <byungchul.park@lge.com>
Signed-off-by: Joel Fernandes (Google) <joel@joelfernandes.org>
[ paulmck: Applied 0day and Paul Walmsley feedback on ->monitor_todo. ]
[ paulmck: Make it work during early boot. ]
[ paulmck: Add a crude early boot self-test. ]
[ paulmck: Style adjustments and experimental docbook structure header. ]
Link: https://lore.kernel.org/lkml/alpine.DEB.2.21.9999.1908161931110.32497@viisi.sifive.com/T/#me9956f66cb611b95d26ae92700e1d901f46e8c59
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Each of rcu_state, rcu_rnp_online_cpus(), rcu_dynticks_curr_cpu_in_eqs(),
and rcu_dynticks_snap() are used only in the kernel/rcu/tree.o translation
unit, and may thus be marked static. This commit therefore makes this
change.
Reported-by: Ben Dooks <ben.dooks@codethink.co.uk>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Reviewed-by: Joel Fernandes (Google) <joel@joelfernandes.org>
This commit switches from static structure to dynamic allocation
for rcu_fwds as another step towards providing multiple call_rcu()
forward-progress kthreads.
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
This commit threads pointers to rcu_fwd structures through the remaining
functions using rcu_fwds directly, namely rcu_torture_fwd_prog_cbfree(),
rcutorture_oom_notify() and rcu_torture_fwd_prog_init().
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
In order to add multiple call_rcu() forward-progress kthreads, it will
be necessary to dynamically allocate and initialize. This commit
therefore moves the initialization from compile time to instead
immediately precede thread-creation time.
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
In order to add multiple kthreads, it will be necessary to allow
the various functions to operate on a pointer to their kthread's
rcu_fwd structure. This commit therefore starts the process of
adding the needed "struct rcu_fwd" parameters and arguments to the
various callback forward-progress functions.
Note that rcutorture_oom_notify() and rcu_torture_fwd_cb_hist() will
eventually need to iterate over all kthreads' rcu_fwd structures.
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Now that RCU behaves reasonably well with the current single-kthread
call_rcu() forward-progress testing, it is time to add more kthreads.
This commit takes a first step towards that goal by wrapping what
will be the per-kthread data into a new rcu_fwd structure.
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
The config option `CONFIG_PREEMPT' is used for the preemption model
"Low-Latency Desktop". The config option `CONFIG_PREEMPTION' is enabled
when kernel preemption is enabled which is true for the preemption model
`CONFIG_PREEMPT' and `CONFIG_PREEMPT_RT'.
Use `CONFIG_PREEMPTION' if it applies to both preemption models and not
just to `CONFIG_PREEMPT'.
Cc: "Paul E. McKenney" <paulmck@kernel.org>
Cc: Josh Triplett <josh@joshtriplett.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Lai Jiangshan <jiangshanlai@gmail.com>
Cc: Joel Fernandes <joel@joelfernandes.org>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: rcu@vger.kernel.org
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Currently PREEMPT_RCU and TREE_RCU are mutually exclusive Kconfig
options. But PREEMPT_RCU actually specifies a kind of TREE_RCU,
namely a preemptible TREE_RCU. This commit therefore makes PREEMPT_RCU
be a modifer to the TREE_RCU Kconfig option. This has the benefit of
simplifying several of the #if expressions that formerly needed to
check both, but now need only check one or the other.
Signed-off-by: Lai Jiangshan <laijs@linux.alibaba.com>
Signed-off-by: Lai Jiangshan <jiangshanlai@gmail.com>
Reviewed-by: Joel Fernandes (Google) <joel@joelfernandes.org>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
The rcu_preempt_check_blocked_tasks() function has a comment
that states that the rcu_node structure's ->lock must be held,
which might be informative, but which carries little weight if
not read. This commit therefore removes this comment in favor of
raw_lockdep_assert_held_rcu_node(), which will complain quite
visibly if the required lock is not held.
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
The rcu_gp_fqs_check_wake() function uses rcu_preempt_blocked_readers_cgp()
to read ->gp_tasks while other cpus might overwrite this field.
We need READ_ONCE()/WRITE_ONCE() pairs to avoid compiler
tricks and KCSAN splats like the following :
BUG: KCSAN: data-race in rcu_gp_fqs_check_wake / rcu_preempt_deferred_qs_irqrestore
write to 0xffffffff85a7f190 of 8 bytes by task 7317 on cpu 0:
rcu_preempt_deferred_qs_irqrestore+0x43d/0x580 kernel/rcu/tree_plugin.h:507
rcu_read_unlock_special+0xec/0x370 kernel/rcu/tree_plugin.h:659
__rcu_read_unlock+0xcf/0xe0 kernel/rcu/tree_plugin.h:394
rcu_read_unlock include/linux/rcupdate.h:645 [inline]
__ip_queue_xmit+0x3b0/0xa40 net/ipv4/ip_output.c:533
ip_queue_xmit+0x45/0x60 include/net/ip.h:236
__tcp_transmit_skb+0xdeb/0x1cd0 net/ipv4/tcp_output.c:1158
__tcp_send_ack+0x246/0x300 net/ipv4/tcp_output.c:3685
tcp_send_ack+0x34/0x40 net/ipv4/tcp_output.c:3691
tcp_cleanup_rbuf+0x130/0x360 net/ipv4/tcp.c:1575
tcp_recvmsg+0x633/0x1a30 net/ipv4/tcp.c:2179
inet_recvmsg+0xbb/0x250 net/ipv4/af_inet.c:838
sock_recvmsg_nosec net/socket.c:871 [inline]
sock_recvmsg net/socket.c:889 [inline]
sock_recvmsg+0x92/0xb0 net/socket.c:885
sock_read_iter+0x15f/0x1e0 net/socket.c:967
call_read_iter include/linux/fs.h:1864 [inline]
new_sync_read+0x389/0x4f0 fs/read_write.c:414
read to 0xffffffff85a7f190 of 8 bytes by task 10 on cpu 1:
rcu_gp_fqs_check_wake kernel/rcu/tree.c:1556 [inline]
rcu_gp_fqs_check_wake+0x93/0xd0 kernel/rcu/tree.c:1546
rcu_gp_fqs_loop+0x36c/0x580 kernel/rcu/tree.c:1611
rcu_gp_kthread+0x143/0x220 kernel/rcu/tree.c:1768
kthread+0x1d4/0x200 drivers/block/aoe/aoecmd.c:1253
ret_from_fork+0x1f/0x30 arch/x86/entry/entry_64.S:352
Reported by Kernel Concurrency Sanitizer on:
CPU: 1 PID: 10 Comm: rcu_preempt Not tainted 5.3.0+ #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011
Signed-off-by: Eric Dumazet <edumazet@google.com>
Reported-by: syzbot <syzkaller@googlegroups.com>
[ paulmck: Added another READ_ONCE() for RCU CPU stall warnings. ]
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Commit 18cd8c93e6 ("rcu/nocb: Print gp/cb kthread hierarchy if
dump_tree") added print statements to rcu_organize_nocb_kthreads for
debugging, but incorrectly guarded them, causing the function to always
spew out its message.
This patch fixes it by guarding both pr_alert statements with dump_tree,
while also changing the second pr_alert to a pr_cont, to print the
hierarchy in a single line (assuming that's how it was supposed to
work).
Fixes: 18cd8c93e6 ("rcu/nocb: Print gp/cb kthread hierarchy if dump_tree")
Signed-off-by: Stefan Reiter <stefan@pimaker.at>
[ paulmck: Make single-nocbs-CPU GP kthreads look less erroneous. ]
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
An expedited grace period can be stalled by a nohz_full CPU looping
in kernel context. This possibility is currently handled by some
carefully crafted checks in rcu_read_unlock_special() that enlist help
from ksoftirqd when permitted by the scheduler. However, it is exactly
these checks that require the scheduler avoid holding any of its rq or
pi locks across rcu_read_unlock() without also having held them across
the entire RCU read-side critical section.
It would therefore be very nice if expedited grace periods could
handle nohz_full CPUs looping in kernel context without such checks.
This commit therefore adds code to the expedited grace period's wait
and cleanup code that forces the scheduler-clock interrupt on for CPUs
that fail to quickly supply a quiescent state. "Quickly" is currently
a hard-coded single-jiffy delay.
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
After RCU flavor consolidation, synchronize_sched_expedited_wait() does
both RCU-preempt and RCU-sched, whichever happens to have been built into
the running kernel. This commit therefore changes this function's name
to synchronize_rcu_expedited_wait() to reflect its new generic nature.
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
The function-header comments in kernel/rcu/tree_exp.h have gotten a bit
out of date, so this commit updates a number of them.
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Now that the RCU flavors have been consolidated, there is one common
function for checking to see if an expedited RCU grace period has
completed, namely sync_rcu_preempt_exp_done(). Because this function is
no longer specific to RCU-preempt, this commit removes the "_preempt" from
its name. This commit also changes sync_rcu_preempt_exp_done_unlocked()
to sync_rcu_exp_done_unlocked() for the same reason.
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
The current expedited RCU grace-period code expects that a task
requesting an expedited grace period cannot awaken until that grace
period has reached the wakeup phase. However, it is possible for a long
preemption to result in the waiting task never sleeping. For example,
consider the following sequence of events:
1. Task A starts an expedited grace period by invoking
synchronize_rcu_expedited(). It proceeds normally up to the
wait_event() near the end of that function, and is then preempted
(or interrupted or whatever).
2. The expedited grace period completes, and a kworker task starts
the awaken phase, having incremented the counter and acquired
the rcu_state structure's .exp_wake_mutex. This kworker task
is then preempted or interrupted or whatever.
3. Task A resumes and enters wait_event(), which notes that the
expedited grace period has completed, and thus doesn't sleep.
4. Task B starts an expedited grace period exactly as did Task A,
complete with the preemption (or whatever delay) just before
the call to wait_event().
5. The expedited grace period completes, and another kworker
task starts the awaken phase, having incremented the counter.
However, it blocks when attempting to acquire the rcu_state
structure's .exp_wake_mutex because step 2's kworker task has
not yet released it.
6. Steps 4 and 5 repeat, resulting in overflow of the rcu_node
structure's ->exp_wq[] array.
In theory, this is harmless. Tasks waiting on the various ->exp_wq[]
array will just be spuriously awakened, but they will just sleep again
on noting that the rcu_state structure's ->expedited_sequence value has
not advanced far enough.
In practice, this wastes CPU time and is an accident waiting to happen.
This commit therefore moves the rcu_exp_gp_seq_end() call that officially
ends the expedited grace period (along with associate tracing) until
after the ->exp_wake_mutex has been acquired. This prevents Task A from
awakening prematurely, thus preventing more than one expedited grace
period from being in flight during a previous expedited grace period's
wakeup phase.
Fixes: 3b5f668e71 ("rcu: Overlap wakeups with next expedited grace period")
Signed-off-by: Neeraj Upadhyay <neeraju@codeaurora.org>
[ paulmck: Added updated comment. ]
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Tasks waiting within exp_funnel_lock() for an expedited grace period to
elapse can be starved due to the following sequence of events:
1. Tasks A and B both attempt to start an expedited grace
period at about the same time. This grace period will have
completed when the lower four bits of the rcu_state structure's
->expedited_sequence field are 0b'0100', for example, when the
initial value of this counter is zero. Task A wins, and thus
does the actual work of starting the grace period, including
acquiring the rcu_state structure's .exp_mutex and sets the
counter to 0b'0001'.
2. Because task B lost the race to start the grace period, it
waits on ->expedited_sequence to reach 0b'0100' inside of
exp_funnel_lock(). This task therefore blocks on the rcu_node
structure's ->exp_wq[1] field, keeping in mind that the
end-of-grace-period value of ->expedited_sequence (0b'0100')
is shifted down two bits before indexing the ->exp_wq[] field.
3. Task C attempts to start another expedited grace period,
but blocks on ->exp_mutex, which is still held by Task A.
4. The aforementioned expedited grace period completes, so that
->expedited_sequence now has the value 0b'0100'. A kworker task
therefore acquires the rcu_state structure's ->exp_wake_mutex
and starts awakening any tasks waiting for this grace period.
5. One of the first tasks awakened happens to be Task A. Task A
therefore releases the rcu_state structure's ->exp_mutex,
which allows Task C to start the next expedited grace period,
which causes the lower four bits of the rcu_state structure's
->expedited_sequence field to become 0b'0101'.
6. Task C's expedited grace period completes, so that the lower four
bits of the rcu_state structure's ->expedited_sequence field now
become 0b'1000'.
7. The kworker task from step 4 above continues its wakeups.
Unfortunately, the wake_up_all() refetches the rcu_state
structure's .expedited_sequence field:
wake_up_all(&rnp->exp_wq[rcu_seq_ctr(rcu_state.expedited_sequence) & 0x3]);
This results in the wakeup being applied to the rcu_node
structure's ->exp_wq[2] field, which is unfortunate given that
Task B is instead waiting on ->exp_wq[1].
On a busy system, no harm is done (or at least no permanent harm is done).
Some later expedited grace period will redo the wakeup. But on a quiet
system, such as many embedded systems, it might be a good long time before
there was another expedited grace period. On such embedded systems,
this situation could therefore result in a system hang.
This issue manifested as DPM device timeout during suspend (which
usually qualifies as a quiet time) due to a SCSI device being stuck in
_synchronize_rcu_expedited(), with the following stack trace:
schedule()
synchronize_rcu_expedited()
synchronize_rcu()
scsi_device_quiesce()
scsi_bus_suspend()
dpm_run_callback()
__device_suspend()
This commit therefore prevents such delays, timeouts, and hangs by
making rcu_exp_wait_wake() use its "s" argument consistently instead of
refetching from rcu_state.expedited_sequence.
Fixes: 3b5f668e71 ("rcu: Overlap wakeups with next expedited grace period")
Signed-off-by: Neeraj Upadhyay <neeraju@codeaurora.org>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
The code in sync_rcu_exp_select_node_cpus() calculates the current
CPU's mask within its rcu_node structure's bitmasks, but this has
already been computed in the ->grpmask field of that CPU's rcu_data
structure. This commit therefore just uses this ->grpmask field.
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
This fixes a data-race where `atomic_t dynticks` is copied by value. The
copy is performed non-atomically, resulting in a data-race if `dynticks`
is updated concurrently.
This data-race was found with KCSAN:
==================================================================
BUG: KCSAN: data-race in dyntick_save_progress_counter / rcu_irq_enter
write to 0xffff989dbdbe98e0 of 4 bytes by task 10 on cpu 3:
atomic_add_return include/asm-generic/atomic-instrumented.h:78 [inline]
rcu_dynticks_snap kernel/rcu/tree.c:310 [inline]
dyntick_save_progress_counter+0x43/0x1b0 kernel/rcu/tree.c:984
force_qs_rnp+0x183/0x200 kernel/rcu/tree.c:2286
rcu_gp_fqs kernel/rcu/tree.c:1601 [inline]
rcu_gp_fqs_loop+0x71/0x880 kernel/rcu/tree.c:1653
rcu_gp_kthread+0x22c/0x3b0 kernel/rcu/tree.c:1799
kthread+0x1b5/0x200 kernel/kthread.c:255
<snip>
read to 0xffff989dbdbe98e0 of 4 bytes by task 154 on cpu 7:
rcu_nmi_enter_common kernel/rcu/tree.c:828 [inline]
rcu_irq_enter+0xda/0x240 kernel/rcu/tree.c:870
irq_enter+0x5/0x50 kernel/softirq.c:347
<snip>
Reported by Kernel Concurrency Sanitizer on:
CPU: 7 PID: 154 Comm: kworker/7:1H Not tainted 5.3.0+ #5
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.12.0-1 04/01/2014
Workqueue: kblockd blk_mq_run_work_fn
==================================================================
Signed-off-by: Marco Elver <elver@google.com>
Cc: Paul E. McKenney <paulmck@kernel.org>
Cc: Josh Triplett <josh@joshtriplett.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Joel Fernandes <joel@joelfernandes.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: rcu@vger.kernel.org
Cc: linux-kernel@vger.kernel.org
Reviewed-by: Joel Fernandes (Google) <joel@joelfernandes.org>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
The "mask_ofl_ipi" is used to track which CPUs get IPIed, however
in the IPI sending loop, "mask_ofl_ipi" along with another variable
"mask_ofl_test" might also get modified to record which CPUs' quiesent
states must be reported by the sync_rcu_exp_select_node_cpus() at
the end of sync_rcu_exp_select_node_cpus(). This overlap of roles
can be confusing, so this patch cleans things a little by using
"mask_ofl_ipi" solely for determining which CPUs must be IPIed and
"mask_ofl_test" for solely determining on behalf of which CPUs
sync_rcu_exp_select_node_cpus() must report a quiscent state.
Signed-off-by: Boqun Feng <boqun.feng@gmail.com>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Reviewed-by: Joel Fernandes (Google) <joel@joelfernandes.org>
Acked-by: Marco Elver <elver@google.com>
The rcu_node structure's ->expmask field is accessed locklessly when
starting a new expedited grace period and when reporting an expedited
RCU CPU stall warning. This commit therefore handles the former by
taking a snapshot of ->expmask while the lock is held and the latter
by applying READ_ONCE() to lockless reads and WRITE_ONCE() to the
corresponding updates.
Link: https://lore.kernel.org/lkml/CANpmjNNmSOagbTpffHr4=Yedckx9Rm2NuGqC9UqE+AOz5f1-ZQ@mail.gmail.com
Reported-by: syzbot+134336b86f728d6e55a0@syzkaller.appspotmail.com
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Acked-by: Marco Elver <elver@google.com>
New tools bring new warnings, and with v5.3 comes:
kernel/rcu/srcutree.c: warning: 'levelspread[<U aa0>]' may be used uninitialized in this function [-Wuninitialized]: => 121:34
This commit suppresses this warning by initializing the full array
to INT_MIN, which will result in failures should any out-of-bounds
references appear.
Reported-by: Michael Ellerman <mpe@ellerman.id.au>
Reported-by: Geert Uytterhoeven <geert@linux-m68k.org>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Reviewed-by: Geert Uytterhoeven <geert@linux-m68k.org>
We never set this to false. This probably doesn't affect most people's
runtime because GCC will automatically initialize it to false at certain
common optimization levels. But that behavior is related to a bug in
GCC and obviously should not be relied on.
Fixes: 5d6742b377 ("rcu/nocb: Use rcu_segcblist for no-CBs CPUs")
Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
The RCU-specific resched_cpu() function sends a resched IPI to the
specified CPU, which can be used to force the tick on for a given
nohz_full CPU. This is needed when this nohz_full CPU is looping in the
kernel while blocking the current grace period. However, for the tick
to actually be forced on in all cases, that CPU's rcu_data structure's
->rcu_urgent_qs flag must be set beforehand. This commit therefore
causes rcu_implicit_dynticks_qs() to set this flag prior to invoking
resched_cpu() on a holdout nohz_full CPU.
Signed-off-by: Joel Fernandes (Google) <joel@joelfernandes.org>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
None of rcu_segcblist_set_len(), rcu_segcblist_add_len(), or
rcu_segcblist_xchg_len() are used outside of kernel/rcu/rcu_segcblist.c.
This commit therefore makes them static.
Fixes: eda669a6a2 ("rcu/nocb: Atomic ->len field in rcu_segcblist structure")
Signed-off-by: kbuild test robot <lkp@intel.com>
[ paulmck: "Fixes:" updated per Stephen Rothwell feedback. ]
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
If a nohz_full CPU is idle or executing in userspace, it makes good sense
to keep it out of RCU core processing. After all, the RCU grace-period
kthread can see its quiescent states and all of its callbacks are
offloaded, so there is nothing for RCU core processing to do.
However, if a nohz_full CPU is executing in kernel space, the RCU
grace-period kthread cannot do anything for it, so such a CPU must report
its own quiescent states. This commit therefore makes nohz_full CPUs
skip RCU core processing only if the scheduler-clock interrupt caught
them in idle or in userspace.
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>