Pull scheduler updates from Ingo Molnar:
- Remove the unused per rq load array and all its infrastructure, by
Dietmar Eggemann.
- Add utilization clamping support by Patrick Bellasi. This is a
refinement of the energy aware scheduling framework with support for
boosting of interactive and capping of background workloads: to make
sure critical GUI threads get maximum frequency ASAP, and to make
sure background processing doesn't unnecessarily move to cpufreq
governor to higher frequencies and less energy efficient CPU modes.
- Add the bare minimum of tracepoints required for LISA EAS regression
testing, by Qais Yousef - which allows automated testing of various
power management features, including energy aware scheduling.
- Restructure the former tsk_nr_cpus_allowed() facility that the -rt
kernel used to modify the scheduler's CPU affinity logic such as
migrate_disable() - introduce the task->cpus_ptr value instead of
taking the address of &task->cpus_allowed directly - by Sebastian
Andrzej Siewior.
- Misc optimizations, fixes, cleanups and small enhancements - see the
Git log for details.
* 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (33 commits)
sched/uclamp: Add uclamp support to energy_compute()
sched/uclamp: Add uclamp_util_with()
sched/cpufreq, sched/uclamp: Add clamps for FAIR and RT tasks
sched/uclamp: Set default clamps for RT tasks
sched/uclamp: Reset uclamp values on RESET_ON_FORK
sched/uclamp: Extend sched_setattr() to support utilization clamping
sched/core: Allow sched_setattr() to use the current policy
sched/uclamp: Add system default clamps
sched/uclamp: Enforce last task's UCLAMP_MAX
sched/uclamp: Add bucket local max tracking
sched/uclamp: Add CPU's clamp buckets refcounting
sched/fair: Rename weighted_cpuload() to cpu_runnable_load()
sched/debug: Export the newly added tracepoints
sched/debug: Add sched_overutilized tracepoint
sched/debug: Add new tracepoint to track PELT at se level
sched/debug: Add new tracepoints to track PELT at rq level
sched/debug: Add a new sched_trace_*() helper functions
sched/autogroup: Make autogroup_path() always available
sched/wait: Deduplicate code with do-while
sched/topology: Remove unused 'sd' parameter from arch_scale_cpu_capacity()
...
0a1eb2d474 ("fs/proc: Stop reporting eip and esp in /proc/PID/stat")
stopped reporting eip/esp and fd7d56270b ("fs/proc: Report eip/esp in
/prod/PID/stat for coredumping") reintroduced the feature to fix a
regression with userspace core dump handlers (such as minicoredumper).
Because PF_DUMPCORE is only set for the primary thread, this didn't fix
the original problem for secondary threads. Allow reporting the eip/esp
for all threads by checking for PF_EXITING as well. This is set for all
the other threads when they are killed. coredump_wait() waits for all the
tasks to become inactive before proceeding to invoke a core dumper.
Link: http://lkml.kernel.org/r/87y32p7i7a.fsf@linutronix.de
Link: http://lkml.kernel.org/r/20190522161614.628-1-jlu@pengutronix.de
Fixes: fd7d56270b ("fs/proc: Report eip/esp in /prod/PID/stat for coredumping")
Signed-off-by: John Ogness <john.ogness@linutronix.de>
Reported-by: Jan Luebbe <jlu@pengutronix.de>
Tested-by: Jan Luebbe <jlu@pengutronix.de>
Cc: Alexey Dobriyan <adobriyan@gmail.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
In commit:
4b53a3412d ("sched/core: Remove the tsk_nr_cpus_allowed() wrapper")
the tsk_nr_cpus_allowed() wrapper was removed. There was not
much difference in !RT but in RT we used this to implement
migrate_disable(). Within a migrate_disable() section the CPU mask is
restricted to single CPU while the "normal" CPU mask remains untouched.
As an alternative implementation Ingo suggested to use:
struct task_struct {
const cpumask_t *cpus_ptr;
cpumask_t cpus_mask;
};
with
t->cpus_ptr = &t->cpus_mask;
In -RT we then can switch the cpus_ptr to:
t->cpus_ptr = &cpumask_of(task_cpu(p));
in a migration disabled region. The rules are simple:
- Code that 'uses' ->cpus_allowed would use the pointer.
- Code that 'modifies' ->cpus_allowed would use the direct mask.
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20190423142636.14347-1-bigeasy@linutronix.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
David Rientjes has reported that commit 1860033237 ("mm: make
PR_SET_THP_DISABLE immediately active") has changed the way how we
report THPable VMAs to the userspace. Their monitoring tool is
triggering false alarms on PR_SET_THP_DISABLE tasks because it considers
an insufficient THP usage as a memory fragmentation resp. memory
pressure issue.
Before the said commit each newly created VMA inherited VM_NOHUGEPAGE
flag and that got exposed to the userspace via /proc/<pid>/smaps file.
This implementation had its downsides as explained in the commit message
but it is true that the userspace doesn't have any means to query for
the process wide THP enabled/disabled status.
PR_SET_THP_DISABLE is a process wide flag so it makes a lot of sense to
export in the process wide context rather than per-vma. Introduce a new
field to /proc/<pid>/status which export this status. If
PR_SET_THP_DISABLE is used then it reports false same as when the THP is
not compiled in. It doesn't consider the global THP status because we
already export that information via sysfs
Link: http://lkml.kernel.org/r/20181211143641.3503-4-mhocko@kernel.org
Fixes: 1860033237 ("mm: make PR_SET_THP_DISABLE immediately active")
Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Reported-by: David Rientjes <rientjes@google.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Mike Rapoport <rppt@linux.ibm.com>
Cc: Paul Oppenheimer <bepvte@gmail.com>
Cc: William Kucharski <william.kucharski@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
It's defined as atomic_t and really long signal queues are unheard of.
Link: http://lkml.kernel.org/r/20180423215119.GF9043@avx2
Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pull workqueue updates from Tejun Heo:
- make kworkers report the workqueue it is executing or has executed
most recently in /proc/PID/comm (so they show up in ps/top)
- CONFIG_SMP shuffle to move stuff which isn't necessary for UP builds
inside CONFIG_SMP.
* 'for-4.18' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/wq:
workqueue: move function definitions within CONFIG_SMP block
workqueue: Make sure struct worker is accessible for wq_worker_comm()
workqueue: Show the latest workqueue name in /proc/PID/{comm,stat,status}
proc: Consolidate task->comm formatting into proc_task_name()
workqueue: Set worker->desc to workqueue name by default
workqueue: Make worker_attach/detach_pool() update worker->pool
workqueue: Replace pool->attach_mutex with global wq_pool_attach_mutex
There can be a lot of workqueue workers and they all show up with the
cryptic kworker/* names making it difficult to understand which is
doing what and how they came to be.
# ps -ef | grep kworker
root 4 2 0 Feb25 ? 00:00:00 [kworker/0:0H]
root 6 2 0 Feb25 ? 00:00:00 [kworker/u112:0]
root 19 2 0 Feb25 ? 00:00:00 [kworker/1:0H]
root 25 2 0 Feb25 ? 00:00:00 [kworker/2:0H]
root 31 2 0 Feb25 ? 00:00:00 [kworker/3:0H]
...
This patch makes workqueue workers report the latest workqueue it was
executing for through /proc/PID/{comm,stat,status}. The extra
information is appended to the kthread name with intervening '+' if
currently executing, otherwise '-'.
# cat /proc/25/comm
kworker/2:0-events_power_efficient
# cat /proc/25/stat
25 (kworker/2:0-events_power_efficient) I 2 0 0 0 -1 69238880 0 0...
# grep Name /proc/25/status
Name: kworker/2:0-events_power_efficient
Unfortunately, ps(1) truncates comm to 15 characters,
# ps 25
PID TTY STAT TIME COMMAND
25 ? I 0:00 [kworker/2:0-eve]
making it a lot less useful; however, this should be an easy fix from
ps(1) side.
Signed-off-by: Tejun Heo <tj@kernel.org>
Suggested-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Craig Small <csmall@enc.com.au>
proc shows task->comm in three places - comm, stat, status - and each
is fetching and formatting task->comm slighly differently. This patch
renames task_name() to proc_task_name(), makes it more generic, and
updates all three paths to use it.
This will enable expanding comm reporting for workqueue workers.
Signed-off-by: Tejun Heo <tj@kernel.org>
Factor out retrieving the per-sb pid namespaces from the sb private data
into an easier to understand helper.
Suggested-by: Eric W. Biederman <ebiederm@xmission.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
The style for the 'status' file is CamelCase or this. _.
Fixes: fae1fa0fc ("proc: Provide details on speculation flaw mitigations")
Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
For certain use cases it is desired to enforce mitigations so they cannot
be undone afterwards. That's important for loader stubs which want to
prevent a child from disabling the mitigation again. Will also be used for
seccomp(). The extra state preserving of the prctl state for SSB is a
preparatory step for EBPF dymanic speculation control.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
As done with seccomp and no_new_privs, also show speculation flaw
mitigation state in /proc/$pid/status.
Signed-off-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
seq_printf() works slower than seq_puts, seq_puts, etc.
== test_proc.c
int main(int argc, char **argv)
{
int n, i, fd;
char buf[16384];
n = atoi(argv[1]);
for (i = 0; i < n; i++) {
fd = open(argv[2], O_RDONLY);
if (fd < 0)
return 1;
if (read(fd, buf, sizeof(buf)) <= 0)
return 1;
close(fd);
}
return 0;
}
==
$ time ./test_proc 1000000 /proc/1/status
== Before path ==
real 0m5.171s
user 0m0.328s
sys 0m4.783s
== After patch ==
real 0m4.761s
user 0m0.334s
sys 0m4.366s
Link: http://lkml.kernel.org/r/20180212074931.7227-4-avagin@openvz.org
Signed-off-by: Andrei Vagin <avagin@openvz.org>
Cc: Alexey Dobriyan <adobriyan@gmail.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
get_task_umask locks/unlocks the task on its own. The only caller does
the same thing immediately after.
Utilize the fact the task has to be locked anyway and just do it once.
Since there are no other users and the code is short, fold it in.
Link: http://lkml.kernel.org/r/1517995608-23683-1-git-send-email-mguzik@redhat.com
Signed-off-by: Mateusz Guzik <mguzik@redhat.com>
Reviewed-by: Alexey Dobriyan <adobriyan@gmail.com>
Cc: Konstantin Khlebnikov <koct9i@gmail.com>
Cc: Jerome Marchand <jmarchan@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Right now there is no convenient way to check if a process is being
coredumped at the moment.
It might be necessary to recognize such state to prevent killing the
process and getting a broken coredump. Writing a large core might take
significant time, and the process is unresponsive during it, so it might
be killed by timeout, if another process is monitoring and
killing/restarting hanging tasks.
We're getting a significant number of corrupted coredump files on
machines in our fleet, just because processes are being killed by
timeout in the middle of the core writing process.
We do have a process health check, and some agent is responsible for
restarting processes which are not responding for health check requests.
Writing a large coredump to the disk can easily exceed the reasonable
timeout (especially on an overloaded machine).
This flag will allow the agent to distinguish processes which are being
coredumped, extend the timeout for them, and let them produce a full
coredump file.
To provide an ability to detect if a process is in the state of being
coredumped, we can expose a boolean CoreDumping flag in
/proc/pid/status.
Example:
$ cat core.sh
#!/bin/sh
echo "|/usr/bin/sleep 10" > /proc/sys/kernel/core_pattern
sleep 1000 &
PID=$!
cat /proc/$PID/status | grep CoreDumping
kill -ABRT $PID
sleep 1
cat /proc/$PID/status | grep CoreDumping
$ ./core.sh
CoreDumping: 0
CoreDumping: 1
[guro@fb.com: document CoreDumping flag in /proc/<pid>/status]
Link: http://lkml.kernel.org/r/20170928135357.GA8470@castle.DHCP.thefacebook.com
Link: http://lkml.kernel.org/r/20170920230634.31572-1-guro@fb.com
Signed-off-by: Roman Gushchin <guro@fb.com>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Konstantin Khlebnikov <koct9i@gmail.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pull scheduler updates from Ingo Molnar:
"The main updates in this cycle were:
- Group balancing enhancements and cleanups (Brendan Jackman)
- Move CPU isolation related functionality into its separate
kernel/sched/isolation.c file, with related 'housekeeping_*()'
namespace and nomenclature et al. (Frederic Weisbecker)
- Improve the interactive/cpu-intense fairness calculation (Josef
Bacik)
- Improve the PELT code and related cleanups (Peter Zijlstra)
- Improve the logic of pick_next_task_fair() (Uladzislau Rezki)
- Improve the RT IPI based balancing logic (Steven Rostedt)
- Various micro-optimizations:
- better !CONFIG_SCHED_DEBUG optimizations (Patrick Bellasi)
- better idle loop (Cheng Jian)
- ... plus misc fixes, cleanups and updates"
* 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (54 commits)
sched/core: Optimize sched_feat() for !CONFIG_SCHED_DEBUG builds
sched/sysctl: Fix attributes of some extern declarations
sched/isolation: Document isolcpus= boot parameter flags, mark it deprecated
sched/isolation: Add basic isolcpus flags
sched/isolation: Move isolcpus= handling to the housekeeping code
sched/isolation: Handle the nohz_full= parameter
sched/isolation: Introduce housekeeping flags
sched/isolation: Split out new CONFIG_CPU_ISOLATION=y config from CONFIG_NO_HZ_FULL
sched/isolation: Rename is_housekeeping_cpu() to housekeeping_cpu()
sched/isolation: Use its own static key
sched/isolation: Make the housekeeping cpumask private
sched/isolation: Provide a dynamic off-case to housekeeping_any_cpu()
sched/isolation, watchdog: Use housekeeping_cpumask() instead of ad-hoc version
sched/isolation: Move housekeeping related code to its own file
sched/idle: Micro-optimize the idle loop
sched/isolcpus: Fix "isolcpus=" boot parameter handling when !CONFIG_CPUMASK_OFFSTACK
x86/tsc: Append the 'tsc=' description for the 'tsc=unstable' boot parameter
sched/rt: Simplify the IPI based RT balancing logic
block/ioprio: Use a helper to check for RT prio
sched/rt: Add a helper to test for a RT task
...
Many source files in the tree are missing licensing information, which
makes it harder for compliance tools to determine the correct license.
By default all files without license information are under the default
license of the kernel, which is GPL version 2.
Update the files which contain no license information with the 'GPL-2.0'
SPDX license identifier. The SPDX identifier is a legally binding
shorthand, which can be used instead of the full boiler plate text.
This patch is based on work done by Thomas Gleixner and Kate Stewart and
Philippe Ombredanne.
How this work was done:
Patches were generated and checked against linux-4.14-rc6 for a subset of
the use cases:
- file had no licensing information it it.
- file was a */uapi/* one with no licensing information in it,
- file was a */uapi/* one with existing licensing information,
Further patches will be generated in subsequent months to fix up cases
where non-standard license headers were used, and references to license
had to be inferred by heuristics based on keywords.
The analysis to determine which SPDX License Identifier to be applied to
a file was done in a spreadsheet of side by side results from of the
output of two independent scanners (ScanCode & Windriver) producing SPDX
tag:value files created by Philippe Ombredanne. Philippe prepared the
base worksheet, and did an initial spot review of a few 1000 files.
The 4.13 kernel was the starting point of the analysis with 60,537 files
assessed. Kate Stewart did a file by file comparison of the scanner
results in the spreadsheet to determine which SPDX license identifier(s)
to be applied to the file. She confirmed any determination that was not
immediately clear with lawyers working with the Linux Foundation.
Criteria used to select files for SPDX license identifier tagging was:
- Files considered eligible had to be source code files.
- Make and config files were included as candidates if they contained >5
lines of source
- File already had some variant of a license header in it (even if <5
lines).
All documentation files were explicitly excluded.
The following heuristics were used to determine which SPDX license
identifiers to apply.
- when both scanners couldn't find any license traces, file was
considered to have no license information in it, and the top level
COPYING file license applied.
For non */uapi/* files that summary was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 11139
and resulted in the first patch in this series.
If that file was a */uapi/* path one, it was "GPL-2.0 WITH
Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 WITH Linux-syscall-note 930
and resulted in the second patch in this series.
- if a file had some form of licensing information in it, and was one
of the */uapi/* ones, it was denoted with the Linux-syscall-note if
any GPL family license was found in the file or had no licensing in
it (per prior point). Results summary:
SPDX license identifier # files
---------------------------------------------------|------
GPL-2.0 WITH Linux-syscall-note 270
GPL-2.0+ WITH Linux-syscall-note 169
((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21
((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17
LGPL-2.1+ WITH Linux-syscall-note 15
GPL-1.0+ WITH Linux-syscall-note 14
((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5
LGPL-2.0+ WITH Linux-syscall-note 4
LGPL-2.1 WITH Linux-syscall-note 3
((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3
((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1
and that resulted in the third patch in this series.
- when the two scanners agreed on the detected license(s), that became
the concluded license(s).
- when there was disagreement between the two scanners (one detected a
license but the other didn't, or they both detected different
licenses) a manual inspection of the file occurred.
- In most cases a manual inspection of the information in the file
resulted in a clear resolution of the license that should apply (and
which scanner probably needed to revisit its heuristics).
- When it was not immediately clear, the license identifier was
confirmed with lawyers working with the Linux Foundation.
- If there was any question as to the appropriate license identifier,
the file was flagged for further research and to be revisited later
in time.
In total, over 70 hours of logged manual review was done on the
spreadsheet to determine the SPDX license identifiers to apply to the
source files by Kate, Philippe, Thomas and, in some cases, confirmation
by lawyers working with the Linux Foundation.
Kate also obtained a third independent scan of the 4.13 code base from
FOSSology, and compared selected files where the other two scanners
disagreed against that SPDX file, to see if there was new insights. The
Windriver scanner is based on an older version of FOSSology in part, so
they are related.
Thomas did random spot checks in about 500 files from the spreadsheets
for the uapi headers and agreed with SPDX license identifier in the
files he inspected. For the non-uapi files Thomas did random spot checks
in about 15000 files.
In initial set of patches against 4.14-rc6, 3 files were found to have
copy/paste license identifier errors, and have been fixed to reflect the
correct identifier.
Additionally Philippe spent 10 hours this week doing a detailed manual
inspection and review of the 12,461 patched files from the initial patch
version early this week with:
- a full scancode scan run, collecting the matched texts, detected
license ids and scores
- reviewing anything where there was a license detected (about 500+
files) to ensure that the applied SPDX license was correct
- reviewing anything where there was no detection but the patch license
was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied
SPDX license was correct
This produced a worksheet with 20 files needing minor correction. This
worksheet was then exported into 3 different .csv files for the
different types of files to be modified.
These .csv files were then reviewed by Greg. Thomas wrote a script to
parse the csv files and add the proper SPDX tag to the file, in the
format that the file expected. This script was further refined by Greg
based on the output to detect more types of files automatically and to
distinguish between header and source .c files (which need different
comment types.) Finally Greg ran the script using the .csv files to
generate the patches.
Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Please do not apply this to mainline directly, instead please re-run the
coccinelle script shown below and apply its output.
For several reasons, it is desirable to use {READ,WRITE}_ONCE() in
preference to ACCESS_ONCE(), and new code is expected to use one of the
former. So far, there's been no reason to change most existing uses of
ACCESS_ONCE(), as these aren't harmful, and changing them results in
churn.
However, for some features, the read/write distinction is critical to
correct operation. To distinguish these cases, separate read/write
accessors must be used. This patch migrates (most) remaining
ACCESS_ONCE() instances to {READ,WRITE}_ONCE(), using the following
coccinelle script:
----
// Convert trivial ACCESS_ONCE() uses to equivalent READ_ONCE() and
// WRITE_ONCE()
// $ make coccicheck COCCI=/home/mark/once.cocci SPFLAGS="--include-headers" MODE=patch
virtual patch
@ depends on patch @
expression E1, E2;
@@
- ACCESS_ONCE(E1) = E2
+ WRITE_ONCE(E1, E2)
@ depends on patch @
expression E;
@@
- ACCESS_ONCE(E)
+ READ_ONCE(E)
----
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: davem@davemloft.net
Cc: linux-arch@vger.kernel.org
Cc: mpe@ellerman.id.au
Cc: shuah@kernel.org
Cc: snitzer@redhat.com
Cc: thor.thayer@linux.intel.com
Cc: tj@kernel.org
Cc: viro@zeniv.linux.org.uk
Cc: will.deacon@arm.com
Link: http://lkml.kernel.org/r/1508792849-3115-19-git-send-email-paulmck@linux.vnet.ibm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Steve requested better names for the new task-state helper functions.
So introduce the concept of task-state index for the printing and
rename __get_task_state() to task_state_index() and
__task_state_to_char() to task_index_to_char().
Requested-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Steven Rostedt <rostedt@goodmis.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20170929115016.pzlqc7ss3ccystyg@hirez.programming.kicks-ass.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Currently TASK_PARKED is masqueraded as TASK_INTERRUPTIBLE, give it
its own print state because it will not in fact get woken by regular
wakeups and is a long-term state.
This requires moving TASK_PARKED into the TASK_REPORT mask, and since
that latter needs to be a contiguous bitmask, we need to shuffle the
bits around a bit.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Markus reported that kthreads that idle using TASK_IDLE instead of
TASK_INTERRUPTIBLE are reported in as TASK_UNINTERRUPTIBLE and things
like htop mark those red.
This is undesirable, so add an explicit state for TASK_IDLE.
Reported-by: Markus Trippelsdorf <markus@trippelsdorf.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Currently get_task_state() and task_state_to_char() report different
states, create a number of common helpers and unify the reported state
space.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Commit 0a1eb2d474 ("fs/proc: Stop reporting eip and esp in
/proc/PID/stat") stopped reporting eip/esp because it is
racy and dangerous for executing tasks. The comment adds:
As far as I know, there are no use programs that make any
material use of these fields, so just get rid of them.
However, existing userspace core-dump-handler applications (for
example, minicoredumper) are using these fields since they
provide an excellent cross-platform interface to these valuable
pointers. So that commit introduced a user space visible
regression.
Partially revert the change and make the readout possible for
tasks with the proper permissions and only if the target task
has the PF_DUMPCORE flag set.
Fixes: 0a1eb2d474 ("fs/proc: Stop reporting eip and esp in> /proc/PID/stat")
Reported-by: Marco Felsch <marco.felsch@preh.de>
Signed-off-by: John Ogness <john.ogness@linutronix.de>
Reviewed-by: Andy Lutomirski <luto@kernel.org>
Cc: Tycho Andersen <tycho.andersen@canonical.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: stable@vger.kernel.org
Cc: Tetsuo Handa <penguin-kernel@i-love.sakura.ne.jp>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Linux API <linux-api@vger.kernel.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: http://lkml.kernel.org/r/87poatfwg6.fsf@linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Introduce a trivial, mostly empty <linux/sched/cputime.h> header
to prepare for the moving of cputime functionality out of sched.h.
Update all code that relies on these facilities.
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
We are going to split <linux/sched/task.h> out of <linux/sched.h>, which
will have to be picked up from other headers and a couple of .c files.
Create a trivial placeholder <linux/sched/task.h> file that just
maps to <linux/sched.h> to make this patch obviously correct and
bisectable.
Include the new header in the files that are going to need it.
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
We are going to split <linux/sched/numa_balancing.h> out of <linux/sched.h>, which
will have to be picked up from other headers and a couple of .c files.
Create a trivial placeholder <linux/sched/numa_balancing.h> file that just
maps to <linux/sched.h> to make this patch obviously correct and
bisectable.
Include the new header in the files that are going to need it.
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
We are going to split <linux/sched/mm.h> out of <linux/sched.h>, which
will have to be picked up from other headers and a couple of .c files.
Create a trivial placeholder <linux/sched/mm.h> file that just
maps to <linux/sched.h> to make this patch obviously correct and
bisectable.
The APIs that are going to be moved first are:
mm_alloc()
__mmdrop()
mmdrop()
mmdrop_async_fn()
mmdrop_async()
mmget_not_zero()
mmput()
mmput_async()
get_task_mm()
mm_access()
mm_release()
Include the new header in the files that are going to need it.
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Now that most cputime readers use the transition API which return the
task cputime in old style cputime_t, we can safely store the cputime in
nsecs. This will eventually make cputime statistics less opaque and more
granular. Back and forth convertions between cputime_t and nsecs in order
to deal with cputime_t random granularity won't be needed anymore.
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Stanislaw Gruszka <sgruszka@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Wanpeng Li <wanpeng.li@hotmail.com>
Link: http://lkml.kernel.org/r/1485832191-26889-8-git-send-email-fweisbec@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
cputime_t is being obsolete and replaced by nsecs units in order to make
internal timestamps less opaque and more granular.
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Stanislaw Gruszka <sgruszka@redhat.com>
Cc: Wanpeng Li <wanpeng.li@hotmail.com>
Link: http://lkml.kernel.org/r/1485832191-26889-6-git-send-email-fweisbec@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
format_decode and vsnprintf occasionally show up in perf top, so I went
looking for places that might not need the full printf power. With the
help of kprobes, I gathered some statistics on which format strings we
mostly pass to vsnprintf. On a trivial desktop workload, I hit "%x" 25%
of the time, so something apparently reads /proc/pid/status (which does
5*16 printf("%x") calls) a lot.
With this patch, reading /proc/pid/status is 30% faster according to
this microbenchmark:
char buf[4096];
int i, fd;
for (i = 0; i < 10000; ++i) {
fd = open("/proc/self/status", O_RDONLY);
read(fd, buf, sizeof(buf));
close(fd);
}
Link: http://lkml.kernel.org/r/1474410485-1305-1-git-send-email-linux@rasmusvillemoes.dk
Signed-off-by: Rasmus Villemoes <linux@rasmusvillemoes.dk>
Acked-by: Andrei Vagin <avagin@openvz.org>
Acked-by: Kees Cook <keescook@chromium.org>
Cc: Alexey Dobriyan <adobriyan@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Similar to being able to examine if a process has been correctly
confined with seccomp, the state of no_new_privs is equally interesting,
so this adds it to /proc/$pid/status.
Link: http://lkml.kernel.org/r/20161103214041.GA58566@beast
Signed-off-by: Kees Cook <keescook@chromium.org>
Reviewed-by: Jann Horn <jann@thejh.net>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Konstantin Khlebnikov <koct9i@gmail.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Rodrigo Freire <rfreire@redhat.com>
Cc: John Stultz <john.stultz@linaro.org>
Cc: Ross Zwisler <ross.zwisler@linux.intel.com>
Cc: Robert Ho <robert.hu@intel.com>
Cc: Jerome Marchand <jmarchan@redhat.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Alexey Dobriyan <adobriyan@gmail.com>
Cc: "Richard W.M. Jones" <rjones@redhat.com>
Cc: Joe Perches <joe@perches.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Reporting these fields on a non-current task is dangerous. If the
task is in any state other than normal kernel code, they may contain
garbage or even kernel addresses on some architectures. (x86_64
used to do this. I bet lots of architectures still do.) With
CONFIG_THREAD_INFO_IN_TASK=y, it can OOPS, too.
As far as I know, there are no use programs that make any material
use of these fields, so just get rid of them.
Reported-by: Jann Horn <jann@thejh.net>
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Linux API <linux-api@vger.kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Tetsuo Handa <penguin-kernel@i-love.sakura.ne.jp>
Cc: Tycho Andersen <tycho.andersen@canonical.com>
Link: http://lkml.kernel.org/r/a5fed4c3f4e33ed25d4bb03567e329bc5a712bcc.1475257877.git.luto@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Current supplementary groups code can massively overallocate memory and
is implemented in a way so that access to individual gid is done via 2D
array.
If number of gids is <= 32, memory allocation is more or less tolerable
(140/148 bytes). But if it is not, code allocates full page (!)
regardless and, what's even more fun, doesn't reuse small 32-entry
array.
2D array means dependent shifts, loads and LEAs without possibility to
optimize them (gid is never known at compile time).
All of the above is unnecessary. Switch to the usual
trailing-zero-len-array scheme. Memory is allocated with
kmalloc/vmalloc() and only as much as needed. Accesses become simpler
(LEA 8(gi,idx,4) or even without displacement).
Maximum number of gids is 65536 which translates to 256KB+8 bytes. I
think kernel can handle such allocation.
On my usual desktop system with whole 9 (nine) aux groups, struct
group_info shrinks from 148 bytes to 44 bytes, yay!
Nice side effects:
- "gi->gid[i]" is shorter than "GROUP_AT(gi, i)", less typing,
- fix little mess in net/ipv4/ping.c
should have been using GROUP_AT macro but this point becomes moot,
- aux group allocation is persistent and should be accounted as such.
Link: http://lkml.kernel.org/r/20160817201927.GA2096@p183.telecom.by
Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com>
Cc: Vasily Kulikov <segoon@openwall.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Allow some seq_puts removals by taking a string instead of a single
char.
[akpm@linux-foundation.org: update vmstat_show(), per Joe]
Link: http://lkml.kernel.org/r/667e1cf3d436de91a5698170a1e98d882905e956.1470704995.git.joe@perches.com
Signed-off-by: Joe Perches <joe@perches.com>
Cc: Joe Perches <joe@perches.com>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
It's not possible to read the process umask without also modifying it,
which is what umask(2) does. A library cannot read umask safely,
especially if the main program might be multithreaded.
Add a new status line ("Umask") in /proc/<PID>/status. It contains the
file mode creation mask (umask) in octal. It is only shown for tasks
which have task->fs.
This patch is adapted from one originally written by Pierre Carrier.
The use case is that we have endless trouble with people setting weird
umask() values (usually on the grounds of "security"), and then
everything breaking. I'm on the hook to fix these. We'd like to add
debugging to our program so we can dump out the umask in debug reports.
Previous versions of the patch used a syscall so you could only read
your own umask. That's all I need. However there was quite a lot of
push-back from those, so this new version exports it in /proc.
See:
https://lkml.org/lkml/2016/4/13/704 [umask2]
https://lkml.org/lkml/2016/4/13/487 [getumask]
Signed-off-by: Richard W.M. Jones <rjones@redhat.com>
Acked-by: Konstantin Khlebnikov <koct9i@gmail.com>
Acked-by: Jerome Marchand <jmarchan@redhat.com>
Acked-by: Kees Cook <keescook@chromium.org>
Cc: "Theodore Ts'o" <tytso@mit.edu>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Pierre Carrier <pierre@spotify.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
By checking the effective credentials instead of the real UID / permitted
capabilities, ensure that the calling process actually intended to use its
credentials.
To ensure that all ptrace checks use the correct caller credentials (e.g.
in case out-of-tree code or newly added code omits the PTRACE_MODE_*CREDS
flag), use two new flags and require one of them to be set.
The problem was that when a privileged task had temporarily dropped its
privileges, e.g. by calling setreuid(0, user_uid), with the intent to
perform following syscalls with the credentials of a user, it still passed
ptrace access checks that the user would not be able to pass.
While an attacker should not be able to convince the privileged task to
perform a ptrace() syscall, this is a problem because the ptrace access
check is reused for things in procfs.
In particular, the following somewhat interesting procfs entries only rely
on ptrace access checks:
/proc/$pid/stat - uses the check for determining whether pointers
should be visible, useful for bypassing ASLR
/proc/$pid/maps - also useful for bypassing ASLR
/proc/$pid/cwd - useful for gaining access to restricted
directories that contain files with lax permissions, e.g. in
this scenario:
lrwxrwxrwx root root /proc/13020/cwd -> /root/foobar
drwx------ root root /root
drwxr-xr-x root root /root/foobar
-rw-r--r-- root root /root/foobar/secret
Therefore, on a system where a root-owned mode 6755 binary changes its
effective credentials as described and then dumps a user-specified file,
this could be used by an attacker to reveal the memory layout of root's
processes or reveal the contents of files he is not allowed to access
(through /proc/$pid/cwd).
[akpm@linux-foundation.org: fix warning]
Signed-off-by: Jann Horn <jann@thejh.net>
Acked-by: Kees Cook <keescook@chromium.org>
Cc: Casey Schaufler <casey@schaufler-ca.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: James Morris <james.l.morris@oracle.com>
Cc: "Serge E. Hallyn" <serge.hallyn@ubuntu.com>
Cc: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: Willy Tarreau <w@1wt.eu>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
For now in task_name() we ignore the return code of string_escape_str()
call. This is not good if buffer suddenly becomes not big enough. Do the
proper error handling there.
Signed-off-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
So the /proc/PID/stat 'wchan' field (the 30th field, which contains
the absolute kernel address of the kernel function a task is blocked in)
leaks absolute kernel addresses to unprivileged user-space:
seq_put_decimal_ull(m, ' ', wchan);
The absolute address might also leak via /proc/PID/wchan as well, if
KALLSYMS is turned off or if the symbol lookup fails for some reason:
static int proc_pid_wchan(struct seq_file *m, struct pid_namespace *ns,
struct pid *pid, struct task_struct *task)
{
unsigned long wchan;
char symname[KSYM_NAME_LEN];
wchan = get_wchan(task);
if (lookup_symbol_name(wchan, symname) < 0) {
if (!ptrace_may_access(task, PTRACE_MODE_READ))
return 0;
seq_printf(m, "%lu", wchan);
} else {
seq_printf(m, "%s", symname);
}
return 0;
}
This isn't ideal, because for example it trivially leaks the KASLR offset
to any local attacker:
fomalhaut:~> printf "%016lx\n" $(cat /proc/$$/stat | cut -d' ' -f35)
ffffffff8123b380
Most real-life uses of wchan are symbolic:
ps -eo pid:10,tid:10,wchan:30,comm
and procps uses /proc/PID/wchan, not the absolute address in /proc/PID/stat:
triton:~/tip> strace -f ps -eo pid:10,tid:10,wchan:30,comm 2>&1 | grep wchan | tail -1
open("/proc/30833/wchan", O_RDONLY) = 6
There's one compatibility quirk here: procps relies on whether the
absolute value is non-zero - and we can provide that functionality
by outputing "0" or "1" depending on whether the task is blocked
(whether there's a wchan address).
These days there appears to be very little legitimate reason
user-space would be interested in the absolute address. The
absolute address is mostly historic: from the days when we
didn't have kallsyms and user-space procps had to do the
decoding itself via the System.map.
So this patch sets all numeric output to "0" or "1" and keeps only
symbolic output, in /proc/PID/wchan.
( The absolute sleep address can generally still be profiled via
perf, by tasks with sufficient privileges. )
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Kees Cook <keescook@chromium.org>
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: <stable@vger.kernel.org>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Alexander Potapenko <glider@google.com>
Cc: Andrey Konovalov <andreyknvl@google.com>
Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Kostya Serebryany <kcc@google.com>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Sasha Levin <sasha.levin@oracle.com>
Cc: kasan-dev <kasan-dev@googlegroups.com>
Cc: linux-kernel@vger.kernel.org
Link: http://lkml.kernel.org/r/20150930135917.GA3285@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Credit where credit is due: this idea comes from Christoph Lameter with
a lot of valuable input from Serge Hallyn. This patch is heavily based
on Christoph's patch.
===== The status quo =====
On Linux, there are a number of capabilities defined by the kernel. To
perform various privileged tasks, processes can wield capabilities that
they hold.
Each task has four capability masks: effective (pE), permitted (pP),
inheritable (pI), and a bounding set (X). When the kernel checks for a
capability, it checks pE. The other capability masks serve to modify
what capabilities can be in pE.
Any task can remove capabilities from pE, pP, or pI at any time. If a
task has a capability in pP, it can add that capability to pE and/or pI.
If a task has CAP_SETPCAP, then it can add any capability to pI, and it
can remove capabilities from X.
Tasks are not the only things that can have capabilities; files can also
have capabilities. A file can have no capabilty information at all [1].
If a file has capability information, then it has a permitted mask (fP)
and an inheritable mask (fI) as well as a single effective bit (fE) [2].
File capabilities modify the capabilities of tasks that execve(2) them.
A task that successfully calls execve has its capabilities modified for
the file ultimately being excecuted (i.e. the binary itself if that
binary is ELF or for the interpreter if the binary is a script.) [3] In
the capability evolution rules, for each mask Z, pZ represents the old
value and pZ' represents the new value. The rules are:
pP' = (X & fP) | (pI & fI)
pI' = pI
pE' = (fE ? pP' : 0)
X is unchanged
For setuid binaries, fP, fI, and fE are modified by a moderately
complicated set of rules that emulate POSIX behavior. Similarly, if
euid == 0 or ruid == 0, then fP, fI, and fE are modified differently
(primary, fP and fI usually end up being the full set). For nonroot
users executing binaries with neither setuid nor file caps, fI and fP
are empty and fE is false.
As an extra complication, if you execute a process as nonroot and fE is
set, then the "secure exec" rules are in effect: AT_SECURE gets set,
LD_PRELOAD doesn't work, etc.
This is rather messy. We've learned that making any changes is
dangerous, though: if a new kernel version allows an unprivileged
program to change its security state in a way that persists cross
execution of a setuid program or a program with file caps, this
persistent state is surprisingly likely to allow setuid or file-capped
programs to be exploited for privilege escalation.
===== The problem =====
Capability inheritance is basically useless.
If you aren't root and you execute an ordinary binary, fI is zero, so
your capabilities have no effect whatsoever on pP'. This means that you
can't usefully execute a helper process or a shell command with elevated
capabilities if you aren't root.
On current kernels, you can sort of work around this by setting fI to
the full set for most or all non-setuid executable files. This causes
pP' = pI for nonroot, and inheritance works. No one does this because
it's a PITA and it isn't even supported on most filesystems.
If you try this, you'll discover that every nonroot program ends up with
secure exec rules, breaking many things.
This is a problem that has bitten many people who have tried to use
capabilities for anything useful.
===== The proposed change =====
This patch adds a fifth capability mask called the ambient mask (pA).
pA does what most people expect pI to do.
pA obeys the invariant that no bit can ever be set in pA if it is not
set in both pP and pI. Dropping a bit from pP or pI drops that bit from
pA. This ensures that existing programs that try to drop capabilities
still do so, with a complication. Because capability inheritance is so
broken, setting KEEPCAPS, using setresuid to switch to nonroot uids, and
then calling execve effectively drops capabilities. Therefore,
setresuid from root to nonroot conditionally clears pA unless
SECBIT_NO_SETUID_FIXUP is set. Processes that don't like this can
re-add bits to pA afterwards.
The capability evolution rules are changed:
pA' = (file caps or setuid or setgid ? 0 : pA)
pP' = (X & fP) | (pI & fI) | pA'
pI' = pI
pE' = (fE ? pP' : pA')
X is unchanged
If you are nonroot but you have a capability, you can add it to pA. If
you do so, your children get that capability in pA, pP, and pE. For
example, you can set pA = CAP_NET_BIND_SERVICE, and your children can
automatically bind low-numbered ports. Hallelujah!
Unprivileged users can create user namespaces, map themselves to a
nonzero uid, and create both privileged (relative to their namespace)
and unprivileged process trees. This is currently more or less
impossible. Hallelujah!
You cannot use pA to try to subvert a setuid, setgid, or file-capped
program: if you execute any such program, pA gets cleared and the
resulting evolution rules are unchanged by this patch.
Users with nonzero pA are unlikely to unintentionally leak that
capability. If they run programs that try to drop privileges, dropping
privileges will still work.
It's worth noting that the degree of paranoia in this patch could
possibly be reduced without causing serious problems. Specifically, if
we allowed pA to persist across executing non-pA-aware setuid binaries
and across setresuid, then, naively, the only capabilities that could
leak as a result would be the capabilities in pA, and any attacker
*already* has those capabilities. This would make me nervous, though --
setuid binaries that tried to privilege-separate might fail to do so,
and putting CAP_DAC_READ_SEARCH or CAP_DAC_OVERRIDE into pA could have
unexpected side effects. (Whether these unexpected side effects would
be exploitable is an open question.) I've therefore taken the more
paranoid route. We can revisit this later.
An alternative would be to require PR_SET_NO_NEW_PRIVS before setting
ambient capabilities. I think that this would be annoying and would
make granting otherwise unprivileged users minor ambient capabilities
(CAP_NET_BIND_SERVICE or CAP_NET_RAW for example) much less useful than
it is with this patch.
===== Footnotes =====
[1] Files that are missing the "security.capability" xattr or that have
unrecognized values for that xattr end up with has_cap set to false.
The code that does that appears to be complicated for no good reason.
[2] The libcap capability mask parsers and formatters are dangerously
misleading and the documentation is flat-out wrong. fE is *not* a mask;
it's a single bit. This has probably confused every single person who
has tried to use file capabilities.
[3] Linux very confusingly processes both the script and the interpreter
if applicable, for reasons that elude me. The results from thinking
about a script's file capabilities and/or setuid bits are mostly
discarded.
Preliminary userspace code is here, but it needs updating:
https://git.kernel.org/cgit/linux/kernel/git/luto/util-linux-playground.git/commit/?h=cap_ambient&id=7f5afbd175d2
Here is a test program that can be used to verify the functionality
(from Christoph):
/*
* Test program for the ambient capabilities. This program spawns a shell
* that allows running processes with a defined set of capabilities.
*
* (C) 2015 Christoph Lameter <cl@linux.com>
* Released under: GPL v3 or later.
*
*
* Compile using:
*
* gcc -o ambient_test ambient_test.o -lcap-ng
*
* This program must have the following capabilities to run properly:
* Permissions for CAP_NET_RAW, CAP_NET_ADMIN, CAP_SYS_NICE
*
* A command to equip the binary with the right caps is:
*
* setcap cap_net_raw,cap_net_admin,cap_sys_nice+p ambient_test
*
*
* To get a shell with additional caps that can be inherited by other processes:
*
* ./ambient_test /bin/bash
*
*
* Verifying that it works:
*
* From the bash spawed by ambient_test run
*
* cat /proc/$$/status
*
* and have a look at the capabilities.
*/
#include <stdlib.h>
#include <stdio.h>
#include <errno.h>
#include <cap-ng.h>
#include <sys/prctl.h>
#include <linux/capability.h>
/*
* Definitions from the kernel header files. These are going to be removed
* when the /usr/include files have these defined.
*/
#define PR_CAP_AMBIENT 47
#define PR_CAP_AMBIENT_IS_SET 1
#define PR_CAP_AMBIENT_RAISE 2
#define PR_CAP_AMBIENT_LOWER 3
#define PR_CAP_AMBIENT_CLEAR_ALL 4
static void set_ambient_cap(int cap)
{
int rc;
capng_get_caps_process();
rc = capng_update(CAPNG_ADD, CAPNG_INHERITABLE, cap);
if (rc) {
printf("Cannot add inheritable cap\n");
exit(2);
}
capng_apply(CAPNG_SELECT_CAPS);
/* Note the two 0s at the end. Kernel checks for these */
if (prctl(PR_CAP_AMBIENT, PR_CAP_AMBIENT_RAISE, cap, 0, 0)) {
perror("Cannot set cap");
exit(1);
}
}
int main(int argc, char **argv)
{
int rc;
set_ambient_cap(CAP_NET_RAW);
set_ambient_cap(CAP_NET_ADMIN);
set_ambient_cap(CAP_SYS_NICE);
printf("Ambient_test forking shell\n");
if (execv(argv[1], argv + 1))
perror("Cannot exec");
return 0;
}
Signed-off-by: Christoph Lameter <cl@linux.com> # Original author
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Acked-by: Serge E. Hallyn <serge.hallyn@ubuntu.com>
Acked-by: Kees Cook <keescook@chromium.org>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Aaron Jones <aaronmdjones@gmail.com>
Cc: Ted Ts'o <tytso@mit.edu>
Cc: Andrew G. Morgan <morgan@kernel.org>
Cc: Mimi Zohar <zohar@linux.vnet.ibm.com>
Cc: Austin S Hemmelgarn <ahferroin7@gmail.com>
Cc: Markku Savela <msa@moth.iki.fi>
Cc: Jarkko Sakkinen <jarkko.sakkinen@linux.intel.com>
Cc: Michael Kerrisk <mtk.manpages@gmail.com>
Cc: James Morris <james.l.morris@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Commit 818411616b ("fs, proc: introduce /proc/<pid>/task/<tid>/children
entry") introduced the children entry for checkpoint restore and the
file is only available on kernels configured with CONFIG_EXPERT and
CONFIG_CHECKPOINT_RESTORE.
This is available in most distributions (Fedora, Debian, Ubuntu, CoreOS)
because they usually enable CONFIG_EXPERT and CONFIG_CHECKPOINT_RESTORE.
But Arch does not enable CONFIG_EXPERT or CONFIG_CHECKPOINT_RESTORE.
However, the children proc file is useful outside of checkpoint restore.
I would like to use it in rkt. The rkt process exec() another program
it does not control, and that other program will fork()+exec() a child
process. I would like to find the pid of the child process from an
external tool without iterating in /proc over all processes to find
which one has a parent pid equal to rkt.
This commit introduces CONFIG_PROC_CHILDREN and makes
CONFIG_CHECKPOINT_RESTORE select it. This allows enabling
/proc/<pid>/task/<tid>/children without needing to enable
CONFIG_CHECKPOINT_RESTORE and CONFIG_EXPERT.
Alban tested that /proc/<pid>/task/<tid>/children is present when the
kernel is configured with CONFIG_PROC_CHILDREN=y but without
CONFIG_CHECKPOINT_RESTORE
Signed-off-by: Iago López Galeiras <iago@endocode.com>
Tested-by: Alban Crequy <alban@endocode.com>
Reviewed-by: Cyrill Gorcunov <gorcunov@openvz.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Pavel Emelyanov <xemul@parallels.com>
Cc: Serge Hallyn <serge.hallyn@canonical.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Djalal Harouni <djalal@endocode.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Allowing watchdog threads to be parked means that we now have the
opportunity of actually seeing persistent parked threads in the output
of /proc/<pid>/stat and /proc/<pid>/status. The existing code reported
such threads as "Running", which is kind-of true if you think of the
case where we park them as part of taking cpus offline. But if we allow
parking them indefinitely, "Running" is pretty misleading, so we report
them as "Sleeping" instead.
We could simply report them with a new string, "Parked", but it feels
like it's a bit risky for userspace to see unexpected new values; the
output is already documented in Documentation/filesystems/proc.txt, and
it seems like a mistake to change that lightly.
The scheduler does report parked tasks with a "P" in debugging output
from sched_show_task() or dump_cpu_task(), but that's a different API.
Similarly, the trace_ctxwake_* routines report a "P" for parked tasks,
but again, different API.
This change seemed slightly cleaner than updating the task_state_array
to have additional rows. TASK_DEAD should be subsumed by the exit_state
bits; TASK_WAKEKILL is just a modifier; and TASK_WAKING can very
reasonably be reported as "Running" (as it is now). Only TASK_PARKED
shows up with unreasonable output here.
Signed-off-by: Chris Metcalf <cmetcalf@ezchip.com>
Cc: Don Zickus <dzickus@redhat.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Ulrich Obergfell <uobergfe@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The seq_printf return value, because it's frequently misused,
will eventually be converted to void.
See: commit 1f33c41c03 ("seq_file: Rename seq_overflow() to
seq_has_overflowed() and make public")
Signed-off-by: Joe Perches <joe@perches.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>