Commit Graph

15853 Commits

Author SHA1 Message Date
Thomas Gleixner
2b0f89317e Merge branch 'timers/posix-cpu-timers-for-tglx' of
git://git.kernel.org/pub/scm/linux/kernel/git/frederic/linux-dynticks into timers/core

Frederic sayed: "Most of these patches have been hanging around for
several month now, in -mmotm for a significant chunk. They already
missed a few releases."

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2013-07-04 23:11:22 +02:00
KOSAKI Motohiro
fa18f7bde3 posix-cpu-timers: don't account cpu timer after stopped thread runtime accounting
When tsk->signal->cputimer->running is 1, signal->cputimer (i.e. per process
timer account) and tsk->sum_sched_runtime (i.e. per thread timer account)
increase at the same pace because update_curr() increases both accounting.

However, there is one exception. When thread exiting, __exit_signal() turns
over task's sum_shced_runtime to sig->sum_sched_runtime, but it doesn't stop
signal->cputimer accounting.

This inconsistency makes POSIX timer wake up too early. This patch fixes it.

Original-patch-by: Olivier Langlois <olivier@trillion01.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Olivier Langlois <olivier@trillion01.com>
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
2013-07-04 18:02:30 +02:00
Frederic Weisbecker
a0b2062b09 posix_timers: fix racy timer delta caching on task exit
When a task exits, we perform a caching of the remaining cputime delta
before expiring of its timers.

This is done from the following places:

* When the task is reaped. We iterate through its list of
  posix cpu timers and store the remaining timer delta to
  the timer struct instead of the absolute value.
  (See posix_cpu_timers_exit() / posix_cpu_timers_exit_group() )

* When we call posix_cpu_timer_get() or posix_cpu_timer_schedule().
  If the timer's task is considered dying when watched from these
  places, the same conversion from absolute to relative expiry time
  is performed. Then the given task's reference is released.
  (See clear_dead_task() ).

The relevance of this caching is questionable but this is another
and deeper debate.

The big issue here is that these two sources of caching don't mix
up very well together.

More specifically, the caching can easily be done twice, resulting
in a wrong delta as it gets spuriously substracted a second time by
the elapsed clock. This can happen in the following scenario:

1) The task exits and gets reaped: we call posix_cpu_timers_exit()
   and the absolute timer expiry values are converted to a relative
   delta.

2) timer_gettime() -> posix_cpu_timer_get() is called and relies on
   clear_dead_task() because  tsk->exit_state == EXIT_DEAD.
   The delta gets substracted again by the elapsed clock and we return
   a wrong result.

To fix this, just remove the caching done on task reaping time.  It
doesn't bring much value on its own.  The caching done from
posix_cpu_timer_get/schedule is enough.

And it would also be hard to get it really right: we could make it put and
clear the target task in the timer struct so that readers know if they are
dealing with a relative cached of absolute value.  But it would be racy.
The only safe way to do it would be to lock the itimer->it_lock so that we
know nobody reads the cputime expiry value while we modify it and its
target task reference.  Doing so would involve some funny workarounds to
avoid circular lock against the sighand lock.  There is just no reason to
maintain this.

The user visible effect of this patch can be observed by running the
following code: it creates a subthread that launches a posix cputimer
which expires after 10 seconds. But then the subthread only busy loops for 2
seconds and exits. The parent reaps the subthread and read the timer value.
Its expected value should the be the initial timer's expiration value
minus the cputime elapsed in the subthread. Roughly 10 - 2 = 8 seconds:

	#include <sys/time.h>
	#include <stdio.h>
	#include <unistd.h>
	#include <time.h>
	#include <pthread.h>

	static timer_t id;
	static struct itimerspec val = { .it_value.tv_sec = 10, }, new;

	static void *thread(void *unused)
	{
		int err;
		struct timeval start, end, diff;

		timer_create(CLOCK_THREAD_CPUTIME_ID, NULL, &id);
		if (err < 0) {
			perror("Can't create timer\n");
			return NULL;
		}

		/* Arm 10 sec timer */
		err = timer_settime(id, 0, &val, NULL);
		if (err < 0) {
			perror("Can't set timer\n");
			return NULL;
		}

		/* Exit after 2 seconds of execution */
		gettimeofday(&start, NULL);
	        do {
			gettimeofday(&end, NULL);
			timersub(&end, &start, &diff);
		} while (diff.tv_sec < 2);

		return NULL;
	}

	int main(int argc, char **argv)
	{
		pthread_t pthread;
		int err;

		err = pthread_create(&pthread, NULL, thread, NULL);
		if (err) {
			perror("Can't create thread\n");
			return -1;
		}
		pthread_join(pthread, NULL);
		/* Just wait a little bit to make sure the child got reaped */
		sleep(1);
		err = timer_gettime(id, &new);
		if (err)
			perror("Can't get timer value\n");
		printf("%d %ld\n", new.it_value.tv_sec, new.it_value.tv_nsec);

		return 0;
	}

Before the patch:

       $ ./posix_cpu_timers
       6 2278074

After the patch:

      $ ./posix_cpu_timers
      8 1158766

Before the patch, the elapsed time got two more seconds spuriously accounted.

Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Stanislaw Gruszka <sgruszka@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@gmail.com>
Cc: Olivier Langlois <olivier@trillion01.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2013-07-03 16:54:42 +02:00
Frederic Weisbecker
76cdcdd979 posix-timers: correctly get dying task time sample in posix_cpu_timer_schedule()
In order to re-arm a timer after it fired, we take a sample of the current
process or thread cputime.

If the task is dying though, we don't arm anything but we cache the
remaining timer expiration delta for further reads.

Something similar is performed in posix_cpu_timer_get() but here we forget
to take the process wide cputime sample before caching it.

As a result we are storing random stack content, leading every further
reads of that timer to return junk values.

Fix this by taking the appropriate sample in the case of process wide
timers.

This probably doesn't matter much in practice because, at this stage, the
thread is the last one in the group and we reached exit_notify().  This
implies that we called exit_itimers() and there should be no more timers
to handle for that task.

So this is likely dead code anyway but let's fix the current logic
and the warning that came along:

    kernel/posix-cpu-timers.c: In function 'posix_cpu_timer_schedule':
    kernel/posix-cpu-timers.c:1127: warning: 'now' may be used uninitialized in this function

Then we can start to think further about cleaning up that code.

Reported-by: Andrew Morton <akpm@linux-foundation.org>
Reported-by: Chen Gang <gang.chen@asianux.com>
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Stanislaw Gruszka <sgruszka@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Chen Gang <gang.chen@asianux.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@gmail.com>
Cc: Olivier Langlois <olivier@trillion01.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2013-07-03 16:20:20 +02:00
Frederic Weisbecker
2473f3e7a9 posix_cpu_timers: consolidate expired timers check
Consolidate the common code amongst per thread and per process timers list
on tick time.

List traversal, expiry check and subsequent updates can be shared in a
common helper.

Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Stanislaw Gruszka <sgruszka@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@gmail.com>
Cc: Olivier Langlois <olivier@trillion01.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2013-07-03 16:19:23 +02:00
Frederic Weisbecker
1a7fa510b3 posix_cpu_timers: consolidate timer list cleanups
Cleaning up the posix cpu timers on task exit shares some common code
among timer list types, most notably the list traversal and expiry time
update.

Unify this in a common helper.

Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Stanislaw Gruszka <sgruszka@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@gmail.com>
Cc: Olivier Langlois <olivier@trillion01.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2013-07-03 16:18:37 +02:00
Frederic Weisbecker
55ccb616a6 posix_cpu_timer: consolidate expiry time type
The posix cpu timer expiry time is stored in a union of two types: a 64
bits field if we rely on scheduler precise accounting, or a cputime_t if
we rely on jiffies.

This results in quite some duplicate code and special cases to handle the
two types.

Just unify this into a single 64 bits field.  cputime_t can always fit
into it.

Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Stanislaw Gruszka <sgruszka@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@gmail.com>
Cc: Olivier Langlois <olivier@trillion01.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2013-07-03 16:16:20 +02:00
Thomas Gleixner
07bd117290 tick: Sanitize broadcast control logic
The recent implementation of a generic dummy timer resulted in a
different registration order of per cpu local timers which made the
broadcast control logic go belly up.

If the dummy timer is the first clock event device which is registered
for a CPU, then it is installed, the broadcast timer is initialized
and the CPU is marked as broadcast target.

If a real clock event device is installed after that, we can fail to
take the CPU out of the broadcast mask. In the worst case we end up
with two periodic timer events firing for the same CPU. One from the
per cpu hardware device and one from the broadcast.

Now the problem is that we have no way to distinguish whether the
system is in a state which makes broadcasting necessary or the
broadcast bit was set due to the nonfunctional dummy timer
installment.

To solve this we need to keep track of the system state seperately and
provide a more detailed decision logic whether we keep the CPU in
broadcast mode or not.

The old decision logic only clears the broadcast mode, if the newly
installed clock event device is not affected by power states.

The new logic clears the broadcast mode if one of the following is
true:

  - The new device is not affected by power states.

  - The system is not in a power state affected mode

  - The system has switched to oneshot mode. The oneshot broadcast is
    controlled from the deep idle state. The CPU is not in idle at
    this point, so it's safe to remove it from the mask.

If we clear the broadcast bit for the CPU when a new device is
installed, we also shutdown the broadcast device when this was the
last CPU in the broadcast mask.

If the broadcast bit is kept, then we leave the new device in shutdown
state and rely on the broadcast to deliver the timer interrupts via
the broadcast ipis.

Reported-and-tested-by: Stehle Vincent-B46079 <B46079@freescale.com>
Reviewed-by: Stephen Boyd <sboyd@codeaurora.org>
Cc: John Stultz <john.stultz@linaro.org>,
Cc: Mark Rutland <mark.rutland@arm.com>
Link: http://lkml.kernel.org/r/alpine.DEB.2.02.1307012153060.4013@ionos.tec.linutronix.de
Cc: stable@vger.kernel.org
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2013-07-02 14:26:45 +02:00
Thomas Gleixner
1f73a9806b tick: Prevent uncontrolled switch to oneshot mode
When the system switches from periodic to oneshot mode, the broadcast
logic causes a possibility that a CPU which has not yet switched to
oneshot mode puts its own clock event device into oneshot mode without
updating the state and the timer handler.

CPU0				CPU1
				per cpu tickdev is in periodic mode
				and switched to broadcast

Switch to oneshot mode
 tick_broadcast_switch_to_oneshot()
  cpumask_copy(tick_oneshot_broacast_mask,
	       tick_broadcast_mask);

  broadcast device mode = oneshot

				Timer interrupt
						
				irq_enter()
				 tick_check_oneshot_broadcast()
				  dev->set_mode(ONESHOT);

				tick_handle_periodic()
				 if (dev->mode == ONESHOT)
				   dev->next_event += period;
				   FAIL.

We fail, because dev->next_event contains KTIME_MAX, if the device was
in periodic mode before the uncontrolled switch to oneshot happened.

We must copy the broadcast bits over to the oneshot mask, because
otherwise a CPU which relies on the broadcast would not been woken up
anymore after the broadcast device switched to oneshot mode.

So we need to verify in tick_check_oneshot_broadcast() whether the CPU
has already switched to oneshot mode. If not, leave the device
untouched and let the CPU switch controlled into oneshot mode.

This is a long standing bug, which was never noticed, because the main
user of the broadcast x86 cannot run into that scenario, AFAICT. The
nonarchitected timer mess of ARM creates a gazillion of differently
broken abominations which trigger the shortcomings of that broadcast
code, which better had never been necessary in the first place.

Reported-and-tested-by: Stehle Vincent-B46079 <B46079@freescale.com>
Reviewed-by: Stephen Boyd <sboyd@codeaurora.org>
Cc: John Stultz <john.stultz@linaro.org>,
Cc: Mark Rutland <mark.rutland@arm.com>
Link: http://lkml.kernel.org/r/alpine.DEB.2.02.1307012153060.4013@ionos.tec.linutronix.de
Cc: stable@vger.kernel.org
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2013-07-02 14:26:45 +02:00
Thomas Gleixner
c9b5a266b1 tick: Make oneshot broadcast robust vs. CPU offlining
In periodic mode we remove offline cpus from the broadcast propagation
mask. In oneshot mode we fail to do so. This was not a problem so far,
but the recent changes to the broadcast propagation introduced a
constellation which can result in a NULL pointer dereference.

What happens is:

CPU0			CPU1
			idle()
			  arch_idle()
			    tick_broadcast_oneshot_control(OFF);
			      set cpu1 in tick_broadcast_force_mask
			  if (cpu_offline())
			     arch_cpu_dead()

cpu_dead_cleanup(cpu1)
 cpu1 tickdevice pointer = NULL

broadcast interrupt
  dereference cpu1 tickdevice pointer -> OOPS

We dereference the pointer because cpu1 is still set in
tick_broadcast_force_mask and tick_do_broadcast() expects a valid
cpumask and therefor lacks any further checks.

Remove the cpu from the tick_broadcast_force_mask before we set the
tick device pointer to NULL. Also add a sanity check to the oneshot
broadcast function, so we can detect such issues w/o crashing the
machine.

Reported-by: Prarit Bhargava <prarit@redhat.com>
Cc: athorlton@sgi.com
Cc: CAI Qian <caiqian@redhat.com>
Link: http://lkml.kernel.org/r/alpine.DEB.2.02.1306261303260.4013@ionos.tec.linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2013-07-02 14:26:44 +02:00
Mathieu Desnoyers
706b23bde2 Fix: kernel/ptrace.c: ptrace_peek_siginfo() missing __put_user() validation
This __put_user() could be used by unprivileged processes to write into
kernel memory.  The issue here is that even if copy_siginfo_to_user()
fails, the error code is not checked before __put_user() is executed.

Luckily, ptrace_peek_siginfo() has been added within the 3.10-rc cycle,
so it has not hit a stable release yet.

Signed-off-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Acked-by: Oleg Nesterov <oleg@redhat.com>
Cc: Andrey Vagin <avagin@openvz.org>
Cc: Roland McGrath <roland@redhat.com>
Cc: Paul McKenney <paulmck@linux.vnet.ibm.com>
Cc: David Howells <dhowells@redhat.com>
Cc: Dave Jones <davej@redhat.com>
Cc: Pavel Emelyanov <xemul@parallels.com>
Cc: Pedro Alves <palves@redhat.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-06-29 11:29:08 -07:00
Linus Torvalds
a75930c633 Merge branch 'timers-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull timer fix from Thomas Gleixner:
 "Correct an ordering issue in the tick broadcast code.  I really wish
  we'd get compensation for pain and suffering for each line of code we
  write to work around dysfunctional timer hardware."

* 'timers-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
  tick: Fix tick_broadcast_pending_mask not cleared
2013-06-29 10:27:19 -07:00
David Vrabel
780427f0e1 timekeeping: Indicate that clock was set in the pvclock gtod notifier
If the clock was set (stepped), set the action parameter to functions
in the pvclock gtod notifier chain to non-zero.  This allows the
callee to only do work if the clock was stepped.

This will be used on Xen as the synchronization of the Xen wallclock
to the control domain's (dom0) system time will be done with this
notifier and updating on every timer tick is unnecessary and too
expensive.

Signed-off-by: David Vrabel <david.vrabel@citrix.com>
Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Cc: John Stultz <john.stultz@linaro.org>
Cc: <xen-devel@lists.xen.org>
Link: http://lkml.kernel.org/r/1372329348-20841-4-git-send-email-david.vrabel@citrix.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2013-06-28 23:15:06 +02:00
David Vrabel
04397fe94a timekeeping: Pass flags instead of multiple bools to timekeeping_update()
Instead of passing multiple bools to timekeeping_updated(), define
flags and use a single 'action' parameter.  It is then more obvious
what each timekeeping_update() call does.

Signed-off-by: David Vrabel <david.vrabel@citrix.com>
Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Cc: John Stultz <john.stultz@linaro.org>
Cc: <xen-devel@lists.xen.org>
Link: http://lkml.kernel.org/r/1372329348-20841-3-git-send-email-david.vrabel@citrix.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2013-06-28 23:15:06 +02:00
David Vrabel
7c4c3a0f18 hrtimers: Support resuming with two or more CPUs online (but stopped)
hrtimers_resume() only reprograms the timers for the current CPU as it
assumes that all other CPUs are offline at this point in the resume
process. If other CPUs are online then their timers will not be
corrected and they may fire at the wrong time.

When running as a Xen guest, this assumption is not true.  Non-boot
CPUs are only stopped with IRQs disabled instead of offlining them.
This is a performance optimization as disabling the CPUs would add an
unacceptable amount of additional downtime during a live migration (>
200 ms for a 4 VCPU guest).

hrtimers_resume() cannot call on_each_cpu(retrigger_next_event,...)
as the other CPUs will be stopped with IRQs disabled.  Instead, defer
the call to the next softirq.

[ tglx: Separated the xen change out ]

Signed-off-by: David Vrabel <david.vrabel@citrix.com>
Cc: Konrad Rzeszutek Wilk  <konrad.wilk@oracle.com>
Cc: John Stultz  <john.stultz@linaro.org>
Cc: <xen-devel@lists.xen.org>
Link: http://lkml.kernel.org/r/1372329348-20841-2-git-send-email-david.vrabel@citrix.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2013-06-28 23:15:06 +02:00
Bart Van Assche
9e04d3804d timer: Fix jiffies wrap behavior of round_jiffies_common()
Direct compare of jiffies related values does not work in the wrap
around case. Replace it with time_is_after_jiffies().

Signed-off-by: Bart Van Assche <bvanassche@acm.org>
Cc: Arjan van de Ven <arjan@infradead.org>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Link: http://lkml.kernel.org/r/519BC066.5080600@acm.org
Cc: stable@vger.kernel.org
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2013-06-28 17:10:11 +02:00
Linus Torvalds
54faf77d06 Merge branch 'perf-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull perf fixes from Ingo Molnar:
 "Three small fixlets"

* 'perf-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
  hw_breakpoint: Use cpu_possible_mask in {reserve,release}_bp_slot()
  hw_breakpoint: Fix cpu check in task_bp_pinned(cpu)
  kprobes: Fix arch_prepare_kprobe to handle copy insn failures
2013-06-26 08:51:44 -10:00
Stephen Boyd
70e5975d3a clockevents: Prefer CPU local devices over global devices
On an SMP system with only one global clockevent and a dummy
clockevent per CPU we run into problems. We want the dummy
clockevents to be registered as the per CPU tick devices, but
we can only achieve that if we register the dummy clockevents
before the global clockevent or if we artificially inflate the
rating of the dummy clockevents to be higher than the rating
of the global clockevent. Failure to do so leads to boot
hangs when the dummy timers are registered on all other CPUs
besides the CPU that accepted the global clockevent as its tick
device and there is no broadcast timer to poke the dummy
devices.

If we're registering multiple clockevents and one clockevent is
global and the other is local to a particular CPU we should
choose to use the local clockevent regardless of the rating of
the device. This way, if the clockevent is a dummy it will take
the tick device duty as long as there isn't a higher rated tick
device and any global clockevent will be bumped out into
broadcast mode, fixing the problem described above.

Reported-and-tested-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Stephen Boyd <sboyd@codeaurora.org>
Tested-by: soren.brinkmann@xilinx.com
Cc: John Stultz <john.stultz@linaro.org>
Cc: Daniel Lezcano <daniel.lezcano@linaro.org>
Cc: linux-arm-kernel@lists.infradead.org
Cc: John Stultz <john.stultz@linaro.org>
Link: http://lkml.kernel.org/r/20130613183950.GA32061@codeaurora.org
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2013-06-24 22:27:36 +02:00
Linus Torvalds
f71194a7d4 Merge branch 'x86/urgent' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 fixes from Peter Anvin:
 "This series fixes a couple of build failures, and fixes MTRR cleanup
  and memory setup on very specific memory maps.

  Finally, it fixes triggering backtraces on all CPUs, which was
  inadvertently disabled on x86."

* 'x86/urgent' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
  x86/efi: Fix dummy variable buffer allocation
  x86: Fix trigger_all_cpu_backtrace() implementation
  x86: Fix section mismatch on load_ucode_ap
  x86: fix build error and kconfig for ia32_emulation and binfmt
  range: Do not add new blank slot with add_range_with_merge
  x86, mtrr: Fix original mtrr range get for mtrr_cleanup
2013-06-21 06:33:48 -10:00
Daniel Lezcano
ea8deb8dfa tick: Fix tick_broadcast_pending_mask not cleared
The recent modification in the cpuidle framework consolidated the
timer broadcast code across the different drivers by setting a new
flag in the idle state. It tells the cpuidle core code to enter/exit
the broadcast mode for the cpu when entering a deep idle state. The
broadcast timer enter/exit is no longer handled by the back-end
driver.

This change made the local interrupt to be enabled *before* calling
CLOCK_EVENT_NOTIFY_EXIT.

On a tegra114, a four cores system, when the flag has been introduced
in the driver, the following warning appeared:

WARNING: at kernel/time/tick-broadcast.c:578 tick_broadcast_oneshot_control
CPU: 2 PID: 0 Comm: swapper/2 Not tainted 3.10.0-rc3-next-20130529+ #15
[<c00667f8>] (tick_broadcast_oneshot_control+0x1a4/0x1d0) from [<c0065cd0>] (tick_notify+0x240/0x40c)
[<c0065cd0>] (tick_notify+0x240/0x40c) from [<c0044724>] (notifier_call_chain+0x44/0x84)
[<c0044724>] (notifier_call_chain+0x44/0x84) from [<c0044828>] (raw_notifier_call_chain+0x18/0x20)
[<c0044828>] (raw_notifier_call_chain+0x18/0x20) from [<c00650cc>] (clockevents_notify+0x28/0x170)
[<c00650cc>] (clockevents_notify+0x28/0x170) from [<c033f1f0>] (cpuidle_idle_call+0x11c/0x168)
[<c033f1f0>] (cpuidle_idle_call+0x11c/0x168) from [<c000ea94>] (arch_cpu_idle+0x8/0x38)
[<c000ea94>] (arch_cpu_idle+0x8/0x38) from [<c005ea80>] (cpu_startup_entry+0x60/0x134)
[<c005ea80>] (cpu_startup_entry+0x60/0x134) from [<804fe9a4>] (0x804fe9a4)

I don't have the hardware, so I wasn't able to reproduce the warning
but after looking a while at the code, I deduced the following:

 1. the CPU2 enters a deep idle state and sets the broadcast timer

 2. the timer expires, the tick_handle_oneshot_broadcast function is
    called, setting the tick_broadcast_pending_mask and waking up the
    idle cpu CPU2

 3. the CPU2 exits idle handles the interrupt and then invokes
    tick_broadcast_oneshot_control with CLOCK_EVENT_NOTIFY_EXIT which
    runs the following code:

    [...]
    if (dev->next_event.tv64 == KTIME_MAX)
            goto out;

    if (cpumask_test_and_clear_cpu(cpu,
                                 tick_broadcast_pending_mask))
            goto out;
    [...]

    So if there is no next event scheduled for CPU2, we fulfil the
    first condition and jump out without clearing the
    tick_broadcast_pending_mask.

 4. CPU2 goes to deep idle again and calls
    tick_broadcast_oneshot_control with CLOCK_NOTIFY_EVENT_ENTER but
    with the tick_broadcast_pending_mask set for CPU2, triggering the
    warning.

The issue only surfaced due to the modifications of the cpuidle
framework, which resulted in interrupts being enabled before the call
to the clockevents code. If the call happens before interrupts have
been enabled, the warning cannot trigger, because there is still the
event pending which caused the broadcast timer expiry.

Move the check for the next event below the check for the pending bit,
so the pending bit gets cleared whether an event is scheduled on the
cpu or not.

[ tglx: Massaged changelog ]

Signed-off-by: Daniel Lezcano <daniel.lezcano@linaro.org>
Reported-and-tested-by: Joseph Lo <josephl@nvidia.com>
Cc: Stephen Warren <swarren@nvidia.com>
Cc: linux-arm-kernel@lists.infradead.org
Cc: linaro-kernel@lists.linaro.org
Link: http://lkml.kernel.org/r/1371485735-31249-1-git-send-email-daniel.lezcano@linaro.org
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2013-06-21 13:10:34 +02:00
Linus Torvalds
a3d5c3460a Merge branch 'sched-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull scheduler fixes from Ingo Molnar:
 "Two smaller fixes - plus a context tracking tracing fix that is a bit
  bigger"

* 'sched-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
  tracing/context-tracking: Add preempt_schedule_context() for tracing
  sched: Fix clear NOHZ_BALANCE_KICK
  sched/x86: Construct all sibling maps if smt
2013-06-20 08:18:35 -10:00
Linus Torvalds
86c76676cf Merge branch 'perf-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull perf fixes from Ingo Molnar:
 "Four fixes.  The mmap ones are unfortunately larger than desired -
  fuzzing uncovered bugs that needed perf context life time management
  changes to fix properly"

* 'perf-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
  perf/x86: Fix broken PEBS-LL support on SNB-EP/IVB-EP
  perf: Fix mmap() accounting hole
  perf: Fix perf mmap bugs
  kprobes: Fix to free gone and unused optprobes
2013-06-20 08:17:36 -10:00
Linus Torvalds
805e318548 Merge branch 'core-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull cpu idle fixes from Thomas Gleixner:
 - Add a missing irq enable. Fallout of the idle conversion
 - Fix stackprotector wreckage caused by the idle conversion

* 'core-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
  idle: Enable interrupts in the weak arch_cpu_idle() implementation
  idle: Add the stack canary init to cpu_startup_entry()
2013-06-20 08:16:07 -10:00
Linus Torvalds
4db88eb4c3 Merge branch 'timers-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull timer fixes from Thomas Gleixner:
 - Fix inconstinant clock usage in virtual time accounting
 - Fix a build error in KVM caused by the NOHZ work
 - Remove a pointless timekeeping duty assignment which breaks NOHZ
 - Use a proper notifier return value to avoid random behaviour

* 'timers-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
  tick: Remove useless timekeeping duty attribution to broadcast source
  nohz: Fix notifier return val that enforce timekeeping
  kvm: Move guest entry/exit APIs to context_tracking
  vtime: Use consistent clocks among nohz accounting
2013-06-20 08:15:13 -10:00
Oleg Nesterov
c790b0ad23 hw_breakpoint: Use cpu_possible_mask in {reserve,release}_bp_slot()
fetch_bp_busy_slots() and toggle_bp_slot() use
for_each_online_cpu(), this is obviously wrong wrt cpu_up() or
cpu_down(), we can over/under account the per-cpu numbers.

For example:

	# echo 0 >> /sys/devices/system/cpu/cpu1/online
	# perf record -e mem:0x10 -p 1 &
	# echo 1 >> /sys/devices/system/cpu/cpu1/online
	# perf record -e mem:0x10,mem:0x10,mem:0x10,mem:0x10 -C1 -a &
	# taskset -p 0x2 1

triggers the same WARN_ONCE("Can't find any breakpoint slot") in
arch_install_hw_breakpoint().

Reported-by: Vince Weaver <vincent.weaver@maine.edu>
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Acked-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: <stable@vger.kernel.org>
Link: http://lkml.kernel.org/r/20130620155009.GA6327@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2013-06-20 17:57:01 +02:00
Oleg Nesterov
8b4d801b2b hw_breakpoint: Fix cpu check in task_bp_pinned(cpu)
trinity fuzzer triggered WARN_ONCE("Can't find any breakpoint
slot") in arch_install_hw_breakpoint() but the problem is not
arch-specific.

The problem is, task_bp_pinned(cpu) checks "cpu == iter->cpu"
but this doesn't account the "all cpus" events with iter->cpu <
0.

This means that, say, register_user_hw_breakpoint(tsk) can
happily create the arbitrary number > HBP_NUM of breakpoints
which can not be activated. toggle_bp_task_slot() is equally
wrong by the same reason and nr_task_bp_pinned[] can have
negative entries.

Simple test:

	# perl -e 'sleep 1 while 1' &
	# perf record -e mem:0x10,mem:0x10,mem:0x10,mem:0x10,mem:0x10 -p `pidof perl`

Before this patch this triggers the same problem/WARN_ON(),
after the patch it correctly fails with -ENOSPC.

Reported-by: Vince Weaver <vincent.weaver@maine.edu>
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Acked-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: <stable@vger.kernel.org>
Link: http://lkml.kernel.org/r/20130620155006.GA6324@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2013-06-20 17:57:00 +02:00
Steven Rostedt
29bb9e5a75 tracing/context-tracking: Add preempt_schedule_context() for tracing
Dave Jones hit the following bug report:

 ===============================
 [ INFO: suspicious RCU usage. ]
 3.10.0-rc2+ #1 Not tainted
 -------------------------------
 include/linux/rcupdate.h:771 rcu_read_lock() used illegally while idle!
 other info that might help us debug this:
 RCU used illegally from idle CPU! rcu_scheduler_active = 1, debug_locks = 0
 RCU used illegally from extended quiescent state!
 2 locks held by cc1/63645:
  #0:  (&rq->lock){-.-.-.}, at: [<ffffffff816b39fd>] __schedule+0xed/0x9b0
  #1:  (rcu_read_lock){.+.+..}, at: [<ffffffff8109d645>] cpuacct_charge+0x5/0x1f0

 CPU: 1 PID: 63645 Comm: cc1 Not tainted 3.10.0-rc2+ #1 [loadavg: 40.57 27.55 13.39 25/277 64369]
 Hardware name: Gigabyte Technology Co., Ltd. GA-MA78GM-S2H/GA-MA78GM-S2H, BIOS F12a 04/23/2010
  0000000000000000 ffff88010f78fcf8 ffffffff816ae383 ffff88010f78fd28
  ffffffff810b698d ffff88011c092548 000000000023d073 ffff88011c092500
  0000000000000001 ffff88010f78fd60 ffffffff8109d7c5 ffffffff8109d645
 Call Trace:
  [<ffffffff816ae383>] dump_stack+0x19/0x1b
  [<ffffffff810b698d>] lockdep_rcu_suspicious+0xfd/0x130
  [<ffffffff8109d7c5>] cpuacct_charge+0x185/0x1f0
  [<ffffffff8109d645>] ? cpuacct_charge+0x5/0x1f0
  [<ffffffff8108dffc>] update_curr+0xec/0x240
  [<ffffffff8108f528>] put_prev_task_fair+0x228/0x480
  [<ffffffff816b3a71>] __schedule+0x161/0x9b0
  [<ffffffff816b4721>] preempt_schedule+0x51/0x80
  [<ffffffff816b4800>] ? __cond_resched_softirq+0x60/0x60
  [<ffffffff816b6824>] ? retint_careful+0x12/0x2e
  [<ffffffff810ff3cc>] ftrace_ops_control_func+0x1dc/0x210
  [<ffffffff816be280>] ftrace_call+0x5/0x2f
  [<ffffffff816b681d>] ? retint_careful+0xb/0x2e
  [<ffffffff816b4805>] ? schedule_user+0x5/0x70
  [<ffffffff816b4805>] ? schedule_user+0x5/0x70
  [<ffffffff816b6824>] ? retint_careful+0x12/0x2e
 ------------[ cut here ]------------

What happened was that the function tracer traced the schedule_user() code
that tells RCU that the system is coming back from userspace, and to
add the CPU back to the RCU monitoring.

Because the function tracer does a preempt_disable/enable_notrace() calls
the preempt_enable_notrace() checks the NEED_RESCHED flag. If it is set,
then preempt_schedule() is called. But this is called before the user_exit()
function can inform the kernel that the CPU is no longer in user mode and
needs to be accounted for by RCU.

The fix is to create a new preempt_schedule_context() that checks if
the kernel is still in user mode and if so to switch it to kernel mode
before calling schedule. It also switches back to user mode coming back
from schedule in need be.

The only user of this currently is the preempt_enable_notrace(), which is
only used by the tracing subsystem.

Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1369423420.6828.226.camel@gandalf.local.home
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2013-06-19 12:55:10 +02:00
Vincent Guittot
873b4c65b5 sched: Fix clear NOHZ_BALANCE_KICK
I have faced a sequence where the Idle Load Balance was sometime not
triggered for a while on my platform, in the following scenario:

 CPU 0 and CPU 1 are running tasks and CPU 2 is idle

 CPU 1 kicks the Idle Load Balance
 CPU 1 selects CPU 2 as the new Idle Load Balancer
 CPU 2 sets NOHZ_BALANCE_KICK for CPU 2
 CPU 2 sends a reschedule IPI to CPU 2

 While CPU 3 wakes up, CPU 0 or CPU 1 migrates a waking up task A on CPU 2

 CPU 2 finally wakes up, runs task A and discards the Idle Load Balance
       task A quickly goes back to sleep (before a tick occurs on CPU 2)
 CPU 2 goes back to idle with NOHZ_BALANCE_KICK set

Whenever CPU 2 will be selected as the ILB, no reschedule IPI will be sent
because NOHZ_BALANCE_KICK is already set and no Idle Load Balance will be
performed.

We must wait for the sched softirq to be raised on CPU 2 thanks to another
part the kernel to come back to clear NOHZ_BALANCE_KICK.

The proposed solution clears NOHZ_BALANCE_KICK in schedule_ipi if
we can't raise the sched_softirq for the Idle Load Balance.

Change since V1:

- move the clear of NOHZ_BALANCE_KICK in got_nohz_idle_kick if the ILB
  can't run on this CPU (as suggested by Peter)

Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1370419991-13870-1-git-send-email-vincent.guittot@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2013-06-19 12:55:09 +02:00
Peter Zijlstra
9bb5d40cd9 perf: Fix mmap() accounting hole
Vince's fuzzer once again found holes. This time it spotted a leak in
the locked page accounting.

When an event had redirected output and its close() was the last
reference to the buffer we didn't have a vm context to undo accounting.

Change the code to destroy the buffer on the last munmap() and detach
all redirected events at that time. This provides us the right context
to undo the vm accounting.

Reported-and-tested-by: Vince Weaver <vincent.weaver@maine.edu>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/20130604084421.GI8923@twins.programming.kicks-ass.net
Cc: <stable@kernel.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2013-06-19 12:44:13 +02:00
Yinghai Lu
0541881502 range: Do not add new blank slot with add_range_with_merge
Joshua reported: Commit cd7b304dfaf1 (x86, range: fix missing merge
during add range) broke mtrr cleanup on his setup in 3.9.5.
corresponding commit in upstream is fbe06b7bae.

The reason is add_range_with_merge could generate blank spot.

We could avoid that by searching new expanded start/end, that
new range should include all connected ranges in range array.
At last add the new expanded start/end to the range array.
Also move up left array so do not add new blank slot in the
range array.

-v2: move left array to avoid enhance add_range()
-v3: include fix from Joshua about memmove declaring when
     DYN_DEBUG is used.

Reported-by: Joshua Covington <joshuacov@googlemail.com>
Tested-by: Joshua Covington <joshuacov@googlemail.com>
Signed-off-by: Yinghai Lu <yinghai@kernel.org>
Link: http://lkml.kernel.org/r/1371154622-8929-3-git-send-email-yinghai@kernel.org
Cc: <stable@vger.kernel.org> v3.9
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
2013-06-18 11:32:10 -05:00
Stephen Boyd
336ae1180d ARM: sched_clock: Load cycle count after epoch stabilizes
There is a small race between when the cycle count is read from
the hardware and when the epoch stabilizes. Consider this
scenario:

 CPU0                           CPU1
 ----                           ----
 cyc = read_sched_clock()
 cyc_to_sched_clock()
                                 update_sched_clock()
                                  ...
                                  cd.epoch_cyc = cyc;
  epoch_cyc = cd.epoch_cyc;
  ...
  epoch_ns + cyc_to_ns((cyc - epoch_cyc)

The cyc on cpu0 was read before the epoch changed. But we
calculate the nanoseconds based on the new epoch by subtracting
the new epoch from the old cycle count. Since epoch is most likely
larger than the old cycle count we calculate a large number that
will be converted to nanoseconds and added to epoch_ns, causing
time to jump forward too much.

Fix this problem by reading the hardware after the epoch has
stabilized.

Cc: Russell King <linux@arm.linux.org.uk>
Signed-off-by: Stephen Boyd <sboyd@codeaurora.org>
Signed-off-by: John Stultz <john.stultz@linaro.org>
2013-06-17 15:56:11 -07:00
Linus Torvalds
d0ff934881 Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs
Pull VFS fixes from Al Viro:
 "Several fixes + obvious cleanup (you've missed a couple of open-coded
  can_lookup() back then)"

* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs:
  snd_pcm_link(): fix a leak...
  use can_lookup() instead of direct checks of ->i_op->lookup
  move exit_task_namespaces() outside of exit_notify()
  fput: task_work_add() can fail if the caller has passed exit_task_work()
  ncpfs: fix rmdir returns Device or resource busy
2013-06-14 19:18:56 -10:00
Oleg Nesterov
8aac62706a move exit_task_namespaces() outside of exit_notify()
exit_notify() does exit_task_namespaces() after
forget_original_parent(). This was needed to ensure that ->nsproxy
can't be cleared prematurely, an exiting child we are going to
reparent can do do_notify_parent() and use the parent's (ours) pid_ns.

However, after 32084504 "pidns: use task_active_pid_ns in
do_notify_parent" ->nsproxy != NULL is no longer needed, we rely
on task_active_pid_ns().

Move exit_task_namespaces() from exit_notify() to do_exit(), after
exit_fs() and before exit_task_work().

This solves the problem reported by Andrey, free_ipc_ns()->shm_destroy()
does fput() which needs task_work_add().

Note: this particular problem can be fixed if we change fput(), and
that change makes sense anyway. But there is another reason to move
the callsite. The original reason for exit_task_namespaces() from
the middle of exit_notify() was subtle and it has already gone away,
now this looks confusing. And this allows us do simplify exit_notify(),
we can avoid unlock/lock(tasklist) and we can use ->exit_state instead
of PF_EXITING in forget_original_parent().

Reported-by: Andrey Vagin <avagin@openvz.org>
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Acked-by: "Eric W. Biederman" <ebiederm@xmission.com>
Acked-by: Andrey Vagin <avagin@openvz.org>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2013-06-15 05:39:08 +04:00
James Bottomley
29ce3785b2 idle: Enable interrupts in the weak arch_cpu_idle() implementation
PARISC bootup triggers the warning at kernel/cpu/idle.c:96. That's
caused by the weak arch_cpu_idle() implementation, which is provided
to avoid that architectures implement idle_poll over and over.

The switchover to polling mode happens in the first call of the weak
arch_cpu_idle() implementation, but that code fails to reenable
interrupts and therefor triggers the warning.

Fix this by enabling interrupts in the weak arch_cpu_idle() code.

[ tglx: Made the changelog match the patch ]

Signed-off-by: James Bottomley <JBottomley@Parallels.com>
Reviewed-by: Srivatsa S. Bhat <srivatsa.bhat@linux.vnet.ibm.com>
Link: http://lkml.kernel.org/r/1371236142.2726.43.camel@dabdike
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2013-06-14 23:01:05 +02:00
Linus Torvalds
cb7e9704d5 Merge branch 'rcu/urgent' of git://git.kernel.org/pub/scm/linux/kernel/git/paulmck/linux-rcu
Pull RCU fixes from Paul McKenney:
 "I must confess that this past merge window was not RCU's best showing.
  This series contains three more fixes for RCU regressions:

   1.   A fix to __DECLARE_TRACE_RCU() that causes it to act as an
        interrupt from idle rather than as a task switch from idle.
        This change is needed due to the recent use of _rcuidle()
        tracepoints that can be invoked from interrupt handlers as well
        as from idle.  Without this fix, invoking _rcuidle() tracepoints
        from interrupt handlers results in splats and (more seriously)
        confusion on RCU's part as to whether a given CPU is idle or not.
        This confusion can in turn result in too-short grace periods and
        therefore random memory corruption.

   2.   A fix to a subtle deadlock that could result due to RCU doing
        a wakeup while holding one of its rcu_node structure's locks.
        Although the probability of occurrence is low, it really
        does happen.  The fix, courtesy of Steven Rostedt, uses
        irq_work_queue() to avoid the deadlock.

   3.   A fix to a silent deadlock (invisible to lockdep) due to the
        interaction of timeouts posted by RCU debug code enabled by
        CONFIG_PROVE_RCU_DELAY=y, grace-period initialization, and CPU
        hotplug operations.  This will not occur in production kernels,
        but really does occur in randconfig testing.  Diagnosis courtesy
        of Steven Rostedt"

* 'rcu/urgent' of git://git.kernel.org/pub/scm/linux/kernel/git/paulmck/linux-rcu:
  rcu: Fix deadlock with CPU hotplug, RCU GP init, and timer migration
  rcu: Don't call wakeup() with rcu_node structure ->lock held
  trace: Allow idle-safe tracepoints to be called from irq
2013-06-13 12:36:42 -07:00
Linus Torvalds
a568fa1c91 Merge branch 'akpm' (updates from Andrew Morton)
Merge misc fixes from Andrew Morton:
 "Bunch of fixes and one little addition to math64.h"

* emailed patches from Andrew Morton <akpm@linux-foundation.org>: (27 commits)
  include/linux/math64.h: add div64_ul()
  mm: memcontrol: fix lockless reclaim hierarchy iterator
  frontswap: fix incorrect zeroing and allocation size for frontswap_map
  kernel/audit_tree.c:audit_add_tree_rule(): protect `rule' from kill_rules()
  mm: migration: add migrate_entry_wait_huge()
  ocfs2: add missing lockres put in dlm_mig_lockres_handler
  mm/page_alloc.c: fix watermark check in __zone_watermark_ok()
  drivers/misc/sgi-gru/grufile.c: fix info leak in gru_get_config_info()
  aio: fix io_destroy() regression by using call_rcu()
  rtc-at91rm9200: use shadow IMR on at91sam9x5
  rtc-at91rm9200: add shadow interrupt mask
  rtc-at91rm9200: refactor interrupt-register handling
  rtc-at91rm9200: add configuration support
  rtc-at91rm9200: add match-table compile guard
  fs/ocfs2/namei.c: remove unecessary ERROR when removing non-empty directory
  swap: avoid read_swap_cache_async() race to deadlock while waiting on discard I/O completion
  drivers/rtc/rtc-twl.c: fix missing device_init_wakeup() when booted with device tree
  cciss: fix broken mutex usage in ioctl
  audit: wait_for_auditd() should use TASK_UNINTERRUPTIBLE
  drivers/rtc/rtc-cmos.c: fix accidentally enabling rtc channel
  ...
2013-06-12 16:29:53 -07:00
Chen Gang
736f3203a0 kernel/audit_tree.c:audit_add_tree_rule(): protect `rule' from kill_rules()
audit_add_tree_rule() must set 'rule->tree = NULL;' firstly, to protect
the rule itself freed in kill_rules().

The reason is when it is killed, the 'rule' itself may have already
released, we should not access it.  one example: we add a rule to an
inode, just at the same time the other task is deleting this inode.

The work flow for adding a rule:

    audit_receive() -> (need audit_cmd_mutex lock)
      audit_receive_skb() ->
        audit_receive_msg() ->
          audit_receive_filter() ->
            audit_add_rule() ->
              audit_add_tree_rule() -> (need audit_filter_mutex lock)
                ...
                unlock audit_filter_mutex
                get_tree()
                ...
                iterate_mounts() -> (iterate all related inodes)
                  tag_mount() ->
                    tag_trunk() ->
                      create_trunk() -> (assume it is 1st rule)
                        fsnotify_add_mark() ->
                          fsnotify_add_inode_mark() ->  (add mark to inode->i_fsnotify_marks)
                        ...
                        get_tree(); (each inode will get one)
                ...
                lock audit_filter_mutex

The work flow for deleting an inode:

    __destroy_inode() ->
     fsnotify_inode_delete() ->
       __fsnotify_inode_delete() ->
        fsnotify_clear_marks_by_inode() ->  (get mark from inode->i_fsnotify_marks)
          fsnotify_destroy_mark() ->
           fsnotify_destroy_mark_locked() ->
             audit_tree_freeing_mark() ->
               evict_chunk() ->
                 ...
                 tree->goner = 1
                 ...
                 kill_rules() ->   (assume current->audit_context == NULL)
                   call_rcu() ->   (rule->tree != NULL)
                     audit_free_rule_rcu() ->
                       audit_free_rule()
                 ...
                 audit_schedule_prune() ->  (assume current->audit_context == NULL)
                   kthread_run() ->    (need audit_cmd_mutex and audit_filter_mutex lock)
                     prune_one() ->    (delete it from prue_list)
                       put_tree(); (match the original get_tree above)

Signed-off-by: Chen Gang <gang.chen@asianux.com>
Cc: Eric Paris <eparis@redhat.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-06-12 16:29:46 -07:00
Oleg Nesterov
f000cfdde5 audit: wait_for_auditd() should use TASK_UNINTERRUPTIBLE
audit_log_start() does wait_for_auditd() in a loop until
audit_backlog_wait_time passes or audit_skb_queue has a room.

If signal_pending() is true this becomes a busy-wait loop, schedule() in
TASK_INTERRUPTIBLE won't block.

Thanks to Guy for fully investigating and explaining the problem.

(akpm: that'll cause the system to lock up on a non-preemptible
uniprocessor kernel)

(Guy: "Our customer was in fact running a uniprocessor machine, and they
reported a system hang.")

Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Reported-by: Guy Streeter <streeter@redhat.com>
Cc: Eric Paris <eparis@redhat.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-06-12 16:29:45 -07:00
Kees Cook
637241a900 kmsg: honor dmesg_restrict sysctl on /dev/kmsg
The dmesg_restrict sysctl currently covers the syslog method for access
dmesg, however /dev/kmsg isn't covered by the same protections.  Most
people haven't noticed because util-linux dmesg(1) defaults to using the
syslog method for access in older versions.  With util-linux dmesg(1)
defaults to reading directly from /dev/kmsg.

To fix /dev/kmsg, let's compare the existing interfaces and what they
allow:

 - /proc/kmsg allows:
  - open (SYSLOG_ACTION_OPEN) if CAP_SYSLOG since it uses a destructive
    single-reader interface (SYSLOG_ACTION_READ).
  - everything, after an open.

 - syslog syscall allows:
  - anything, if CAP_SYSLOG.
  - SYSLOG_ACTION_READ_ALL and SYSLOG_ACTION_SIZE_BUFFER, if
    dmesg_restrict==0.
  - nothing else (EPERM).

The use-cases were:
 - dmesg(1) needs to do non-destructive SYSLOG_ACTION_READ_ALLs.
 - sysklog(1) needs to open /proc/kmsg, drop privs, and still issue the
   destructive SYSLOG_ACTION_READs.

AIUI, dmesg(1) is moving to /dev/kmsg, and systemd-journald doesn't
clear the ring buffer.

Based on the comments in devkmsg_llseek, it sounds like actions besides
reading aren't going to be supported by /dev/kmsg (i.e.
SYSLOG_ACTION_CLEAR), so we have a strict subset of the non-destructive
syslog syscall actions.

To this end, move the check as Josh had done, but also rename the
constants to reflect their new uses (SYSLOG_FROM_CALL becomes
SYSLOG_FROM_READER, and SYSLOG_FROM_FILE becomes SYSLOG_FROM_PROC).
SYSLOG_FROM_READER allows non-destructive actions, and SYSLOG_FROM_PROC
allows destructive actions after a capabilities-constrained
SYSLOG_ACTION_OPEN check.

 - /dev/kmsg allows:
  - open if CAP_SYSLOG or dmesg_restrict==0
  - reading/polling, after open

Addresses https://bugzilla.redhat.com/show_bug.cgi?id=903192

[akpm@linux-foundation.org: use pr_warn_once()]
Signed-off-by: Kees Cook <keescook@chromium.org>
Reported-by: Christian Kujau <lists@nerdbynature.de>
Tested-by: Josh Boyer <jwboyer@redhat.com>
Cc: Kay Sievers <kay@vrfy.org>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-06-12 16:29:44 -07:00
Robin Holt
cf7df378aa reboot: rigrate shutdown/reboot to boot cpu
We recently noticed that reboot of a 1024 cpu machine takes approx 16
minutes of just stopping the cpus.  The slowdown was tracked to commit
f96972f2dc ("kernel/sys.c: call disable_nonboot_cpus() in
kernel_restart()").

The current implementation does all the work of hot removing the cpus
before halting the system.  We are switching to just migrating to the
boot cpu and then continuing with shutdown/reboot.

This also has the effect of not breaking x86's command line parameter
for specifying the reboot cpu.  Note, this code was shamelessly copied
from arch/x86/kernel/reboot.c with bits removed pertaining to the
reboot_cpu command line parameter.

Signed-off-by: Robin Holt <holt@sgi.com>
Tested-by: Shawn Guo <shawn.guo@linaro.org>
Cc: "Srivatsa S. Bhat" <srivatsa.bhat@linux.vnet.ibm.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Russ Anderson <rja@sgi.com>
Cc: Robin Holt <holt@sgi.com>
Cc: Russell King <linux@arm.linux.org.uk>
Cc: Guan Xuetao <gxt@mprc.pku.edu.cn>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-06-12 16:29:44 -07:00
Srivatsa S. Bhat
16e53dbf10 CPU hotplug: provide a generic helper to disable/enable CPU hotplug
There are instances in the kernel where we would like to disable CPU
hotplug (from sysfs) during some important operation.  Today the freezer
code depends on this and the code to do it was kinda tailor-made for
that.

Restructure the code and make it generic enough to be useful for other
usecases too.

Signed-off-by: Srivatsa S. Bhat <srivatsa.bhat@linux.vnet.ibm.com>
Signed-off-by: Robin Holt <holt@sgi.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Russ Anderson <rja@sgi.com>
Cc: Robin Holt <holt@sgi.com>
Cc: Russell King <linux@arm.linux.org.uk>
Cc: Guan Xuetao <gxt@mprc.pku.edu.cn>
Cc: Shawn Guo <shawn.guo@linaro.org>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-06-12 16:29:44 -07:00
Stephen Boyd
38ff87f77a sched_clock: Make ARM's sched_clock generic for all architectures
Nothing about the sched_clock implementation in the ARM port is
specific to the architecture. Generalize the code so that other
architectures can use it by selecting GENERIC_SCHED_CLOCK.

Signed-off-by: Stephen Boyd <sboyd@codeaurora.org>
[jstultz: Merge minor collisions with other patches in my tree]
Signed-off-by: John Stultz <john.stultz@linaro.org>
2013-06-12 14:02:13 -07:00
Marcus Gelderie
11682a4161 alarmtimer: Export symbols of functions declared in linux/alarmtimer.h
Export symbols so they can be used by
drivers/staging/android/alarm-dev.c if it is built as a module.
So far alarm-dev is built-in but module support is planned (see
drivers/staging/android/TODO).

Signed-off-by: Marcus Gelderie <redmnic@gmail.com>
[jstultz: tweaked commit message, also export newly added functions]
Signed-off-by: John Stultz <john.stultz@linaro.org>
2013-06-12 14:02:12 -07:00
Linus Torvalds
45d53766b9 Yoshihiro Yunomae fixed a regression in the output format when using
one of the counter clocks. The new multibuffer code changed the trace_clock
 file to update the trace instances tr->clock_id but the actual traces still
 used the value from the obsolete global variable trace_clock_id.
 -----BEGIN PGP SIGNATURE-----
 Version: GnuPG v1.4.12 (GNU/Linux)
 
 iQEcBAABAgAGBQJRt8hEAAoJEOdOSU1xswtM6+EH/jAEuOrXhkkDqcua/paAOngw
 XWSaF9Cr6ozh4hutFrVSBi3AnsDrVo0adZmMVvLS9a7goyIUdYLfXbNeyK6Nvcq5
 bGXR5sJNpjtQ7snrmGX2KlXIGix28adi49eACi4qsGSG/jJYORYlgXcNBeXtENsb
 PKTXdQ8XEyc/h7Q51YQPHIVunf+zJSoepuXZ0myPLUWzLlPX9qoy5kETEpGhh9xh
 Ianb4wLo8dn6JuVGBuXQhZ/VzUHwJT1jJxR2JfnZ0bNVplNilnumAxY8f2zPOmzT
 lvIiQjCMRvNExFShuFh9WNnGRi62zYE9e0JJpYL4W9moIcbbEUvXYt2/imAVe9Q=
 =H+Wb
 -----END PGP SIGNATURE-----

Merge tag 'trace-fixes-v3.10-rc5' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt/linux-trace

Pull tracing fix from Steven Rostedt:
 "Yoshihiro Yunomae fixed a regression in the output format when using
  one of the counter clocks.

  The new multibuffer code changed the trace_clock file to update the
  trace instances tr->clock_id but the actual traces still used the
  value from the obsolete global variable trace_clock_id"

* tag 'trace-fixes-v3.10-rc5' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt/linux-trace:
  tracing: Fix outputting formats of x86-tsc and counter when use trace_clock
2013-06-12 08:29:11 -07:00
Thomas Gleixner
d7880812b3 idle: Add the stack canary init to cpu_startup_entry()
Moving x86 to the generic idle implementation (commit 7d1a9417 "x86:
Use generic idle loop") wreckaged the stack protector.

I stupidly missed that boot_init_stack_canary() must be inlined from a
function which never returns, but I put that call into
arch_cpu_idle_prepare() which of course returns.

I pondered to play tricks with arch_cpu_idle_prepare() first, but then
I noticed, that the other archs which have implemented the
stackprotector (ARM and SH) do not initialize the canary for the
non-boot cpus.

So I decided to move the boot_init_stack_canary() call into
cpu_startup_entry() ifdeffed with an CONFIG_X86 for now. This #ifdef
is just a temporary measure as I don't want to inflict the
boot_init_stack_canary() call on ARM and SH that late in the cycle.

I'll queue a patch for 3.11 which removes the #ifdef if the ARM/SH
maintainers have no objection.

Reported-by: Wouter van Kesteren <woutershep@gmail.com>
Cc: x86@kernel.org
Cc: Russell King <linux@arm.linux.org.uk>
Cc: Paul Mundt <lethal@linux-sh.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2013-06-11 22:04:47 +02:00
Yoshihiro YUNOMAE
58e8eedf18 tracing: Fix outputting formats of x86-tsc and counter when use trace_clock
Outputting formats of x86-tsc and counter should be a raw format, but after
applying the patch(2b6080f28c), the format was
changed to nanosec. This is because the global variable trace_clock_id was used.
When we use multiple buffers, clock_id of each sub-buffer should be used. Then,
this patch uses tr->clock_id instead of the global variable trace_clock_id.

[ Basically, this fixes a regression where the multibuffer code changed the
  trace_clock file to update tr->clock_id but the traces still use the old
  global trace_clock_id variable, negating the file's effect. The global
  trace_clock_id variable is obsolete and removed. - SR ]

Link: http://lkml.kernel.org/r/20130423013239.22334.7394.stgit@yunodevel

Signed-off-by: Yoshihiro YUNOMAE <yoshihiro.yunomae.ez@hitachi.com>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2013-06-11 13:58:46 -04:00
Ben Greear
34376a50fb Fix lockup related to stop_machine being stuck in __do_softirq.
The stop machine logic can lock up if all but one of the migration
threads make it through the disable-irq step and the one remaining
thread gets stuck in __do_softirq.  The reason __do_softirq can hang is
that it has a bail-out based on jiffies timeout, but in the lockup case,
jiffies itself is not incremented.

To work around this, re-add the max_restart counter in __do_irq and stop
processing irqs after 10 restarts.

Thanks to Tejun Heo and Rusty Russell and others for helping me track
this down.

This was introduced in 3.9 by commit c10d73671a ("softirq: reduce
latencies").

It may be worth looking into ath9k to see if it has issues with its irq
handler at a later date.

The hang stack traces look something like this:

    ------------[ cut here ]------------
    WARNING: at kernel/watchdog.c:245 watchdog_overflow_callback+0x9c/0xa7()
    Watchdog detected hard LOCKUP on cpu 2
    Modules linked in: ath9k ath9k_common ath9k_hw ath mac80211 cfg80211 nfsv4 auth_rpcgss nfs fscache nf_nat_ipv4 nf_nat veth 8021q garp stp mrp llc pktgen lockd sunrpc]
    Pid: 23, comm: migration/2 Tainted: G         C   3.9.4+ #11
    Call Trace:
     <NMI>   warn_slowpath_common+0x85/0x9f
      warn_slowpath_fmt+0x46/0x48
      watchdog_overflow_callback+0x9c/0xa7
      __perf_event_overflow+0x137/0x1cb
      perf_event_overflow+0x14/0x16
      intel_pmu_handle_irq+0x2dc/0x359
      perf_event_nmi_handler+0x19/0x1b
      nmi_handle+0x7f/0xc2
      do_nmi+0xbc/0x304
      end_repeat_nmi+0x1e/0x2e
     <<EOE>>
      cpu_stopper_thread+0xae/0x162
      smpboot_thread_fn+0x258/0x260
      kthread+0xc7/0xcf
      ret_from_fork+0x7c/0xb0
    ---[ end trace 4947dfa9b0a4cec3 ]---
    BUG: soft lockup - CPU#1 stuck for 22s! [migration/1:17]
    Modules linked in: ath9k ath9k_common ath9k_hw ath mac80211 cfg80211 nfsv4 auth_rpcgss nfs fscache nf_nat_ipv4 nf_nat veth 8021q garp stp mrp llc pktgen lockd sunrpc]
    irq event stamp: 835637905
    hardirqs last  enabled at (835637904): __do_softirq+0x9f/0x257
    hardirqs last disabled at (835637905): apic_timer_interrupt+0x6d/0x80
    softirqs last  enabled at (5654720): __do_softirq+0x1ff/0x257
    softirqs last disabled at (5654725): irq_exit+0x5f/0xbb
    CPU 1
    Pid: 17, comm: migration/1 Tainted: G        WC   3.9.4+ #11 To be filled by O.E.M. To be filled by O.E.M./To be filled by O.E.M.
    RIP: tasklet_hi_action+0xf0/0xf0
    Process migration/1
    Call Trace:
     <IRQ>
      __do_softirq+0x117/0x257
      irq_exit+0x5f/0xbb
      smp_apic_timer_interrupt+0x8a/0x98
      apic_timer_interrupt+0x72/0x80
     <EOI>
      printk+0x4d/0x4f
      stop_machine_cpu_stop+0x22c/0x274
      cpu_stopper_thread+0xae/0x162
      smpboot_thread_fn+0x258/0x260
      kthread+0xc7/0xcf
      ret_from_fork+0x7c/0xb0

Signed-off-by: Ben Greear <greearb@candelatech.com>
Acked-by: Tejun Heo <tj@kernel.org>
Acked-by: Pekka Riikonen <priikone@iki.fi>
Cc: Eric Dumazet <eric.dumazet@gmail.com>
Cc: stable@kernel.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-06-10 17:46:57 -07:00
Paul E. McKenney
971394f389 rcu: Fix deadlock with CPU hotplug, RCU GP init, and timer migration
In Steven Rostedt's words:

> I've been debugging the last couple of days why my tests have been
> locking up. One of my tracing tests, runs all available tracers. The
> lockup always happened with the mmiotrace, which is used to trace
> interactions between priority drivers and the kernel. But to do this
> easily, when the tracer gets registered, it disables all but the boot
> CPUs. The lockup always happened after it got done disabling the CPUs.
>
> Then I decided to try this:
>
> while :; do
> 	for i in 1 2 3; do
> 		echo 0 > /sys/devices/system/cpu/cpu$i/online
> 	done
> 	for i in 1 2 3; do
> 		echo 1 > /sys/devices/system/cpu/cpu$i/online
> 	done
> done
>
> Well, sure enough, that locked up too, with the same users. Doing a
> sysrq-w (showing all blocked tasks):
>
> [ 2991.344562]   task                        PC stack   pid father
> [ 2991.344562] rcu_preempt     D ffff88007986fdf8     0    10      2 0x00000000
> [ 2991.344562]  ffff88007986fc98 0000000000000002 ffff88007986fc48 0000000000000908
> [ 2991.344562]  ffff88007986c280 ffff88007986ffd8 ffff88007986ffd8 00000000001d3c80
> [ 2991.344562]  ffff880079248a40 ffff88007986c280 0000000000000000 00000000fffd4295
> [ 2991.344562] Call Trace:
> [ 2991.344562]  [<ffffffff815437ba>] schedule+0x64/0x66
> [ 2991.344562]  [<ffffffff81541750>] schedule_timeout+0xbc/0xf9
> [ 2991.344562]  [<ffffffff8154bec0>] ? ftrace_call+0x5/0x2f
> [ 2991.344562]  [<ffffffff81049513>] ? cascade+0xa8/0xa8
> [ 2991.344562]  [<ffffffff815417ab>] schedule_timeout_uninterruptible+0x1e/0x20
> [ 2991.344562]  [<ffffffff810c980c>] rcu_gp_kthread+0x502/0x94b
> [ 2991.344562]  [<ffffffff81062791>] ? __init_waitqueue_head+0x50/0x50
> [ 2991.344562]  [<ffffffff810c930a>] ? rcu_gp_fqs+0x64/0x64
> [ 2991.344562]  [<ffffffff81061cdb>] kthread+0xb1/0xb9
> [ 2991.344562]  [<ffffffff81091e31>] ? lock_release_holdtime.part.23+0x4e/0x55
> [ 2991.344562]  [<ffffffff81061c2a>] ? __init_kthread_worker+0x58/0x58
> [ 2991.344562]  [<ffffffff8154c1dc>] ret_from_fork+0x7c/0xb0
> [ 2991.344562]  [<ffffffff81061c2a>] ? __init_kthread_worker+0x58/0x58
> [ 2991.344562] kworker/0:1     D ffffffff81a30680     0    47      2 0x00000000
> [ 2991.344562] Workqueue: events cpuset_hotplug_workfn
> [ 2991.344562]  ffff880078dbbb58 0000000000000002 0000000000000006 00000000000000d8
> [ 2991.344562]  ffff880078db8100 ffff880078dbbfd8 ffff880078dbbfd8 00000000001d3c80
> [ 2991.344562]  ffff8800779ca5c0 ffff880078db8100 ffffffff81541fcf 0000000000000000
> [ 2991.344562] Call Trace:
> [ 2991.344562]  [<ffffffff81541fcf>] ? __mutex_lock_common+0x3d4/0x609
> [ 2991.344562]  [<ffffffff815437ba>] schedule+0x64/0x66
> [ 2991.344562]  [<ffffffff81543a39>] schedule_preempt_disabled+0x18/0x24
> [ 2991.344562]  [<ffffffff81541fcf>] __mutex_lock_common+0x3d4/0x609
> [ 2991.344562]  [<ffffffff8103d11b>] ? get_online_cpus+0x3c/0x50
> [ 2991.344562]  [<ffffffff8103d11b>] ? get_online_cpus+0x3c/0x50
> [ 2991.344562]  [<ffffffff815422ff>] mutex_lock_nested+0x3b/0x40
> [ 2991.344562]  [<ffffffff8103d11b>] get_online_cpus+0x3c/0x50
> [ 2991.344562]  [<ffffffff810af7e6>] rebuild_sched_domains_locked+0x6e/0x3a8
> [ 2991.344562]  [<ffffffff810b0ec6>] rebuild_sched_domains+0x1c/0x2a
> [ 2991.344562]  [<ffffffff810b109b>] cpuset_hotplug_workfn+0x1c7/0x1d3
> [ 2991.344562]  [<ffffffff810b0ed9>] ? cpuset_hotplug_workfn+0x5/0x1d3
> [ 2991.344562]  [<ffffffff81058e07>] process_one_work+0x2d4/0x4d1
> [ 2991.344562]  [<ffffffff81058d3a>] ? process_one_work+0x207/0x4d1
> [ 2991.344562]  [<ffffffff8105964c>] worker_thread+0x2e7/0x3b5
> [ 2991.344562]  [<ffffffff81059365>] ? rescuer_thread+0x332/0x332
> [ 2991.344562]  [<ffffffff81061cdb>] kthread+0xb1/0xb9
> [ 2991.344562]  [<ffffffff81061c2a>] ? __init_kthread_worker+0x58/0x58
> [ 2991.344562]  [<ffffffff8154c1dc>] ret_from_fork+0x7c/0xb0
> [ 2991.344562]  [<ffffffff81061c2a>] ? __init_kthread_worker+0x58/0x58
> [ 2991.344562] bash            D ffffffff81a4aa80     0  2618   2612 0x10000000
> [ 2991.344562]  ffff8800379abb58 0000000000000002 0000000000000006 0000000000000c2c
> [ 2991.344562]  ffff880077fea140 ffff8800379abfd8 ffff8800379abfd8 00000000001d3c80
> [ 2991.344562]  ffff8800779ca5c0 ffff880077fea140 ffffffff81541fcf 0000000000000000
> [ 2991.344562] Call Trace:
> [ 2991.344562]  [<ffffffff81541fcf>] ? __mutex_lock_common+0x3d4/0x609
> [ 2991.344562]  [<ffffffff815437ba>] schedule+0x64/0x66
> [ 2991.344562]  [<ffffffff81543a39>] schedule_preempt_disabled+0x18/0x24
> [ 2991.344562]  [<ffffffff81541fcf>] __mutex_lock_common+0x3d4/0x609
> [ 2991.344562]  [<ffffffff81530078>] ? rcu_cpu_notify+0x2f5/0x86e
> [ 2991.344562]  [<ffffffff81530078>] ? rcu_cpu_notify+0x2f5/0x86e
> [ 2991.344562]  [<ffffffff815422ff>] mutex_lock_nested+0x3b/0x40
> [ 2991.344562]  [<ffffffff81530078>] rcu_cpu_notify+0x2f5/0x86e
> [ 2991.344562]  [<ffffffff81091c99>] ? __lock_is_held+0x32/0x53
> [ 2991.344562]  [<ffffffff81548912>] notifier_call_chain+0x6b/0x98
> [ 2991.344562]  [<ffffffff810671fd>] __raw_notifier_call_chain+0xe/0x10
> [ 2991.344562]  [<ffffffff8103cf64>] __cpu_notify+0x20/0x32
> [ 2991.344562]  [<ffffffff8103cf8d>] cpu_notify_nofail+0x17/0x36
> [ 2991.344562]  [<ffffffff815225de>] _cpu_down+0x154/0x259
> [ 2991.344562]  [<ffffffff81522710>] cpu_down+0x2d/0x3a
> [ 2991.344562]  [<ffffffff81526351>] store_online+0x4e/0xe7
> [ 2991.344562]  [<ffffffff8134d764>] dev_attr_store+0x20/0x22
> [ 2991.344562]  [<ffffffff811b3c5f>] sysfs_write_file+0x108/0x144
> [ 2991.344562]  [<ffffffff8114c5ef>] vfs_write+0xfd/0x158
> [ 2991.344562]  [<ffffffff8114c928>] SyS_write+0x5c/0x83
> [ 2991.344562]  [<ffffffff8154c494>] tracesys+0xdd/0xe2
>
> As well as held locks:
>
> [ 3034.728033] Showing all locks held in the system:
> [ 3034.728033] 1 lock held by rcu_preempt/10:
> [ 3034.728033]  #0:  (rcu_preempt_state.onoff_mutex){+.+...}, at: [<ffffffff810c9471>] rcu_gp_kthread+0x167/0x94b
> [ 3034.728033] 4 locks held by kworker/0:1/47:
> [ 3034.728033]  #0:  (events){.+.+.+}, at: [<ffffffff81058d3a>] process_one_work+0x207/0x4d1
> [ 3034.728033]  #1:  (cpuset_hotplug_work){+.+.+.}, at: [<ffffffff81058d3a>] process_one_work+0x207/0x4d1
> [ 3034.728033]  #2:  (cpuset_mutex){+.+.+.}, at: [<ffffffff810b0ec1>] rebuild_sched_domains+0x17/0x2a
> [ 3034.728033]  #3:  (cpu_hotplug.lock){+.+.+.}, at: [<ffffffff8103d11b>] get_online_cpus+0x3c/0x50
> [ 3034.728033] 1 lock held by mingetty/2563:
> [ 3034.728033]  #0:  (&ldata->atomic_read_lock){+.+...}, at: [<ffffffff8131e28a>] n_tty_read+0x252/0x7e8
> [ 3034.728033] 1 lock held by mingetty/2565:
> [ 3034.728033]  #0:  (&ldata->atomic_read_lock){+.+...}, at: [<ffffffff8131e28a>] n_tty_read+0x252/0x7e8
> [ 3034.728033] 1 lock held by mingetty/2569:
> [ 3034.728033]  #0:  (&ldata->atomic_read_lock){+.+...}, at: [<ffffffff8131e28a>] n_tty_read+0x252/0x7e8
> [ 3034.728033] 1 lock held by mingetty/2572:
> [ 3034.728033]  #0:  (&ldata->atomic_read_lock){+.+...}, at: [<ffffffff8131e28a>] n_tty_read+0x252/0x7e8
> [ 3034.728033] 1 lock held by mingetty/2575:
> [ 3034.728033]  #0:  (&ldata->atomic_read_lock){+.+...}, at: [<ffffffff8131e28a>] n_tty_read+0x252/0x7e8
> [ 3034.728033] 7 locks held by bash/2618:
> [ 3034.728033]  #0:  (sb_writers#5){.+.+.+}, at: [<ffffffff8114bc3f>] file_start_write+0x2a/0x2c
> [ 3034.728033]  #1:  (&buffer->mutex#2){+.+.+.}, at: [<ffffffff811b3b93>] sysfs_write_file+0x3c/0x144
> [ 3034.728033]  #2:  (s_active#54){.+.+.+}, at: [<ffffffff811b3c3e>] sysfs_write_file+0xe7/0x144
> [ 3034.728033]  #3:  (x86_cpu_hotplug_driver_mutex){+.+.+.}, at: [<ffffffff810217c2>] cpu_hotplug_driver_lock+0x17/0x19
> [ 3034.728033]  #4:  (cpu_add_remove_lock){+.+.+.}, at: [<ffffffff8103d196>] cpu_maps_update_begin+0x17/0x19
> [ 3034.728033]  #5:  (cpu_hotplug.lock){+.+.+.}, at: [<ffffffff8103cfd8>] cpu_hotplug_begin+0x2c/0x6d
> [ 3034.728033]  #6:  (rcu_preempt_state.onoff_mutex){+.+...}, at: [<ffffffff81530078>] rcu_cpu_notify+0x2f5/0x86e
> [ 3034.728033] 1 lock held by bash/2980:
> [ 3034.728033]  #0:  (&ldata->atomic_read_lock){+.+...}, at: [<ffffffff8131e28a>] n_tty_read+0x252/0x7e8
>
> Things looked a little weird. Also, this is a deadlock that lockdep did
> not catch. But what we have here does not look like a circular lock
> issue:
>
> Bash is blocked in rcu_cpu_notify():
>
> 1961		/* Exclude any attempts to start a new grace period. */
> 1962		mutex_lock(&rsp->onoff_mutex);
>
>
> kworker is blocked in get_online_cpus(), which makes sense as we are
> currently taking down a CPU.
>
> But rcu_preempt is not blocked on anything. It is simply sleeping in
> rcu_gp_kthread (really rcu_gp_init) here:
>
> 1453	#ifdef CONFIG_PROVE_RCU_DELAY
> 1454			if ((prandom_u32() % (rcu_num_nodes * 8)) == 0 &&
> 1455			    system_state == SYSTEM_RUNNING)
> 1456				schedule_timeout_uninterruptible(2);
> 1457	#endif /* #ifdef CONFIG_PROVE_RCU_DELAY */
>
> And it does this while holding the onoff_mutex that bash is waiting for.
>
> Doing a function trace, it showed me where it happened:
>
> [  125.940066] rcu_pree-10      3.... 28384115273: schedule_timeout_uninterruptible <-rcu_gp_kthread
> [...]
> [  125.940066] rcu_pree-10      3d..3 28384202439: sched_switch: prev_comm=rcu_preempt prev_pid=10 prev_prio=120 prev_state=D ==> next_comm=watchdog/3 next_pid=38 next_prio=120
>
> The watchdog ran, and then:
>
> [  125.940066] watchdog-38      3d..3 28384692863: sched_switch: prev_comm=watchdog/3 prev_pid=38 prev_prio=120 prev_state=P ==> next_comm=modprobe next_pid=2848 next_prio=118
>
> Not sure what modprobe was doing, but shortly after that:
>
> [  125.940066] modprobe-2848    3d..3 28385041749: sched_switch: prev_comm=modprobe prev_pid=2848 prev_prio=118 prev_state=R+ ==> next_comm=migration/3 next_pid=40 next_prio=0
>
> Where the migration thread took down the CPU:
>
> [  125.940066] migratio-40      3d..3 28389148276: sched_switch: prev_comm=migration/3 prev_pid=40 prev_prio=0 prev_state=P ==> next_comm=swapper/3 next_pid=0 next_prio=120
>
> which finally did:
>
> [  125.940066]   <idle>-0       3...1 28389282142: arch_cpu_idle_dead <-cpu_startup_entry
> [  125.940066]   <idle>-0       3...1 28389282548: native_play_dead <-arch_cpu_idle_dead
> [  125.940066]   <idle>-0       3...1 28389282924: play_dead_common <-native_play_dead
> [  125.940066]   <idle>-0       3...1 28389283468: idle_task_exit <-play_dead_common
> [  125.940066]   <idle>-0       3...1 28389284644: amd_e400_remove_cpu <-play_dead_common
>
>
> CPU 3 is now offline, the rcu_preempt thread that ran on CPU 3 is still
> doing a schedule_timeout_uninterruptible() and it registered it's
> timeout to the timer base for CPU 3. You would think that it would get
> migrated right? The issue here is that the timer migration happens at
> the CPU notifier for CPU_DEAD. The problem is that the rcu notifier for
> CPU_DOWN is blocked waiting for the onoff_mutex to be released, which is
> held by the thread that just put itself into a uninterruptible sleep,
> that wont wake up until the CPU_DEAD notifier of the timer
> infrastructure is called, which wont happen until the rcu notifier
> finishes. Here's our deadlock!

This commit breaks this deadlock cycle by substituting a shorter udelay()
for the previous schedule_timeout_uninterruptible(), while at the same
time increasing the probability of the delay.  This maintains the intensity
of the testing.

Reported-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Tested-by: Steven Rostedt <rostedt@goodmis.org>
2013-06-10 13:37:12 -07:00
Steven Rostedt
016a8d5be6 rcu: Don't call wakeup() with rcu_node structure ->lock held
This commit fixes a lockdep-detected deadlock by moving a wake_up()
call out from a rnp->lock critical section.  Please see below for
the long version of this story.

On Tue, 2013-05-28 at 16:13 -0400, Dave Jones wrote:

> [12572.705832] ======================================================
> [12572.750317] [ INFO: possible circular locking dependency detected ]
> [12572.796978] 3.10.0-rc3+ #39 Not tainted
> [12572.833381] -------------------------------------------------------
> [12572.862233] trinity-child17/31341 is trying to acquire lock:
> [12572.870390]  (rcu_node_0){..-.-.}, at: [<ffffffff811054ff>] rcu_read_unlock_special+0x9f/0x4c0
> [12572.878859]
> but task is already holding lock:
> [12572.894894]  (&ctx->lock){-.-...}, at: [<ffffffff811390ed>] perf_lock_task_context+0x7d/0x2d0
> [12572.903381]
> which lock already depends on the new lock.
>
> [12572.927541]
> the existing dependency chain (in reverse order) is:
> [12572.943736]
> -> #4 (&ctx->lock){-.-...}:
> [12572.960032]        [<ffffffff810b9851>] lock_acquire+0x91/0x1f0
> [12572.968337]        [<ffffffff816ebc90>] _raw_spin_lock+0x40/0x80
> [12572.976633]        [<ffffffff8113c987>] __perf_event_task_sched_out+0x2e7/0x5e0
> [12572.984969]        [<ffffffff81088953>] perf_event_task_sched_out+0x93/0xa0
> [12572.993326]        [<ffffffff816ea0bf>] __schedule+0x2cf/0x9c0
> [12573.001652]        [<ffffffff816eacfe>] schedule_user+0x2e/0x70
> [12573.009998]        [<ffffffff816ecd64>] retint_careful+0x12/0x2e
> [12573.018321]
> -> #3 (&rq->lock){-.-.-.}:
> [12573.034628]        [<ffffffff810b9851>] lock_acquire+0x91/0x1f0
> [12573.042930]        [<ffffffff816ebc90>] _raw_spin_lock+0x40/0x80
> [12573.051248]        [<ffffffff8108e6a7>] wake_up_new_task+0xb7/0x260
> [12573.059579]        [<ffffffff810492f5>] do_fork+0x105/0x470
> [12573.067880]        [<ffffffff81049686>] kernel_thread+0x26/0x30
> [12573.076202]        [<ffffffff816cee63>] rest_init+0x23/0x140
> [12573.084508]        [<ffffffff81ed8e1f>] start_kernel+0x3f1/0x3fe
> [12573.092852]        [<ffffffff81ed856f>] x86_64_start_reservations+0x2a/0x2c
> [12573.101233]        [<ffffffff81ed863d>] x86_64_start_kernel+0xcc/0xcf
> [12573.109528]
> -> #2 (&p->pi_lock){-.-.-.}:
> [12573.125675]        [<ffffffff810b9851>] lock_acquire+0x91/0x1f0
> [12573.133829]        [<ffffffff816ebe9b>] _raw_spin_lock_irqsave+0x4b/0x90
> [12573.141964]        [<ffffffff8108e881>] try_to_wake_up+0x31/0x320
> [12573.150065]        [<ffffffff8108ebe2>] default_wake_function+0x12/0x20
> [12573.158151]        [<ffffffff8107bbf8>] autoremove_wake_function+0x18/0x40
> [12573.166195]        [<ffffffff81085398>] __wake_up_common+0x58/0x90
> [12573.174215]        [<ffffffff81086909>] __wake_up+0x39/0x50
> [12573.182146]        [<ffffffff810fc3da>] rcu_start_gp_advanced.isra.11+0x4a/0x50
> [12573.190119]        [<ffffffff810fdb09>] rcu_start_future_gp+0x1c9/0x1f0
> [12573.198023]        [<ffffffff810fe2c4>] rcu_nocb_kthread+0x114/0x930
> [12573.205860]        [<ffffffff8107a91d>] kthread+0xed/0x100
> [12573.213656]        [<ffffffff816f4b1c>] ret_from_fork+0x7c/0xb0
> [12573.221379]
> -> #1 (&rsp->gp_wq){..-.-.}:
> [12573.236329]        [<ffffffff810b9851>] lock_acquire+0x91/0x1f0
> [12573.243783]        [<ffffffff816ebe9b>] _raw_spin_lock_irqsave+0x4b/0x90
> [12573.251178]        [<ffffffff810868f3>] __wake_up+0x23/0x50
> [12573.258505]        [<ffffffff810fc3da>] rcu_start_gp_advanced.isra.11+0x4a/0x50
> [12573.265891]        [<ffffffff810fdb09>] rcu_start_future_gp+0x1c9/0x1f0
> [12573.273248]        [<ffffffff810fe2c4>] rcu_nocb_kthread+0x114/0x930
> [12573.280564]        [<ffffffff8107a91d>] kthread+0xed/0x100
> [12573.287807]        [<ffffffff816f4b1c>] ret_from_fork+0x7c/0xb0

Notice the above call chain.

rcu_start_future_gp() is called with the rnp->lock held. Then it calls
rcu_start_gp_advance, which does a wakeup.

You can't do wakeups while holding the rnp->lock, as that would mean
that you could not do a rcu_read_unlock() while holding the rq lock, or
any lock that was taken while holding the rq lock. This is because...
(See below).

> [12573.295067]
> -> #0 (rcu_node_0){..-.-.}:
> [12573.309293]        [<ffffffff810b8d36>] __lock_acquire+0x1786/0x1af0
> [12573.316568]        [<ffffffff810b9851>] lock_acquire+0x91/0x1f0
> [12573.323825]        [<ffffffff816ebc90>] _raw_spin_lock+0x40/0x80
> [12573.331081]        [<ffffffff811054ff>] rcu_read_unlock_special+0x9f/0x4c0
> [12573.338377]        [<ffffffff810760a6>] __rcu_read_unlock+0x96/0xa0
> [12573.345648]        [<ffffffff811391b3>] perf_lock_task_context+0x143/0x2d0
> [12573.352942]        [<ffffffff8113938e>] find_get_context+0x4e/0x1f0
> [12573.360211]        [<ffffffff811403f4>] SYSC_perf_event_open+0x514/0xbd0
> [12573.367514]        [<ffffffff81140e49>] SyS_perf_event_open+0x9/0x10
> [12573.374816]        [<ffffffff816f4dd4>] tracesys+0xdd/0xe2

Notice the above trace.

perf took its own ctx->lock, which can be taken while holding the rq
lock. While holding this lock, it did a rcu_read_unlock(). The
perf_lock_task_context() basically looks like:

rcu_read_lock();
raw_spin_lock(ctx->lock);
rcu_read_unlock();

Now, what looks to have happened, is that we scheduled after taking that
first rcu_read_lock() but before taking the spin lock. When we scheduled
back in and took the ctx->lock, the following rcu_read_unlock()
triggered the "special" code.

The rcu_read_unlock_special() takes the rnp->lock, which gives us a
possible deadlock scenario.

	CPU0		CPU1		CPU2
	----		----		----

				     rcu_nocb_kthread()
    lock(rq->lock);
		    lock(ctx->lock);
				     lock(rnp->lock);

				     wake_up();

				     lock(rq->lock);

		    rcu_read_unlock();

		    rcu_read_unlock_special();

		    lock(rnp->lock);
    lock(ctx->lock);

**** DEADLOCK ****

> [12573.382068]
> other info that might help us debug this:
>
> [12573.403229] Chain exists of:
>   rcu_node_0 --> &rq->lock --> &ctx->lock
>
> [12573.424471]  Possible unsafe locking scenario:
>
> [12573.438499]        CPU0                    CPU1
> [12573.445599]        ----                    ----
> [12573.452691]   lock(&ctx->lock);
> [12573.459799]                                lock(&rq->lock);
> [12573.467010]                                lock(&ctx->lock);
> [12573.474192]   lock(rcu_node_0);
> [12573.481262]
>  *** DEADLOCK ***
>
> [12573.501931] 1 lock held by trinity-child17/31341:
> [12573.508990]  #0:  (&ctx->lock){-.-...}, at: [<ffffffff811390ed>] perf_lock_task_context+0x7d/0x2d0
> [12573.516475]
> stack backtrace:
> [12573.530395] CPU: 1 PID: 31341 Comm: trinity-child17 Not tainted 3.10.0-rc3+ #39
> [12573.545357]  ffffffff825b4f90 ffff880219f1dbc0 ffffffff816e375b ffff880219f1dc00
> [12573.552868]  ffffffff816dfa5d ffff880219f1dc50 ffff88023ce4d1f8 ffff88023ce4ca40
> [12573.560353]  0000000000000001 0000000000000001 ffff88023ce4d1f8 ffff880219f1dcc0
> [12573.567856] Call Trace:
> [12573.575011]  [<ffffffff816e375b>] dump_stack+0x19/0x1b
> [12573.582284]  [<ffffffff816dfa5d>] print_circular_bug+0x200/0x20f
> [12573.589637]  [<ffffffff810b8d36>] __lock_acquire+0x1786/0x1af0
> [12573.596982]  [<ffffffff810918f5>] ? sched_clock_cpu+0xb5/0x100
> [12573.604344]  [<ffffffff810b9851>] lock_acquire+0x91/0x1f0
> [12573.611652]  [<ffffffff811054ff>] ? rcu_read_unlock_special+0x9f/0x4c0
> [12573.619030]  [<ffffffff816ebc90>] _raw_spin_lock+0x40/0x80
> [12573.626331]  [<ffffffff811054ff>] ? rcu_read_unlock_special+0x9f/0x4c0
> [12573.633671]  [<ffffffff811054ff>] rcu_read_unlock_special+0x9f/0x4c0
> [12573.640992]  [<ffffffff811390ed>] ? perf_lock_task_context+0x7d/0x2d0
> [12573.648330]  [<ffffffff810b429e>] ? put_lock_stats.isra.29+0xe/0x40
> [12573.655662]  [<ffffffff813095a0>] ? delay_tsc+0x90/0xe0
> [12573.662964]  [<ffffffff810760a6>] __rcu_read_unlock+0x96/0xa0
> [12573.670276]  [<ffffffff811391b3>] perf_lock_task_context+0x143/0x2d0
> [12573.677622]  [<ffffffff81139070>] ? __perf_event_enable+0x370/0x370
> [12573.684981]  [<ffffffff8113938e>] find_get_context+0x4e/0x1f0
> [12573.692358]  [<ffffffff811403f4>] SYSC_perf_event_open+0x514/0xbd0
> [12573.699753]  [<ffffffff8108cd9d>] ? get_parent_ip+0xd/0x50
> [12573.707135]  [<ffffffff810b71fd>] ? trace_hardirqs_on_caller+0xfd/0x1c0
> [12573.714599]  [<ffffffff81140e49>] SyS_perf_event_open+0x9/0x10
> [12573.721996]  [<ffffffff816f4dd4>] tracesys+0xdd/0xe2

This commit delays the wakeup via irq_work(), which is what
perf and ftrace use to perform wakeups in critical sections.

Reported-by: Dave Jones <davej@redhat.com>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2013-06-10 13:37:11 -07:00
Linus Torvalds
81db4dbf59 Merge branch 'timers-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull timer fixes from Thomas Gleixner:

 - Trivial: unused variable removal

 - Posix-timers: Add the clock ID to the new proc interface to make it
   useful.  The interface is new and should be functional when we reach
   the final 3.10 release.

 - Cure a false positive warning in the tick code introduced by the
   overhaul in 3.10

 - Fix for a persistent clock detection regression introduced in this
   cycle

* 'timers-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
  timekeeping: Correct run-time detection of persistent_clock.
  ntp: Remove unused variable flags in __hardpps
  posix-timers: Show clock ID in proc file
  tick: Cure broadcast false positive pending bit warning
2013-06-08 15:51:21 -07:00