Adapt core SH architecture code for dma_map_ops changes: replace
alloc/free_coherent with generic alloc/free methods.
Signed-off-by: Andrzej Pietrasiewicz <andrzej.p@samsung.com>
Acked-by: Kyungmin Park <kyungmin.park@samsung.com>
Signed-off-by: Marek Szyprowski <m.szyprowski@samsung.com>
Reviewed-by: Arnd Bergmann <arnd@arndb.de>
Acked-by: Paul Mundt <lethal@linux-sh.org>
sh64 doesn't define a P1SEGADDR, resulting in a build failure. The proper
mapping can be attained for both sh32 and 64 via the CAC_ADDR macro, so
switch to that instead.
Signed-off-by: Paul Mundt <lethal@linux-sh.org>
The nommu code has regressed somewhat in that 29BIT gets set for the
SH-2/2A configs regardless of the fact that they are really 32BIT sans
MMU or PMB. This does a bit of tidying to get nommu properly selecting
32BIT as it was before.
Signed-off-by: Paul Mundt <lethal@linux-sh.org>
This follows the x86 change off of memset() and on to an unconditional
__GFP_ZERO for wrapping in to optimized page clearing by way of
clear_highpage().
Signed-off-by: Andrew Murray <amurray@mpc-data.co.uk>
Signed-off-by: Paul Mundt <lethal@linux-sh.org>
percpu.h is included by sched.h and module.h and thus ends up being
included when building most .c files. percpu.h includes slab.h which
in turn includes gfp.h making everything defined by the two files
universally available and complicating inclusion dependencies.
percpu.h -> slab.h dependency is about to be removed. Prepare for
this change by updating users of gfp and slab facilities include those
headers directly instead of assuming availability. As this conversion
needs to touch large number of source files, the following script is
used as the basis of conversion.
http://userweb.kernel.org/~tj/misc/slabh-sweep.py
The script does the followings.
* Scan files for gfp and slab usages and update includes such that
only the necessary includes are there. ie. if only gfp is used,
gfp.h, if slab is used, slab.h.
* When the script inserts a new include, it looks at the include
blocks and try to put the new include such that its order conforms
to its surrounding. It's put in the include block which contains
core kernel includes, in the same order that the rest are ordered -
alphabetical, Christmas tree, rev-Xmas-tree or at the end if there
doesn't seem to be any matching order.
* If the script can't find a place to put a new include (mostly
because the file doesn't have fitting include block), it prints out
an error message indicating which .h file needs to be added to the
file.
The conversion was done in the following steps.
1. The initial automatic conversion of all .c files updated slightly
over 4000 files, deleting around 700 includes and adding ~480 gfp.h
and ~3000 slab.h inclusions. The script emitted errors for ~400
files.
2. Each error was manually checked. Some didn't need the inclusion,
some needed manual addition while adding it to implementation .h or
embedding .c file was more appropriate for others. This step added
inclusions to around 150 files.
3. The script was run again and the output was compared to the edits
from #2 to make sure no file was left behind.
4. Several build tests were done and a couple of problems were fixed.
e.g. lib/decompress_*.c used malloc/free() wrappers around slab
APIs requiring slab.h to be added manually.
5. The script was run on all .h files but without automatically
editing them as sprinkling gfp.h and slab.h inclusions around .h
files could easily lead to inclusion dependency hell. Most gfp.h
inclusion directives were ignored as stuff from gfp.h was usually
wildly available and often used in preprocessor macros. Each
slab.h inclusion directive was examined and added manually as
necessary.
6. percpu.h was updated not to include slab.h.
7. Build test were done on the following configurations and failures
were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my
distributed build env didn't work with gcov compiles) and a few
more options had to be turned off depending on archs to make things
build (like ipr on powerpc/64 which failed due to missing writeq).
* x86 and x86_64 UP and SMP allmodconfig and a custom test config.
* powerpc and powerpc64 SMP allmodconfig
* sparc and sparc64 SMP allmodconfig
* ia64 SMP allmodconfig
* s390 SMP allmodconfig
* alpha SMP allmodconfig
* um on x86_64 SMP allmodconfig
8. percpu.h modifications were reverted so that it could be applied as
a separate patch and serve as bisection point.
Given the fact that I had only a couple of failures from tests on step
6, I'm fairly confident about the coverage of this conversion patch.
If there is a breakage, it's likely to be something in one of the arch
headers which should be easily discoverable easily on most builds of
the specific arch.
Signed-off-by: Tejun Heo <tj@kernel.org>
Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
Presently this was tacked on to the dma debug init bits from
fs_initcall(), which is far too late for devices setting up their own
per-device coherent areas.
Throw this in the beginning of mem_init(), as per the x86 iommu
allocation.
Signed-off-by: Paul Mundt <lethal@linux-sh.org>
This moves the current dma_alloc/free_coherent() calls to a generic
variant and plugs them in for the nommu default. Other variants can
override the defaults in the dma mapping ops directly.
Signed-off-by: Paul Mundt <lethal@linux-sh.org>
Eventually we'll have complete control over what physical memory gets
mapped where and we can probably do other interesting things. For now
though, when the MMU is in 32-bit mode, we map physical memory into the
P1 and P2 virtual address ranges with the same semantics as they have in
29-bit mode.
Signed-off-by: Matt Fleming <matt@console-pimps.org>
Signed-off-by: Paul Mundt <lethal@linux-sh.org>
This prevents the DMA API debugging from running out of entries right
away on boot. Defines 4096 entries by default, which while a bit on the
heavy side, ought to leave enough breathing room for some time.
Signed-off-by: Paul Mundt <lethal@linux-sh.org>
Split pages returned by dma_alloc_coherent() and make sure
we free them one by one.
Signed-off-by: Magnus Damm <damm@igel.co.jp>
Signed-off-by: Paul Mundt <lethal@linux-sh.org>
Remove left overs from the generic declared coherent rework.
Signed-off-by: Magnus Damm <damm@igel.co.jp>
Signed-off-by: Paul Mundt <lethal@linux-sh.org>
This patch kills a section mismatch for platform_resource_setup_memory().
Signed-off-by: Magnus Damm <damm@igel.co.jp>
Signed-off-by: Paul Mundt <lethal@linux-sh.org>
Allow user to pass parameters on kernel command line to override
default size for physically contiguous memory buffers. The default
VPU buffer size is too small for VGA harware encoding, but instead
of just bumping up the number we allow the user to override the
default size using the command line. Supports SuperH Mobile hardware
blocks such as VEU, VPU and CEU.
Signed-off-by: Magnus Damm <damm@igel.co.jp>
Signed-off-by: Paul Mundt <lethal@linux-sh.org>
This patch adds physically contiguous memory chunks to the UIO devices.
The same strategy can be used in the future for the CEU as well.
Signed-off-by: Magnus Damm <damm@igel.co.jp>
Signed-off-by: Paul Mundt <lethal@linux-sh.org>
This patch fixes the recently introduced declared coherent memory support.
Without this fix a cached memory area is returned by dma_alloc_coherent() -
unless dma_declare_coherent_memory() has setup a separate area.
This patch makes sure an uncached memory area is returned. With this patch
it is now possible to ping through an rtl8139 interface on r2d-plus.
Signed-off-by: Magnus Damm <damm@igel.co.jp>
Signed-off-by: Paul Mundt <lethal@linux-sh.org>
This patch adds declared coherent memory support to the sh architecture. All
functions are based on the x86 implementation. Header files are adjusted to
use the new functions instead of the former consistent_alloc() code.
This version includes the few changes what were included in the fix patch
together with modifications based on feedback from Paul.
Signed-off-by: Magnus Damm <damm@igel.co.jp>
Signed-off-by: Paul Mundt <lethal@linux-sh.org>
dma_cache_(wback|inv|wback_inv) were the earliest attempt on a generalized
cache managment API for I/O purposes. Originally it was basically the raw
MIPS low level cache API exported to the entire world. The API has
suffered from a lack of documentation, was not very widely used unlike it's
more modern brothers and can easily be replaced by dma_cache_sync. So
remove it rsp. turn the surviving bits back into an arch private API, as
discussed on linux-arch.
Signed-off-by: Ralf Baechle <ralf@linux-mips.org>
Acked-by: Paul Mundt <lethal@linux-sh.org>
Acked-by: Paul Mackerras <paulus@samba.org>
Acked-by: David S. Miller <davem@davemloft.net>
Acked-by: Kyle McMartin <kyle@parisc-linux.org>
Acked-by: Haavard Skinnemoen <hskinnemoen@atmel.com>
Cc: <linux-arch@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Cleanup of page table allocators, using generic folded PMD and PUD
helpers. TLB flushing operations are moved to a more sensible spot.
The page fault handler is also optimized slightly, we no longer waste
cycles on IRQ disabling for flushing of the page from the ITLB, since
we're already under CLI protection by the initial exception handler.
Signed-off-by: Paul Mundt <lethal@linux-sh.org>
Have an explicit mm call to split higher order pages into individual pages.
Should help to avoid bugs and be more explicit about the code's intention.
Signed-off-by: Nick Piggin <npiggin@suse.de>
Cc: Russell King <rmk@arm.linux.org.uk>
Cc: David Howells <dhowells@redhat.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mundt <lethal@linux-sh.org>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Chris Zankel <chris@zankel.net>
Signed-off-by: Yoichi Yuasa <yoichi_yuasa@tripeaks.co.jp>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Initial git repository build. I'm not bothering with the full history,
even though we have it. We can create a separate "historical" git
archive of that later if we want to, and in the meantime it's about
3.2GB when imported into git - space that would just make the early
git days unnecessarily complicated, when we don't have a lot of good
infrastructure for it.
Let it rip!