-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEEh0DEKNP0I9IjwfWEqbAzH4MkB7YFAmRLZc0ACgkQqbAzH4Mk
B7YWkA/+JHsryYjInVGmYfQ4oCmq1F2cEDgKdTeths+IZ+2vbk03hUbvmLBg8YR3
VvYZ2YqNAs9HuZxP6mnVZB9YOMIFEdV3Pyto68l9jwip4irpjVrABtxwn6udTAmx
RXVDDLRxN53UyoWgRoOfAEJUXfmOvw7laj8T9PrsKxXKhlOKmK8mSKtq8xTt+ECo
8cJ0Nw2d0TVY6+Ou6CCfH8CzHtQjInHnKSt/KynJ+OJHxLmHRGlbDJbyjuJU0OBr
grXngKPmqvHTiO3Zs14gRv5tFXNMGdvRcomy/XnztD/nIC2jEODI2uUCSedEh5vf
IpzjKwQF1qRseGHwr2U0THPHOso4IP2T79WRQEuLY8DUGJClIGGmcdfeBqNnjbey
1GVUis/leBvQb1CMAkX5HjGXO9i6xEfuTxwHSlk+Wu8euEDQ8OWudyeQmOYiHnqS
vKZxXY88DDjATSokSUSSb8IW63z+JEPmovsmLKLpWusvWikIKhIEnjRZUG5XhgS3
Ux66Owt9yguKgVAPX66b9PGQx4wy3GAR6FRxG1BpDX0XooGbzGRTAn213sjkBKiV
JLswbQTJ5LOXv8bS1srNMPhQFeqFcEgrDbC+WxmOpzTvutimYmzUTDrOPq92Xw0f
oi/i5kCoPFmOfoRsLhIl+lft1XLZ5iYFvj0faDJ5AWUOjb73Z3s=
=xlIh
-----END PGP SIGNATURE-----
Merge tag 'ntfs3_for_6.4' of https://github.com/Paragon-Software-Group/linux-ntfs3
Pull ntfs3 updates from Konstantin Komarov:
"New code:
- add missed "nocase" in ntfs_show_options
- extend information on failures/errors
- small optimizations
Fixes:
- some logic errors
- some dead code was removed
- code is refactored and reformatted according to the new version of
clang-format
Code removal:
- 'noacsrules' option.
Currently, this option does not work properly, and its use leads to
unstable results. If we figure out how to implement it without
errors, we will add it later
- writepage"
* tag 'ntfs3_for_6.4' of https://github.com/Paragon-Software-Group/linux-ntfs3: (30 commits)
fs/ntfs3: Fix root inode checking
fs/ntfs3: Print details about mount fails
fs/ntfs3: Add missed "nocase" in ntfs_show_options
fs/ntfs3: Code formatting and refactoring
fs/ntfs3: Changed ntfs_get_acl() to use dentry
fs/ntfs3: Remove field sbi->used.bitmap.set_tail
fs/ntfs3: Undo critial modificatins to keep directory consistency
fs/ntfs3: Undo endian changes
fs/ntfs3: Optimization in ntfs_set_state()
fs/ntfs3: Fix ntfs_create_inode()
fs/ntfs3: Remove noacsrules
fs/ntfs3: Use bh_read to simplify code
fs/ntfs3: Fix a possible null-pointer dereference in ni_clear()
fs/ntfs3: Refactoring of various minor issues
fs/ntfs3: Restore overflow checking for attr size in mi_enum_attr
fs/ntfs3: Check for extremely large size of $AttrDef
fs/ntfs3: Improved checking of attribute's name length
fs/ntfs3: Add null pointer checks
fs/ntfs3: fix spelling mistake "attibute" -> "attribute"
fs/ntfs3: Add length check in indx_get_root
...
Separate checking inode->i_op and inode itself.
Reported-by: kernel test robot <lkp@intel.com>
Reported-by: Dan Carpenter <error27@gmail.com>
Link: https://lore.kernel.org/r/202302162319.bDJOuyfy-lkp@intel.com/
Signed-off-by: Konstantin Komarov <almaz.alexandrovich@paragon-software.com>
Added error mesages with error codes.
Minor refactoring and code formatting.
Signed-off-by: Konstantin Komarov <almaz.alexandrovich@paragon-software.com>
Added minor refactoring.
Added and fixed some comments.
In some places, the code has been reformatted to fit into 80 columns.
clang-format-12 was used to format code according kernel's .clang-format.
Signed-off-by: Konstantin Komarov <almaz.alexandrovich@paragon-software.com>
sbi->mft.reserved_bitmap is in-memory (not on-disk!) bitmap.
Assumed cpu endian is faster than fixed endian.
Signed-off-by: Konstantin Komarov <almaz.alexandrovich@paragon-software.com>
The current volume flags are updated only if VOLUME_FLAG_DIRTY has been changed.
Signed-off-by: Konstantin Komarov <almaz.alexandrovich@paragon-software.com>
Previous variant creates an inode that requires update the parent directory
(ea_packed_size). Operations in ntfs_create_inode have been rearranged
so we insert new directory entry with correct ea_packed_size and
new created inode does not require update it's parent directory.
Signed-off-by: Konstantin Komarov <almaz.alexandrovich@paragon-software.com>
Currently, this option does not work properly. Its use leads to unstable results.
If we figure out how to implement it without errors, we will add it later.
Signed-off-by: Konstantin Komarov <almaz.alexandrovich@paragon-software.com>
In a previous commit c1006bd13146, ni->mi.mrec in ni_write_inode()
could be NULL, and thus a NULL check is added for this variable.
However, in the same call stack, ni->mi.mrec can be also dereferenced
in ni_clear():
ntfs_evict_inode(inode)
ni_write_inode(inode, ...)
ni = ntfs_i(inode);
is_rec_inuse(ni->mi.mrec) -> Add a NULL check by previous commit
ni_clear(ntfs_i(inode))
is_rec_inuse(ni->mi.mrec) -> No check
Thus, a possible null-pointer dereference may exist in ni_clear().
To fix it, a NULL check is added in this function.
Signed-off-by: Jia-Ju Bai <baijiaju1990@gmail.com>
Reported-by: TOTE Robot <oslab@tsinghua.edu.cn>
Signed-off-by: Konstantin Komarov <almaz.alexandrovich@paragon-software.com>
Added null pointer checks in function ntfs_security_init.
Also added le32_to_cpu in functions ntfs_security_init and indx_read.
Signed-off-by: Konstantin Komarov <almaz.alexandrovich@paragon-software.com>
There is a spelling mistake in comment. Fix it.
Signed-off-by: Yu Zhe <yuzhe@nfschina.com>
Signed-off-by: Konstantin Komarov <almaz.alexandrovich@paragon-software.com>
Here is a BUG report from syzbot:
BUG: KASAN: slab-out-of-bounds in hdr_delete_de+0xe0/0x150 fs/ntfs3/index.c:806
Read of size 16842960 at addr ffff888079cc0600 by task syz-executor934/3631
Call Trace:
memmove+0x25/0x60 mm/kasan/shadow.c:54
hdr_delete_de+0xe0/0x150 fs/ntfs3/index.c:806
indx_delete_entry+0x74f/0x3670 fs/ntfs3/index.c:2193
ni_remove_name+0x27a/0x980 fs/ntfs3/frecord.c:2910
ntfs_unlink_inode+0x3d4/0x720 fs/ntfs3/inode.c:1712
ntfs_rename+0x41a/0xcb0 fs/ntfs3/namei.c:276
Before using the meta-data in struct INDEX_HDR, we need to
check index header valid or not. Otherwise, the corruptedi
(or malicious) fs image can cause out-of-bounds access which
could make kernel panic.
Fixes: 82cae269cf ("fs/ntfs3: Add initialization of super block")
Reported-by: syzbot+9c2811fd56591639ff5f@syzkaller.appspotmail.com
Signed-off-by: Zeng Heng <zengheng4@huawei.com>
Signed-off-by: Konstantin Komarov <almaz.alexandrovich@paragon-software.com>
Syzbot reports a NULL dereference in ni_write_inode.
When creating a new inode, if allocation fails in mi_init function
(called in mi_format_new function), mi->mrec is set to NULL.
In the error path of this inode creation, mi->mrec is later
dereferenced in ni_write_inode.
Add a NULL check to prevent NULL dereference.
Link: https://syzkaller.appspot.com/bug?extid=f45957555ed4a808cc7a
Reported-and-tested-by: syzbot+f45957555ed4a808cc7a@syzkaller.appspotmail.com
Signed-off-by: Abdun Nihaal <abdun.nihaal@gmail.com>
Signed-off-by: Konstantin Komarov <almaz.alexandrovich@paragon-software.com>
Syzbot reported a OOB read bug:
BUG: KASAN: slab-out-of-bounds in indx_insert_into_buffer+0xaa3/0x13b0
fs/ntfs3/index.c:1755
Read of size 17168 at addr ffff8880255e06c0 by task syz-executor308/3630
Call Trace:
<TASK>
memmove+0x25/0x60 mm/kasan/shadow.c:54
indx_insert_into_buffer+0xaa3/0x13b0 fs/ntfs3/index.c:1755
indx_insert_entry+0x446/0x6b0 fs/ntfs3/index.c:1863
ntfs_create_inode+0x1d3f/0x35c0 fs/ntfs3/inode.c:1548
ntfs_create+0x3e/0x60 fs/ntfs3/namei.c:100
lookup_open fs/namei.c:3413 [inline]
If the member struct INDEX_BUFFER *index of struct indx_node is
incorrect, that is, the value of __le32 used is greater than the value
of __le32 total in struct INDEX_HDR. Therefore, OOB read occurs when
memmove is called in indx_insert_into_buffer().
Fix this by adding a check in hdr_find_e().
Fixes: 82cae269cf ("fs/ntfs3: Add initialization of super block")
Reported-by: syzbot+d882d57193079e379309@syzkaller.appspotmail.com
Signed-off-by: ZhangPeng <zhangpeng362@huawei.com>
Signed-off-by: Konstantin Komarov <almaz.alexandrovich@paragon-software.com>
Syzbot reported a null-ptr-deref bug:
ntfs3: loop0: Different NTFS' sector size (1024) and media sector size
(512)
ntfs3: loop0: Mark volume as dirty due to NTFS errors
general protection fault, probably for non-canonical address
0xdffffc0000000001: 0000 [#1] PREEMPT SMP KASAN
KASAN: null-ptr-deref in range [0x0000000000000008-0x000000000000000f]
RIP: 0010:d_flags_for_inode fs/dcache.c:1980 [inline]
RIP: 0010:__d_add+0x5ce/0x800 fs/dcache.c:2796
Call Trace:
<TASK>
d_splice_alias+0x122/0x3b0 fs/dcache.c:3191
lookup_open fs/namei.c:3391 [inline]
open_last_lookups fs/namei.c:3481 [inline]
path_openat+0x10e6/0x2df0 fs/namei.c:3688
do_filp_open+0x264/0x4f0 fs/namei.c:3718
do_sys_openat2+0x124/0x4e0 fs/open.c:1310
do_sys_open fs/open.c:1326 [inline]
__do_sys_open fs/open.c:1334 [inline]
__se_sys_open fs/open.c:1330 [inline]
__x64_sys_open+0x221/0x270 fs/open.c:1330
do_syscall_x64 arch/x86/entry/common.c:50 [inline]
do_syscall_64+0x3d/0xb0 arch/x86/entry/common.c:80
entry_SYSCALL_64_after_hwframe+0x63/0xcd
If the MFT record of ntfs inode is not a base record, inode->i_op can be
NULL. And a null-ptr-deref may happen:
ntfs_lookup()
dir_search_u() # inode->i_op is set to NULL
d_splice_alias()
__d_add()
d_flags_for_inode() # inode->i_op->get_link null-ptr-deref
Fix this by adding a Check on inode->i_op before calling the
d_splice_alias() function.
Fixes: 4342306f0f ("fs/ntfs3: Add file operations and implementation")
Reported-by: syzbot+a8f26a403c169b7593fe@syzkaller.appspotmail.com
Signed-off-by: ZhangPeng <zhangpeng362@huawei.com>
Signed-off-by: Konstantin Komarov <almaz.alexandrovich@paragon-software.com>
Since the kmemdup may return NULL pointer,
it should be better to add check for the return value
in order to avoid NULL pointer dereference.
Fixes: b46acd6a6a ("fs/ntfs3: Add NTFS journal")
Signed-off-by: Jiasheng Jiang <jiasheng@iscas.ac.cn>
Signed-off-by: Konstantin Komarov <almaz.alexandrovich@paragon-software.com>
Label ATTR_ROOT in ntfs_read_mft() sets is_root = true and
ni->ni_flags |= NI_FLAG_DIR, then next attr will goto label ATTR_ALLOC
and alloc ni->dir.alloc_run. However two states are not always
consistent and can make memory leak.
1) attr_name in ATTR_ROOT does not fit the condition it will set
is_root = true but NI_FLAG_DIR is not set.
2) next attr_name in ATTR_ALLOC fits the condition and alloc
ni->dir.alloc_run
3) in cleanup function ni_clear(), when NI_FLAG_DIR is set, it frees
ni->dir.alloc_run, otherwise it frees ni->file.run
4) because NI_FLAG_DIR is not set in this case, ni->dir.alloc_run is
leaked as kmemleak reported:
unreferenced object 0xffff888003bc5480 (size 64):
backtrace:
[<000000003d42e6b0>] __kmalloc_node+0x4e/0x1c0
[<00000000d8e19b8a>] kvmalloc_node+0x39/0x1f0
[<00000000fc3eb5b8>] run_add_entry+0x18a/0xa40 [ntfs3]
[<0000000011c9f978>] run_unpack+0x75d/0x8e0 [ntfs3]
[<00000000e7cf1819>] run_unpack_ex+0xbc/0x500 [ntfs3]
[<00000000bbf0a43d>] ntfs_iget5+0xb25/0x2dd0 [ntfs3]
[<00000000a6e50693>] ntfs_fill_super+0x218d/0x3580 [ntfs3]
[<00000000b9170608>] get_tree_bdev+0x3fb/0x710
[<000000004833798a>] vfs_get_tree+0x8e/0x280
[<000000006e20b8e6>] path_mount+0xf3c/0x1930
[<000000007bf15a5f>] do_mount+0xf3/0x110
...
Fix this by always setting is_root and NI_FLAG_DIR together.
Fixes: 82cae269cf ("fs/ntfs3: Add initialization of super block")
Signed-off-by: Chen Zhongjin <chenzhongjin@huawei.com>
Signed-off-by: Konstantin Komarov <almaz.alexandrovich@paragon-software.com>
cpu_to_be32 and be32_to_cpu respectively return and receive
__be32, change the cast to the correct types.
Fixes the following sparse warnings:
fs/ntfs3/xattr.c:811:48: sparse: sparse: incorrect type in
assignment (different base types)
fs/ntfs3/xattr.c:901:34: sparse: sparse: cast to restricted __be32
Reported-by: kernel test robot <lkp@intel.com>
Signed-off-by: Daniel Pinto <danielpinto52@gmail.com>
Signed-off-by: Konstantin Komarov <almaz.alexandrovich@paragon-software.com>
Remove struct posix_acl_{access,default}_handler for all filesystems
that don't depend on the xattr handler in their inode->i_op->listxattr()
method in any way. There's nothing more to do than to simply remove the
handler. It's been effectively unused ever since we introduced the new
posix acl api.
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Christian Brauner (Microsoft) <brauner@kernel.org>
F_SEAL_EXEC") which permits the setting of the memfd execute bit at
memfd creation time, with the option of sealing the state of the X bit.
- Peter Xu adds a patch series ("mm/hugetlb: Make huge_pte_offset()
thread-safe for pmd unshare") which addresses a rare race condition
related to PMD unsharing.
- Several folioification patch serieses from Matthew Wilcox, Vishal
Moola, Sidhartha Kumar and Lorenzo Stoakes
- Johannes Weiner has a series ("mm: push down lock_page_memcg()") which
does perform some memcg maintenance and cleanup work.
- SeongJae Park has added DAMOS filtering to DAMON, with the series
"mm/damon/core: implement damos filter". These filters provide users
with finer-grained control over DAMOS's actions. SeongJae has also done
some DAMON cleanup work.
- Kairui Song adds a series ("Clean up and fixes for swap").
- Vernon Yang contributed the series "Clean up and refinement for maple
tree".
- Yu Zhao has contributed the "mm: multi-gen LRU: memcg LRU" series. It
adds to MGLRU an LRU of memcgs, to improve the scalability of global
reclaim.
- David Hildenbrand has added some userfaultfd cleanup work in the
series "mm: uffd-wp + change_protection() cleanups".
- Christoph Hellwig has removed the generic_writepages() library
function in the series "remove generic_writepages".
- Baolin Wang has performed some maintenance on the compaction code in
his series "Some small improvements for compaction".
- Sidhartha Kumar is doing some maintenance work on struct page in his
series "Get rid of tail page fields".
- David Hildenbrand contributed some cleanup, bugfixing and
generalization of pte management and of pte debugging in his series "mm:
support __HAVE_ARCH_PTE_SWP_EXCLUSIVE on all architectures with swap
PTEs".
- Mel Gorman and Neil Brown have removed the __GFP_ATOMIC allocation
flag in the series "Discard __GFP_ATOMIC".
- Sergey Senozhatsky has improved zsmalloc's memory utilization with his
series "zsmalloc: make zspage chain size configurable".
- Joey Gouly has added prctl() support for prohibiting the creation of
writeable+executable mappings. The previous BPF-based approach had
shortcomings. See "mm: In-kernel support for memory-deny-write-execute
(MDWE)".
- Waiman Long did some kmemleak cleanup and bugfixing in the series
"mm/kmemleak: Simplify kmemleak_cond_resched() & fix UAF".
- T.J. Alumbaugh has contributed some MGLRU cleanup work in his series
"mm: multi-gen LRU: improve".
- Jiaqi Yan has provided some enhancements to our memory error
statistics reporting, mainly by presenting the statistics on a per-node
basis. See the series "Introduce per NUMA node memory error
statistics".
- Mel Gorman has a second and hopefully final shot at fixing a CPU-hog
regression in compaction via his series "Fix excessive CPU usage during
compaction".
- Christoph Hellwig does some vmalloc maintenance work in the series
"cleanup vfree and vunmap".
- Christoph Hellwig has removed block_device_operations.rw_page() in ths
series "remove ->rw_page".
- We get some maple_tree improvements and cleanups in Liam Howlett's
series "VMA tree type safety and remove __vma_adjust()".
- Suren Baghdasaryan has done some work on the maintainability of our
vm_flags handling in the series "introduce vm_flags modifier functions".
- Some pagemap cleanup and generalization work in Mike Rapoport's series
"mm, arch: add generic implementation of pfn_valid() for FLATMEM" and
"fixups for generic implementation of pfn_valid()"
- Baoquan He has done some work to make /proc/vmallocinfo and
/proc/kcore better represent the real state of things in his series
"mm/vmalloc.c: allow vread() to read out vm_map_ram areas".
- Jason Gunthorpe rationalized the GUP system's interface to the rest of
the kernel in the series "Simplify the external interface for GUP".
- SeongJae Park wishes to migrate people from DAMON's debugfs interface
over to its sysfs interface. To support this, we'll temporarily be
printing warnings when people use the debugfs interface. See the series
"mm/damon: deprecate DAMON debugfs interface".
- Andrey Konovalov provided the accurately named "lib/stackdepot: fixes
and clean-ups" series.
- Huang Ying has provided a dramatic reduction in migration's TLB flush
IPI rates with the series "migrate_pages(): batch TLB flushing".
- Arnd Bergmann has some objtool fixups in "objtool warning fixes".
-----BEGIN PGP SIGNATURE-----
iHUEABYIAB0WIQTTMBEPP41GrTpTJgfdBJ7gKXxAjgUCY/PoPQAKCRDdBJ7gKXxA
jlvpAPsFECUBBl20qSue2zCYWnHC7Yk4q9ytTkPB/MMDrFEN9wD/SNKEm2UoK6/K
DmxHkn0LAitGgJRS/W9w81yrgig9tAQ=
=MlGs
-----END PGP SIGNATURE-----
Merge tag 'mm-stable-2023-02-20-13-37' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm
Pull MM updates from Andrew Morton:
- Daniel Verkamp has contributed a memfd series ("mm/memfd: add
F_SEAL_EXEC") which permits the setting of the memfd execute bit at
memfd creation time, with the option of sealing the state of the X
bit.
- Peter Xu adds a patch series ("mm/hugetlb: Make huge_pte_offset()
thread-safe for pmd unshare") which addresses a rare race condition
related to PMD unsharing.
- Several folioification patch serieses from Matthew Wilcox, Vishal
Moola, Sidhartha Kumar and Lorenzo Stoakes
- Johannes Weiner has a series ("mm: push down lock_page_memcg()")
which does perform some memcg maintenance and cleanup work.
- SeongJae Park has added DAMOS filtering to DAMON, with the series
"mm/damon/core: implement damos filter".
These filters provide users with finer-grained control over DAMOS's
actions. SeongJae has also done some DAMON cleanup work.
- Kairui Song adds a series ("Clean up and fixes for swap").
- Vernon Yang contributed the series "Clean up and refinement for maple
tree".
- Yu Zhao has contributed the "mm: multi-gen LRU: memcg LRU" series. It
adds to MGLRU an LRU of memcgs, to improve the scalability of global
reclaim.
- David Hildenbrand has added some userfaultfd cleanup work in the
series "mm: uffd-wp + change_protection() cleanups".
- Christoph Hellwig has removed the generic_writepages() library
function in the series "remove generic_writepages".
- Baolin Wang has performed some maintenance on the compaction code in
his series "Some small improvements for compaction".
- Sidhartha Kumar is doing some maintenance work on struct page in his
series "Get rid of tail page fields".
- David Hildenbrand contributed some cleanup, bugfixing and
generalization of pte management and of pte debugging in his series
"mm: support __HAVE_ARCH_PTE_SWP_EXCLUSIVE on all architectures with
swap PTEs".
- Mel Gorman and Neil Brown have removed the __GFP_ATOMIC allocation
flag in the series "Discard __GFP_ATOMIC".
- Sergey Senozhatsky has improved zsmalloc's memory utilization with
his series "zsmalloc: make zspage chain size configurable".
- Joey Gouly has added prctl() support for prohibiting the creation of
writeable+executable mappings.
The previous BPF-based approach had shortcomings. See "mm: In-kernel
support for memory-deny-write-execute (MDWE)".
- Waiman Long did some kmemleak cleanup and bugfixing in the series
"mm/kmemleak: Simplify kmemleak_cond_resched() & fix UAF".
- T.J. Alumbaugh has contributed some MGLRU cleanup work in his series
"mm: multi-gen LRU: improve".
- Jiaqi Yan has provided some enhancements to our memory error
statistics reporting, mainly by presenting the statistics on a
per-node basis. See the series "Introduce per NUMA node memory error
statistics".
- Mel Gorman has a second and hopefully final shot at fixing a CPU-hog
regression in compaction via his series "Fix excessive CPU usage
during compaction".
- Christoph Hellwig does some vmalloc maintenance work in the series
"cleanup vfree and vunmap".
- Christoph Hellwig has removed block_device_operations.rw_page() in
ths series "remove ->rw_page".
- We get some maple_tree improvements and cleanups in Liam Howlett's
series "VMA tree type safety and remove __vma_adjust()".
- Suren Baghdasaryan has done some work on the maintainability of our
vm_flags handling in the series "introduce vm_flags modifier
functions".
- Some pagemap cleanup and generalization work in Mike Rapoport's
series "mm, arch: add generic implementation of pfn_valid() for
FLATMEM" and "fixups for generic implementation of pfn_valid()"
- Baoquan He has done some work to make /proc/vmallocinfo and
/proc/kcore better represent the real state of things in his series
"mm/vmalloc.c: allow vread() to read out vm_map_ram areas".
- Jason Gunthorpe rationalized the GUP system's interface to the rest
of the kernel in the series "Simplify the external interface for
GUP".
- SeongJae Park wishes to migrate people from DAMON's debugfs interface
over to its sysfs interface. To support this, we'll temporarily be
printing warnings when people use the debugfs interface. See the
series "mm/damon: deprecate DAMON debugfs interface".
- Andrey Konovalov provided the accurately named "lib/stackdepot: fixes
and clean-ups" series.
- Huang Ying has provided a dramatic reduction in migration's TLB flush
IPI rates with the series "migrate_pages(): batch TLB flushing".
- Arnd Bergmann has some objtool fixups in "objtool warning fixes".
* tag 'mm-stable-2023-02-20-13-37' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (505 commits)
include/linux/migrate.h: remove unneeded externs
mm/memory_hotplug: cleanup return value handing in do_migrate_range()
mm/uffd: fix comment in handling pte markers
mm: change to return bool for isolate_movable_page()
mm: hugetlb: change to return bool for isolate_hugetlb()
mm: change to return bool for isolate_lru_page()
mm: change to return bool for folio_isolate_lru()
objtool: add UACCESS exceptions for __tsan_volatile_read/write
kmsan: disable ftrace in kmsan core code
kasan: mark addr_has_metadata __always_inline
mm: memcontrol: rename memcg_kmem_enabled()
sh: initialize max_mapnr
m68k/nommu: add missing definition of ARCH_PFN_OFFSET
mm: percpu: fix incorrect size in pcpu_obj_full_size()
maple_tree: reduce stack usage with gcc-9 and earlier
mm: page_alloc: call panic() when memoryless node allocation fails
mm: multi-gen LRU: avoid futile retries
migrate_pages: move THP/hugetlb migration support check to simplify code
migrate_pages: batch flushing TLB
migrate_pages: share more code between _unmap and _move
...
-----BEGIN PGP SIGNATURE-----
iQJEBAABCAAuFiEEwPw5LcreJtl1+l5K99NY+ylx4KYFAmPueAQQHGF4Ym9lQGtl
cm5lbC5kawAKCRD301j7KXHgplopEACo17a4Z2p2xCedA0NCqX2ggtsSIdYiluPm
pgdBzIEsgwKo1XVLGRgGiC8VdMRuzO4Zh/NGn4iRF1a68wjgjnwGWY7r052TUoSr
q1yya739BpffnkXjj15x86cwl+5rHv2RQkm15+2HqBgcruA63/ZgdKBtjj+EtVKs
zYOlmgyfFbkn8AdULMGiDKP4lixV8gUelv6vWneBwNrj4iSLnuN1+8nJNsl4wxwg
ImSpx63AzhUoeL6byc+fmiA8fZhDhSvwON2tCyyCmOjlFM/TLrsm5t1juWiDid1O
UROkQwQtsmjSUq3ow5fRJfjbZ3HLa1uGQr95DYHy0OBRAteAhDY5Upv0DXNL0ZBh
uNNg8AXtJbyc+pLHWnncyiTzi+3eWs7WiMn04/a5eDhFvcJ0PZjLIgRi5j1ezUS1
bWqoPaAIxoMD83WoMxjnKvBpGeMzPHvNTijeZjkGOu0vOk8JhXqNmLTjNG9aLtzf
1Nvp0o8AqtQAW7cgFazZSWtw4bPk/wZ7mW0zHtqLDHIzXkc7A/Uo0ftdv84G08aW
pvakNz4aNLwSPf7hxgPP9SgS9CeHhxK8PS6uk3V788SI8qGiew11+EcTNGkQNmvw
/ItCo93UaWD/7SZLObTLslmet7rFHzz6PXaXrMxrSvaeZMkgr7DWEy9XS+ueOtXO
fS8QhJX11w==
=IU45
-----END PGP SIGNATURE-----
Merge tag 'for-6.3/dio-2023-02-16' of git://git.kernel.dk/linux
Pull legacy dio update from Jens Axboe:
"We only have a few file systems that use the old dio code, make them
select it rather than build it unconditionally"
* tag 'for-6.3/dio-2023-02-16' of git://git.kernel.dk/linux:
fs: build the legacy direct I/O code conditionally
fs: move sb_init_dio_done_wq out of direct-io.c
-----BEGIN PGP SIGNATURE-----
iHUEABYKAB0WIQRAhzRXHqcMeLMyaSiRxhvAZXjcogUCY+5NlQAKCRCRxhvAZXjc
orOaAP9i2h3OJy95nO2Fpde0Bt2UT+oulKCCcGlvXJ8/+TQpyQD/ZQq47gFQ0EAz
Br5NxeyGeecAb0lHpFz+CpLGsxMrMwQ=
=+BG5
-----END PGP SIGNATURE-----
Merge tag 'fs.idmapped.v6.3' of git://git.kernel.org/pub/scm/linux/kernel/git/vfs/idmapping
Pull vfs idmapping updates from Christian Brauner:
- Last cycle we introduced the dedicated struct mnt_idmap type for
mount idmapping and the required infrastucture in 256c8aed2b ("fs:
introduce dedicated idmap type for mounts"). As promised in last
cycle's pull request message this converts everything to rely on
struct mnt_idmap.
Currently we still pass around the plain namespace that was attached
to a mount. This is in general pretty convenient but it makes it easy
to conflate namespaces that are relevant on the filesystem with
namespaces that are relevant on the mount level. Especially for
non-vfs developers without detailed knowledge in this area this was a
potential source for bugs.
This finishes the conversion. Instead of passing the plain namespace
around this updates all places that currently take a pointer to a
mnt_userns with a pointer to struct mnt_idmap.
Now that the conversion is done all helpers down to the really
low-level helpers only accept a struct mnt_idmap argument instead of
two namespace arguments.
Conflating mount and other idmappings will now cause the compiler to
complain loudly thus eliminating the possibility of any bugs. This
makes it impossible for filesystem developers to mix up mount and
filesystem idmappings as they are two distinct types and require
distinct helpers that cannot be used interchangeably.
Everything associated with struct mnt_idmap is moved into a single
separate file. With that change no code can poke around in struct
mnt_idmap. It can only be interacted with through dedicated helpers.
That means all filesystems are and all of the vfs is completely
oblivious to the actual implementation of idmappings.
We are now also able to extend struct mnt_idmap as we see fit. For
example, we can decouple it completely from namespaces for users that
don't require or don't want to use them at all. We can also extend
the concept of idmappings so we can cover filesystem specific
requirements.
In combination with the vfs{g,u}id_t work we finished in v6.2 this
makes this feature substantially more robust and thus difficult to
implement wrong by a given filesystem and also protects the vfs.
- Enable idmapped mounts for tmpfs and fulfill a longstanding request.
A long-standing request from users had been to make it possible to
create idmapped mounts for tmpfs. For example, to share the host's
tmpfs mount between multiple sandboxes. This is a prerequisite for
some advanced Kubernetes cases. Systemd also has a range of use-cases
to increase service isolation. And there are more users of this.
However, with all of the other work going on this was way down on the
priority list but luckily someone other than ourselves picked this
up.
As usual the patch is tiny as all the infrastructure work had been
done multiple kernel releases ago. In addition to all the tests that
we already have I requested that Rodrigo add a dedicated tmpfs
testsuite for idmapped mounts to xfstests. It is to be included into
xfstests during the v6.3 development cycle. This should add a slew of
additional tests.
* tag 'fs.idmapped.v6.3' of git://git.kernel.org/pub/scm/linux/kernel/git/vfs/idmapping: (26 commits)
shmem: support idmapped mounts for tmpfs
fs: move mnt_idmap
fs: port vfs{g,u}id helpers to mnt_idmap
fs: port fs{g,u}id helpers to mnt_idmap
fs: port i_{g,u}id_into_vfs{g,u}id() to mnt_idmap
fs: port i_{g,u}id_{needs_}update() to mnt_idmap
quota: port to mnt_idmap
fs: port privilege checking helpers to mnt_idmap
fs: port inode_owner_or_capable() to mnt_idmap
fs: port inode_init_owner() to mnt_idmap
fs: port acl to mnt_idmap
fs: port xattr to mnt_idmap
fs: port ->permission() to pass mnt_idmap
fs: port ->fileattr_set() to pass mnt_idmap
fs: port ->set_acl() to pass mnt_idmap
fs: port ->get_acl() to pass mnt_idmap
fs: port ->tmpfile() to pass mnt_idmap
fs: port ->rename() to pass mnt_idmap
fs: port ->mknod() to pass mnt_idmap
fs: port ->mkdir() to pass mnt_idmap
...
Patch series "Convert writepage_t to use a folio".
More folioisation. I split out the mpage work from everything else
because it completely dominated the patch, but some implementations I just
converted outright.
This patch (of 2):
We always write back an entire folio, but that's currently passed as the
head page. Convert all filesystems that use write_cache_pages() to expect
a folio instead of a page.
Link: https://lkml.kernel.org/r/20230126201255.1681189-1-willy@infradead.org
Link: https://lkml.kernel.org/r/20230126201255.1681189-2-willy@infradead.org
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Christoph Hellwig <hch@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Add a new LEGACY_DIRECT_IO config symbol that is only selected by the
file systems that still use the legacy blockdev_direct_IO code, so that
kernels without support for those file systems don't need to build the
code.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Jan Kara <jack@suse.cz>
Reviewed-by: Eric Biggers <ebiggers@google.com>
Link: https://lore.kernel.org/r/20230125065839.191256-3-hch@lst.de
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Convert to struct mnt_idmap.
Last cycle we merged the necessary infrastructure in
256c8aed2b ("fs: introduce dedicated idmap type for mounts").
This is just the conversion to struct mnt_idmap.
Currently we still pass around the plain namespace that was attached to a
mount. This is in general pretty convenient but it makes it easy to
conflate namespaces that are relevant on the filesystem with namespaces
that are relevent on the mount level. Especially for non-vfs developers
without detailed knowledge in this area this can be a potential source for
bugs.
Once the conversion to struct mnt_idmap is done all helpers down to the
really low-level helpers will take a struct mnt_idmap argument instead of
two namespace arguments. This way it becomes impossible to conflate the two
eliminating the possibility of any bugs. All of the vfs and all filesystems
only operate on struct mnt_idmap.
Acked-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Christian Brauner (Microsoft) <brauner@kernel.org>
Convert to struct mnt_idmap.
Last cycle we merged the necessary infrastructure in
256c8aed2b ("fs: introduce dedicated idmap type for mounts").
This is just the conversion to struct mnt_idmap.
Currently we still pass around the plain namespace that was attached to a
mount. This is in general pretty convenient but it makes it easy to
conflate namespaces that are relevant on the filesystem with namespaces
that are relevent on the mount level. Especially for non-vfs developers
without detailed knowledge in this area this can be a potential source for
bugs.
Once the conversion to struct mnt_idmap is done all helpers down to the
really low-level helpers will take a struct mnt_idmap argument instead of
two namespace arguments. This way it becomes impossible to conflate the two
eliminating the possibility of any bugs. All of the vfs and all filesystems
only operate on struct mnt_idmap.
Acked-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Christian Brauner (Microsoft) <brauner@kernel.org>
Convert to struct mnt_idmap.
Last cycle we merged the necessary infrastructure in
256c8aed2b ("fs: introduce dedicated idmap type for mounts").
This is just the conversion to struct mnt_idmap.
Currently we still pass around the plain namespace that was attached to a
mount. This is in general pretty convenient but it makes it easy to
conflate namespaces that are relevant on the filesystem with namespaces
that are relevent on the mount level. Especially for non-vfs developers
without detailed knowledge in this area this can be a potential source for
bugs.
Once the conversion to struct mnt_idmap is done all helpers down to the
really low-level helpers will take a struct mnt_idmap argument instead of
two namespace arguments. This way it becomes impossible to conflate the two
eliminating the possibility of any bugs. All of the vfs and all filesystems
only operate on struct mnt_idmap.
Acked-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Christian Brauner (Microsoft) <brauner@kernel.org>
Convert to struct mnt_idmap.
Last cycle we merged the necessary infrastructure in
256c8aed2b ("fs: introduce dedicated idmap type for mounts").
This is just the conversion to struct mnt_idmap.
Currently we still pass around the plain namespace that was attached to a
mount. This is in general pretty convenient but it makes it easy to
conflate namespaces that are relevant on the filesystem with namespaces
that are relevent on the mount level. Especially for non-vfs developers
without detailed knowledge in this area this can be a potential source for
bugs.
Once the conversion to struct mnt_idmap is done all helpers down to the
really low-level helpers will take a struct mnt_idmap argument instead of
two namespace arguments. This way it becomes impossible to conflate the two
eliminating the possibility of any bugs. All of the vfs and all filesystems
only operate on struct mnt_idmap.
Acked-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Christian Brauner (Microsoft) <brauner@kernel.org>
Convert to struct mnt_idmap.
Last cycle we merged the necessary infrastructure in
256c8aed2b ("fs: introduce dedicated idmap type for mounts").
This is just the conversion to struct mnt_idmap.
Currently we still pass around the plain namespace that was attached to a
mount. This is in general pretty convenient but it makes it easy to
conflate namespaces that are relevant on the filesystem with namespaces
that are relevent on the mount level. Especially for non-vfs developers
without detailed knowledge in this area this can be a potential source for
bugs.
Once the conversion to struct mnt_idmap is done all helpers down to the
really low-level helpers will take a struct mnt_idmap argument instead of
two namespace arguments. This way it becomes impossible to conflate the two
eliminating the possibility of any bugs. All of the vfs and all filesystems
only operate on struct mnt_idmap.
Acked-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Christian Brauner (Microsoft) <brauner@kernel.org>
Convert to struct mnt_idmap.
Last cycle we merged the necessary infrastructure in
256c8aed2b ("fs: introduce dedicated idmap type for mounts").
This is just the conversion to struct mnt_idmap.
Currently we still pass around the plain namespace that was attached to a
mount. This is in general pretty convenient but it makes it easy to
conflate namespaces that are relevant on the filesystem with namespaces
that are relevent on the mount level. Especially for non-vfs developers
without detailed knowledge in this area this can be a potential source for
bugs.
Once the conversion to struct mnt_idmap is done all helpers down to the
really low-level helpers will take a struct mnt_idmap argument instead of
two namespace arguments. This way it becomes impossible to conflate the two
eliminating the possibility of any bugs. All of the vfs and all filesystems
only operate on struct mnt_idmap.
Acked-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Christian Brauner (Microsoft) <brauner@kernel.org>
Convert to struct mnt_idmap.
Last cycle we merged the necessary infrastructure in
256c8aed2b ("fs: introduce dedicated idmap type for mounts").
This is just the conversion to struct mnt_idmap.
Currently we still pass around the plain namespace that was attached to a
mount. This is in general pretty convenient but it makes it easy to
conflate namespaces that are relevant on the filesystem with namespaces
that are relevent on the mount level. Especially for non-vfs developers
without detailed knowledge in this area this can be a potential source for
bugs.
Once the conversion to struct mnt_idmap is done all helpers down to the
really low-level helpers will take a struct mnt_idmap argument instead of
two namespace arguments. This way it becomes impossible to conflate the two
eliminating the possibility of any bugs. All of the vfs and all filesystems
only operate on struct mnt_idmap.
Acked-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Christian Brauner (Microsoft) <brauner@kernel.org>
Convert to struct mnt_idmap.
Last cycle we merged the necessary infrastructure in
256c8aed2b ("fs: introduce dedicated idmap type for mounts").
This is just the conversion to struct mnt_idmap.
Currently we still pass around the plain namespace that was attached to a
mount. This is in general pretty convenient but it makes it easy to
conflate namespaces that are relevant on the filesystem with namespaces
that are relevent on the mount level. Especially for non-vfs developers
without detailed knowledge in this area this can be a potential source for
bugs.
Once the conversion to struct mnt_idmap is done all helpers down to the
really low-level helpers will take a struct mnt_idmap argument instead of
two namespace arguments. This way it becomes impossible to conflate the two
eliminating the possibility of any bugs. All of the vfs and all filesystems
only operate on struct mnt_idmap.
Acked-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Christian Brauner (Microsoft) <brauner@kernel.org>
Convert to struct mnt_idmap.
Last cycle we merged the necessary infrastructure in
256c8aed2b ("fs: introduce dedicated idmap type for mounts").
This is just the conversion to struct mnt_idmap.
Currently we still pass around the plain namespace that was attached to a
mount. This is in general pretty convenient but it makes it easy to
conflate namespaces that are relevant on the filesystem with namespaces
that are relevent on the mount level. Especially for non-vfs developers
without detailed knowledge in this area this can be a potential source for
bugs.
Once the conversion to struct mnt_idmap is done all helpers down to the
really low-level helpers will take a struct mnt_idmap argument instead of
two namespace arguments. This way it becomes impossible to conflate the two
eliminating the possibility of any bugs. All of the vfs and all filesystems
only operate on struct mnt_idmap.
Acked-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Christian Brauner (Microsoft) <brauner@kernel.org>
Convert to struct mnt_idmap.
Last cycle we merged the necessary infrastructure in
256c8aed2b ("fs: introduce dedicated idmap type for mounts").
This is just the conversion to struct mnt_idmap.
Currently we still pass around the plain namespace that was attached to a
mount. This is in general pretty convenient but it makes it easy to
conflate namespaces that are relevant on the filesystem with namespaces
that are relevent on the mount level. Especially for non-vfs developers
without detailed knowledge in this area this can be a potential source for
bugs.
Once the conversion to struct mnt_idmap is done all helpers down to the
really low-level helpers will take a struct mnt_idmap argument instead of
two namespace arguments. This way it becomes impossible to conflate the two
eliminating the possibility of any bugs. All of the vfs and all filesystems
only operate on struct mnt_idmap.
Acked-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Christian Brauner (Microsoft) <brauner@kernel.org>
Convert to struct mnt_idmap.
Last cycle we merged the necessary infrastructure in
256c8aed2b ("fs: introduce dedicated idmap type for mounts").
This is just the conversion to struct mnt_idmap.
Currently we still pass around the plain namespace that was attached to a
mount. This is in general pretty convenient but it makes it easy to
conflate namespaces that are relevant on the filesystem with namespaces
that are relevent on the mount level. Especially for non-vfs developers
without detailed knowledge in this area this can be a potential source for
bugs.
Once the conversion to struct mnt_idmap is done all helpers down to the
really low-level helpers will take a struct mnt_idmap argument instead of
two namespace arguments. This way it becomes impossible to conflate the two
eliminating the possibility of any bugs. All of the vfs and all filesystems
only operate on struct mnt_idmap.
Acked-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Christian Brauner (Microsoft) <brauner@kernel.org>