After fixing the GPF in mem_cgroup_lru_del_list(), three times one
machine running a similar load (moving and removing memcgs while
swapping) has oopsed in mem_cgroup_zone_nr_lru_pages(), when retrieving
memcg zone numbers for get_scan_count() for shrink_mem_cgroup_zone():
this is where a struct mem_cgroup is first accessed after being chosen
by mem_cgroup_iter().
Just what protects a struct mem_cgroup from being freed, in between
mem_cgroup_iter()'s css_get_next() and its css_tryget()? css_tryget()
fails once css->refcnt is zero with CSS_REMOVED set in flags, yes: but
what if that memory is freed and reused for something else, which sets
"refcnt" non-zero? Hmm, and scope for an indefinite freeze if refcnt is
left at zero but flags are cleared.
It's tempting to move the css_tryget() into css_get_next(), to make it
really "get" the css, but I don't think that actually solves anything:
the same difficulty in moving from css_id found to stable css remains.
But we already have rcu_read_lock() around the two, so it's easily fixed
if __mem_cgroup_free() just uses kfree_rcu() to free mem_cgroup.
However, a big struct mem_cgroup is allocated with vzalloc() instead of
kzalloc(), and we're not allowed to vfree() at interrupt time: there
doesn't appear to be a general vfree_rcu() to help with this, so roll
our own using schedule_work(). The compiler decently removes
vfree_work() and vfree_rcu() when the config doesn't need them.
Signed-off-by: Hugh Dickins <hughd@google.com>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Konstantin Khlebnikov <khlebnikov@openvz.org>
Cc: Tejun Heo <tj@kernel.org>
Cc: Ying Han <yinghan@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Respectfully revert commit e6ca7b89dc "memcg: fix mapcount check
in move charge code for anonymous page" for the 3.3 release, so that
it behaves exactly like releases 2.6.35 through 3.2 in this respect.
Horiguchi-san's commit is correct in itself, 1 makes much more sense
than 2 in that check; but it does not go far enough - swapcount
should be considered too - if we really want such a check at all.
We appear to have reached agreement now, and expect that 3.4 will
remove the mapcount check, but had better not make 3.3 different.
Signed-off-by: Hugh Dickins <hughd@google.com>
Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently the charge on shared anonyous pages is supposed not to moved in
task migration. To implement this, we need to check that mapcount > 1,
instread of > 2. So this patch fixes it.
Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Reviewed-by: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Hillf Danton <dhillf@gmail.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When moving tasks from old memcg (with move_charge_at_immigrate on new
memcg), followed by removal of old memcg, hit General Protection Fault in
mem_cgroup_lru_del_list() (called from release_pages called from
free_pages_and_swap_cache from tlb_flush_mmu from tlb_finish_mmu from
exit_mmap from mmput from exit_mm from do_exit).
Somewhat reproducible, takes a few hours: the old struct mem_cgroup has
been freed and poisoned by SLAB_DEBUG, but mem_cgroup_lru_del_list() is
still trying to update its stats, and take page off lru before freeing.
A task, or a charge, or a page on lru: each secures a memcg against
removal. In this case, the last task has been moved out of the old memcg,
and it is exiting: anonymous pages are uncharged one by one from the
memcg, as they are zapped from its pagetables, so the charge gets down to
0; but the pages themselves are queued in an mmu_gather for freeing.
Most of those pages will be on lru (and force_empty is careful to
lru_add_drain_all, to add pages from pagevec to lru first), but not
necessarily all: perhaps some have been isolated for page reclaim, perhaps
some isolated for other reasons. So, force_empty may find no task, no
charge and no page on lru, and let the removal proceed.
There would still be no problem if these pages were immediately freed; but
typically (and the put_page_testzero protocol demands it) they have to be
added back to lru before they are found freeable, then removed from lru
and freed. We don't see the issue when adding, because the
mem_cgroup_iter() loops keep their own reference to the memcg being
scanned; but when it comes to mem_cgroup_lru_del_list().
I believe this was not an issue in v3.2: there, PageCgroupAcctLRU and
PageCgroupUsed flags were used (like a trick with mirrors) to deflect view
of pc->mem_cgroup to the stable root_mem_cgroup when neither set.
38c5d72f3e ("memcg: simplify LRU handling by new rule") mercifully
removed those convolutions, but left this General Protection Fault.
But it's surprisingly easy to restore the old behaviour: just check
PageCgroupUsed in mem_cgroup_lru_add_list() (which decides on which lruvec
to add), and reset pc to root_mem_cgroup if page is uncharged. A risky
change? just going back to how it worked before; testing, and an audit of
uses of pc->mem_cgroup, show no problem.
And there's a nice bonus: with mem_cgroup_lru_add_list() itself making
sure that an uncharged page goes to root lru, mem_cgroup_reset_owner() no
longer has any purpose, and we can safely revert 4e5f01c2b9 ("memcg:
clear pc->mem_cgroup if necessary").
Calling update_page_reclaim_stat() after add_page_to_lru_list() in swap.c
is not strictly necessary: the lru_lock there, with RCU before memcg
structures are freed, makes mem_cgroup_get_reclaim_stat_from_page safe
without that; but it seems cleaner to rely on one dependency less.
Signed-off-by: Hugh Dickins <hughd@google.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Konstantin Khlebnikov <khlebnikov@openvz.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We have forgotten the rules of lock nesting: the irq-safe ones must be
taken inside the non-irq-safe ones, otherwise we are open to deadlock:
CPU0 CPU1
---- ----
lock(&(&pc->lock)->rlock);
local_irq_disable();
lock(&(&zone->lru_lock)->rlock);
lock(&(&pc->lock)->rlock);
<Interrupt>
lock(&(&zone->lru_lock)->rlock);
To check a different locking issue, I happened to add a spin_lock to
memcg's bit_spin_lock in lock_page_cgroup(), and lockdep very quickly
complained about __mem_cgroup_commit_charge_lrucare() (on CPU1 above).
So delete __mem_cgroup_commit_charge_lrucare(), passing a bool lrucare to
__mem_cgroup_commit_charge() instead, taking zone->lru_lock under
lock_page_cgroup() in the lrucare case.
The original was using spin_lock_irqsave, but we'd be in more trouble if
it were ever called at interrupt time: unconditional _irq is enough. And
ClearPageLRU before del from lru, SetPageLRU before add to lru: no strong
reason, but that is the ordering used consistently elsewhere.
Fixes 36b62ad539 ("memcg: simplify corner case handling
of LRU").
Signed-off-by: Hugh Dickins <hughd@google.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Konstantin Khlebnikov <khlebnikov@openvz.org>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
There is an issue when memcg unregisters events that were attached to
the same eventfd:
- On the first call mem_cgroup_usage_unregister_event() removes all
events attached to a given eventfd, and if there were no events left,
thresholds->primary would become NULL;
- Since there were several events registered, cgroups core will call
mem_cgroup_usage_unregister_event() again, but now kernel will oops,
as the function doesn't expect that threshold->primary may be NULL.
That's a good question whether mem_cgroup_usage_unregister_event()
should actually remove all events in one go, but nowadays it can't
do any better as cftype->unregister_event callback doesn't pass
any private event-associated cookie. So, let's fix the issue by
simply checking for threshold->primary.
FWIW, w/o the patch the following oops may be observed:
BUG: unable to handle kernel NULL pointer dereference at 0000000000000004
IP: [<ffffffff810be32c>] mem_cgroup_usage_unregister_event+0x9c/0x1f0
Pid: 574, comm: kworker/0:2 Not tainted 3.3.0-rc4+ #9 Bochs Bochs
RIP: 0010:[<ffffffff810be32c>] [<ffffffff810be32c>] mem_cgroup_usage_unregister_event+0x9c/0x1f0
RSP: 0018:ffff88001d0b9d60 EFLAGS: 00010246
Process kworker/0:2 (pid: 574, threadinfo ffff88001d0b8000, task ffff88001de91cc0)
Call Trace:
[<ffffffff8107092b>] cgroup_event_remove+0x2b/0x60
[<ffffffff8103db94>] process_one_work+0x174/0x450
[<ffffffff8103e413>] worker_thread+0x123/0x2d0
Cc: stable <stable@vger.kernel.org>
Signed-off-by: Anton Vorontsov <anton.vorontsov@linaro.org>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Kirill A. Shutemov <kirill@shutemov.name>
Cc: Michal Hocko <mhocko@suse.cz>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The argument is not used at all, and it's not necessary, because
a specific callback handler of course knows which subsys it
belongs to.
Now only ->pupulate() takes this argument, because the handlers of
this callback always call cgroup_add_file()/cgroup_add_files().
So we reduce a few lines of code, though the shrinking of object size
is minimal.
16 files changed, 113 insertions(+), 162 deletions(-)
text data bss dec hex filename
5486240 656987 7039960 13183187 c928d3 vmlinux.o.orig
5486170 656987 7039960 13183117 c9288d vmlinux.o
Signed-off-by: Li Zefan <lizf@cn.fujitsu.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
Davem says:
1) Fix JIT code generation on x86-64 for divide by zero, from Eric Dumazet.
2) tg3 header length computation correction from Eric Dumazet.
3) More build and reference counting fixes for socket memory cgroup
code from Glauber Costa.
4) module.h snuck back into a core header after all the hard work we
did to remove that, from Paul Gortmaker and Jesper Dangaard Brouer.
5) Fix PHY naming regression and add some new PCI IDs in stmmac, from
Alessandro Rubini.
6) Netlink message generation fix in new team driver, should only advertise
the entries that changed during events, from Jiri Pirko.
7) SRIOV VF registration and unregistration fixes, and also add a
missing PCI ID, from Roopa Prabhu.
8) Fix infinite loop in tx queue flush code of brcmsmac, from Stanislaw Gruszka.
9) ftgmac100/ftmac100 build fix, missing interrupt.h include.
10) Memory leak fix in net/hyperv do_set_mutlicast() handling, from Wei Yongjun.
11) Off by one fix in netem packet scheduler, from Vijay Subramanian.
12) TCP loss detection fix from Yuchung Cheng.
13) TCP reset packet MD5 calculation uses wrong address, fix from Shawn Lu.
14) skge carrier assertion and DMA mapping fixes from Stephen Hemminger.
15) Congestion recovery undo performed at the wrong spot in BIC and CUBIC
congestion control modules, fix from Neal Cardwell.
16) Ethtool ETHTOOL_GSSET_INFO is unnecessarily restrictive, from Michał Mirosław.
17) Fix triggerable race in ipv6 sysctl handling, from Francesco Ruggeri.
18) Statistics bug fixes in mlx4 from Eugenia Emantayev.
19) rds locking bug fix during info dumps, from your's truly.
* git://git.kernel.org/pub/scm/linux/kernel/git/davem/net: (67 commits)
rds: Make rds_sock_lock BH rather than IRQ safe.
netprio_cgroup.h: dont include module.h from other includes
net: flow_dissector.c missing include linux/export.h
team: send only changed options/ports via netlink
net/hyperv: fix possible memory leak in do_set_multicast()
drivers/net: dsa/mv88e6xxx.c files need linux/module.h
stmmac: added PCI identifiers
llc: Fix race condition in llc_ui_recvmsg
stmmac: fix phy naming inconsistency
dsa: Add reporting of silicon revision for Marvell 88E6123/88E6161/88E6165 switches.
tg3: fix ipv6 header length computation
skge: add byte queue limit support
mv643xx_eth: Add Rx Discard and Rx Overrun statistics
bnx2x: fix compilation error with SOE in fw_dump
bnx2x: handle CHIP_REVISION during init_one
bnx2x: allow user to change ring size in ISCSI SD mode
bnx2x: fix Big-Endianess in ethtool -t
bnx2x: fixed ethtool statistics for MF modes
bnx2x: credit-leakage fixup on vlan_mac_del_all
macvlan: fix a possible use after free
...
end_migration() passes the old page instead of the new page to commit
the charge. This page descriptor is not used for committing itself,
though, since we also pass the (correct) page_cgroup descriptor. But
it's used to find the soft limit tree through the page's zone, so the
soft limit tree of the old page's zone is updated instead of that of the
new page's, which might get slightly out of date until the next charge
reaches the ratelimit point.
This glitch has been present since 5564e88 ("memcg: condense
page_cgroup-to-page lookup points").
This fixes a bug that I introduced in 2.6.38. It's benign enough (to my
knowledge) that we probably don't want this for stable.
Reported-by: Hugh Dickins <hughd@google.com>
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Acked-by: Kirill A. Shutemov <kirill@shutemov.name>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
There is still a build bug with the sock memcg code, that triggers
with !CONFIG_NET, that survived my series of randconfig builds.
Signed-off-by: Glauber Costa <glommer@parallels.com>
Reported-by: Randy Dunlap <rdunlap@xenotime.net>
CC: Hiroyouki Kamezawa <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Although only used currently for tcp sockets, this function
is now used in common sock code (for sock_clone())
Commit 475f1b5264 moved the
declaration of sock_update_clone() to inside sock.c, but
this only fixes the problem when CONFIG_CGROUP_MEM_RES_CTLR_KMEM
is also not defined.
This patch here is verified to fix both problems, although
reverting the previous one is not necessary.
Signed-off-by: Glauber Costa <glommer@parallels.com>
CC: David S. Miller <davem@davemloft.net>
CC: Stephen Rothwell <sfr@canb.auug.org.au>
Reported-by: Randy Dunlap <rdunlap@xenotime.net>
Acked-by: Randy Dunlap <rdunlap@xenotime.net>
Signed-off-by: David S. Miller <davem@davemloft.net>
If DEBUG_VM, mem_cgroup_print_bad_page() is called whenever bad_page()
shows a "Bad page state" message, removes page from circulation, adds a
taint and continues. This is at a very low level, often when a spinlock
is held (sometimes when page table lock is held, for example).
We want to recover from this badness, not make it worse: we must not
kmalloc memory here, we must not do a cgroup path lookup via dubious
pointers. No doubt that code was useful to debug a particular case at one
time, and may be again, but take it out of the mainline kernel.
Signed-off-by: Hugh Dickins <hughd@google.com>
Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This patch started off as a cleanup: __split_huge_page_refcounts() has to
cope with two scenarios, when the hugepage being split is already on LRU,
and when it is not; but why does it have to split that accounting across
three different sites? Consolidate it in lru_add_page_tail(), handling
evictable and unevictable alike, and use standard add_page_to_lru_list()
when accounting is needed (when the head is not yet on LRU).
But a recent regression in -next, I guess the removal of PageCgroupAcctLRU
test from mem_cgroup_split_huge_fixup(), makes this now a necessary fix:
under load, the MEM_CGROUP_ZSTAT count was wrapping to a huge number,
messing up reclaim calculations and causing a freeze at rmdir of cgroup.
Add a VM_BUG_ON to mem_cgroup_lru_del_list() when we're about to wrap that
count - this has not been the only such incident. Document that
lru_add_page_tail() is for Transparent HugePages by #ifdef around it.
Signed-off-by: Hugh Dickins <hughd@google.com>
Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We already have for_each_node(node) define in nodemask.h, better to use it.
Signed-off-by: Bob Liu <lliubbo@gmail.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Now, at LRU handling, memory cgroup needs to do complicated works to see
valid pc->mem_cgroup, which may be overwritten.
This patch is for relaxing the protocol. This patch guarantees
- when pc->mem_cgroup is overwritten, page must not be on LRU.
By this, LRU routine can believe pc->mem_cgroup and don't need to check
bits on pc->flags. This new rule may adds small overheads to swapin. But
in most case, lru handling gets faster.
After this patch, PCG_ACCT_LRU bit is obsolete and removed.
[akpm@linux-foundation.org: remove unneeded VM_BUG_ON(), restore hannes's christmas tree]
[akpm@linux-foundation.org: clean up code comment]
[hughd@google.com: fix NULL mem_cgroup_try_charge]
Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Miklos Szeredi <mszeredi@suse.cz>
Acked-by: Michal Hocko <mhocko@suse.cz>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Ying Han <yinghan@google.com>
Signed-off-by: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This is a preparation before removing a flag PCG_ACCT_LRU in page_cgroup
and reducing atomic ops/complexity in memcg LRU handling.
In some cases, pages are added to lru before charge to memcg and pages
are not classfied to memory cgroup at lru addtion. Now, the lru where
the page should be added is determined a bit in page_cgroup->flags and
pc->mem_cgroup. I'd like to remove the check of flag.
To handle the case pc->mem_cgroup may contain stale pointers if pages
are added to LRU before classification. This patch resets
pc->mem_cgroup to root_mem_cgroup before lru additions.
[akpm@linux-foundation.org: fix CONFIG_CGROUP_MEM_CONT=n build]
[hughd@google.com: fix CONFIG_CGROUP_MEM_RES_CTLR=y CONFIG_CGROUP_MEM_RES_CTLR_SWAP=n build]
[akpm@linux-foundation.org: ksm.c needs memcontrol.h, per Michal]
[hughd@google.com: stop oops in mem_cgroup_reset_owner()]
[hughd@google.com: fix page migration to reset_owner]
Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Miklos Szeredi <mszeredi@suse.cz>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Ying Han <yinghan@google.com>
Signed-off-by: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This patch simplifies LRU handling of racy case (memcg+SwapCache). At
charging, SwapCache tend to be on LRU already. So, before overwriting
pc->mem_cgroup, the page must be removed from LRU and added to LRU
later.
This patch does
spin_lock(zone->lru_lock);
if (PageLRU(page))
remove from LRU
overwrite pc->mem_cgroup
if (PageLRU(page))
add to new LRU.
spin_unlock(zone->lru_lock);
And guarantee all pages are not on LRU at modifying pc->mem_cgroup.
This patch also unfies lru handling of replace_page_cache() and
swapin.
Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Miklos Szeredi <mszeredi@suse.cz>
Acked-by: Michal Hocko <mhocko@suse.cz>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Ying Han <yinghan@google.com>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This patch is a clean up. No functional/logical changes.
Because of commit ef6a3c6311 ("mm: add replace_page_cache_page()
function") , FUSE uses replace_page_cache() instead of
add_to_page_cache(). Then, mem_cgroup_cache_charge() is not called
against FUSE's pages from splice.
So now, mem_cgroup_cache_charge() gets pages that are not on the LRU
with the exception of PageSwapCache pages. For checking,
WARN_ON_ONCE(PageLRU(page)) is added.
Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Miklos Szeredi <mszeredi@suse.cz>
Acked-by: Michal Hocko <mhocko@suse.cz>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Ying Han <yinghan@google.com>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The oom killer relies on logic that identifies threads that have already
been oom killed when scanning the tasklist and, if found, deferring
until such threads have exited. This is done by checking for any
candidate threads that have the TIF_MEMDIE bit set.
For memcg ooms, candidate threads are first found by calling
task_in_mem_cgroup() since the oom killer should not defer if there's an
oom killed thread in another memcg.
Unfortunately, task_in_mem_cgroup() excludes threads if they have
detached their mm in the process of exiting so TIF_MEMDIE is never
detected for such conditions. This is different for global, mempolicy,
and cpuset oom conditions where a detached mm is only excluded after
checking for TIF_MEMDIE and deferring, if necessary, in
select_bad_process().
The fix is to return true if a task has a detached mm but is still in
the memcg or its hierarchy that is currently oom. This will allow the
oom killer to appropriately defer rather than kill unnecessarily or, in
the worst case, panic the machine if nothing else is available to kill.
Signed-off-by: David Rientjes <rientjes@google.com>
Acked-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Balbir Singh <bsingharora@gmail.com>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
If we are not able to allocate tree nodes for all NUMA nodes then we
should release those that were allocated.
Signed-off-by: Michal Hocko <mhocko@suse.cz>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Hugh Dickins <hughd@google.com>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
There are multiple places which need to get the swap_cgroup address, so
add a helper function:
static struct swap_cgroup *swap_cgroup_getsc(swp_entry_t ent,
struct swap_cgroup_ctrl **ctrl);
to simplify the code.
Signed-off-by: Bob Liu <lliubbo@gmail.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Johannes Weiner <jweiner@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
mem_cgroup_uncharge_page() is only called on either freshly allocated
pages without page->mapping or on rmapped PageAnon() pages. There is no
need to check for a page->mapping that is not an anon_vma.
Signed-off-by: Johannes Weiner <jweiner@redhat.com>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
All callsites pass in freshly allocated pages and a valid mm. As a
result, all checks pertaining to the page's mapcount, page->mapping or the
fallback to init_mm are unneeded.
Signed-off-by: Johannes Weiner <jweiner@redhat.com>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: David Rientjes <rientjes@google.com>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pages have their corresponding page_cgroup descriptors set up before
they are used in userspace, and thus managed by a memory cgroup.
The only time where lookup_page_cgroup() can return NULL is in the
CONFIG_DEBUG_VM-only page sanity checking code that executes while
feeding pages into the page allocator for the first time.
Remove the NULL checks against lookup_page_cgroup() results from all
callsites where we know that corresponding page_cgroup descriptors must
be allocated, and add a comment to the callsite that actually does have
to check the return value.
[hughd@google.com: stop oops in mem_cgroup_update_page_stat()]
Signed-off-by: Johannes Weiner <jweiner@redhat.com>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The fault accounting functions have a single, memcg-internal user, so they
don't need to be global. In fact, their one-line bodies can be directly
folded into the caller. And since faults happen one at a time, use
this_cpu_inc() directly instead of this_cpu_add(foo, 1).
Signed-off-by: Johannes Weiner <jweiner@redhat.com>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Acked-by: Balbir Singh <bsingharora@gmail.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Only the ratelimit checks themselves have to run with preemption
disabled, the resulting actions - checking for usage thresholds,
updating the soft limit tree - can and should run with preemption
enabled.
Signed-off-by: Johannes Weiner <jweiner@redhat.com>
Reported-by: Yong Zhang <yong.zhang0@gmail.com>
Tested-by: Yong Zhang <yong.zhang0@gmail.com>
Reported-by: Luis Henriques <henrix@camandro.org>
Tested-by: Luis Henriques <henrix@camandro.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
In split_huge_page(), mem_cgroup_split_huge_fixup() is called to handle
page_cgroup modifcations. It takes move_lock_page_cgroup() and modifies
page_cgroup and LRU accounting jobs and called HPAGE_PMD_SIZE - 1 times.
But thinking again,
- compound_lock() is held at move_accout...then, it's not necessary
to take move_lock_page_cgroup().
- LRU is locked and all tail pages will go into the same LRU as
head is now on.
- page_cgroup is contiguous in huge page range.
This patch fixes mem_cgroup_split_huge_fixup() as to be called once per
hugepage and reduce costs for spliting.
[akpm@linux-foundation.org: fix typo, per Michal]
Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Reviewed-by: Michal Hocko <mhocko@suse.cz>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Now that all code that operated on global per-zone LRU lists is
converted to operate on per-memory cgroup LRU lists instead, there is no
reason to keep the double-LRU scheme around any longer.
The pc->lru member is removed and page->lru is linked directly to the
per-memory cgroup LRU lists, which removes two pointers from a
descriptor that exists for every page frame in the system.
Signed-off-by: Johannes Weiner <jweiner@redhat.com>
Signed-off-by: Hugh Dickins <hughd@google.com>
Signed-off-by: Ying Han <yinghan@google.com>
Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Reviewed-by: Michal Hocko <mhocko@suse.cz>
Reviewed-by: Kirill A. Shutemov <kirill@shutemov.name>
Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Michel Lespinasse <walken@google.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Minchan Kim <minchan.kim@gmail.com>
Cc: Christoph Hellwig <hch@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Having a unified structure with a LRU list set for both global zones and
per-memcg zones allows to keep that code simple which deals with LRU
lists and does not care about the container itself.
Once the per-memcg LRU lists directly link struct pages, the isolation
function and all other list manipulations are shared between the memcg
case and the global LRU case.
Signed-off-by: Johannes Weiner <jweiner@redhat.com>
Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Reviewed-by: Michal Hocko <mhocko@suse.cz>
Reviewed-by: Kirill A. Shutemov <kirill@shutemov.name>
Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: Ying Han <yinghan@google.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Michel Lespinasse <walken@google.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Minchan Kim <minchan.kim@gmail.com>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
root_mem_cgroup, lacking a configurable limit, was never subject to
limit reclaim, so the pages charged to it could be kept off its LRU
lists. They would be found on the global per-zone LRU lists upon
physical memory pressure and it made sense to avoid uselessly linking
them to both lists.
The global per-zone LRU lists are about to go away on memcg-enabled
kernels, with all pages being exclusively linked to their respective
per-memcg LRU lists. As a result, pages of the root_mem_cgroup must
also be linked to its LRU lists again. This is purely about the LRU
list, root_mem_cgroup is still not charged.
The overhead is temporary until the double-LRU scheme is going away
completely.
Signed-off-by: Johannes Weiner <jweiner@redhat.com>
Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Reviewed-by: Michal Hocko <mhocko@suse.cz>
Reviewed-by: Kirill A. Shutemov <kirill@shutemov.name>
Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: Ying Han <yinghan@google.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Michel Lespinasse <walken@google.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Minchan Kim <minchan.kim@gmail.com>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Memory cgroup limit reclaim and traditional global pressure reclaim will
soon share the same code to reclaim from a hierarchical tree of memory
cgroups.
In preparation of this, move the two right next to each other in
shrink_zone().
The mem_cgroup_hierarchical_reclaim() polymath is split into a soft
limit reclaim function, which still does hierarchy walking on its own,
and a limit (shrinking) reclaim function, which relies on generic
reclaim code to walk the hierarchy.
Signed-off-by: Johannes Weiner <jweiner@redhat.com>
Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Reviewed-by: Michal Hocko <mhocko@suse.cz>
Reviewed-by: Kirill A. Shutemov <kirill@shutemov.name>
Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: Ying Han <yinghan@google.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Michel Lespinasse <walken@google.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Minchan Kim <minchan.kim@gmail.com>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Memory cgroup limit reclaim currently picks one memory cgroup out of the
target hierarchy, remembers it as the last scanned child, and reclaims
all zones in it with decreasing priority levels.
The new hierarchy reclaim code will pick memory cgroups from the same
hierarchy concurrently from different zones and priority levels, it
becomes necessary that hierarchy roots not only remember the last
scanned child, but do so for each zone and priority level.
Until now, we reclaimed memcgs like this:
mem = mem_cgroup_iter(root)
for each priority level:
for each zone in zonelist:
reclaim(mem, zone)
But subsequent patches will move the memcg iteration inside the loop
over the zones:
for each priority level:
for each zone in zonelist:
mem = mem_cgroup_iter(root)
reclaim(mem, zone)
And to keep with the original scan order - memcg -> priority -> zone -
the last scanned memcg has to be remembered per zone and per priority
level.
Furthermore, global reclaim will be switched to the hierarchy walk as
well. Different from limit reclaim, which can just recheck the limit
after some reclaim progress, its target is to scan all memcgs for the
desired zone pages, proportional to the memcg size, and so reliably
detecting a full hierarchy round-trip will become crucial.
Currently, the code relies on one reclaimer encountering the same memcg
twice, but that is error-prone with concurrent reclaimers. Instead, use
a generation counter that is increased every time the child with the
highest ID has been visited, so that reclaimers can stop when the
generation changes.
Signed-off-by: Johannes Weiner <jweiner@redhat.com>
Reviewed-by: Kirill A. Shutemov <kirill@shutemov.name>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: Ying Han <yinghan@google.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Michel Lespinasse <walken@google.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Minchan Kim <minchan.kim@gmail.com>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The memcg naturalization series:
Memory control groups are currently bolted onto the side of
traditional memory management in places where better integration would
be preferrable. To reclaim memory, for example, memory control groups
maintain their own LRU list and reclaim strategy aside from the global
per-zone LRU list reclaim. But an extra list head for each existing
page frame is expensive and maintaining it requires additional code.
This patchset disables the global per-zone LRU lists on memory cgroup
configurations and converts all its users to operate on the per-memory
cgroup lists instead. As LRU pages are then exclusively on one list,
this saves two list pointers for each page frame in the system:
page_cgroup array size with 4G physical memory
vanilla: allocated 31457280 bytes of page_cgroup
patched: allocated 15728640 bytes of page_cgroup
At the same time, system performance for various workloads is
unaffected:
100G sparse file cat, 4G physical memory, 10 runs, to test for code
bloat in the traditional LRU handling and kswapd & direct reclaim
paths, without/with the memory controller configured in
vanilla: 71.603(0.207) seconds
patched: 71.640(0.156) seconds
vanilla: 79.558(0.288) seconds
patched: 77.233(0.147) seconds
100G sparse file cat in 1G memory cgroup, 10 runs, to test for code
bloat in the traditional memory cgroup LRU handling and reclaim path
vanilla: 96.844(0.281) seconds
patched: 94.454(0.311) seconds
4 unlimited memcgs running kbuild -j32 each, 4G physical memory, 500M
swap on SSD, 10 runs, to test for regressions in kswapd & direct
reclaim using per-memcg LRU lists with multiple memcgs and multiple
allocators within each memcg
vanilla: 717.722(1.440) seconds [ 69720.100(11600.835) majfaults ]
patched: 714.106(2.313) seconds [ 71109.300(14886.186) majfaults ]
16 unlimited memcgs running kbuild, 1900M hierarchical limit, 500M
swap on SSD, 10 runs, to test for regressions in hierarchical memcg
setups
vanilla: 2742.058(1.992) seconds [ 26479.600(1736.737) majfaults ]
patched: 2743.267(1.214) seconds [ 27240.700(1076.063) majfaults ]
This patch:
There are currently two different implementations of iterating over a
memory cgroup hierarchy tree.
Consolidate them into one worker function and base the convenience
looping-macros on top of it.
Signed-off-by: Johannes Weiner <jweiner@redhat.com>
Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Reviewed-by: Michal Hocko <mhocko@suse.cz>
Reviewed-by: Kirill A. Shutemov <kirill@shutemov.name>
Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: Ying Han <yinghan@google.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Michel Lespinasse <walken@google.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Minchan Kim <minchan.kim@gmail.com>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Commit ef6a3c6311 ("mm: add replace_page_cache_page() function") added a
function replace_page_cache_page(). This function replaces a page in the
radix-tree with a new page. WHen doing this, memory cgroup needs to fix
up the accounting information. memcg need to check PCG_USED bit etc.
In some(many?) cases, 'newpage' is on LRU before calling
replace_page_cache(). So, memcg's LRU accounting information should be
fixed, too.
This patch adds mem_cgroup_replace_page_cache() and removes the old hooks.
In that function, old pages will be unaccounted without touching
res_counter and new page will be accounted to the memcg (of old page).
WHen overwriting pc->mem_cgroup of newpage, take zone->lru_lock and avoid
races with LRU handling.
Background:
replace_page_cache_page() is called by FUSE code in its splice() handling.
Here, 'newpage' is replacing oldpage but this newpage is not a newly allocated
page and may be on LRU. LRU mis-accounting will be critical for memory cgroup
because rmdir() checks the whole LRU is empty and there is no account leak.
If a page is on the other LRU than it should be, rmdir() will fail.
This bug was added in March 2011, but no bug report yet. I guess there
are not many people who use memcg and FUSE at the same time with upstream
kernels.
The result of this bug is that admin cannot destroy a memcg because of
account leak. So, no panic, no deadlock. And, even if an active cgroup
exist, umount can succseed. So no problem at shutdown.
Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: Miklos Szeredi <mszeredi@suse.cz>
Cc: Hugh Dickins <hughd@google.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* git://git.kernel.org/pub/scm/linux/kernel/git/davem/net:
igmp: Avoid zero delay when receiving odd mixture of IGMP queries
netdev: make net_device_ops const
bcm63xx: make ethtool_ops const
usbnet: make ethtool_ops const
net: Fix build with INET disabled.
net: introduce netif_addr_lock_nested() and call if when appropriate
net: correct lock name in dev_[uc/mc]_sync documentations.
net: sk_update_clone is only used in net/core/sock.c
8139cp: fix missing napi_gro_flush.
pktgen: set correct max and min in pktgen_setup_inject()
smsc911x: Unconditionally include linux/smscphy.h in smsc911x.h
asix: fix infinite loop in rx_fixup()
net: Default UDP and UNIX diag to 'n'.
r6040: fix typo in use of MCR0 register bits
net: fix sock_clone reference mismatch with tcp memcontrol
* 'for-3.3' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup: (21 commits)
cgroup: fix to allow mounting a hierarchy by name
cgroup: move assignement out of condition in cgroup_attach_proc()
cgroup: Remove task_lock() from cgroup_post_fork()
cgroup: add sparse annotation to cgroup_iter_start() and cgroup_iter_end()
cgroup: mark cgroup_rmdir_waitq and cgroup_attach_proc() as static
cgroup: only need to check oldcgrp==newgrp once
cgroup: remove redundant get/put of task struct
cgroup: remove redundant get/put of old css_set from migrate
cgroup: Remove unnecessary task_lock before fetching css_set on migration
cgroup: Drop task_lock(parent) on cgroup_fork()
cgroups: remove redundant get/put of css_set from css_set_check_fetched()
resource cgroups: remove bogus cast
cgroup: kill subsys->can_attach_task(), pre_attach() and attach_task()
cgroup, cpuset: don't use ss->pre_attach()
cgroup: don't use subsys->can_attach_task() or ->attach_task()
cgroup: introduce cgroup_taskset and use it in subsys->can_attach(), cancel_attach() and attach()
cgroup: improve old cgroup handling in cgroup_attach_proc()
cgroup: always lock threadgroup during migration
threadgroup: extend threadgroup_lock() to cover exit and exec
threadgroup: rename signal->threadgroup_fork_lock to ->group_rwsem
...
Fix up conflict in kernel/cgroup.c due to commit e0197aae59: "cgroups:
fix a css_set not found bug in cgroup_attach_proc" that already
mentioned that the bug is fixed (differently) in Tejun's cgroup
patchset. This one, in other words.
Sockets can also be created through sock_clone. Because it copies
all data in the sock structure, it also copies the memcg-related pointer,
and all should be fine. However, since we now use reference counts in
socket creation, we are left with some sockets that have no reference
counts. It matters when we destroy them, since it leads to a mismatch.
Signed-off-by: Glauber Costa <glommer@parallels.com>
CC: David S. Miller <davem@davemloft.net>
CC: Greg Thelen <gthelen@google.com>
CC: Hiroyouki Kamezawa <kamezawa.hiroyu@jp.fujitsu.com>
CC: Laurent Chavey <chavey@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Conflicts:
net/bluetooth/l2cap_core.c
Just two overlapping changes, one added an initialization of
a local variable, and another change added a new local variable.
Signed-off-by: David S. Miller <davem@davemloft.net>
This reverts commit e5671dfae5.
After a follow up discussion with Michal, it was agreed it would
be better to leave the kmem controller with just the tcp files,
deferring the behavior of the other general memory.kmem.* files
for a later time, when more caches are controlled. This is because
generic kmem files are not used by tcp accounting and it is
not clear how other slab caches would fit into the scheme.
We are reverting the original commit so we can track the reference.
Part of the patch is kept, because it was used by the later tcp
code. Conflicts are shown in the bottom. init/Kconfig is removed from
the revert entirely.
Signed-off-by: Glauber Costa <glommer@parallels.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
CC: Kirill A. Shutemov <kirill@shutemov.name>
CC: Paul Menage <paul@paulmenage.org>
CC: Greg Thelen <gthelen@google.com>
CC: Johannes Weiner <jweiner@redhat.com>
CC: David S. Miller <davem@davemloft.net>
Conflicts:
Documentation/cgroups/memory.txt
mm/memcontrol.c
Signed-off-by: David S. Miller <davem@davemloft.net>
If the request is to create non-root group and we fail to meet it, we
should leave the root unchanged.
Signed-off-by: Hillf Danton <dhillf@gmail.com>
Acked-by: Hugh Dickins <hughd@google.com>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently, there's no way to pass multiple tasks to cgroup_subsys
methods necessitating the need for separate per-process and per-task
methods. This patch introduces cgroup_taskset which can be used to
pass multiple tasks and their associated cgroups to cgroup_subsys
methods.
Three methods - can_attach(), cancel_attach() and attach() - are
converted to use cgroup_taskset. This unifies passed parameters so
that all methods have access to all information. Conversions in this
patchset are identical and don't introduce any behavior change.
-v2: documentation updated as per Paul Menage's suggestion.
Signed-off-by: Tejun Heo <tj@kernel.org>
Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Reviewed-by: Frederic Weisbecker <fweisbec@gmail.com>
Acked-by: Paul Menage <paul@paulmenage.org>
Acked-by: Li Zefan <lizf@cn.fujitsu.com>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: James Morris <jmorris@namei.org>
This patch introduces memory pressure controls for the tcp
protocol. It uses the generic socket memory pressure code
introduced in earlier patches, and fills in the
necessary data in cg_proto struct.
Signed-off-by: Glauber Costa <glommer@parallels.com>
Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujtisu.com>
CC: Eric W. Biederman <ebiederm@xmission.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
The goal of this work is to move the memory pressure tcp
controls to a cgroup, instead of just relying on global
conditions.
To avoid excessive overhead in the network fast paths,
the code that accounts allocated memory to a cgroup is
hidden inside a static_branch(). This branch is patched out
until the first non-root cgroup is created. So when nobody
is using cgroups, even if it is mounted, no significant performance
penalty should be seen.
This patch handles the generic part of the code, and has nothing
tcp-specific.
Signed-off-by: Glauber Costa <glommer@parallels.com>
Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujtsu.com>
CC: Kirill A. Shutemov <kirill@shutemov.name>
CC: David S. Miller <davem@davemloft.net>
CC: Eric W. Biederman <ebiederm@xmission.com>
CC: Eric Dumazet <eric.dumazet@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
This patch lays down the foundation for the kernel memory component
of the Memory Controller.
As of today, I am only laying down the following files:
* memory.independent_kmem_limit
* memory.kmem.limit_in_bytes (currently ignored)
* memory.kmem.usage_in_bytes (always zero)
Signed-off-by: Glauber Costa <glommer@parallels.com>
CC: Kirill A. Shutemov <kirill@shutemov.name>
CC: Paul Menage <paul@paulmenage.org>
CC: Greg Thelen <gthelen@google.com>
CC: Johannes Weiner <jweiner@redhat.com>
CC: Michal Hocko <mhocko@suse.cz>
Signed-off-by: David S. Miller <davem@davemloft.net>
* 'modsplit-Oct31_2011' of git://git.kernel.org/pub/scm/linux/kernel/git/paulg/linux: (230 commits)
Revert "tracing: Include module.h in define_trace.h"
irq: don't put module.h into irq.h for tracking irqgen modules.
bluetooth: macroize two small inlines to avoid module.h
ip_vs.h: fix implicit use of module_get/module_put from module.h
nf_conntrack.h: fix up fallout from implicit moduleparam.h presence
include: replace linux/module.h with "struct module" wherever possible
include: convert various register fcns to macros to avoid include chaining
crypto.h: remove unused crypto_tfm_alg_modname() inline
uwb.h: fix implicit use of asm/page.h for PAGE_SIZE
pm_runtime.h: explicitly requires notifier.h
linux/dmaengine.h: fix implicit use of bitmap.h and asm/page.h
miscdevice.h: fix up implicit use of lists and types
stop_machine.h: fix implicit use of smp.h for smp_processor_id
of: fix implicit use of errno.h in include/linux/of.h
of_platform.h: delete needless include <linux/module.h>
acpi: remove module.h include from platform/aclinux.h
miscdevice.h: delete unnecessary inclusion of module.h
device_cgroup.h: delete needless include <linux/module.h>
net: sch_generic remove redundant use of <linux/module.h>
net: inet_timewait_sock doesnt need <linux/module.h>
...
Fix up trivial conflicts (other header files, and removal of the ab3550 mfd driver) in
- drivers/media/dvb/frontends/dibx000_common.c
- drivers/media/video/{mt9m111.c,ov6650.c}
- drivers/mfd/ab3550-core.c
- include/linux/dmaengine.h
Various code in memcontrol.c () calls this_cpu_read() on the calculations
to be done from two different percpu variables, or does an open-coded
read-modify-write on a single percpu variable.
Disable preemption throughout these operations so that the writes go to
the correct palces.
[hannes@cmpxchg.org: added this_cpu to __this_cpu conversion]
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Cc: Greg Thelen <gthelen@google.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Balbir Singh <balbir@linux.vnet.ibm.com>
Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Christoph Lameter <cl@linux.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
There is a potential race between a thread charging a page and another
thread putting it back to the LRU list:
charge: putback:
SetPageCgroupUsed SetPageLRU
PageLRU && add to memcg LRU PageCgroupUsed && add to memcg LRU
The order of setting one flag and checking the other is crucial, otherwise
the charge may observe !PageLRU while the putback observes !PageCgroupUsed
and the page is not linked to the memcg LRU at all.
Global memory pressure may fix this by trying to isolate and putback the
page for reclaim, where that putback would link it to the memcg LRU again.
Without that, the memory cgroup is undeletable due to a charge whose
physical page can not be found and moved out.
Signed-off-by: Johannes Weiner <jweiner@redhat.com>
Cc: Ying Han <yinghan@google.com>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: Michal Hocko <mhocko@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Reclaim decides to skip scanning an active list when the corresponding
inactive list is above a certain size in comparison to leave the assumed
working set alone while there are still enough reclaim candidates around.
The memcg implementation of comparing those lists instead reports whether
the whole memcg is low on the requested type of inactive pages,
considering all nodes and zones.
This can lead to an oversized active list not being scanned because of the
state of the other lists in the memcg, as well as an active list being
scanned while its corresponding inactive list has enough pages.
Not only is this wrong, it's also a scalability hazard, because the global
memory state over all nodes and zones has to be gathered for each memcg
and zone scanned.
Make these calculations purely based on the size of the two LRU lists
that are actually affected by the outcome of the decision.
Signed-off-by: Johannes Weiner <jweiner@redhat.com>
Reviewed-by: Rik van Riel <riel@redhat.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Cc: Balbir Singh <bsingharora@gmail.com>
Reviewed-by: Minchan Kim <minchan.kim@gmail.com>
Reviewed-by: Ying Han <yinghan@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
If somebody is touching data too early, it might be easier to diagnose a
problem when dereferencing NULL at mem->info.nodeinfo[node] than trying to
understand why mem_cgroup_per_zone is [un|partly]initialized.
Signed-off-by: Igor Mammedov <imammedo@redhat.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Before calling schedule_timeout(), task state should be changed.
Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The memcg code sometimes uses "struct mem_cgroup *mem" and sometimes uses
"struct mem_cgroup *memcg". Rename all mem variables to memcg in source
file.
Signed-off-by: Raghavendra K T <raghavendra.kt@linux.vnet.ibm.com>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Change ISOLATE_XXX macro with bitwise isolate_mode_t type. Normally,
macro isn't recommended as it's type-unsafe and making debugging harder as
symbol cannot be passed throught to the debugger.
Quote from Johannes
" Hmm, it would probably be cleaner to fully convert the isolation mode
into independent flags. INACTIVE, ACTIVE, BOTH is currently a
tri-state among flags, which is a bit ugly."
This patch moves isolate mode from swap.h to mmzone.h by memcontrol.h
Signed-off-by: Minchan Kim <minchan.kim@gmail.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Rik van Riel <riel@redhat.com>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
These files were getting <linux/module.h> via an implicit include
path, but we want to crush those out of existence since they cost
time during compiles of processing thousands of lines of headers
for no reason. Give them the lightweight header that just contains
the EXPORT_SYMBOL infrastructure.
Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
Revert the post-3.0 commit 82f9d486e5 ("memcg: add
memory.vmscan_stat").
The implementation of per-memcg reclaim statistics violates how memcg
hierarchies usually behave: hierarchically.
The reclaim statistics are accounted to child memcgs and the parent
hitting the limit, but not to hierarchy levels in between. Usually,
hierarchical statistics are perfectly recursive, with each level
representing the sum of itself and all its children.
Since this exports statistics to userspace, this may lead to confusion
and problems with changing things after the release, so revert it now,
we can try again later.
Signed-off-by: Johannes Weiner <jweiner@redhat.com>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Ying Han <yinghan@google.com>
Cc: Balbir Singh <bsingharora@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Commit 79dfdaccd1 ("memcg: make oom_lock 0 and 1 based rather than
counter") tried to oom lock the hierarchy and roll back upon
encountering an already locked memcg.
The code is confused when it comes to detecting a locked memcg, though,
so it would fail and rollback after locking one memcg and encountering
an unlocked second one.
The result is that oom-locking hierarchies fails unconditionally and
that every oom killer invocation simply goes to sleep on the oom
waitqueue forever. The tasks practically hang forever without anyone
intervening, possibly holding locks that trip up unrelated tasks, too.
Signed-off-by: Johannes Weiner <jweiner@redhat.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Commit d1a05b6973 ("memcg do not try to drain per-cpu caches without
pages") added a drain_local_stock() call to a preemptible section.
The draining task looks up the cpu-local stock twice to set the
draining-flag, then to drain the stock and clear the flag again. If the
task is migrated to a different CPU in between, noone will clear the
flag on the first stock and it will be forever undrainable. Its charge
can not be recovered and the cgroup can not be deleted anymore.
Properly pin the task to the executing CPU while draining stocks.
Signed-off-by: Johannes Weiner <jweiner@redhat.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com
Acked-by: Michal Hocko <mhocko@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This reverts commit 8521fc50d4.
The patch incorrectly assumes that using atomic FLUSHING_CACHED_CHARGE
bit operations is sufficient but that is not true. Johannes Weiner has
reported a crash during parallel memory cgroup removal:
BUG: unable to handle kernel NULL pointer dereference at 0000000000000018
IP: [<ffffffff81083b70>] css_is_ancestor+0x20/0x70
Oops: 0000 [#1] PREEMPT SMP
Pid: 19677, comm: rmdir Tainted: G W 3.0.0-mm1-00188-gf38d32b #35 ECS MCP61M-M3/MCP61M-M3
RIP: 0010:[<ffffffff81083b70>] css_is_ancestor+0x20/0x70
RSP: 0018:ffff880077b09c88 EFLAGS: 00010202
Process rmdir (pid: 19677, threadinfo ffff880077b08000, task ffff8800781bb310)
Call Trace:
[<ffffffff810feba3>] mem_cgroup_same_or_subtree+0x33/0x40
[<ffffffff810feccf>] drain_all_stock+0x11f/0x170
[<ffffffff81103211>] mem_cgroup_force_empty+0x231/0x6d0
[<ffffffff811036c4>] mem_cgroup_pre_destroy+0x14/0x20
[<ffffffff81080559>] cgroup_rmdir+0xb9/0x500
[<ffffffff81114d26>] vfs_rmdir+0x86/0xe0
[<ffffffff81114e7b>] do_rmdir+0xfb/0x110
[<ffffffff81114ea6>] sys_rmdir+0x16/0x20
[<ffffffff8154d76b>] system_call_fastpath+0x16/0x1b
We are crashing because we try to dereference cached memcg when we are
checking whether we should wait for draining on the cache. The cache is
already cleaned up, though.
There is also a theoretical chance that the cached memcg gets freed
between we test for the FLUSHING_CACHED_CHARGE and dereference it in
mem_cgroup_same_or_subtree:
CPU0 CPU1 CPU2
mem=stock->cached
stock->cached=NULL
clear_bit
test_and_set_bit
test_bit() ...
<preempted> mem_cgroup_destroy
use after free
The percpu_charge_mutex protected from this race because sync draining
is exclusive.
It is safer to revert now and come up with a more parallel
implementation later.
Signed-off-by: Michal Hocko <mhocko@suse.cz>
Reported-by: Johannes Weiner <jweiner@redhat.com>
Acked-by: Johannes Weiner <jweiner@redhat.com>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: stable@kernel.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Remove mem_cgroup_shmem_charge_fallback(): it was only required when we
had to move swappage to filecache with GFP_NOWAIT.
Remove the GFP_NOWAIT special case from mem_cgroup_cache_charge(), by
moving its call out from shmem_add_to_page_cache() to two of thats three
callers. But leave it doing mem_cgroup_uncharge_cache_page() on error:
although asymmetrical, it's easier for all 3 callers to handle.
These two changes would also be appropriate if anyone were to start
using shmem_read_mapping_page_gfp() with GFP_NOWAIT.
Remove mem_cgroup_get_shmem_target(): mc_handle_file_pte() can test
radix_tree_exceptional_entry() to get what it needs for itself.
Signed-off-by: Hugh Dickins <hughd@google.com>
Acked-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
percpu_charge_mutex protects from multiple simultaneous per-cpu charge
caches draining because we might end up having too many work items. At
least this was the case until commit 26fe616844 ("memcg: fix percpu
cached charge draining frequency") when we introduced a more targeted
draining for async mode.
Now that also sync draining is targeted we can safely remove mutex
because we will not send more work than the current number of CPUs.
FLUSHING_CACHED_CHARGE protects from sending the same work multiple
times and stock->nr_pages == 0 protects from pointless sending a work if
there is obviously nothing to be done. This is of course racy but we
can live with it as the race window is really small (we would have to
see FLUSHING_CACHED_CHARGE cleared while nr_pages would be still
non-zero).
The only remaining place where we can race is synchronous mode when we
rely on FLUSHING_CACHED_CHARGE test which might have been set by other
drainer on the same group but we should wait in that case as well.
Signed-off-by: Michal Hocko <mhocko@suse.cz>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We are checking whether a given two groups are same or at least in the
same subtree of a hierarchy at several places. Let's make a helper for
it to make code easier to read.
Signed-off-by: Michal Hocko <mhocko@suse.cz>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Balbir Singh <bsingharora@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently we have two ways how to drain per-CPU caches for charges.
drain_all_stock_sync will synchronously drain all caches while
drain_all_stock_async will asynchronously drain only those that refer to
a given memory cgroup or its subtree in hierarchy. Targeted async
draining has been introduced by 26fe6168 (memcg: fix percpu cached
charge draining frequency) to reduce the cpu workers number.
sync draining is currently triggered only from mem_cgroup_force_empty
which is triggered only by userspace (mem_cgroup_force_empty_write) or
when a cgroup is removed (mem_cgroup_pre_destroy). Although these are
not usually frequent operations it still makes some sense to do targeted
draining as well, especially if the box has many CPUs.
This patch unifies both methods to use the single code (drain_all_stock)
which relies on the original async implementation and just adds
flush_work to wait on all caches that are still under work for the sync
mode. We are using FLUSHING_CACHED_CHARGE bit check to prevent from
waiting on a work that we haven't triggered. Please note that both sync
and async functions are currently protected by percpu_charge_mutex so we
cannot race with other drainers.
Signed-off-by: Michal Hocko <mhocko@suse.cz>
Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Balbir Singh <bsingharora@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
drain_all_stock_async tries to optimize a work to be done on the work
queue by excluding any work for the current CPU because it assumes that
the context we are called from already tried to charge from that cache
and it's failed so it must be empty already.
While the assumption is correct we can optimize it even more by checking
the current number of pages in the cache. This will also reduce a work
on other CPUs with an empty stock.
For the current CPU we can simply call drain_local_stock rather than
deferring it to the work queue.
[kamezawa.hiroyu@jp.fujitsu.com: use drain_local_stock for current CPU optimization]
Signed-off-by: Michal Hocko <mhocko@suse.cz>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The commit log of 0ae5e89c60 ("memcg: count the soft_limit reclaim
in...") says it adds scanning stats to memory.stat file. But it doesn't
because we considered we needed to make a concensus for such new APIs.
This patch is a trial to add memory.scan_stat. This shows
- the number of scanned pages(total, anon, file)
- the number of rotated pages(total, anon, file)
- the number of freed pages(total, anon, file)
- the number of elaplsed time (including sleep/pause time)
for both of direct/soft reclaim.
The biggest difference with oringinal Ying's one is that this file
can be reset by some write, as
# echo 0 ...../memory.scan_stat
Example of output is here. This is a result after make -j 6 kernel
under 300M limit.
[kamezawa@bluextal ~]$ cat /cgroup/memory/A/memory.scan_stat
[kamezawa@bluextal ~]$ cat /cgroup/memory/A/memory.vmscan_stat
scanned_pages_by_limit 9471864
scanned_anon_pages_by_limit 6640629
scanned_file_pages_by_limit 2831235
rotated_pages_by_limit 4243974
rotated_anon_pages_by_limit 3971968
rotated_file_pages_by_limit 272006
freed_pages_by_limit 2318492
freed_anon_pages_by_limit 962052
freed_file_pages_by_limit 1356440
elapsed_ns_by_limit 351386416101
scanned_pages_by_system 0
scanned_anon_pages_by_system 0
scanned_file_pages_by_system 0
rotated_pages_by_system 0
rotated_anon_pages_by_system 0
rotated_file_pages_by_system 0
freed_pages_by_system 0
freed_anon_pages_by_system 0
freed_file_pages_by_system 0
elapsed_ns_by_system 0
scanned_pages_by_limit_under_hierarchy 9471864
scanned_anon_pages_by_limit_under_hierarchy 6640629
scanned_file_pages_by_limit_under_hierarchy 2831235
rotated_pages_by_limit_under_hierarchy 4243974
rotated_anon_pages_by_limit_under_hierarchy 3971968
rotated_file_pages_by_limit_under_hierarchy 272006
freed_pages_by_limit_under_hierarchy 2318492
freed_anon_pages_by_limit_under_hierarchy 962052
freed_file_pages_by_limit_under_hierarchy 1356440
elapsed_ns_by_limit_under_hierarchy 351386416101
scanned_pages_by_system_under_hierarchy 0
scanned_anon_pages_by_system_under_hierarchy 0
scanned_file_pages_by_system_under_hierarchy 0
rotated_pages_by_system_under_hierarchy 0
rotated_anon_pages_by_system_under_hierarchy 0
rotated_file_pages_by_system_under_hierarchy 0
freed_pages_by_system_under_hierarchy 0
freed_anon_pages_by_system_under_hierarchy 0
freed_file_pages_by_system_under_hierarchy 0
elapsed_ns_by_system_under_hierarchy 0
total_xxxx is for hierarchy management.
This will be useful for further memcg developments and need to be
developped before we do some complicated rework on LRU/softlimit
management.
This patch adds a new struct memcg_scanrecord into scan_control struct.
sc->nr_scanned at el is not designed for exporting information. For
example, nr_scanned is reset frequentrly and incremented +2 at scanning
mapped pages.
To avoid complexity, I added a new param in scan_control which is for
exporting scanning score.
Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Ying Han <yinghan@google.com>
Cc: Andrew Bresticker <abrestic@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Commit 22a668d7c3 ("memcg: fix behavior under memory.limit equals to
memsw.limit") introduced "memsw_is_minimum" flag, which becomes true
when mem_limit == memsw_limit. The flag is checked at the beginning of
reclaim, and "noswap" is set if the flag is true, because using swap is
meaningless in this case.
This works well in most cases, but when we try to shrink mem_limit,
which is the same as memsw_limit now, we might fail to shrink mem_limit
because swap doesn't used.
This patch fixes this behavior by:
- check MEM_CGROUP_RECLAIM_SHRINK at the begining of reclaim
- If it is set, don't set "noswap" flag even if memsw_is_minimum is true.
Signed-off-by: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Cc: Balbir Singh <bsingharora@gmail.com>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Ying Han <yinghan@google.com>
Cc: <stable@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
memcg_oom_mutex is used to protect memcg OOM path and eventfd interface
for oom_control. None of the critical sections which it protects sleep
(eventfd_signal works from atomic context and the rest are simple linked
list resp. oom_lock atomic operations).
Mutex is also too heavyweight for those code paths because it triggers a
lot of scheduling. It also makes makes convoying effects more visible
when we have a big number of oom killing because we take the lock
mutliple times during mem_cgroup_handle_oom so we have multiple places
where many processes can sleep.
Signed-off-by: Michal Hocko <mhocko@suse.cz>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Commit 867578cb ("memcg: fix oom kill behavior") introduced a oom_lock
counter which is incremented by mem_cgroup_oom_lock when we are about to
handle memcg OOM situation. mem_cgroup_handle_oom falls back to a sleep
if oom_lock > 1 to prevent from multiple oom kills at the same time.
The counter is then decremented by mem_cgroup_oom_unlock called from the
same function.
This works correctly but it can lead to serious starvations when we have
many processes triggering OOM and many CPUs available for them (I have
tested with 16 CPUs).
Consider a process (call it A) which gets the oom_lock (the first one
that got to mem_cgroup_handle_oom and grabbed memcg_oom_mutex) and other
processes that are blocked on the mutex. While A releases the mutex and
calls mem_cgroup_out_of_memory others will wake up (one after another)
and increase the counter and fall into sleep (memcg_oom_waitq).
Once A finishes mem_cgroup_out_of_memory it takes the mutex again and
decreases oom_lock and wakes other tasks (if releasing memory by
somebody else - e.g. killed process - hasn't done it yet).
A testcase would look like:
Assume malloc XXX is a program allocating XXX Megabytes of memory
which touches all allocated pages in a tight loop
# swapoff SWAP_DEVICE
# cgcreate -g memory:A
# cgset -r memory.oom_control=0 A
# cgset -r memory.limit_in_bytes= 200M
# for i in `seq 100`
# do
# cgexec -g memory:A malloc 10 &
# done
The main problem here is that all processes still race for the mutex and
there is no guarantee that we will get counter back to 0 for those that
got back to mem_cgroup_handle_oom. In the end the whole convoy
in/decreases the counter but we do not get to 1 that would enable
killing so nothing useful can be done. The time is basically unbounded
because it highly depends on scheduling and ordering on mutex (I have
seen this taking hours...).
This patch replaces the counter by a simple {un}lock semantic. As
mem_cgroup_oom_{un}lock works on the a subtree of a hierarchy we have to
make sure that nobody else races with us which is guaranteed by the
memcg_oom_mutex.
We have to be careful while locking subtrees because we can encounter a
subtree which is already locked: hierarchy:
A
/ \
B \
/\ \
C D E
B - C - D tree might be already locked. While we want to enable locking
E subtree because OOM situations cannot influence each other we
definitely do not want to allow locking A.
Therefore we have to refuse lock if any subtree is already locked and
clear up the lock for all nodes that have been set up to the failure
point.
On the other hand we have to make sure that the rest of the world will
recognize that a group is under OOM even though it doesn't have a lock.
Therefore we have to introduce under_oom variable which is incremented
and decremented for the whole subtree when we enter resp. leave
mem_cgroup_handle_oom. under_oom, unlike oom_lock, doesn't need be
updated under memcg_oom_mutex because its users only check a single
group and they use atomic operations for that.
This can be checked easily by the following test case:
# cgcreate -g memory:A
# cgset -r memory.use_hierarchy=1 A
# cgset -r memory.oom_control=1 A
# cgset -r memory.limit_in_bytes= 100M
# cgset -r memory.memsw.limit_in_bytes= 100M
# cgcreate -g memory:A/B
# cgset -r memory.oom_control=1 A/B
# cgset -r memory.limit_in_bytes=20M
# cgset -r memory.memsw.limit_in_bytes=20M
# cgexec -g memory:A/B malloc 30 & #->this will be blocked by OOM of group B
# cgexec -g memory:A malloc 80 & #->this will be blocked by OOM of group A
While B gets oom_lock A will not get it. Both of them go into sleep and
wait for an external action. We can make the limit higher for A to
enforce waking it up
# cgset -r memory.memsw.limit_in_bytes=300M A
# cgset -r memory.limit_in_bytes=300M A
malloc in A has to wake up even though it doesn't have oom_lock.
Finally, the unlock path is very easy because we always unlock only the
subtree we have locked previously while we always decrement under_oom.
Signed-off-by: Michal Hocko <mhocko@suse.cz>
Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Balbir Singh <bsingharora@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
In mm/memcontrol.c, there are many lru stat functions as..
mem_cgroup_zone_nr_lru_pages
mem_cgroup_node_nr_file_lru_pages
mem_cgroup_nr_file_lru_pages
mem_cgroup_node_nr_anon_lru_pages
mem_cgroup_nr_anon_lru_pages
mem_cgroup_node_nr_unevictable_lru_pages
mem_cgroup_nr_unevictable_lru_pages
mem_cgroup_node_nr_lru_pages
mem_cgroup_nr_lru_pages
mem_cgroup_get_local_zonestat
Some of them are under #ifdef MAX_NUMNODES >1 and others are not.
This seems bad. This patch consolidates all functions into
mem_cgroup_zone_nr_lru_pages()
mem_cgroup_node_nr_lru_pages()
mem_cgroup_nr_lru_pages()
For these functions, "which LRU?" information is passed by a mask.
example:
mem_cgroup_nr_lru_pages(mem, BIT(LRU_ACTIVE_ANON))
And I added some macro as ALL_LRU, ALL_LRU_FILE, ALL_LRU_ANON.
example:
mem_cgroup_nr_lru_pages(mem, ALL_LRU)
BTW, considering layout of NUMA memory placement of counters, this patch seems
to be better.
Now, when we gather all LRU information, we scan in following orer
for_each_lru -> for_each_node -> for_each_zone.
This means we'll touch cache lines in different node in turn.
After patch, we'll scan
for_each_node -> for_each_zone -> for_each_lru(mask)
Then, we'll gather information in the same cacheline at once.
[akpm@linux-foundation.org: fix warnigns, build error]
Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Ying Han <yinghan@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Each memory cgroup has a 'swappiness' value which can be accessed by
get_swappiness(memcg). The major user is try_to_free_mem_cgroup_pages()
and swappiness is passed by argument. It's propagated by scan_control.
get_swappiness() is a static function but some planned updates will need
to get swappiness from files other than memcontrol.c This patch exports
get_swappiness() as mem_cgroup_swappiness(). With this, we can remove the
argument of swapiness from try_to_free... and drop swappiness from
scan_control. only memcg uses it.
Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Ying Han <yinghan@google.com>
Cc: Shaohua Li <shaohua.li@intel.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
commit 889976dbcb ("memcg: reclaim memory from nodes in round-robin
order") adds an numa node round-robin for memcg. But the information is
updated once per 10sec.
This patch changes the update trigger from jiffies to memcg's event count.
After this patch, numa scan information will be updated when we see 1024
events of pagein/pageout under a memcg.
[akpm@linux-foundation.org: attempt to repair code layout]
Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Ying Han <yinghan@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Now, in mem_cgroup_hierarchical_reclaim(), mem_cgroup_local_usage() is
used for checking whether the memcg contains reclaimable pages or not. If
no pages in it, the routine skips it.
But, mem_cgroup_local_usage() contains Unevictable pages and cannot handle
"noswap" condition correctly. This doesn't work on a swapless system.
This patch adds test_mem_cgroup_reclaimable() and replaces
mem_cgroup_local_usage(). test_mem_cgroup_reclaimable() see LRU counter
and returns correct answer to the caller. And this new function has
"noswap" argument and can see only FILE LRU if necessary.
[akpm@linux-foundation.org: coding-style fixes]
[akpm@linux-foundation.org: fix kerneldoc layout]
Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Ying Han <yinghan@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Before adding any more global entry points into shmem.c, gather such
prototypes into shmem_fs.h. Remove mm's own declarations from swap.h,
but for now leave the ones in mm.h: because shmem_file_setup() and
shmem_zero_setup() are called from various places, and we should not
force other subsystems to update immediately.
Signed-off-by: Hugh Dickins <hughd@google.com>
Cc: Christoph Hellwig <hch@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Based on Michal Hocko's comment.
We are not draining per cpu cached charges during soft limit reclaim
because background reclaim doesn't care about charges. It tries to free
some memory and charges will not give any.
Cached charges might influence only selection of the biggest soft limit
offender but as the call is done only after the selection has been already
done it makes no change.
Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Reviewed-by: Michal Hocko <mhocko@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
For performance, memory cgroup caches some "charge" from res_counter into
per cpu cache. This works well but because it's cache, it needs to be
flushed in some cases. Typical cases are
1. when someone hit limit.
2. when rmdir() is called and need to charges to be 0.
But "1" has problem.
Recently, with large SMP machines, we see many kworker runs because of
flushing memcg's cache. Bad things in implementation are that even if a
cpu contains a cache for memcg not related to a memcg which hits limit,
drain code is called.
This patch does
A) check percpu cache contains a useful data or not.
B) check other asynchronous percpu draining doesn't run.
C) don't call local cpu callback.
(*)This patch avoid changing the calling condition with hard-limit.
When I run "cat 1Gfile > /dev/null" under 300M limit memcg,
[Before]
13767 kamezawa 20 0 98.6m 424 416 D 10.0 0.0 0:00.61 cat
58 root 20 0 0 0 0 S 0.6 0.0 0:00.09 kworker/2:1
60 root 20 0 0 0 0 S 0.6 0.0 0:00.08 kworker/4:1
4 root 20 0 0 0 0 S 0.3 0.0 0:00.02 kworker/0:0
57 root 20 0 0 0 0 S 0.3 0.0 0:00.05 kworker/1:1
61 root 20 0 0 0 0 S 0.3 0.0 0:00.05 kworker/5:1
62 root 20 0 0 0 0 S 0.3 0.0 0:00.05 kworker/6:1
63 root 20 0 0 0 0 S 0.3 0.0 0:00.05 kworker/7:1
[After]
2676 root 20 0 98.6m 416 416 D 9.3 0.0 0:00.87 cat
2626 kamezawa 20 0 15192 1312 920 R 0.3 0.0 0:00.28 top
1 root 20 0 19384 1496 1204 S 0.0 0.0 0:00.66 init
2 root 20 0 0 0 0 S 0.0 0.0 0:00.00 kthreadd
3 root 20 0 0 0 0 S 0.0 0.0 0:00.00 ksoftirqd/0
4 root 20 0 0 0 0 S 0.0 0.0 0:00.00 kworker/0:0
[akpm@linux-foundation.org: make percpu_charge_mutex static, tweak comments]
Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Acked-by: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Reviewed-by: Michal Hocko <mhocko@suse.cz>
Tested-by: Ying Han <yinghan@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Hierarchical reclaim doesn't swap out if memsw and resource limits are
thye same (memsw_is_minimum == true) because we would hit mem+swap limit
anyway (during hard limit reclaim).
If it comes to the soft limit we shouldn't consider memsw_is_minimum at
all because it doesn't make much sense. Either the soft limit is bellow
the hard limit and then we cannot hit mem+swap limit or the direct reclaim
takes a precedence.
Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Reviewed-by: Michal Hocko <mhocko@suse.cz>
Acked-by: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Commit 406eb0c9ba ("memcg: add memory.numastat api for numa
statistics") adds memory.numa_stat file for memory cgroup. But the file
permissions are wrong.
[kamezawa@bluextal linux-2.6]$ ls -l /cgroup/memory/A/memory.numa_stat
---------- 1 root root 0 Jun 9 18:36 /cgroup/memory/A/memory.numa_stat
This patch fixes the permission as
[root@bluextal kamezawa]# ls -l /cgroup/memory/A/memory.numa_stat
-r--r--r-- 1 root root 0 Jun 10 16:49 /cgroup/memory/A/memory.numa_stat
Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Acked-by: Ying Han <yinghan@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently, memcg reclaim can disable swap token even if the swap token mm
doesn't belong in its memory cgroup. It's slightly risky. If an admin
creates very small mem-cgroup and silly guy runs contentious heavy memory
pressure workload, every tasks are going to lose swap token and then
system may become unresponsive. That's bad.
This patch adds 'memcg' parameter into disable_swap_token(). and if the
parameter doesn't match swap token, VM doesn't disable it.
[akpm@linux-foundation.org: coding-style fixes]
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Reviewed-by: Rik van Riel<riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Two new stats in per-memcg memory.stat which tracks the number of page
faults and number of major page faults.
"pgfault"
"pgmajfault"
They are different from "pgpgin"/"pgpgout" stat which count number of
pages charged/discharged to the cgroup and have no meaning of reading/
writing page to disk.
It is valuable to track the two stats for both measuring application's
performance as well as the efficiency of the kernel page reclaim path.
Counting pagefaults per process is useful, but we also need the aggregated
value since processes are monitored and controlled in cgroup basis in
memcg.
Functional test: check the total number of pgfault/pgmajfault of all
memcgs and compare with global vmstat value:
$ cat /proc/vmstat | grep fault
pgfault 1070751
pgmajfault 553
$ cat /dev/cgroup/memory.stat | grep fault
pgfault 1071138
pgmajfault 553
total_pgfault 1071142
total_pgmajfault 553
$ cat /dev/cgroup/A/memory.stat | grep fault
pgfault 199
pgmajfault 0
total_pgfault 199
total_pgmajfault 0
Performance test: run page fault test(pft) wit 16 thread on faulting in
15G anon pages in 16G container. There is no regression noticed on the
"flt/cpu/s"
Sample output from pft:
TAG pft:anon-sys-default:
Gb Thr CLine User System Wall flt/cpu/s fault/wsec
15 16 1 0.67s 233.41s 14.76s 16798.546 266356.260
+-------------------------------------------------------------------------+
N Min Max Median Avg Stddev
x 10 16682.962 17344.027 16913.524 16928.812 166.5362
+ 10 16695.568 16923.896 16820.604 16824.652 84.816568
No difference proven at 95.0% confidence
[akpm@linux-foundation.org: fix build]
[hughd@google.com: shmem fix]
Signed-off-by: Ying Han <yinghan@google.com>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Reviewed-by: Minchan Kim <minchan.kim@gmail.com>
Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Acked-by: Balbir Singh <balbir@linux.vnet.ibm.com>
Signed-off-by: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The new API exports numa_maps per-memcg basis. This is a piece of useful
information where it exports per-memcg page distribution across real numa
nodes.
One of the usecases is evaluating application performance by combining
this information w/ the cpu allocation to the application.
The output of the memory.numastat tries to follow w/ simiar format of
numa_maps like:
total=<total pages> N0=<node 0 pages> N1=<node 1 pages> ...
file=<total file pages> N0=<node 0 pages> N1=<node 1 pages> ...
anon=<total anon pages> N0=<node 0 pages> N1=<node 1 pages> ...
unevictable=<total anon pages> N0=<node 0 pages> N1=<node 1 pages> ...
And we have per-node:
total = file + anon + unevictable
$ cat /dev/cgroup/memory/memory.numa_stat
total=250020 N0=87620 N1=52367 N2=45298 N3=64735
file=225232 N0=83402 N1=46160 N2=40522 N3=55148
anon=21053 N0=3424 N1=6207 N2=4776 N3=6646
unevictable=3735 N0=794 N1=0 N2=0 N3=2941
Signed-off-by: Ying Han <yinghan@google.com>
Cc: Balbir Singh <balbir@in.ibm.com>
Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Acked-by: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Cc: Minchan Kim <minchan.kim@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The caller of the function has been renamed to zone_nr_lru_pages(), and
this is just fixing up in the memcg code. The current name is easily to
be mis-read as zone's total number of pages.
Signed-off-by: Ying Han <yinghan@google.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Reviewed-by: Minchan Kim <minchan.kim@gmail.com>
Cc: Balbir Singh <balbir@in.ibm.com>
Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
If the memcg reclaim code detects the target memcg below its limit it
exits and returns a guaranteed non-zero value so that the charge is
retried.
Nowadays, the charge side checks the memcg limit itself and does not rely
on this non-zero return value trick.
This patch removes it. The reclaim code will now always return the true
number of pages it reclaimed on its own.
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Rik van Riel<riel@redhat.com>
Acked-by: Ying Han<yinghan@google.com>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Reviewed-by: Michal Hocko <mhocko@suse.cz>
Cc: Balbir Singh <balbir@linux.vnet.ibm.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Presently, memory cgroup's direct reclaim frees memory from the current
node. But this has some troubles. Usually when a set of threads works in
a cooperative way, they tend to operate on the same node. So if they hit
limits under memcg they will reclaim memory from themselves, damaging the
active working set.
For example, assume 2 node system which has Node 0 and Node 1 and a memcg
which has 1G limit. After some work, file cache remains and the usages
are
Node 0: 1M
Node 1: 998M.
and run an application on Node 0, it will eat its foot before freeing
unnecessary file caches.
This patch adds round-robin for NUMA and adds equal pressure to each node.
When using cpuset's spread memory feature, this will work very well.
But yes, a better algorithm is needed.
[akpm@linux-foundation.org: comment editing]
[kamezawa.hiroyu@jp.fujitsu.com: fix time comparisons]
Signed-off-by: Ying Han <yinghan@google.com>
Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Balbir Singh <balbir@in.ibm.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Cc: Mel Gorman <mel@csn.ul.ie>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
next_mz is assigned to NULL if __mem_cgroup_largest_soft_limit_node
selects the same mz. This doesn't make much sense as we assign to the
variable right in the next loop.
Compiler will probably optimize this out but it is little bit confusing
for the code reading.
Signed-off-by: Michal Hocko <mhocko@suse.cz>
Acked-by: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Cc: Balbir Singh <balbir@linux.vnet.ibm.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The global kswapd scans per-zone LRU and reclaims pages regardless of the
cgroup. It breaks memory isolation since one cgroup can end up reclaiming
pages from another cgroup. Instead we should rely on memcg-aware target
reclaim including per-memcg kswapd and soft_limit hierarchical reclaim under
memory pressure.
In the global background reclaim, we do soft reclaim before scanning the
per-zone LRU. However, the return value is ignored. This patch is the first
step to skip shrink_zone() if soft_limit reclaim does enough work.
This is part of the effort which tries to reduce reclaiming pages in global
LRU in memcg. The per-memcg background reclaim patchset further enhances the
per-cgroup targetting reclaim, which I should have V4 posted shortly.
Try running multiple memory intensive workloads within seperate memcgs. Watch
the counters of soft_steal in memory.stat.
$ cat /dev/cgroup/A/memory.stat | grep 'soft'
soft_steal 240000
soft_scan 240000
total_soft_steal 240000
total_soft_scan 240000
This patch:
In the global background reclaim, we do soft reclaim before scanning the
per-zone LRU. However, the return value is ignored.
We would like to skip shrink_zone() if soft_limit reclaim does enough
work. Also, we need to make the memory pressure balanced across per-memcg
zones, like the logic vm-core. This patch is the first step where we
start with counting the nr_scanned and nr_reclaimed from soft_limit
reclaim into the global scan_control.
Signed-off-by: Ying Han <yinghan@google.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Minchan Kim <minchan.kim@gmail.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Balbir Singh <balbir@in.ibm.com>
Acked-by: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Add cgroup subsystem callbacks for per-thread attachment in atomic contexts
Add can_attach_task(), pre_attach(), and attach_task() as new callbacks
for cgroups's subsystem interface. Unlike can_attach and attach, these
are for per-thread operations, to be called potentially many times when
attaching an entire threadgroup.
Also, the old "bool threadgroup" interface is removed, as replaced by
this. All subsystems are modified for the new interface - of note is
cpuset, which requires from/to nodemasks for attach to be globally scoped
(though per-cpuset would work too) to persist from its pre_attach to
attach_task and attach.
This is a pre-patch for cgroup-procs-writable.patch.
Signed-off-by: Ben Blum <bblum@andrew.cmu.edu>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: Li Zefan <lizf@cn.fujitsu.com>
Cc: Matt Helsley <matthltc@us.ibm.com>
Reviewed-by: Paul Menage <menage@google.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The noswapaccount parameter has been deprecated since 2.6.38 without any
complaints from users so we can remove it. swapaccount=0|1 can be used
instead.
As we are removing the parameter we can also clean up swapaccount because
it doesn't have to accept an empty string anymore (to match noswapaccount)
and so we can push = into __setup macro rather than checking "=1" resp.
"=0" strings
Signed-off-by: Michal Hocko <mhocko@suse.cz>
Cc: Hiroyuki Kamezawa <kamezawa.hiroyuki@gmail.com>
Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Cc: Balbir Singh <balbir@linux.vnet.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
fs/fuse/dev.c::fuse_try_move_page() does
(1) remove a page by ->steal()
(2) re-add the page to page cache
(3) link the page to LRU if it was not on LRU at (1)
This implies the page is _on_ LRU when it's added to radix-tree. So, the
page is added to memory cgroup while it's on LRU. because LRU is lazy and
no one flushs it.
This is the same behavior as SwapCache and needs special care as
- remove page from LRU before overwrite pc->mem_cgroup.
- add page to LRU after overwrite pc->mem_cgroup.
And we need to taking care of pagevec.
If PageLRU(page) is set before we add PCG_USED bit, the page will not be
added to memcg's LRU (in short period). So, regardlress of PageLRU(page)
value before commit_charge(), we need to check PageLRU(page) after
commit_charge().
Addresses https://bugzilla.kernel.org/show_bug.cgi?id=30432
Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Reviewed-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Cc: Miklos Szeredi <miklos@szeredi.hu>
Cc: Balbir Singh <balbir@in.ibm.com>
Reported-by: Daniel Poelzleithner <poelzi@poelzi.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
mm/memcontrol.c: In function 'mem_cgroup_force_empty':
mm/memcontrol.c:2280: warning: 'flags' may be used uninitialized in this function
It's a false positive.
Cc: Balbir Singh <balbir@linux.vnet.ibm.com>
Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Cc: Greg Thelen <gthelen@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The statistic counters are in units of pages, there is no reason to make
them 64-bit wide on 32-bit machines.
Make them native words. Since they are signed, this leaves 31 bit on
32-bit machines, which can represent roughly 8TB assuming a page size of
4k.
[akpm@linux-foundation.org: coding-style fixes]
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Greg Thelen <gthelen@google.com>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Acked-by: Balbir Singh <balbir@linux.vnet.ibm.com>
Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
For increasing and decreasing per-cpu cgroup usage counters it makes sense
to use signed types, as single per-cpu values might go negative during
updates. But this is not the case for only-ever-increasing event
counters.
All the counters have been signed 64-bit so far, which was enough to count
events even with the sign bit wasted.
This patch:
- divides s64 counters into signed usage counters and unsigned
monotonically increasing event counters.
- converts unsigned event counters into 'unsigned long' rather than
'u64'. This matches the type used by the /proc/vmstat event counters.
The next patch narrows the signed usage counters type (on 32-bit CPUs,
that is).
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Greg Thelen <gthelen@google.com>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Acked-by: Balbir Singh <balbir@linux.vnet.ibm.com>
Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
There is no clear pattern when we pass a page count and when we pass a
byte count that is a multiple of PAGE_SIZE.
We never charge or uncharge subpage quantities, so convert it all to page
counts.
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Cc: Balbir Singh <balbir@linux.vnet.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We have two charge cancelling functions: one takes a page count, the other
a page size. The second one just divides the parameter by PAGE_SIZE and
then calls the first one. This is trivial, no need for an extra function.
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Cc: Balbir Singh <balbir@linux.vnet.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The reclaim_param_lock is only taken around single reads and writes to
integer variables and is thus superfluous. Drop it.
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Cc: Balbir Singh <balbir@linux.vnet.ibm.com>
Reviewed-by: Minchan Kim <minchan.kim@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
page_cgroup_zoneinfo() will never return NULL for a charged page, remove
the check for it in mem_cgroup_get_reclaim_stat_from_page().
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Cc: Balbir Singh <balbir@linux.vnet.ibm.com>
Reviewed-by: Minchan Kim <minchan.kim@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
In struct page_cgroup, we have a full word for flags but only a few are
reserved. Use the remaining upper bits to encode, depending on
configuration, the node or the section, to enable page_cgroup-to-page
lookups without a direct pointer.
This saves a full word for every page in a system with memory cgroups
enabled.
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Cc: Balbir Singh <balbir@linux.vnet.ibm.com>
Cc: Minchan Kim <minchan.kim@gmail.com>
Cc: Randy Dunlap <randy.dunlap@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The per-cgroup LRU lists string up 'struct page_cgroup's. To get from
those structures to the page they represent, a lookup is required.
Currently, the lookup is done through a direct pointer in struct
page_cgroup, so a lot of functions down the callchain do this lookup by
themselves instead of receiving the page pointer from their callers.
The next patch removes this pointer, however, and the lookup is no longer
that straight-forward. In preparation for that, this patch only leaves
the non-optional lookups when coming directly from the LRU list and passes
the page down the stack.
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Cc: Balbir Singh <balbir@linux.vnet.ibm.com>
Cc: Minchan Kim <minchan.kim@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
It is one logical function, no need to have it split up.
Also, get rid of some checks from the inner function that ensured the
sanity of the outer function.
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Acked-by: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Cc: Balbir Singh <balbir@linux.vnet.ibm.com>
Cc: Minchan Kim <minchan.kim@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Instead of passing a whole struct page_cgroup to this function, let it
take only what it really needs from it: the struct mem_cgroup and the
page.
This has the advantage that reading pc->mem_cgroup is now done at the same
place where the ordering rules for this pointer are enforced and
explained.
It is also in preparation for removing the pc->page backpointer.
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Cc: Balbir Singh <balbir@linux.vnet.ibm.com>
Cc: Minchan Kim <minchan.kim@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This patch series removes the direct page pointer from struct page_cgroup,
which saves 20% of per-page memcg memory overhead (Fedora and Ubuntu
enable memcg per default, openSUSE apparently too).
The node id or section number is encoded in the remaining free bits of
pc->flags which allows calculating the corresponding page without the
extra pointer.
I ran, what I think is, a worst-case microbenchmark that just cats a large
sparse file to /dev/null, because it means that walking the LRU list on
behalf of per-cgroup reclaim and looking up pages from page_cgroups is
happening constantly and at a high rate. But it made no measurable
difference. A profile reported a 0.11% share of the new
lookup_cgroup_page() function in this benchmark.
This patch:
All callsites check PCG_USED before passing pc->mem_cgroup, so the latter
is never NULL.
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Acked-by: Balbir Singh <balbir@linux.vnet.ibm.com>
Cc: Minchan Kim <minchan.kim@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Add checks at allocating or freeing a page whether the page is used (iow,
charged) from the view point of memcg.
This check may be useful in debugging a problem and we did similar checks
before the commit 52d4b9ac(memcg: allocate all page_cgroup at boot).
This patch adds some overheads at allocating or freeing memory, so it's
enabled only when CONFIG_DEBUG_VM is enabled.
Signed-off-by: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Balbir Singh <balbir@linux.vnet.ibm.com>
Cc: Minchan Kim <minchan.kim@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The page_cgroup array is set up before even fork is initialized. I
seriously doubt that this code executes before the array is alloc'd.
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Cc: Balbir Singh <balbir@linux.vnet.ibm.com>
Cc: Minchan Kim <minchan.kim@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
No callsite ever passes a NULL pointer for a struct mem_cgroup * to the
committing function. There is no need to check for it.
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Cc: Balbir Singh <balbir@linux.vnet.ibm.com>
Cc: Minchan Kim <minchan.kim@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
These definitions have been unused since '4b3bde4 memcg: remove the
overhead associated with the root cgroup'.
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Cc: Balbir Singh <balbir@linux.vnet.ibm.com>
Cc: Minchan Kim <minchan.kim@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Since transparent huge pages, checking whether memory cgroups are below
their limits is no longer enough, but the actual amount of chargeable
space is important.
To not have more than one limit-checking interface, replace
memory_cgroup_check_under_limit() and memory_cgroup_check_margin() with a
single memory_cgroup_margin() that returns the chargeable space and leaves
the comparison to the callsite.
Soft limits are now checked the other way round, by using the already
existing function that returns the amount by which soft limits are
exceeded: res_counter_soft_limit_excess().
Also remove all the corresponding functions on the res_counter side that
are now no longer used.
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Acked-by: Balbir Singh <balbir@linux.vnet.ibm.com>
Cc: Minchan Kim <minchan.kim@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Soft limit reclaim continues until the usage is below the current soft
limit, but the documented semantics are actually that soft limit reclaim
will push usage back until the soft limits are met again.
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Acked-by: Balbir Singh <balbir@linux.vnet.ibm.com>
Cc: Minchan Kim <minchan.kim@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Remove initialization of vaiable in caller of memory cgroup function.
Actually, it's return value of memcg function but it's initialized in
caller.
Some memory cgroup uses following style to bring the result of start
function to the end function for avoiding races.
mem_cgroup_start_A(&(*ptr))
/* Something very complicated can happen here. */
mem_cgroup_end_A(*ptr)
In some calls, *ptr should be initialized to NULL be caller. But it's
ugly. This patch fixes that *ptr is initialized by _start function.
Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Cc: Balbir Singh <balbir@linux.vnet.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Right now, if a mm_walk has either ->pte_entry or ->pmd_entry set, it will
unconditionally split any transparent huge pages it runs in to. In
practice, that means that anyone doing a
cat /proc/$pid/smaps
will unconditionally break down every huge page in the process and depend
on khugepaged to re-collapse it later. This is fairly suboptimal.
This patch changes that behavior. It teaches each ->pmd_entry handler
(there are five) that they must break down the THPs themselves. Also, the
_generic_ code will never break down a THP unless a ->pte_entry handler is
actually set.
This means that the ->pmd_entry handlers can now choose to deal with THPs
without breaking them down.
[akpm@linux-foundation.org: coding-style fixes]
Signed-off-by: Dave Hansen <dave@linux.vnet.ibm.com>
Acked-by: Mel Gorman <mel@csn.ul.ie>
Acked-by: David Rientjes <rientjes@google.com>
Reviewed-by: Eric B Munson <emunson@mgebm.net>
Tested-by: Eric B Munson <emunson@mgebm.net>
Cc: Michael J Wolf <mjwolf@us.ibm.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Matt Mackall <mpm@selenic.com>
Cc: Jeremy Fitzhardinge <jeremy@goop.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The rotate_reclaimable_page function moves just written out pages, which
the VM wanted to reclaim, to the end of the inactive list. That way the
VM will find those pages first next time it needs to free memory.
This patch applies the rule in memcg. It can help to prevent unnecessary
working page eviction of memcg.
Signed-off-by: Minchan Kim <minchan.kim@gmail.com>
Acked-by: Balbir Singh <balbir@linux.vnet.ibm.com>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Reviewed-by: Rik van Riel <riel@redhat.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This function basically does:
remove_from_page_cache(old);
page_cache_release(old);
add_to_page_cache_locked(new);
Except it does this atomically, so there's no possibility for the "add" to
fail because of a race.
If memory cgroups are enabled, then the memory cgroup charge is also moved
from the old page to the new.
This function is currently used by fuse to move pages into the page cache
on read, instead of copying the page contents.
[minchan.kim@gmail.com: add freepage() hook to replace_page_cache_page()]
Signed-off-by: Miklos Szeredi <mszeredi@suse.cz>
Acked-by: Rik van Riel <riel@redhat.com>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Signed-off-by: Minchan Kim <minchan.kim@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Changes in e401f1761 ("memcg: modify accounting function for supporting
THP better") adds nr_pages to support multiple page size in
memory_cgroup_charge_statistics.
But counting the number of event nees abs(nr_pages) for increasing
counters. This patch fixes event counting.
Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Reviewed-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Cc: Balbir Singh <balbir@in.ibm.com>
Cc: Minchan Kim <minchan.kim@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Huge page coverage should obviously have less priority than the continued
execution of a process.
Never kill a process when charging it a huge page fails. Instead, give up
after the first failed reclaim attempt and fall back to regular pages.
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Reviewed-by: Minchan Kim <minchan.kim@gmail.com>
Cc: Balbir Singh <balbir@linux.vnet.ibm.com>
Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
If reclaim after a failed charging was unsuccessful, the limits are
checked again, just in case they settled by means of other tasks.
This is all fine as long as every charge is of size PAGE_SIZE, because in
that case, being below the limit means having at least PAGE_SIZE bytes
available.
But with transparent huge pages, we may end up in an endless loop where
charging and reclaim fail, but we keep going because the limits are not
yet exceeded, although not allowing for a huge page.
Fix this up by explicitely checking for enough room, not just whether we
are within limits.
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Reviewed-by: Minchan Kim <minchan.kim@gmail.com>
Cc: Balbir Singh <balbir@linux.vnet.ibm.com>
Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The charging code can encounter a charge size that is bigger than a
regular page in two situations: one is a batched charge to fill the
per-cpu stocks, the other is a huge page charge.
This code is distributed over two functions, however, and only the outer
one is aware of huge pages. In case the charging fails, the inner
function will tell the outer function to retry if the charge size is
bigger than regular pages--assuming batched charging is the only case.
And the outer function will retry forever charging a huge page.
This patch makes sure the inner function can distinguish between batch
charging and a single huge page charge. It will only signal another
attempt if batch charging failed, and go into regular reclaim when it is
called on behalf of a huge page.
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Reviewed-by: Minchan Kim <minchan.kim@gmail.com>
Cc: Balbir Singh <balbir@linux.vnet.ibm.com>
Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
noswapaccount couldn't be used to control memsw for both on/off cases so
we have added swapaccount[=0|1] parameter. This way we can turn the
feature in two ways noswapaccount resp. swapaccount=0. We have kept the
original noswapaccount but I think we should remove it after some time as
it just makes more command line parameters without any advantages and also
the code to handle parameters is uglier if we want both parameters.
Signed-off-by: Michal Hocko <mhocko@suse.cz>
Requested-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
__setup based kernel command line parameters handlers which are handled in
obsolete_checksetup are provided with the parameter value including =
(more precisely everything right after the parameter name).
This means that the current implementation of swapaccount[=1|0] doesn't
work at all because if there is a value for the parameter then we are
testing for "0" resp. "1" but we are getting "=0" resp. "=1" and if
there is no parameter value we are getting an empty string rather than
NULL.
The original noswapccount parameter, which doesn't care about the value,
works correctly.
Signed-off-by: Michal Hocko <mhocko@suse.cz>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Cc: <stable@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
A fix up mem_cgroup_move_parent() which use compound_order() in
asynchronous manner. This compound_order() may return unknown value
because we don't take lock. Use PageTransHuge() and HPAGE_SIZE instead
of it.
Also clean up for mem_cgroup_move_parent().
- remove unnecessary initialization of local variable.
- rename charge_size -> page_size
- remove unnecessary (wrong) comment.
- added a comment about THP.
Note:
Current design take compound_page_lock() in caller of move_account().
This should be revisited when we implement direct move_task of hugepage
without splitting.
[akpm@linux-foundation.org: coding-style fixes]
Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Reviewed-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Cc: Balbir Singh <balbir@in.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
mem_cgroup_disabled() should be checked at splitting. If disabled, no
heavy work is necesary.
Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Acked-by: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Reviewed-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Balbir Singh <balbir@in.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
In mm/memcontrol.c::mem_cgroup_move_parent() there's a path that jumps
to the 'put_back' label
ret = __mem_cgroup_try_charge(NULL, gfp_mask, &parent, false, charge);
if (ret || !parent)
goto put_back;
where we'll
if (charge > PAGE_SIZE)
compound_unlock_irqrestore(page, flags);
but, we have not assigned anything to 'flags' at this point, nor have we
called 'compound_lock_irqsave()' (which is what sets 'flags'). The
'put_back' label should be moved below the call to
compound_unlock_irqrestore() as per this patch.
Signed-off-by: Jesper Juhl <jj@chaosbits.net>
Cc: Balbir Singh <balbir@linux.vnet.ibm.com>
Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Pavel Emelianov <xemul@openvz.org>
Cc: "Kirill A. Shutemov" <kirill@shutemov.name>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The placement of the read-side barrier is confused: the writer first
sets pc->mem_cgroup, then PCG_USED. The read-side barrier has to be
between testing PCG_USED and reading pc->mem_cgroup.
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Acked-by: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Cc: Balbir Singh <balbir@linux.vnet.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Now, when THP is enabled, memcg's rmdir() function is broken because
move_account() for THP page is not supported.
This will cause account leak or -EBUSY issue at rmdir().
This patch fixes the issue by supporting move_account() THP pages.
Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Cc: Balbir Singh <balbir@linux.vnet.ibm.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
memory cgroup's LRU stat should take care of size of pages because
Transparent Hugepage inserts hugepage into LRU. If this value is the
number wrong, memory reclaim will not work well.
Note: only head page of THP's huge page is linked into LRU.
Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Cc: Balbir Singh <balbir@linux.vnet.ibm.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Now, under THP:
at charge:
- PageCgroupUsed bit is set to all page_cgroup on a hugepage.
....set to 512 pages.
at uncharge
- PageCgroupUsed bit is unset on the head page.
So, some pages will remain with "Used" bit.
This patch fixes that Used bit is set only to the head page.
Used bits for tail pages will be set at splitting if necessary.
This patch adds this lock order:
compound_lock() -> page_cgroup_move_lock().
[akpm@linux-foundation.org: fix warning]
Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Cc: Balbir Singh <balbir@linux.vnet.ibm.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
mem_cgroup_charge_statisics() was designed for charging a page but now, we
have transparent hugepage. To fix problems (in following patch) it's
required to change the function to get the number of pages as its
arguments.
The new function gets following as argument.
- type of page rather than 'pc'
- size of page which is accounted.
Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Cc: Balbir Singh <balbir@linux.vnet.ibm.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
In the current implementation mem_cgroup_end_migration() decides whether
the page migration has succeeded or not by checking "oldpage->mapping".
But if we are tring to migrate a shmem swapcache, the page->mapping of it
is NULL from the begining, so the check would be invalid. As a result,
mem_cgroup_end_migration() assumes the migration has succeeded even if
it's not, so "newpage" would be freed while it's not uncharged.
This patch fixes it by passing mem_cgroup_end_migration() the result of
the page migration.
Signed-off-by: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Reviewed-by: Minchan Kim <minchan.kim@gmail.com>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Acked-by: Balbir Singh <balbir@linux.vnet.ibm.com>
Cc: Minchan Kim <minchan.kim@gmail.com>
Reviewed-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
In mem_cgroup_alloc() we currently do either kmalloc() or vmalloc() then
followed by memset() to zero the memory. This can be more efficiently
achieved by using kzalloc() and vzalloc(). There's also one situation
where we can use kzalloc_node() - this is what's new in this version of
the patch.
Signed-off-by: Jesper Juhl <jj@chaosbits.net>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Minchan Kim <minchan.kim@gmail.com>
Cc: Wu Fengguang <fengguang.wu@intel.com>
Cc: Balbir Singh <balbir@linux.vnet.ibm.com>
Cc: Li Zefan <lizf@cn.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Commit b1dd693e ("memcg: avoid deadlock between move charge and
try_charge()") can cause another deadlock about mmap_sem on task migration
if cpuset and memcg are mounted onto the same mount point.
After the commit, cgroup_attach_task() has sequence like:
cgroup_attach_task()
ss->can_attach()
cpuset_can_attach()
mem_cgroup_can_attach()
down_read(&mmap_sem) (1)
ss->attach()
cpuset_attach()
mpol_rebind_mm()
down_write(&mmap_sem) (2)
up_write(&mmap_sem)
cpuset_migrate_mm()
do_migrate_pages()
down_read(&mmap_sem)
up_read(&mmap_sem)
mem_cgroup_move_task()
mem_cgroup_clear_mc()
up_read(&mmap_sem)
We can cause deadlock at (2) because we've already aquire the mmap_sem at (1).
But the commit itself is necessary to fix deadlocks which have existed
before the commit like:
Ex.1)
move charge | try charge
--------------------------------------+------------------------------
mem_cgroup_can_attach() | down_write(&mmap_sem)
mc.moving_task = current | ..
mem_cgroup_precharge_mc() | __mem_cgroup_try_charge()
mem_cgroup_count_precharge() | prepare_to_wait()
down_read(&mmap_sem) | if (mc.moving_task)
-> cannot aquire the lock | -> true
| schedule()
| -> move charge should wake it up
Ex.2)
move charge | try charge
--------------------------------------+------------------------------
mem_cgroup_can_attach() |
mc.moving_task = current |
mem_cgroup_precharge_mc() |
mem_cgroup_count_precharge() |
down_read(&mmap_sem) |
.. |
up_read(&mmap_sem) |
| down_write(&mmap_sem)
mem_cgroup_move_task() | ..
mem_cgroup_move_charge() | __mem_cgroup_try_charge()
down_read(&mmap_sem) | prepare_to_wait()
-> cannot aquire the lock | if (mc.moving_task)
| -> true
| schedule()
| -> move charge should wake it up
This patch fixes all of these problems by:
1. revert the commit.
2. To fix the Ex.1, we set mc.moving_task after mem_cgroup_count_precharge()
has released the mmap_sem.
3. To fix the Ex.2, we use down_read_trylock() instead of down_read() in
mem_cgroup_move_charge() and, if it has failed to aquire the lock, cancel
all extra charges, wake up all waiters, and retry trylock.
Signed-off-by: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Reported-by: Ben Blum <bblum@andrew.cmu.edu>
Cc: Miao Xie <miaox@cn.fujitsu.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Paul Menage <menage@google.com>
Cc: Hiroyuki Kamezawa <kamezawa.hiroyuki@gmail.com>
Cc: Balbir Singh <balbir@in.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Adding the number of swap pages to the byte limit of a memory control
group makes no sense. Convert the pages to bytes before adding them.
The only user of this code is the OOM killer, and the way it is used means
that the error results in a higher OOM badness value. Since the cgroup
limit is the same for all tasks in the cgroup, the error should have no
practical impact at the moment.
But let's not wait for future or changing users to trip over it.
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Greg Thelen <gthelen@google.com>
Cc: David Rientjes <rientjes@google.com>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Balbir Singh <balbir@in.ibm.com>
Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Introduce a new bit spin lock, PCG_MOVE_LOCK, to synchronize the page
accounting and migration code. This reworks the locking scheme of
_update_stat() and _move_account() by adding new lock bit PCG_MOVE_LOCK,
which is always taken under IRQ disable.
1. If pages are being migrated from a memcg, then updates to that
memcg page statistics are protected by grabbing PCG_MOVE_LOCK using
move_lock_page_cgroup(). In an upcoming commit, memcg dirty page
accounting will be updating memcg page accounting (specifically: num
writeback pages) from IRQ context (softirq). Avoid a deadlocking
nested spin lock attempt by disabling irq on the local processor when
grabbing the PCG_MOVE_LOCK.
2. lock for update_page_stat is used only for avoiding race with
move_account(). So, IRQ awareness of lock_page_cgroup() itself is not
a problem. The problem is between mem_cgroup_update_page_stat() and
mem_cgroup_move_account_page().
Trade-off:
* Changing lock_page_cgroup() to always disable IRQ (or
local_bh) has some impacts on performance and I think
it's bad to disable IRQ when it's not necessary.
* adding a new lock makes move_account() slower. Score is
here.
Performance Impact: moving a 8G anon process.
Before:
real 0m0.792s
user 0m0.000s
sys 0m0.780s
After:
real 0m0.854s
user 0m0.000s
sys 0m0.842s
This score is bad but planned patches for optimization can reduce
this impact.
Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: Greg Thelen <gthelen@google.com>
Reviewed-by: Minchan Kim <minchan.kim@gmail.com>
Acked-by: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Cc: Andrea Righi <arighi@develer.com>
Cc: Balbir Singh <balbir@linux.vnet.ibm.com>
Cc: Wu Fengguang <fengguang.wu@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Replace usage of the mem_cgroup_update_file_mapped() memcg
statistic update routine with two new routines:
* mem_cgroup_inc_page_stat()
* mem_cgroup_dec_page_stat()
As before, only the file_mapped statistic is managed. However, these more
general interfaces allow for new statistics to be more easily added. New
statistics are added with memcg dirty page accounting.
Signed-off-by: Greg Thelen <gthelen@google.com>
Signed-off-by: Andrea Righi <arighi@develer.com>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Acked-by: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Cc: Balbir Singh <balbir@linux.vnet.ibm.com>
Cc: Minchan Kim <minchan.kim@gmail.com>
Cc: Wu Fengguang <fengguang.wu@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Count each transparent hugepage as HPAGE_PMD_NR pages in the LRU
statistics, so the Active(anon) and Inactive(anon) statistics in
/proc/meminfo are correct.
Signed-off-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
By this patch, when a transparent hugepage is charged, not only the head
page but also all the tail pages are committed, IOW pc->mem_cgroup and
pc->flags of tail pages are set.
Without this patch:
- Tail pages are not linked to any memcg's LRU at splitting. This causes many
problems, for example, the charged memcg's directory can never be rmdir'ed
because it doesn't have enough pages to scan to make the usage decrease to 0.
- "rss" field in memory.stat would be incorrect. Moreover, usage_in_bytes in
root cgroup is calculated by the stat not by res_counter(since 2.6.32),
it would be incorrect too.
Signed-off-by: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
At __mem_cgroup_try_charge(), VM_BUG_ON(!mm->owner) is checked.
But as commented in mem_cgroup_from_task(), mm->owner can be NULL
in some racy case. This check of VM_BUG_ON() is bad.
A possible story to hit this is at swapoff()->try_to_unuse(). It passes
mm_struct to mem_cgroup_try_charge_swapin() while mm->owner is NULL. If we
can't get proper mem_cgroup from swap_cgroup information, mm->owner is used
as charge target and we see NULL.
Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Reported-by: Hugh Dickins <hughd@google.com>
Reported-by: Thomas Meyer <thomas@m3y3r.de>
Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Reviewed-by: Balbir Singh <balbir@linux.vnet.ibm.com>
Signed-off-by: Hugh Dickins <hughd@google.com>
Cc: stable@kernel.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Swap accounting can be configured by CONFIG_CGROUP_MEM_RES_CTLR_SWAP
configuration option and then it is turned on by default. There is a boot
option (noswapaccount) which can disable this feature.
This makes it hard for distributors to enable the configuration option as
this feature leads to a bigger memory consumption and this is a no-go for
general purpose distribution kernel. On the other hand swap accounting
may be very usuful for some workloads.
This patch adds a new configuration option which controls the default
behavior (CGROUP_MEM_RES_CTLR_SWAP_ENABLED). If the option is selected
then the feature is turned on by default.
It also adds a new boot parameter swapaccount[=1|0] which enhances the
original noswapaccount parameter semantic by means of enable/disable logic
(defaults to 1 if no value is provided to be still consistent with
noswapaccount).
The default behavior is unchanged (if CONFIG_CGROUP_MEM_RES_CTLR_SWAP is
enabled then CONFIG_CGROUP_MEM_RES_CTLR_SWAP_ENABLED is enabled as well)
Signed-off-by: Michal Hocko <mhocko@suse.cz>
Acked-by: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Cc: Balbir Singh <balbir@linux.vnet.ibm.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
__mem_cgroup_try_charge() can be called under down_write(&mmap_sem)(e.g.
mlock does it). This means it can cause deadlock if it races with move charge:
Ex.1)
move charge | try charge
--------------------------------------+------------------------------
mem_cgroup_can_attach() | down_write(&mmap_sem)
mc.moving_task = current | ..
mem_cgroup_precharge_mc() | __mem_cgroup_try_charge()
mem_cgroup_count_precharge() | prepare_to_wait()
down_read(&mmap_sem) | if (mc.moving_task)
-> cannot aquire the lock | -> true
| schedule()
Ex.2)
move charge | try charge
--------------------------------------+------------------------------
mem_cgroup_can_attach() |
mc.moving_task = current |
mem_cgroup_precharge_mc() |
mem_cgroup_count_precharge() |
down_read(&mmap_sem) |
.. |
up_read(&mmap_sem) |
| down_write(&mmap_sem)
mem_cgroup_move_task() | ..
mem_cgroup_move_charge() | __mem_cgroup_try_charge()
down_read(&mmap_sem) | prepare_to_wait()
-> cannot aquire the lock | if (mc.moving_task)
| -> true
| schedule()
To avoid this deadlock, we do all the move charge works (both can_attach() and
attach()) under one mmap_sem section.
And after this patch, we set/clear mc.moving_task outside mc.lock, because we
use the lock only to check mc.from/to.
Signed-off-by: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Cc: Balbir Singh <balbir@linux.vnet.ibm.com>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: <stable@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The original code had a null dereference if alloc_percpu() failed. This
was introduced in commit 711d3d2c9b ("memcg: cpu hotplug aware percpu
count updates")
Signed-off-by: Dan Carpenter <error27@gmail.com>
Reviewed-by: Balbir Singh <balbir@linux.vnet.ibm.com>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Acked-by: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This patch extracts the core logic from mem_cgroup_update_file_mapped() as
mem_cgroup_update_file_stat() and adds a wrapper.
As a planned future update, memory cgroup has to count dirty pages to
implement dirty_ratio/limit. And more, the number of dirty pages is
required to kick flusher thread to start writeback. (Now, no kick.)
This patch is preparation for it and makes other statistics implementation
clearer. Just a clean up.
Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Acked-by: Balbir Singh <balbir@linux.vnet.ibm.com>
Reviewed-by: Greg Thelen <gthelen@google.com>
Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
An event counter MEM_CGROUP_ON_MOVE is used for quick check whether file
stat update can be done in async manner or not. Now, it use percpu
counter and for_each_possible_cpu to update.
This patch replaces for_each_possible_cpu to for_each_online_cpu and adds
necessary synchronization logic at CPU HOTPLUG.
[akpm@linux-foundation.org: coding-style fixes]
Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Balbir Singh <balbir@in.ibm.com>
Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Now, memcgroup's per cpu coutner uses for_each_possible_cpu() to get the
value. It's better to use for_each_online_cpu() and a cpu hotplug
handler.
This patch only handles statistics counter. MEM_CGROUP_ON_MOVE will be
handled in another patch.
Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Balbir Singh <balbir@in.ibm.com>
Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
In memory cgroup management, we sometimes have to walk through
subhierarchy of cgroup to gather informaiton, or lock something, etc.
Now, to do that, mem_cgroup_walk_tree() function is provided. It calls
given callback function per cgroup found. But the bad thing is that it
has to pass a fixed style function and argument, "void*" and it adds much
type casting to memcontrol.c.
To make the code clean, this patch replaces walk_tree() with
for_each_mem_cgroup_tree(iter, root)
An iterator style call. The good point is that iterator call doesn't have
to assume what kind of function is called under it. A bad point is that
it may cause reference-count leak if a caller use "break" from the loop by
mistake.
I think the benefit is larger. The modified code seems straigtforward and
easy to read because we don't have misterious callbacks and pointer cast.
Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Balbir Singh <balbir@in.ibm.com>
Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
At accounting file events per memory cgroup, we need to find memory cgroup
via page_cgroup->mem_cgroup. Now, we use lock_page_cgroup() for guarantee
pc->mem_cgroup is not overwritten while we make use of it.
But, considering the context which page-cgroup for files are accessed,
we can use alternative light-weight mutual execusion in the most case.
At handling file-caches, the only race we have to take care of is "moving"
account, IOW, overwriting page_cgroup->mem_cgroup. (See comment in the
patch)
Unlike charge/uncharge, "move" happens not so frequently. It happens only when
rmdir() and task-moving (with a special settings.)
This patch adds a race-checker for file-cache-status accounting v.s. account
moving. The new per-cpu-per-memcg counter MEM_CGROUP_ON_MOVE is added.
The routine for account move
1. Increment it before start moving
2. Call synchronize_rcu()
3. Decrement it after the end of moving.
By this, file-status-counting routine can check it needs to call
lock_page_cgroup(). In most case, I doesn't need to call it.
Following is a perf data of a process which mmap()/munmap 32MB of file cache
in a minute.
Before patch:
28.25% mmap mmap [.] main
22.64% mmap [kernel.kallsyms] [k] page_fault
9.96% mmap [kernel.kallsyms] [k] mem_cgroup_update_file_mapped
3.67% mmap [kernel.kallsyms] [k] filemap_fault
3.50% mmap [kernel.kallsyms] [k] unmap_vmas
2.99% mmap [kernel.kallsyms] [k] __do_fault
2.76% mmap [kernel.kallsyms] [k] find_get_page
After patch:
30.00% mmap mmap [.] main
23.78% mmap [kernel.kallsyms] [k] page_fault
5.52% mmap [kernel.kallsyms] [k] mem_cgroup_update_file_mapped
3.81% mmap [kernel.kallsyms] [k] unmap_vmas
3.26% mmap [kernel.kallsyms] [k] find_get_page
3.18% mmap [kernel.kallsyms] [k] __do_fault
3.03% mmap [kernel.kallsyms] [k] filemap_fault
2.40% mmap [kernel.kallsyms] [k] handle_mm_fault
2.40% mmap [kernel.kallsyms] [k] do_page_fault
This patch reduces memcg's cost to some extent.
(mem_cgroup_update_file_mapped is called by both of map/unmap)
Note: It seems some more improvements are required..but no idea.
maybe removing set/unset flag is required.
Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Reviewed-by: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Cc: Balbir Singh <balbir@in.ibm.com>
Cc: Greg Thelen <gthelen@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Presently memory cgroup accounts file-mapped by counter and flag. counter
is working in the same way with zone_stat but FileMapped flag only exists
in memcg (for helping move_account).
This flag can be updated wrongly in a case. Assume CPU0 and CPU1 and a
thread mapping a page on CPU0, another thread unmapping it on CPU1.
CPU0 CPU1
rmv rmap (mapcount 1->0)
add rmap (mapcount 0->1)
lock_page_cgroup()
memcg counter+1 (some delay)
set MAPPED FLAG.
unlock_page_cgroup()
lock_page_cgroup()
memcg counter-1
clear MAPPED flag
In the above sequence counter is properly updated but FLAG is not. This
means that representing a state by a flag which is maintained by counter
needs some special care.
To handle this, when clearing a flag, this patch check mapcount directly
and clear the flag only when mapcount == 0. (if mapcount >0, someone will
make it to zero later and flag will be cleared.)
Reverse case, dec-after-inc cannot be a problem because page_table_lock()
works well for it. (IOW, to make above sequence, 2 processes should touch
the same page at once with map/unmap.)
Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Balbir Singh <balbir@in.ibm.com>
Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Cc: Greg Thelen <gthelen@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We need to check parent's thresholds if parent has use_hierarchy == 1 to
be sure that parent's threshold events will be triggered even if parent
itself is not active (no MEM_CGROUP_EVENTS).
Signed-off-by: Kirill A. Shutemov <kirill@shutemov.name>
Reviewed-by: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Acked-by: Balbir Singh <balbir@linux.vnet.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
mem_cgroup_soft_limit_reclaim() has zone, nid and zid argument. but nid
and zid can be calculated from zone. So remove it.
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Acked-by: Mel Gorman <mel@csn.ul.ie>
Cc: Balbir Singh <balbir@in.ibm.com>
Cc: Nishimura Daisuke <d-nishimura@mtf.biglobe.ne.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently mem_cgroup_shrink_node_zone() call shrink_zone() directly. thus
it doesn't need to initialize sc.nodemask because shrink_zone() doesn't
use it at all.
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Acked-by: Mel Gorman <mel@csn.ul.ie>
Cc: Balbir Singh <balbir@in.ibm.com>
Cc: Nishimura Daisuke <d-nishimura@mtf.biglobe.ne.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Now, memory cgroup increments css(cgroup subsys state)'s reference count
per a charged page. And the reference count is kept until the page is
uncharged. But this has 2 bad effect.
1. Because css_get/put calls atomic_inc()/dec, heavy call of them
on large smp will not scale well.
2. Because css's refcnt cannot be in a state as "ready-to-release",
cgroup's notify_on_release handler can't work with memcg.
3. css's refcnt is atomic_t, it means smaller than 32bit. Maybe too small.
This has been a problem since the 1st merge of memcg.
This is a trial to remove css's refcnt per a page. Even if we remove
refcnt, pre_destroy() does enough synchronization as
- check res->usage == 0.
- check no pages on LRU.
This patch removes css's refcnt per page. Even after this patch, at the
1st look, it seems css_get() is still called in try_charge().
But the logic is.
- If a memcg of mm->owner is cached one, consume_stock() will work.
At success, return immediately.
- If consume_stock returns false, css_get() is called and go to
slow path which may be blocked. At the end of slow path,
css_put() is called and restart from the start if necessary.
So, in the fast path, we don't call css_get() and can avoid access to
shared counter. This patch can make the most possible case fast.
Here is a result of multi-threaded page fault benchmark.
[Before]
25.32% multi-fault-all [kernel.kallsyms] [k] clear_page_c
9.30% multi-fault-all [kernel.kallsyms] [k] _raw_spin_lock_irqsave
8.02% multi-fault-all [kernel.kallsyms] [k] try_get_mem_cgroup_from_mm <=====(*)
7.83% multi-fault-all [kernel.kallsyms] [k] down_read_trylock
5.38% multi-fault-all [kernel.kallsyms] [k] __css_put
5.29% multi-fault-all [kernel.kallsyms] [k] __alloc_pages_nodemask
4.92% multi-fault-all [kernel.kallsyms] [k] _raw_spin_lock_irq
4.24% multi-fault-all [kernel.kallsyms] [k] up_read
3.53% multi-fault-all [kernel.kallsyms] [k] css_put
2.11% multi-fault-all [kernel.kallsyms] [k] handle_mm_fault
1.76% multi-fault-all [kernel.kallsyms] [k] __rmqueue
1.64% multi-fault-all [kernel.kallsyms] [k] __mem_cgroup_commit_charge
[After]
28.41% multi-fault-all [kernel.kallsyms] [k] clear_page_c
10.08% multi-fault-all [kernel.kallsyms] [k] _raw_spin_lock_irq
9.58% multi-fault-all [kernel.kallsyms] [k] down_read_trylock
9.38% multi-fault-all [kernel.kallsyms] [k] _raw_spin_lock_irqsave
5.86% multi-fault-all [kernel.kallsyms] [k] __alloc_pages_nodemask
5.65% multi-fault-all [kernel.kallsyms] [k] up_read
2.82% multi-fault-all [kernel.kallsyms] [k] handle_mm_fault
2.64% multi-fault-all [kernel.kallsyms] [k] mem_cgroup_add_lru_list
2.48% multi-fault-all [kernel.kallsyms] [k] __mem_cgroup_commit_charge
Then, 8.02% of try_get_mem_cgroup_from_mm() disappears because this patch
removes css_tryget() in it. (But yes, this is an extreme case.)
Signed-off-by: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Cc: Balbir Singh <balbir@in.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When the OOM killer scans task, it check a task is under memcg or
not when it's called via memcg's context.
But, as Oleg pointed out, a thread group leader may have NULL ->mm
and task_in_mem_cgroup() may do wrong decision. We have to use
find_lock_task_mm() in memcg as generic OOM-Killer does.
Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Cc: Balbir Singh <balbir@linux.vnet.ibm.com>
Reviewed-by: Minchan Kim <minchan.kim@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
mem_cgroup_charge_common() is always called with @mem = NULL, so it's
meaningless. This patch removes it.
Signed-off-by: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Cc: Balbir Singh <balbir@linux.vnet.ibm.com>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
- try_get_mem_cgroup_from_mm() calls rcu_read_lock/unlock by itself, so we
don't have to call them in task_in_mem_cgroup().
- *mz is not used in __mem_cgroup_uncharge_common().
- we don't have to call lookup_page_cgroup() in mem_cgroup_end_migration()
after we've cleared PCG_MIGRATION of @oldpage.
- remove empty comment.
- remove redundant empty line in mem_cgroup_cache_charge().
Signed-off-by: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Acked-by: Balbir Singh <balbir@linux.vnet.ibm.com>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Now, for checking a memcg is under task-account-moving, we do css_tryget()
against mc.to and mc.from. But this is just complicating things. This
patch makes the check easier.
This patch adds a spinlock to move_charge_struct and guard modification of
mc.to and mc.from. By this, we don't have to think about complicated
races arount this not-critical path.
[balbir@linux.vnet.ibm.com: don't crash on a null memcg being passed]
Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: Balbir Singh <balbir@linux.vnet.ibm.com>
Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Cc: Balbir Singh <balbir@in.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
mem_cgroup_try_charge() has a big loop in it and seems to be hard to read.
Most of routines are for slow path. This patch moves codes out from the
loop and make it clear what's done.
Summary:
- refactoring a function to detect a memcg is under acccount move or not.
- refactoring a function to wait for the end of moving task acct.
- refactoring a main loop('s slow path) as a function and make it clear
why we retry or quit by return code.
- add fatal_signal_pending() check for bypassing charge loops.
Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Cc: Balbir Singh <balbir@in.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Memcg also need to trace page isolation information as global reclaim.
This patch does it.
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Acked-by: Mel Gorman <mel@csn.ul.ie>
Acked-by: Balbir Singh <balbir@linux.vnet.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This a complete rewrite of the oom killer's badness() heuristic which is
used to determine which task to kill in oom conditions. The goal is to
make it as simple and predictable as possible so the results are better
understood and we end up killing the task which will lead to the most
memory freeing while still respecting the fine-tuning from userspace.
Instead of basing the heuristic on mm->total_vm for each task, the task's
rss and swap space is used instead. This is a better indication of the
amount of memory that will be freeable if the oom killed task is chosen
and subsequently exits. This helps specifically in cases where KDE or
GNOME is chosen for oom kill on desktop systems instead of a memory
hogging task.
The baseline for the heuristic is a proportion of memory that each task is
currently using in memory plus swap compared to the amount of "allowable"
memory. "Allowable," in this sense, means the system-wide resources for
unconstrained oom conditions, the set of mempolicy nodes, the mems
attached to current's cpuset, or a memory controller's limit. The
proportion is given on a scale of 0 (never kill) to 1000 (always kill),
roughly meaning that if a task has a badness() score of 500 that the task
consumes approximately 50% of allowable memory resident in RAM or in swap
space.
The proportion is always relative to the amount of "allowable" memory and
not the total amount of RAM systemwide so that mempolicies and cpusets may
operate in isolation; they shall not need to know the true size of the
machine on which they are running if they are bound to a specific set of
nodes or mems, respectively.
Root tasks are given 3% extra memory just like __vm_enough_memory()
provides in LSMs. In the event of two tasks consuming similar amounts of
memory, it is generally better to save root's task.
Because of the change in the badness() heuristic's baseline, it is also
necessary to introduce a new user interface to tune it. It's not possible
to redefine the meaning of /proc/pid/oom_adj with a new scale since the
ABI cannot be changed for backward compatability. Instead, a new tunable,
/proc/pid/oom_score_adj, is added that ranges from -1000 to +1000. It may
be used to polarize the heuristic such that certain tasks are never
considered for oom kill while others may always be considered. The value
is added directly into the badness() score so a value of -500, for
example, means to discount 50% of its memory consumption in comparison to
other tasks either on the system, bound to the mempolicy, in the cpuset,
or sharing the same memory controller.
/proc/pid/oom_adj is changed so that its meaning is rescaled into the
units used by /proc/pid/oom_score_adj, and vice versa. Changing one of
these per-task tunables will rescale the value of the other to an
equivalent meaning. Although /proc/pid/oom_adj was originally defined as
a bitshift on the badness score, it now shares the same linear growth as
/proc/pid/oom_score_adj but with different granularity. This is required
so the ABI is not broken with userspace applications and allows oom_adj to
be deprecated for future removal.
Signed-off-by: David Rientjes <rientjes@google.com>
Cc: Nick Piggin <npiggin@suse.de>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Balbir Singh <balbir@in.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Since 2.6.28 zone->prev_priority is unused. Then it can be removed
safely. It reduce stack usage slightly.
Now I have to say that I'm sorry. 2 years ago, I thought prev_priority
can be integrate again, it's useful. but four (or more) times trying
haven't got good performance number. Thus I give up such approach.
The rest of this changelog is notes on prev_priority and why it existed in
the first place and why it might be not necessary any more. This information
is based heavily on discussions between Andrew Morton, Rik van Riel and
Kosaki Motohiro who is heavily quotes from.
Historically prev_priority was important because it determined when the VM
would start unmapping PTE pages. i.e. there are no balances of note within
the VM, Anon vs File and Mapped vs Unmapped. Without prev_priority, there
is a potential risk of unnecessarily increasing minor faults as a large
amount of read activity of use-once pages could push mapped pages to the
end of the LRU and get unmapped.
There is no proof this is still a problem but currently it is not considered
to be. Active files are not deactivated if the active file list is smaller
than the inactive list reducing the liklihood that file-mapped pages are
being pushed off the LRU and referenced executable pages are kept on the
active list to avoid them getting pushed out by read activity.
Even if it is a problem, prev_priority prev_priority wouldn't works
nowadays. First of all, current vmscan still a lot of UP centric code. it
expose some weakness on some dozens CPUs machine. I think we need more and
more improvement.
The problem is, current vmscan mix up per-system-pressure, per-zone-pressure
and per-task-pressure a bit. example, prev_priority try to boost priority to
other concurrent priority. but if the another task have mempolicy restriction,
it is unnecessary, but also makes wrong big latency and exceeding reclaim.
per-task based priority + prev_priority adjustment make the emulation of
per-system pressure. but it have two issue 1) too rough and brutal emulation
2) we need per-zone pressure, not per-system.
Another example, currently DEF_PRIORITY is 12. it mean the lru rotate about
2 cycle (1/4096 + 1/2048 + 1/1024 + .. + 1) before invoking OOM-Killer.
but if 10,0000 thrreads enter DEF_PRIORITY reclaim at the same time, the
system have higher memory pressure than priority==0 (1/4096*10,000 > 2).
prev_priority can't solve such multithreads workload issue. In other word,
prev_priority concept assume the sysmtem don't have lots threads."
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Reviewed-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Rik van Riel <riel@redhat.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Chris Mason <chris.mason@oracle.com>
Cc: Nick Piggin <npiggin@suse.de>
Cc: Rik van Riel <riel@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Michael Rubin <mrubin@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
OOM-waitqueue should be waken up when oom_disable is canceled. This is a
fix for 3c11ecf448 ("memcg: oom kill disable and oom status").
How to test:
Create a cgroup A...
1. set memory.limit and memory.memsw.limit to be small value
2. echo 1 > /cgroup/A/memory.oom_control, this disables oom-kill.
3. run a program which must cause OOM.
A program executed in 3 will sleep by oom_waiqueue in memcg. Then, how to
wake it up is problem.
1. echo 0 > /cgroup/A/memory.oom_control (enable OOM-killer)
2. echo big mem > /cgroup/A/memory.memsw.limit_in_bytes(allow more swap)
etc..
Without the patch, a task in slept can not be waken up.
Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Acked-by: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Cc: Balbir Singh <balbir@in.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Introduce struct mem_cgroup_thresholds. It helps to reduce number of
checks of thresholds type (memory or mem+swap).
[akpm@linux-foundation.org: repair comment]
Signed-off-by: Kirill A. Shutemov <kirill@shutemov.name>
Cc: Phil Carmody <ext-phil.2.carmody@nokia.com>
Cc: Balbir Singh <balbir@linux.vnet.ibm.com>
Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Acked-by: Paul Menage <menage@google.com>
Cc: Li Zefan <lizf@cn.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Since we are unable to handle an error returned by
cftype.unregister_event() properly, let's make the callback
void-returning.
mem_cgroup_unregister_event() has been rewritten to be a "never fail"
function. On mem_cgroup_usage_register_event() we save old buffer for
thresholds array and reuse it in mem_cgroup_usage_unregister_event() to
avoid allocation.
Signed-off-by: Kirill A. Shutemov <kirill@shutemov.name>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Phil Carmody <ext-phil.2.carmody@nokia.com>
Cc: Balbir Singh <balbir@linux.vnet.ibm.com>
Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Cc: Paul Menage <menage@google.com>
Cc: Li Zefan <lizf@cn.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
FILE_MAPPED per memcg of migrated file cache is not properly updated,
because our hook in page_add_file_rmap() can't know to which memcg
FILE_MAPPED should be counted.
Basically, this patch is for fixing the bug but includes some big changes
to fix up other messes.
Now, at migrating mapped file, events happen in following sequence.
1. allocate a new page.
2. get memcg of an old page.
3. charge ageinst a new page before migration. But at this point,
no changes to new page's page_cgroup, no commit for the charge.
(IOW, PCG_USED bit is not set.)
4. page migration replaces radix-tree, old-page and new-page.
5. page migration remaps the new page if the old page was mapped.
6. Here, the new page is unlocked.
7. memcg commits the charge for newpage, Mark the new page's page_cgroup
as PCG_USED.
Because "commit" happens after page-remap, we can count FILE_MAPPED
at "5", because we should avoid to trust page_cgroup->mem_cgroup.
if PCG_USED bit is unset.
(Note: memcg's LRU removal code does that but LRU-isolation logic is used
for helping it. When we overwrite page_cgroup->mem_cgroup, page_cgroup is
not on LRU or page_cgroup->mem_cgroup is NULL.)
We can lose file_mapped accounting information at 5 because FILE_MAPPED
is updated only when mapcount changes 0->1. So we should catch it.
BTW, historically, above implemntation comes from migration-failure
of anonymous page. Because we charge both of old page and new page
with mapcount=0, we can't catch
- the page is really freed before remap.
- migration fails but it's freed before remap
or .....corner cases.
New migration sequence with memcg is:
1. allocate a new page.
2. mark PageCgroupMigration to the old page.
3. charge against a new page onto the old page's memcg. (here, new page's pc
is marked as PageCgroupUsed.)
4. page migration replaces radix-tree, page table, etc...
5. At remapping, new page's page_cgroup is now makrked as "USED"
We can catch 0->1 event and FILE_MAPPED will be properly updated.
And we can catch SWAPOUT event after unlock this and freeing this
page by unmap() can be caught.
7. Clear PageCgroupMigration of the old page.
So, FILE_MAPPED will be correctly updated.
Then, for what MIGRATION flag is ?
Without it, at migration failure, we may have to charge old page again
because it may be fully unmapped. "charge" means that we have to dive into
memory reclaim or something complated. So, it's better to avoid
charge it again. Before this patch, __commit_charge() was working for
both of the old/new page and fixed up all. But this technique has some
racy condtion around FILE_MAPPED and SWAPOUT etc...
Now, the kernel use MIGRATION flag and don't uncharge old page until
the end of migration.
I hope this change will make memcg's page migration much simpler. This
page migration has caused several troubles. Worth to add a flag for
simplification.
Reviewed-by: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Tested-by: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Reported-by: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Balbir Singh <balbir@in.ibm.com>
Cc: Christoph Lameter <cl@linux-foundation.org>
Cc: "Kirill A. Shutemov" <kirill@shutemov.name>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Only an out of memory error will cause ret to be set.
Signed-off-by: Phil Carmody <ext-phil.2.carmody@nokia.com>
Acked-by: Kirill A. Shutemov <kirill@shutemov.name>
Cc: Balbir Singh <balbir@in.ibm.com>
Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The bottom 4 hunks are atomically changing memory to which there are no
aliases as it's freshly allocated, so there's no need to use atomic
operations.
The other hunks are just atomic_read and atomic_set, and do not involve
any read-modify-write. The use of atomic_{read,set} doesn't prevent a
read/write or write/write race, so if a race were possible (I'm not saying
one is), then it would still be there even with atomic_set.
See:
http://digitalvampire.org/blog/index.php/2007/05/13/atomic-cargo-cults/
Signed-off-by: Phil Carmody <ext-phil.2.carmody@nokia.com>
Acked-by: Kirill A. Shutemov <kirill@shutemov.name>
Cc: Balbir Singh <balbir@in.ibm.com>
Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This patch adds support for moving charge of file pages, which include
normal file, tmpfs file and swaps of tmpfs file. It's enabled by setting
bit 1 of <target cgroup>/memory.move_charge_at_immigrate.
Unlike the case of anonymous pages, file pages(and swaps) in the range
mmapped by the task will be moved even if the task hasn't done page fault,
i.e. they might not be the task's "RSS", but other task's "RSS" that maps
the same file. And mapcount of the page is ignored(the page can be moved
even if page_mapcount(page) > 1). So, conditions that the page/swap
should be met to be moved is that it must be in the range mmapped by the
target task and it must be charged to the old cgroup.
[akpm@linux-foundation.org: coding-style fixes]
[akpm@linux-foundation.org: fix warning]
Signed-off-by: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Balbir Singh <balbir@in.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This patch cleans up move charge code by:
- define functions to handle pte for each types, and make
is_target_pte_for_mc() cleaner.
- instead of checking the MOVE_CHARGE_TYPE_ANON bit, define a function
that checks the bit.
Signed-off-by: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Balbir Singh <balbir@in.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This adds a feature to disable oom-killer for memcg, if disabled, of
course, tasks under memcg will stop.
But now, we have oom-notifier for memcg. And the world around memcg is
not under out-of-memory. memcg's out-of-memory just shows memcg hits
limit. Then, administrator or management daemon can recover the situation
by
- kill some process
- enlarge limit, add more swap.
- migrate some tasks
- remove file cache on tmps (difficult ?)
Unlike oom-killer, you can take enough information before killing tasks.
(by gcore, or, ps etc.)
[akpm@linux-foundation.org: coding-style fixes]
Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Cc: Balbir Singh <balbir@in.ibm.com>
Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Considering containers or other resource management softwares in userland,
event notification of OOM in memcg should be implemented. Now, memcg has
"threshold" notifier which uses eventfd, we can make use of it for oom
notification.
This patch adds oom notification eventfd callback for memcg. The usage is
very similar to threshold notifier, but control file is memory.oom_control
and no arguments other than eventfd is required.
% cgroup_event_notifier /cgroup/A/memory.oom_control dummy
(About cgroup_event_notifier, see Documentation/cgroup/)
Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Cc: Balbir Singh <balbir@in.ibm.com>
Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Cc: David Rientjes <rientjes@google.com>
Cc: Davide Libenzi <davidel@xmailserver.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
memcg's oom waitqueue is a system-wide wait_queue (for handling
hierarchy.) So, it's better to add custom wake function and do filtering
in wake up path.
This patch adds a filtering feature for waking up oom-waiters. Hierarchy
is properly handled.
Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Reviewed-by: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Cc: Balbir Singh <balbir@in.ibm.com>
Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jikos/trivial: (44 commits)
vlynq: make whole Kconfig-menu dependant on architecture
add descriptive comment for TIF_MEMDIE task flag declaration.
EEPROM: max6875: Header file cleanup
EEPROM: 93cx6: Header file cleanup
EEPROM: Header file cleanup
agp: use NULL instead of 0 when pointer is needed
rtc-v3020: make bitfield unsigned
PCI: make bitfield unsigned
jbd2: use NULL instead of 0 when pointer is needed
cciss: fix shadows sparse warning
doc: inode uses a mutex instead of a semaphore.
uml: i386: Avoid redefinition of NR_syscalls
fix "seperate" typos in comments
cocbalt_lcdfb: correct sections
doc: Change urls for sparse
Powerpc: wii: Fix typo in comment
i2o: cleanup some exit paths
Documentation/: it's -> its where appropriate
UML: Fix compiler warning due to missing task_struct declaration
UML: add kernel.h include to signal.c
...
Some callers (in memcontrol.c) calls css_is_ancestor() without
rcu_read_lock. Because css_is_ancestor() has to access RCU protected
data, it should be under rcu_read_lock().
This makes css_is_ancestor() itself does safe access to RCU protected
area. (At least, "root" can have refcnt==0 if it's not an ancestor of
"child". So, we need rcu_read_lock().)
Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: "Paul E. McKenney" <paulmck@linux.vnet.ibm.com>
Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Cc: Balbir Singh <balbir@linux.vnet.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Commit ad4ba37537 ("memcg: css_id() must be
called under rcu_read_lock()") modifies memcontol.c for fixing RCU check
message. But Andrew Morton pointed out that the fix doesn't seems sane
and it was just for hidining lockdep messages.
This is a patch for do proper things. Checking again, all places,
accessing without rcu_read_lock, that commit fixies was intentional....
all callers of css_id() has reference count on it. So, it's not necessary
to be under rcu_read_lock().
Considering again, we can use rcu_dereference_check for css_id(). We know
css->id is valid if css->refcnt > 0. (css->id never changes and freed
after css->refcnt going to be 0.)
This patch makes use of rcu_dereference_check() in css_id/depth and remove
unnecessary rcu-read-lock added by the commit.
Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: "Paul E. McKenney" <paulmck@linux.vnet.ibm.com>
Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Cc: Balbir Singh <balbir@linux.vnet.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* 'core-fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
rcu: create rcu_my_thread_group_empty() wrapper
memcg: css_id() must be called under rcu_read_lock()
cgroup: Check task_lock in task_subsys_state()
sched: Fix an RCU warning in print_task()
cgroup: Fix an RCU warning in alloc_css_id()
cgroup: Fix an RCU warning in cgroup_path()
KEYS: Fix an RCU warning in the reading of user keys
KEYS: Fix an RCU warning
This patch fixes task_in_mem_cgroup(), mem_cgroup_uncharge_swapcache(),
mem_cgroup_move_swap_account(), and is_target_pte_for_mc() to protect
calls to css_id(). An additional RCU lockdep splat was reported for
memcg_oom_wake_function(), however, this function is not yet in
mainline as of 2.6.34-rc5.
Reported-by: Li Zefan <lizf@cn.fujitsu.com>
Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Cc: Balbir Singh <balbir@linux.vnet.ibm.com>
Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Tested-by: Li Zefan <lizf@cn.fujitsu.com>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Presently, memcg's FILE_MAPPED accounting has following race with
move_account (happens at rmdir()).
increment page->mapcount (rmap.c)
mem_cgroup_update_file_mapped() move_account()
lock_page_cgroup()
check page_mapped() if
page_mapped(page)>1 {
FILE_MAPPED -1 from old memcg
FILE_MAPPED +1 to old memcg
}
.....
overwrite pc->mem_cgroup
unlock_page_cgroup()
lock_page_cgroup()
FILE_MAPPED + 1 to pc->mem_cgroup
unlock_page_cgroup()
Then,
old memcg (-1 file mapped)
new memcg (+2 file mapped)
This happens because move_account see page_mapped() which is not guarded
by lock_page_cgroup(). This patch adds FILE_MAPPED flag to page_cgroup
and move account information based on it. Now, all checks are synchronous
with lock_page_cgroup().
Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Reviewed-by: Balbir Singh <balbir@in.ibm.com>
Reviewed-by: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Cc: Andrea Righi <arighi@develer.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
There was a potential null deref introduced in c62b1a3b31 ("memcg: use
generic percpu instead of private implementation").
Signed-off-by: Dan Carpenter <error27@gmail.com>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
In commit 02491447 ("memcg: move charges of anonymous swap"), I tried to
disable move charge feature in no mmu case by enclosing all the related
functions with "#ifdef CONFIG_MMU", but the commit places these ifdefs in
wrong place. (it seems that it's mangled while handling some fixes...)
This patch fixes it up.
Signed-off-by: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Cc: Balbir Singh <balbir@in.ibm.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
In current page-fault code,
handle_mm_fault()
-> ...
-> mem_cgroup_charge()
-> map page or handle error.
-> check return code.
If page fault's return code is VM_FAULT_OOM, page_fault_out_of_memory() is
called. But if it's caused by memcg, OOM should have been already
invoked.
Then, I added a patch: a636b327f7. That
patch records last_oom_jiffies for memcg's sub-hierarchy and prevents
page_fault_out_of_memory from being invoked in near future.
But Nishimura-san reported that check by jiffies is not enough when the
system is terribly heavy.
This patch changes memcg's oom logic as.
* If memcg causes OOM-kill, continue to retry.
* remove jiffies check which is used now.
* add memcg-oom-lock which works like perzone oom lock.
* If current is killed(as a process), bypass charge.
Something more sophisticated can be added but this pactch does
fundamental things.
TODO:
- add oom notifier
- add permemcg disable-oom-kill flag and freezer at oom.
- more chances for wake up oom waiter (when changing memory limit etc..)
Reviewed-by: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Tested-by: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Balbir Singh <balbir@in.ibm.com>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Events should be removed after rmdir of cgroup directory, but before
destroying subsystem state objects. Let's take reference to cgroup
directory dentry to do that.
Signed-off-by: Kirill A. Shutemov <kirill@shutemov.name>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hioryu@jp.fujitsu.com>
Cc: Paul Menage <menage@google.com>
Acked-by: Li Zefan <lizf@cn.fujitsu.com>
Cc: Balbir Singh <balbir@linux.vnet.ibm.com>
Cc: Pavel Emelyanov <xemul@openvz.org>
Cc: Dan Malek <dan@embeddedalley.com>
Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Memcg has 2 eventcountes which counts "the same" event. Just usages are
different from each other. This patch tries to reduce event counter.
Now logic uses "only increment, no reset" counter and masks for each
checks. Softlimit chesk was done per 1000 evetns. So, the similar check
can be done by !(new_counter & 0x3ff). Threshold check was done per 100
events. So, the similar check can be done by (!new_counter & 0x7f)
ALL event checks are done right after EVENT percpu counter is updated.
Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Kirill A. Shutemov <kirill@shutemov.name>
Cc: Balbir Singh <balbir@linux.vnet.ibm.com>
Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Presently, move_task does "batched" precharge. Because res_counter or
css's refcnt are not-scalable jobs for memcg, try_charge_().. tend to be
done in batched manner if allowed.
Now, softlimit and threshold check their event counter in try_charge, but
the charge is not a per-page event. And event counter is not updated at
charge(). Moreover, precharge doesn't pass "page" to try_charge() and
softlimit tree will be never updated until uncharge() causes an event."
So the best place to check the event counter is commit_charge(). This is
per-page event by its nature. This patch move checks to there.
Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Kirill A. Shutemov <kirill@shutemov.name>
Cc: Balbir Singh <balbir@linux.vnet.ibm.com>
Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When per-cpu counter for memcg was implemneted, dynamic percpu allocator
was not very good. But now, we have good one and useful macros. This
patch replaces memcg's private percpu counter implementation with generic
dynamic percpu allocator.
The benefits are
- We can remove private implementation.
- The counters will be NUMA-aware. (Current one is not...)
- This patch makes sizeof struct mem_cgroup smaller. Then,
struct mem_cgroup may be fit in page size on small config.
- About basic performance aspects, see below.
[Before]
# size mm/memcontrol.o
text data bss dec hex filename
24373 2528 4132 31033 7939 mm/memcontrol.o
[page-fault-throuput test on 8cpu/SMP in root cgroup]
# /root/bin/perf stat -a -e page-faults,cache-misses --repeat 5 ./multi-fault-fork 8
Performance counter stats for './multi-fault-fork 8' (5 runs):
45878618 page-faults ( +- 0.110% )
602635826 cache-misses ( +- 0.105% )
61.005373262 seconds time elapsed ( +- 0.004% )
Then cache-miss/page fault = 13.14
[After]
#size mm/memcontrol.o
text data bss dec hex filename
23913 2528 4132 30573 776d mm/memcontrol.o
# /root/bin/perf stat -a -e page-faults,cache-misses --repeat 5 ./multi-fault-fork 8
Performance counter stats for './multi-fault-fork 8' (5 runs):
48179400 page-faults ( +- 0.271% )
588628407 cache-misses ( +- 0.136% )
61.004615021 seconds time elapsed ( +- 0.004% )
Then cache-miss/page fault = 12.22
Text size is reduced.
This performance improvement is not big and will be invisible in real world
applications. But this result shows this patch has some good effect even
on (small) SMP.
Here is a test program I used.
1. fork() processes on each cpus.
2. do page fault repeatedly on each process.
3. after 60secs, kill all childredn and exit.
(3 is necessary for getting stable data, this is improvement from previous one.)
#define _GNU_SOURCE
#include <stdio.h>
#include <sched.h>
#include <sys/mman.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <signal.h>
#include <stdlib.h>
/*
* For avoiding contention in page table lock, FAULT area is
* sparse. If FAULT_LENGTH is too large for your cpus, decrease it.
*/
#define FAULT_LENGTH (2 * 1024 * 1024)
#define PAGE_SIZE 4096
#define MAXNUM (128)
void alarm_handler(int sig)
{
}
void *worker(int cpu, int ppid)
{
void *start, *end;
char *c;
cpu_set_t set;
int i;
CPU_ZERO(&set);
CPU_SET(cpu, &set);
sched_setaffinity(0, sizeof(set), &set);
start = mmap(NULL, FAULT_LENGTH, PROT_READ|PROT_WRITE,
MAP_PRIVATE | MAP_ANONYMOUS, 0, 0);
if (start == MAP_FAILED) {
perror("mmap");
exit(1);
}
end = start + FAULT_LENGTH;
pause();
//fprintf(stderr, "run%d", cpu);
while (1) {
for (c = (char*)start; (void *)c < end; c += PAGE_SIZE)
*c = 0;
madvise(start, FAULT_LENGTH, MADV_DONTNEED);
}
return NULL;
}
int main(int argc, char *argv[])
{
int num, i, ret, pid, status;
int pids[MAXNUM];
if (argc < 2)
return 0;
setpgid(0, 0);
signal(SIGALRM, alarm_handler);
num = atoi(argv[1]);
pid = getpid();
for (i = 0; i < num; ++i) {
ret = fork();
if (!ret) {
worker(i, pid);
exit(0);
}
pids[i] = ret;
}
sleep(1);
kill(-pid, SIGALRM);
sleep(60);
for (i = 0; i < num; i++)
kill(pids[i], SIGKILL);
for (i = 0; i < num; i++)
waitpid(pids[i], &status, 0);
return 0;
}
Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Cc: Balbir Singh <balbir@in.ibm.com>
Cc: Pavel Emelyanov <xemul@openvz.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
It allows to register multiple memory and memsw thresholds and gets
notifications when it crosses.
To register a threshold application need:
- create an eventfd;
- open memory.usage_in_bytes or memory.memsw.usage_in_bytes;
- write string like "<event_fd> <memory.usage_in_bytes> <threshold>" to
cgroup.event_control.
Application will be notified through eventfd when memory usage crosses
threshold in any direction.
It's applicable for root and non-root cgroup.
It uses stats to track memory usage, simmilar to soft limits. It checks
if we need to send event to userspace on every 100 page in/out. I guess
it's good compromise between performance and accuracy of thresholds.
[akpm@linux-foundation.org: coding-style fixes]
[nishimura@mxp.nes.nec.co.jp: fix documentation merge issue]
Signed-off-by: Kirill A. Shutemov <kirill@shutemov.name>
Cc: Li Zefan <lizf@cn.fujitsu.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Balbir Singh <balbir@linux.vnet.ibm.com>
Cc: Pavel Emelyanov <xemul@openvz.org>
Cc: Dan Malek <dan@embeddedalley.com>
Cc: Vladislav Buzov <vbuzov@embeddedalley.com>
Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Cc: Alexander Shishkin <virtuoso@slind.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Instead of incrementing counter on each page in/out and comparing it with
constant, we set counter to constant, decrement counter on each page
in/out and compare it with zero. We want to make comparing as fast as
possible. On many RISC systems (probably not only RISC) comparing with
zero is more effective than comparing with a constant, since not every
constant can be immediate operand for compare instruction.
Also, I've renamed MEM_CGROUP_STAT_EVENTS to MEM_CGROUP_STAT_SOFTLIMIT,
since really it's not a generic counter.
Signed-off-by: Kirill A. Shutemov <kirill@shutemov.name>
Cc: Li Zefan <lizf@cn.fujitsu.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Balbir Singh <balbir@linux.vnet.ibm.com>
Cc: Pavel Emelyanov <xemul@openvz.org>
Cc: Dan Malek <dan@embeddedalley.com>
Cc: Vladislav Buzov <vbuzov@embeddedalley.com>
Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Cc: Alexander Shishkin <virtuoso@slind.org>
Cc: Davide Libenzi <davidel@xmailserver.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Try to reduce overheads in moving swap charge by:
- Adds a new function(__mem_cgroup_put), which takes "count" as a arg and
decrement mem->refcnt by "count".
- Removed res_counter_uncharge, css_put, and mem_cgroup_put from the path
of moving swap account, and consolidate all of them into mem_cgroup_clear_mc.
We cannot do that about mc.to->refcnt.
These changes reduces the overhead from 1.35sec to 0.9sec to move charges
of 1G anonymous memory(including 500MB swap) in my test environment.
Signed-off-by: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Cc: Balbir Singh <balbir@linux.vnet.ibm.com>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Li Zefan <lizf@cn.fujitsu.com>
Cc: Paul Menage <menage@google.com>
Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This patch is another core part of this move-charge-at-task-migration
feature. It enables moving charges of anonymous swaps.
To move the charge of swap, we need to exchange swap_cgroup's record.
In current implementation, swap_cgroup's record is protected by:
- page lock: if the entry is on swap cache.
- swap_lock: if the entry is not on swap cache.
This works well in usual swap-in/out activity.
But this behavior make the feature of moving swap charge check many
conditions to exchange swap_cgroup's record safely.
So I changed modification of swap_cgroup's recored(swap_cgroup_record())
to use xchg, and define a new function to cmpxchg swap_cgroup's record.
This patch also enables moving charge of non pte_present but not uncharged
swap caches, which can be exist on swap-out path, by getting the target
pages via find_get_page() as do_mincore() does.
[kosaki.motohiro@jp.fujitsu.com: fix ia64 build]
[akpm@linux-foundation.org: fix typos]
Signed-off-by: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Cc: Balbir Singh <balbir@linux.vnet.ibm.com>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Li Zefan <lizf@cn.fujitsu.com>
Cc: Paul Menage <menage@google.com>
Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This move-charge-at-task-migration feature has extra charges on
"to"(pre-charges) and "from"(left-over charges) during moving charge.
This means unnecessary oom can happen.
This patch tries to avoid such oom.
Signed-off-by: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Cc: Balbir Singh <balbir@linux.vnet.ibm.com>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Li Zefan <lizf@cn.fujitsu.com>
Cc: Paul Menage <menage@google.com>
Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Try to reduce overheads in moving charge by:
- Instead of calling res_counter_uncharge() against the old cgroup in
__mem_cgroup_move_account() everytime, call res_counter_uncharge() at the end
of task migration once.
- removed css_get(&to->css) from __mem_cgroup_move_account() because callers
should have already called css_get(). And removed css_put(&to->css) too,
which was called by callers of move_account on success of move_account.
- Instead of calling __mem_cgroup_try_charge(), i.e. res_counter_charge(),
repeatedly, call res_counter_charge(PAGE_SIZE * count) in can_attach() if
possible.
- Instead of calling css_get()/css_put() repeatedly, make use of coalesce
__css_get()/__css_put() if possible.
These changes reduces the overhead from 1.7sec to 0.6sec to move charges
of 1G anonymous memory in my test environment.
Signed-off-by: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Cc: Balbir Singh <balbir@linux.vnet.ibm.com>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Li Zefan <lizf@cn.fujitsu.com>
Cc: Paul Menage <menage@google.com>
Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This patch is the core part of this move-charge-at-task-migration feature.
It implements functions to move charges of anonymous pages mapped only by
the target task.
Implementation:
- define struct move_charge_struct and a valuable of it(mc) to remember the
count of pre-charges and other information.
- At can_attach(), get anon_rss of the target mm, call __mem_cgroup_try_charge()
repeatedly and count up mc.precharge.
- At attach(), parse the page table, find a target page to be move, and call
mem_cgroup_move_account() about the page.
- Cancel all precharges if mc.precharge > 0 on failure or at the end of
task move.
[akpm@linux-foundation.org: a little simplification]
Signed-off-by: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Cc: Balbir Singh <balbir@linux.vnet.ibm.com>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Li Zefan <lizf@cn.fujitsu.com>
Cc: Paul Menage <menage@google.com>
Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
In current memcg, charges associated with a task aren't moved to the new
cgroup at task migration. Some users feel this behavior to be strange.
These patches are for this feature, that is, for charging to the new
cgroup and, of course, uncharging from the old cgroup at task migration.
This patch adds "memory.move_charge_at_immigrate" file, which is a flag
file to determine whether charges should be moved to the new cgroup at
task migration or not and what type of charges should be moved. This
patch also adds read and write handlers of the file.
This patch also adds no-op handlers for this feature. These handlers will
be implemented in later patches. And you cannot write any values other
than 0 to move_charge_at_immigrate yet.
Signed-off-by: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Cc: Balbir Singh <balbir@linux.vnet.ibm.com>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Li Zefan <lizf@cn.fujitsu.com>
Cc: Paul Menage <menage@google.com>
Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>