reiserfs_get_block() is one of these sites where the write lock might
be acquired recursively.
It's a particular problem because this function is called very often.
It's a hot spot which needs to reschedule() periodically while converting
direct items to indirect ones because it can take some time.
Then if we are applying the write lock release/reacquire pattern on
schedule() here, it may not produce the desired effect since we may have
locked in more than one depth.
The solution is to use reiserfs_write_lock_once() which won't try
to reacquire the lock recursively. Then the lock will be *really*
released before schedule().
Also, we only release the lock if TIF_NEED_RESCHED is set to not
create wasteful numerous contentions.
[ Impact: fix a too long holded lock case in reiserfs_get_block() ]
Cc: Jeff Mahoney <jeffm@suse.com>
Cc: Chris Mason <chris.mason@oracle.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Alexander Beregalov <a.beregalov@gmail.com>
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
flush_commit_list() uses ll_rw_block() to commit the pending log blocks.
ll_rw_block() might sleep, and the bkl was released at this point. Then
we can also relax the write lock at this point.
[ Impact: release the reiserfs write lock when it is not needed ]
Cc: Jeff Mahoney <jeffm@suse.com>
Cc: Chris Mason <chris.mason@oracle.com>
Cc: Alexander Beregalov <a.beregalov@gmail.com>
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
reiserfs_read_bitmap_block() uses sb_bread() to read the bitmap block. This
helper might sleep.
Then, when the bkl was used, it was released at this point. We can then
relax the write lock too here.
[ Impact: release the reiserfs write lock when it is not needed ]
Cc: Jeff Mahoney <jeffm@suse.com>
Cc: Chris Mason <chris.mason@oracle.com>
Cc: Alexander Beregalov <a.beregalov@gmail.com>
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
get_neighbors() is used to get the left and/or right blocks
against a given one in order to balance a tree.
sb_bread() is used to read the buffer of these neighors blocks and
while it waits for this operation, it might sleep.
The bkl was released at this point, and then we can also release
the write lock before calling sb_bread().
This is safe because if the filesystem is changed after this
lock release, the function returns REPEAT_SEARCH (aka SCHEDULE_OCCURRED
in the function header comments) in order to repeat the neighbhor
research.
[ Impact: release the reiserfs write lock when it is not needed ]
Cc: Jeff Mahoney <jeffm@suse.com>
Cc: Chris Mason <chris.mason@oracle.com>
Cc: Alexander Beregalov <a.beregalov@gmail.com>
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
prepare_for_delete_or_cut() can process several types of items, including
indirect items, ie: items which contain no file data but pointers to
unformatted nodes scattering the datas of a file.
In this case it has to zero out these pointers to block numbers of
unformatted nodes and release the bitmap from these block numbers.
It can take some time, so a rescheduling() is performed between each
block processed. We can safely release the write lock while
rescheduling(), like the bkl did, because the code checks just after
if the item has moved after sleeping.
[ Impact: release the reiserfs write lock when it is not needed ]
Cc: Jeff Mahoney <jeffm@suse.com>
Cc: Chris Mason <chris.mason@oracle.com>
Cc: Alexander Beregalov <a.beregalov@gmail.com>
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
When do_journal_end() copies data to the journal blocks buffers in memory,
it reschedules if needed between each block copied and dirtyfied.
We can also release the write lock at this rescheduling stage,
like did the bkl implicitly.
[ Impact: release the reiserfs write lock when it is not needed ]
Cc: Jeff Mahoney <jeffm@suse.com>
Cc: Chris Mason <chris.mason@oracle.com>
Cc: Alexander Beregalov <a.beregalov@gmail.com>
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Impact: fix a deadlock
reiserfs_dirty_inode() is the super_operations::dirty_inode() callback
of reiserfs. It can be called from different contexts where the write
lock can be already held.
But this function also grab the write lock (possibly recursively).
Subsequent release of the lock before sleep will actually not release
the lock if the caller of mark_inode_dirty() (which in turn calls
reiserfs_dirty_inode()) already owns the lock.
A typical case:
reiserfs_write_end() {
acquire_write_lock()
mark_inode_dirty() {
reiserfs_dirty_inode() {
reacquire_write_lock() {
journal_begin() {
do_journal_begin_r() {
/*
* fail to release, still
* one depth of lock
*/
release_write_lock()
reiserfs_wait_on_write_block() {
wait_event()
The event is usually provided by something which needs the write lock but
it hasn't been released.
We use reiserfs_write_lock_once() here to ensure we only grab the
write lock in one level.
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Alessio Igor Bogani <abogani@texware.it>
Cc: Jeff Mahoney <jeffm@suse.com>
Cc: Chris Mason <chris.mason@oracle.com>
LKML-Reference: <1239680065-25013-4-git-send-email-fweisbec@gmail.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Impact: fix a deadlock
reiserfs_truncate_file() can be called from multiple context where
the write lock can be already hold or not.
This function also acquire (possibly recursively) the write
lock. Subsequent releases before sleeping will not actually release
the lock because we may be in more than one lock depth degree.
A typical case is:
reiserfs_file_release {
acquire_the_lock()
reiserfs_truncate_file()
reacquire_the_lock()
journal_begin() {
do_journal_begin_r() {
reiserfs_wait_on_write_block() {
/*
* Not released because still one
* depth owned
*/
release_lock()
wait_for_event()
At this stage the event never happen because the one which provides
it needs the write lock.
We use reiserfs_write_lock_once() here to ensure that we don't acquire the
write lock recursively.
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Alessio Igor Bogani <abogani@texware.it>
Cc: Jeff Mahoney <jeffm@suse.com>
Cc: Alexander Beregalov <a.beregalov@gmail.com>
Cc: Chris Mason <chris.mason@oracle.com>
LKML-Reference: <1239680065-25013-3-git-send-email-fweisbec@gmail.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Sometimes we don't want to recursively hold the per superblock write
lock because we want to be sure it is actually released when we come
to sleep.
This patch introduces the necessary tools for that.
reiserfs_write_lock_once() does the same job than reiserfs_write_lock()
except that it won't try to acquire recursively the lock if the current
task already owns it. Also the lock_depth before the call of this function
is returned.
reiserfs_write_unlock_once() unlock only if reiserfs_write_lock_once()
returned a depth equal to -1, ie: only if it actually locked.
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Alessio Igor Bogani <abogani@texware.it>
Cc: Jeff Mahoney <jeffm@suse.com>
Cc: Alexander Beregalov <a.beregalov@gmail.com>
Cc: Chris Mason <chris.mason@oracle.com>
LKML-Reference: <1239680065-25013-2-git-send-email-fweisbec@gmail.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Impact: fix a deadlock
The j_flush_mutex is acquired safely in journal.c:
if we can't take it, we free the reiserfs per superblock lock
and wait a bit.
But we have a remaining place in kupdate_transactions() where
j_flush_mutex is still acquired traditionnaly. Thus the following
scenario (warned by lockdep) can happen:
A B
mutex_lock(&write_lock) mutex_lock(&write_lock)
mutex_lock(&j_flush_mutex) mutex_lock(&j_flush_mutex) //block
mutex_unlock(&write_lock)
sleep...
mutex_lock(&write_lock) //deadlock
Fix this by using reiserfs_mutex_lock_safe() in kupdate_transactions().
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Alessio Igor Bogani <abogani@texware.it>
Cc: Jeff Mahoney <jeffm@suse.com>
LKML-Reference: <1239660635-12940-1-git-send-email-fweisbec@gmail.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
This patch is an attempt to remove the Bkl based locking scheme from
reiserfs and is intended.
It is a bit inspired from an old attempt by Peter Zijlstra:
http://lkml.indiana.edu/hypermail/linux/kernel/0704.2/2174.html
The bkl is heavily used in this filesystem to prevent from
concurrent write accesses on the filesystem.
Reiserfs makes a deep use of the specific properties of the Bkl:
- It can be acqquired recursively by a same task
- It is released on the schedule() calls and reacquired when schedule() returns
The two properties above are a roadmap for the reiserfs write locking so it's
very hard to simply replace it with a common mutex.
- We need a recursive-able locking unless we want to restructure several blocks
of the code.
- We need to identify the sites where the bkl was implictly relaxed
(schedule, wait, sync, etc...) so that we can in turn release and
reacquire our new lock explicitly.
Such implicit releases of the lock are often required to let other
resources producer/consumer do their job or we can suffer unexpected
starvations or deadlocks.
So the new lock that replaces the bkl here is a per superblock mutex with a
specific property: it can be acquired recursively by a same task, like the
bkl.
For such purpose, we integrate a lock owner and a lock depth field on the
superblock information structure.
The first axis on this patch is to turn reiserfs_write_(un)lock() function
into a wrapper to manage this mutex. Also some explicit calls to
lock_kernel() have been converted to reiserfs_write_lock() helpers.
The second axis is to find the important blocking sites (schedule...(),
wait_on_buffer(), sync_dirty_buffer(), etc...) and then apply an explicit
release of the write lock on these locations before blocking. Then we can
safely wait for those who can give us resources or those who need some.
Typically this is a fight between the current writer, the reiserfs workqueue
(aka the async commiter) and the pdflush threads.
The third axis is a consequence of the second. The write lock is usually
on top of a lock dependency chain which can include the journal lock, the
flush lock or the commit lock. So it's dangerous to release and trying to
reacquire the write lock while we still hold other locks.
This is fine with the bkl:
T1 T2
lock_kernel()
mutex_lock(A)
unlock_kernel()
// do something
lock_kernel()
mutex_lock(A) -> already locked by T1
schedule() (and then unlock_kernel())
lock_kernel()
mutex_unlock(A)
....
This is not fine with a mutex:
T1 T2
mutex_lock(write)
mutex_lock(A)
mutex_unlock(write)
// do something
mutex_lock(write)
mutex_lock(A) -> already locked by T1
schedule()
mutex_lock(write) -> already locked by T2
deadlock
The solution in this patch is to provide a helper which releases the write
lock and sleep a bit if we can't lock a mutex that depend on it. It's another
simulation of the bkl behaviour.
The last axis is to locate the fs callbacks that are called with the bkl held,
according to Documentation/filesystem/Locking.
Those are:
- reiserfs_remount
- reiserfs_fill_super
- reiserfs_put_super
Reiserfs didn't need to explicitly lock because of the context of these callbacks.
But now we must take care of that with the new locking.
After this patch, reiserfs suffers from a slight performance regression (for now).
On UP, a high volume write with dd reports an average of 27 MB/s instead
of 30 MB/s without the patch applied.
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Reviewed-by: Ingo Molnar <mingo@elte.hu>
Cc: Jeff Mahoney <jeffm@suse.com>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Bron Gondwana <brong@fastmail.fm>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
LKML-Reference: <1239070789-13354-1-git-send-email-fweisbec@gmail.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
- As ima_counts_put() may be called after the inode has been freed,
verify that the inode is not NULL, before dereferencing it.
- Maintain the IMA file counters in may_open() properly, decrementing
any counter increments on subsequent errors.
Reported-by: Ciprian Docan <docan@eden.rutgers.edu>
Reported-by: J.R. Okajima <hooanon05@yahoo.co.jp>
Signed-off-by: Mimi Zohar <zohar@us.ibm.com>
Acked-by: Eric Paris <eparis@redhat.com
Signed-off-by: James Morris <jmorris@namei.org>
In ext2_rename(), dir_page is acquired through ext2_dotdot(). It is
then released through ext2_set_link() but only if old_dir != new_dir.
Failing that, the pkmap reference count is never decremented and the
page remains pinned forever. Repeat that a couple times with highmem
pages and all pkmap slots get exhausted, and every further kmap() calls
end up stalling on the pkmap_map_wait queue at which point the whole
system comes to a halt.
Signed-off-by: Nicolas Pitre <nico@marvell.com>
Acked-by: Theodore Ts'o <tytso@mit.edu>
Cc: stable@kernel.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* 'upstream-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jlbec/ocfs2:
ocfs2: ocfs2_write_begin_nolock() should handle len=0
ocfs2: invalidate dentry if its dentry_lock isn't initialized.
Tom Horsley reports that his debugger hangs when it tries to read
/proc/pid_of_tracee/maps, this happens since
"mm_for_maps: take ->cred_guard_mutex to fix the race with exec"
04b836cbf19e885f8366bccb2e4b0474346c02d
commit in 2.6.31.
But the root of the problem lies in the fact that do_execve() path calls
tracehook_report_exec() which can stop if the tracer sets PT_TRACE_EXEC.
The tracee must not sleep in TASK_TRACED holding this mutex. Even if we
remove ->cred_guard_mutex from mm_for_maps() and proc_pid_attr_write(),
another task doing PTRACE_ATTACH should not hang until it is killed or the
tracee resumes.
With this patch do_execve() does not use ->cred_guard_mutex directly and
we do not hold it throughout, instead:
- introduce prepare_bprm_creds() helper, it locks the mutex
and calls prepare_exec_creds() to initialize bprm->cred.
- install_exec_creds() drops the mutex after commit_creds(),
and thus before tracehook_report_exec()->ptrace_stop().
or, if exec fails,
free_bprm() drops this mutex when bprm->cred != NULL which
indicates install_exec_creds() was not called.
Reported-by: Tom Horsley <tom.horsley@att.net>
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Acked-by: David Howells <dhowells@redhat.com>
Cc: Roland McGrath <roland@redhat.com>
Cc: James Morris <jmorris@namei.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Bug introduced by mainline commit e7432675f8
The bug causes ocfs2_write_begin_nolock() to oops when len=0.
Signed-off-by: Sunil Mushran <sunil.mushran@oracle.com>
Cc: stable@kernel.org
Signed-off-by: Joel Becker <joel.becker@oracle.com>
The function jffs2_nor_wbuf_flash_setup() doesn't allocate the verify buffer
if CONFIG_JFFS2_FS_WBUF_VERIFY is defined, so causing a kernel panic when
that macro is enabled and the verify function is called. Similarly the
jffs2_nor_wbuf_flash_cleanup() must free the buffer if
CONFIG_JFFS2_FS_WBUF_VERIFY is enabled.
The following patch fixes the problem.
The following patch applies to 2.6.30 kernel.
Signed-off-by: Massimo Cirillo <maxcir@gmail.com>
Signed-off-by: Artem Bityutskiy <Artem.Bityutskiy@nokia.com>
Signed-off-by: David Woodhouse <David.Woodhouse@intel.com>
Cc: stable@kernel.org
Fix a small typo in the compat ioctl handler that cause the swapext
compat handler to never be called.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Torsten Kaiser <just.for.lkml@googlemail.com>
Tested-by: Torsten Kaiser <just.for.lkml@googlemail.com>
Reviewed-by: Eric Sandeen <sandeen@sandeen.net>
Reviewed-by: Felix Blyakher <felixb@sgi.com>
Signed-off-by: Felix Blyakher <felixb@sgi.com>
In the recent change by Al Viro that changes verious subsystems
to use "struct path" one case was missed in the autofs4 module
which causes mounts to no longer expire.
Signed-off-by: Ian Kent <raven@themaw.net>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Seperating the addition and update of marks in inotify resulted in a
regression in that inotify never gets events. The inotify group mask is
always 0. This mask should be updated any time a new mark is added.
Signed-off-by: Eric Paris <eparis@redhat.com>
0db501bd06 introduced a regresion in that it now sends a nul
terminator but the length accounting when checking for space or
reporting to userspace did not take this into account. This corrects
all of the rounding logic.
Signed-off-by: Eric Paris <eparis@redhat.com>
When an event has no pathname, there's no need to pad it with a null byte and
therefore generate an inotify_event sized block of zeros. This fixes a
regression introduced by commit 0db501bd06 where
my system wouldn't finish booting because some process was being confused by
this.
Signed-off-by: Brian Rogers <brian@xyzw.org>
Signed-off-by: Eric Paris <eparis@redhat.com>
In commit a5a0a63092, when
ocfs2_attch_dentry_lock fails, we call an extra iput and reset
dentry->d_fsdata to NULL. This resolve a bug, but it isn't
completed and the dentry is still there. When we want to use
it again, ocfs2_dentry_revalidate doesn't catch it and return
true. That make future ocfs2_dentry_lock panic out.
One bug is http://oss.oracle.com/bugzilla/show_bug.cgi?id=1162.
The resolution is to add a check for dentry->d_fsdata in
revalidate process and return false if dentry->d_fsdata is NULL,
so that a new ocfs2_lookup will be called again.
Signed-off-by: Tao Ma <tao.ma@oracle.com>
Signed-off-by: Joel Becker <joel.becker@oracle.com>
* 'for-linus' of git://git.infradead.org/users/eparis/notify:
inotify: Ensure we alwasy write the terminating NULL.
inotify: fix locking around inotify watching in the idr
inotify: do not BUG on idr entries at inotify destruction
inotify: seperate new watch creation updating existing watches
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/ericvh/v9fs:
9p: update documentation pointers
9p: remove unnecessary v9fses->options which duplicates the mount string
net/9p: insulate the client against an invalid error code sent by a 9p server
9p: Add missing cast for the error return value in v9fs_get_inode
9p: Remove redundant inode uid/gid assignment
9p: Fix possible regressions when ->get_sb fails.
9p: Fix v9fs show_options
9p: Fix possible memleak in v9fs_inode_from fid.
9p: minor comment fixes
9p: Fix possible inode leak in v9fs_get_inode.
9p: Check for error in return value of v9fs_fid_add
kAFS crashes when asked to read a symbolic link because page_getlink()
passes a NULL file pointer to read_mapping_page(), but afs_readpage()
expects a file pointer from which to extract a key.
Modify afs_readpage() to request the appropriate key from the calling
process's keyrings if a file struct is not supplied with one attached.
Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: Anton Blanchard <anton@samba.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Before the rewrite copy_event_to_user always wrote a terqminating '\0'
byte to user space after the filename. Since the rewrite that
terminating byte was skipped if your filename is exactly a multiple of
event_size. Ouch!
So add one byte to name_size before we round up and use clear_user to
set userspace to zero like /dev/zero does instead of copying the
strange nul_inotify_event. I can't quite convince myself len_to_zero
will never exceed 16 and even if it doesn't clear_user should be more
efficient and a more accurate reflection of what the code is trying to
do.
Signed-off-by: Eric W. Biederman <ebiederm@aristanetworks.com>
Signed-off-by: Eric Paris <eparis@redhat.com>
The are races around the idr storage of inotify watches. It's possible
that a watch could be found from sys_inotify_rm_watch() in the idr, but it
could be removed from the idr before that code does it's removal. Move the
locking and the refcnt'ing so that these have to happen atomically.
Signed-off-by: Eric Paris <eparis@redhat.com>
If an inotify watch is left in the idr when an fsnotify group is destroyed
this will lead to a BUG. This is not a dangerous situation and really
indicates a programming bug and leak of memory. This patch changes it to
use a WARN and a printk rather than killing people's boxes.
Signed-off-by: Eric Paris <eparis@redhat.com>
There is nothing known wrong with the inotify watch addition/modification
but this patch seperates the two code paths to make them each easy to
verify as correct.
Signed-off-by: Eric Paris <eparis@redhat.com>
* 'for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jack/linux-fs-2.6:
ext3: Improve error message that changing journaling mode on remount is not possible
ext3: Update Kconfig description of EXT3_DEFAULTS_TO_ORDERED
Commit 76db6d9500 (nfs41: add session setup
to the state manager) introduces an infinite loop possibility in the NFSv4
state manager. By first checking nfs4_has_session() before clearing the
NFS4CLNT_SESSION_SETUP flag, it allows for a situation where someone sets
that flag, but it never gets cleared, and so the state manager loops.
In fact commit c3fad1b1aa (nfs41: add session
reset to state manager) causes this to happen every time we get a network
partition error.
Signed-off-by: Trond Myklebust <Trond.Myklebust@netapp.com>
Tested-by: Daniel J Blueman <daniel.blueman@gmail.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* 'upstream-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jlbec/ocfs2:
ocfs2/dlm: Wait on lockres instead of erroring cancel requests
ocfs2: Add missing lock name
ocfs2: Don't oops in ocfs2_kill_sb on a failed mount
ocfs2: release the buffer head in ocfs2_do_truncate.
ocfs2: Handle quota file corruption more gracefully
2.6.30's commit 8a0bdec194 removed
user_shm_lock() calls in hugetlb_file_setup() but left the
user_shm_unlock call in shm_destroy().
In detail:
Assume that can_do_hugetlb_shm() returns true and hence user_shm_lock()
is not called in hugetlb_file_setup(). However, user_shm_unlock() is
called in any case in shm_destroy() and in the following
atomic_dec_and_lock(&up->__count) in free_uid() is executed and if
up->__count gets zero, also cleanup_user_struct() is scheduled.
Note that sched_destroy_user() is empty if CONFIG_USER_SCHED is not set.
However, the ref counter up->__count gets unexpectedly non-positive and
the corresponding structs are freed even though there are live
references to them, resulting in a kernel oops after a lots of
shmget(SHM_HUGETLB)/shmctl(IPC_RMID) cycles and CONFIG_USER_SCHED set.
Hugh changed Stefan's suggested patch: can_do_hugetlb_shm() at the
time of shm_destroy() may give a different answer from at the time
of hugetlb_file_setup(). And fixed newseg()'s no_id error path,
which has missed user_shm_unlock() ever since it came in 2.6.9.
Reported-by: Stefan Huber <shuber2@gmail.com>
Signed-off-by: Hugh Dickins <hugh.dickins@tiscali.co.uk>
Tested-by: Stefan Huber <shuber2@gmail.com>
Cc: stable@kernel.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This patch makes the error message about changing journaling mode on remount
more descriptive. Some people are going to hit this error now due to commit
bbae8bcc49 if they configure a kernel to default
to data=writeback mode. The problem happens if they have data=ordered set for
the root filesystem in /etc/fstab but not in the kernel command line (and they
don't use initrd). Their filesystem then gets mounted as data=writeback by
kernel but then their boot fails because init scripts won't be able to remount
the filesystem rw. Better error message will hopefully make it easier for them
to find the error in their setup and bother us less with error reports :).
Signed-off-by: Jan Kara <jack@suse.cz>
The old description for this configuration option was perhaps not
completely balanced in terms of describing the tradeoffs of using a
default of data=writeback vs. data=ordered. Despite the fact that old
description very strongly recomended disabling this feature, all of
the major distributions have elected to preserve the existing 'legacy'
default, which is a strong hint that it perhaps wasn't telling the
whole story.
This revised description has been vetted by a number of ext3
developers as being better at informing the user about the tradeoffs
of enabling or disabling this configuration feature.
Cc: linux-ext4@vger.kernel.org
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
Signed-off-by: Jan Kara <jack@suse.cz>
vfs_read() offset is defined as loff_t, but kernel_read()
offset is only defined as unsigned long. Redefine
kernel_read() offset as loff_t.
Cc: stable@kernel.org
Signed-off-by: Mimi Zohar <zohar@us.ibm.com>
Signed-off-by: James Morris <jmorris@namei.org>
In commit a8e7d49aa7 ("Fix race in
create_empty_buffers() vs __set_page_dirty_buffers()"), I removed a test
for a NULL page mapping unintentionally when some of the code inside
__set_page_dirty() was moved to the callers.
That removal generally didn't matter, since a filesystem would serialize
truncation (which clears the page mapping) against writing (which marks
the buffer dirty), so locking at a higher level (either per-page or an
inode at a time) should mean that the buffer page would be stable. And
indeed, nothing bad seemed to happen.
Except it turns out that apparently reiserfs does something odd when
under load and writing out the journal, and we have a number of bugzilla
entries that look similar:
http://bugzilla.kernel.org/show_bug.cgi?id=13556http://bugzilla.kernel.org/show_bug.cgi?id=13756http://bugzilla.kernel.org/show_bug.cgi?id=13876
and it looks like reiserfs depended on that check (the common theme
seems to be "data=journal", and a journal writeback during a truncate).
I suspect reiserfs should have some additional locking, but in the
meantime this should get us back to the pre-2.6.29 behavior.
Pattern-pointed-out-by: Roland Kletzing <devzero@web.de>
Cc: stable@kernel.org (2.6.29 and 2.6.30)
Cc: Jeff Mahoney <jeffm@suse.com>
Cc: Nick Piggin <npiggin@suse.de>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Node may not be inserted over existing node. This causes inode tree
corruption and I was seeing crashes in inode_tree_del which I can not
reproduce after this patch.
The other way to fix this would be to tie inode lifetime in the rbtree
with inode while not in freeing state. I had a look at this but it is
not so trivial at this point. At least this patch gets things working again.
Signed-off-by: Nick Piggin <npiggin@suse.de>
Cc: Chris Mason <chris.mason@oracle.com>
Acked-by: Yan Zheng <zheng.yan@oracle.com>
Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
In case a downconvert is queued, and a flock receives a signal,
BUG_ON(lockres->l_action != OCFS2_AST_INVALID) is triggered
because a lock cancel triggers a dlmunlock while an AST is
scheduled.
To avoid this, allow a LKM_CANCEL to pass through, and let it
wait on __dlm_wait_on_lockres().
Signed-off-by: Goldwyn Rodrigues <rgoldwyn@suse.de>
Acked-off-by: Mark Fasheh <mfasheh@suse.com>
Signed-off-by: Joel Becker <joel.becker@oracle.com>
There is missing name for NFSSync cluster lock. This makes lockdep unhappy
because we end up passing NULL to lockdep when initializing lock key. Fix it.
Signed-off-by: Jan Kara <jack@suse.cz>
Signed-off-by: Joel Becker <joel.becker@oracle.com>
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/ryusuke/nilfs2:
nilfs2: fix oopses with doubly mounted snapshots
nilfs2: missing a read lock for segment writer in nilfs_attach_checkpoint()
The commit 2ff05b2b (oom: move oom_adj value) moveed the oom_adj value to
the mm_struct. It was a very good first step for sanitize OOM.
However Paul Menage reported the commit makes regression to his job
scheduler. Current OOM logic can kill OOM_DISABLED process.
Why? His program has the code of similar to the following.
...
set_oom_adj(OOM_DISABLE); /* The job scheduler never killed by oom */
...
if (vfork() == 0) {
set_oom_adj(0); /* Invoked child can be killed */
execve("foo-bar-cmd");
}
....
vfork() parent and child are shared the same mm_struct. then above
set_oom_adj(0) doesn't only change oom_adj for vfork() child, it's also
change oom_adj for vfork() parent. Then, vfork() parent (job scheduler)
lost OOM immune and it was killed.
Actually, fork-setting-exec idiom is very frequently used in userland program.
We must not break this assumption.
Then, this patch revert commit 2ff05b2b and related commit.
Reverted commit list
---------------------
- commit 2ff05b2b4e (oom: move oom_adj value from task_struct to mm_struct)
- commit 4d8b9135c3 (oom: avoid unnecessary mm locking and scanning for OOM_DISABLE)
- commit 8123681022 (oom: only oom kill exiting tasks with attached memory)
- commit 933b787b57 (mm: copy over oom_adj value at fork time)
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Paul Menage <menage@google.com>
Cc: David Rientjes <rientjes@google.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Nick Piggin <npiggin@suse.de>
Cc: Mel Gorman <mel@csn.ul.ie>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
get_sb_pseudo sets s_maxbytes to ~0ULL which becomes negative when cast
to a signed value. Fix it to use MAX_LFS_FILESIZE which casts properly
to a positive signed value.
Signed-off-by: Jeff Layton <jlayton@redhat.com>
Reviewed-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Steve French <smfrench@gmail.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Robert Love <rlove@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
will fix kernel oopses like the following:
# mount -t nilfs2 -r -o cp=20 /dev/sdb1 /test1
# mount -t nilfs2 -r -o cp=20 /dev/sdb1 /test2
# umount /test1
# umount /test2
BUG: sleeping function called from invalid context at arch/x86/mm/fault.c:1069
in_atomic(): 0, irqs_disabled(): 1, pid: 3886, name: umount.nilfs2
1 lock held by umount.nilfs2/3886:
#0: (&type->s_umount_key#31){+.+...}, at: [<c10b398a>] deactivate_super+0x52/0x6c
irq event stamp: 1219
hardirqs last enabled at (1219): [<c135c774>] __mutex_unlock_slowpath+0xf8/0x119
hardirqs last disabled at (1218): [<c135c6d5>] __mutex_unlock_slowpath+0x59/0x119
softirqs last enabled at (1214): [<c1033316>] __do_softirq+0x1a5/0x1ad
softirqs last disabled at (1205): [<c1033354>] do_softirq+0x36/0x5a
Pid: 3886, comm: umount.nilfs2 Not tainted 2.6.31-rc6 #55
Call Trace:
[<c1023549>] __might_sleep+0x107/0x10e
[<c13603c0>] do_page_fault+0x246/0x397
[<c136017a>] ? do_page_fault+0x0/0x397
[<c135e753>] error_code+0x6b/0x70
[<c136017a>] ? do_page_fault+0x0/0x397
[<c104f805>] ? __lock_acquire+0x91/0x12fd
[<c1050a62>] ? __lock_acquire+0x12ee/0x12fd
[<c1050a62>] ? __lock_acquire+0x12ee/0x12fd
[<c1050b2b>] lock_acquire+0xba/0xdd
[<d0d17d3f>] ? nilfs_detach_segment_constructor+0x2f/0x2fa [nilfs2]
[<c135d4fe>] down_write+0x2a/0x46
[<d0d17d3f>] ? nilfs_detach_segment_constructor+0x2f/0x2fa [nilfs2]
[<d0d17d3f>] nilfs_detach_segment_constructor+0x2f/0x2fa [nilfs2]
[<c104ea2c>] ? mark_held_locks+0x43/0x5b
[<c104ecb1>] ? trace_hardirqs_on_caller+0x10b/0x133
[<c104ece4>] ? trace_hardirqs_on+0xb/0xd
[<d0d09ac1>] nilfs_put_super+0x2f/0xca [nilfs2]
[<c10b3352>] generic_shutdown_super+0x49/0xb8
[<c10b33de>] kill_block_super+0x1d/0x31
[<c10e6599>] ? vfs_quota_off+0x0/0x12
[<c10b398f>] deactivate_super+0x57/0x6c
[<c10c4bc3>] mntput_no_expire+0x8c/0xb4
[<c10c5094>] sys_umount+0x27f/0x2a4
[<c10c50c6>] sys_oldumount+0xd/0xf
[<c10031a4>] sysenter_do_call+0x12/0x38
...
This turns out to be a bug brought by an -rc1 patch ("nilfs2: simplify
remaining sget() use").
In the patch, a new "put resource" function, nilfs_put_sbinfo()
was introduced to delay freeing nilfs_sb_info struct.
But the nilfs_put_sbinfo() mistakenly used atomic_dec_and_test()
function to check the reference count, and it caused the nilfs_sb_info
was freed when user mounted a snapshot twice.
This bug also suggests there was unseen memory leak in usual mount
/umount operations for nilfs.
Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>