all callers of ->aio_read() and ->aio_write() have iov/nr_segs already
checked - generic_segment_checks() done after that is just an odd way
to spell iov_length().
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
The patch extends fuse_setattr_in, and extends the flush procedure
(fuse_flush_times()) called on ->write_inode() to send the ctime as well as
mtime.
Signed-off-by: Maxim Patlasov <MPatlasov@parallels.com>
Signed-off-by: Miklos Szeredi <mszeredi@suse.cz>
...and flush mtime from this. This allows us to use the kernel
infrastructure for writing out dirty metadata (mtime at this point, but
ctime in the next patches and also maybe atime).
Signed-off-by: Miklos Szeredi <mszeredi@suse.cz>
Don't need to start I/O twice (once without i_mutex and one within).
Also make sure that even if the userspace filesystem doesn't support FSYNC
we do all the steps other than sending the message.
Signed-off-by: Miklos Szeredi <mszeredi@suse.cz>
In case of fc->atomic_o_trunc is set, fuse does nothing in
fuse_do_setattr() while handling open(O_TRUNC). Hence, i_mtime must be
updated explicitly in fuse_finish_open(). The patch also adds extra locking
encompassing open(O_TRUNC) operation to avoid races between the truncation
and updating i_mtime.
Signed-off-by: Maxim Patlasov <MPatlasov@parallels.com>
Signed-off-by: Miklos Szeredi <mszeredi@suse.cz>
Pull vfs updates from Al Viro:
"The first vfs pile, with deep apologies for being very late in this
window.
Assorted cleanups and fixes, plus a large preparatory part of iov_iter
work. There's a lot more of that, but it'll probably go into the next
merge window - it *does* shape up nicely, removes a lot of
boilerplate, gets rid of locking inconsistencie between aio_write and
splice_write and I hope to get Kent's direct-io rewrite merged into
the same queue, but some of the stuff after this point is having
(mostly trivial) conflicts with the things already merged into
mainline and with some I want more testing.
This one passes LTP and xfstests without regressions, in addition to
usual beating. BTW, readahead02 in ltp syscalls testsuite has started
giving failures since "mm/readahead.c: fix readahead failure for
memoryless NUMA nodes and limit readahead pages" - might be a false
positive, might be a real regression..."
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs: (63 commits)
missing bits of "splice: fix racy pipe->buffers uses"
cifs: fix the race in cifs_writev()
ceph_sync_{,direct_}write: fix an oops on ceph_osdc_new_request() failure
kill generic_file_buffered_write()
ocfs2_file_aio_write(): switch to generic_perform_write()
ceph_aio_write(): switch to generic_perform_write()
xfs_file_buffered_aio_write(): switch to generic_perform_write()
export generic_perform_write(), start getting rid of generic_file_buffer_write()
generic_file_direct_write(): get rid of ppos argument
btrfs_file_aio_write(): get rid of ppos
kill the 5th argument of generic_file_buffered_write()
kill the 4th argument of __generic_file_aio_write()
lustre: don't open-code kernel_recvmsg()
ocfs2: don't open-code kernel_recvmsg()
drbd: don't open-code kernel_recvmsg()
constify blk_rq_map_user_iov() and friends
lustre: switch to kernel_sendmsg()
ocfs2: don't open-code kernel_sendmsg()
take iov_iter stuff to mm/iov_iter.c
process_vm_access: tidy up a bit
...
filemap_map_pages() is generic implementation of ->map_pages() for
filesystems who uses page cache.
It should be safe to use filemap_map_pages() for ->map_pages() if
filesystem use filemap_fault() for ->fault().
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Rik van Riel <riel@redhat.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Matthew Wilcox <matthew.r.wilcox@intel.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Ning Qu <quning@gmail.com>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Fix the following warning:
In file included from include/linux/fs.h:16:0,
from fs/fuse/fuse_i.h:13,
from fs/fuse/file.c:9:
fs/fuse/file.c: In function 'fuse_file_poll':
include/linux/rbtree.h:82:28: warning: 'parent' may be used
uninitialized in this function [-Wmaybe-uninitialized]
fs/fuse/file.c:2592:27: note: 'parent' was declared here
Signed-off-by: Rajat Jain <rajatxjain@gmail.com>
Signed-off-by: Miklos Szeredi <mszeredi@suse.cz>
Introduce a bit kernel and userspace exchange between each-other on
the init stage and turn writeback on if the userspace want this and
mount option 'allow_wbcache' is present (controlled by fusermount).
Also add each writable file into per-inode write list and call the
generic_file_aio_write to make use of the Linux page cache engine.
Signed-off-by: Maxim Patlasov <MPatlasov@parallels.com>
Signed-off-by: Miklos Szeredi <mszeredi@suse.cz>
The problem is:
1. write cached data to a file
2. read directly from the same file (via another fd)
The 2nd operation may read stale data, i.e. the one that was in a file
before the 1st op. Problem is in how fuse manages writeback.
When direct op occurs the core kernel code calls filemap_write_and_wait
to flush all the cached ops in flight. But fuse acks the writeback right
after the ->writepages callback exits w/o waiting for the real write to
happen. Thus the subsequent direct op proceeds while the real writeback
is still in flight. This is a problem for backends that reorder operation.
Fix this by making the fuse direct IO callback explicitly wait on the
in-flight writeback to finish.
Signed-off-by: Maxim Patlasov <MPatlasov@parallels.com>
Signed-off-by: Miklos Szeredi <mszeredi@suse.cz>
The aim of .flush fop is to hint file-system that flushing its state or caches
or any other important data to reliable storage would be desirable now.
fuse_flush() passes this hint by sending FUSE_FLUSH request to userspace.
However, dirty pages and pages under writeback may be not visible to userspace
yet if we won't ensure it explicitly.
Signed-off-by: Maxim Patlasov <MPatlasov@parallels.com>
Signed-off-by: Miklos Szeredi <mszeredi@suse.cz>
The .write_begin and .write_end are requiered to use generic routines
(generic_file_aio_write --> ... --> generic_perform_write) for buffered
writes.
Signed-off-by: Maxim Patlasov <MPatlasov@parallels.com>
Signed-off-by: Miklos Szeredi <mszeredi@suse.cz>
Move the code filling and sending read request to a separate function. Future
patches will use it for .write_begin -- partial modification of a page
requires reading the page from the storage very similarly to what fuse_readpage
does.
Signed-off-by: Maxim Patlasov <MPatlasov@parallels.com>
Signed-off-by: Miklos Szeredi <mszeredi@suse.cz>
Any write request requires a file handle to report to the userspace. Thus
when we close a file (and free the fuse_file with this info) we have to
flush all the outstanding dirty pages.
filemap_write_and_wait() is enough because every page under fuse writeback
is accounted in ff->count. This delays actual close until all fuse wb is
completed.
In case of "write cache" turned off, the flush is ensured by fuse_vma_close().
Signed-off-by: Maxim Patlasov <MPatlasov@parallels.com>
Signed-off-by: Miklos Szeredi <mszeredi@suse.cz>
Let the kernel maintain i_mtime locally:
- clear S_NOCMTIME
- implement i_op->update_time()
- flush mtime on fsync and last close
- update i_mtime explicitly on truncate and fallocate
Fuse inode flag FUSE_I_MTIME_DIRTY serves as indication that local i_mtime
should be flushed to the server eventually.
Signed-off-by: Maxim Patlasov <MPatlasov@parallels.com>
Signed-off-by: Miklos Szeredi <mszeredi@suse.cz>
Make fuse think that when writeback is on the inode's i_size is always
up-to-date and not update it with the value received from the userspace.
This is done because the page cache code may update i_size without letting
the FS know.
This assumption implies fixing the previously introduced short-read helper --
when a short read occurs the 'hole' is filled with zeroes.
fuse_file_fallocate() is also fixed because now we should keep i_size up to
date, so it must be updated if FUSE_FALLOCATE request succeeded.
Signed-off-by: Maxim V. Patlasov <MPatlasov@parallels.com>
Signed-off-by: Miklos Szeredi <mszeredi@suse.cz>
A helper which gets called when read reports less bytes than was requested.
See patch "trust kernel i_size only" for details.
Signed-off-by: Maxim Patlasov <MPatlasov@parallels.com>
Signed-off-by: Pavel Emelyanov <xemul@openvz.org>
Signed-off-by: Miklos Szeredi <mszeredi@suse.cz>
When writeback is ON every writeable file should be in per-inode write list,
not only mmap-ed ones. Thus introduce a helper for this linkage.
Signed-off-by: Maxim Patlasov <MPatlasov@parallels.com>
Signed-off-by: Pavel Emelyanov <xemul@openvz.org>
Signed-off-by: Miklos Szeredi <mszeredi@suse.cz>
Pull vfs updates from Al Viro:
"Assorted stuff; the biggest pile here is Christoph's ACL series. Plus
assorted cleanups and fixes all over the place...
There will be another pile later this week"
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs: (43 commits)
__dentry_path() fixes
vfs: Remove second variable named error in __dentry_path
vfs: Is mounted should be testing mnt_ns for NULL or error.
Fix race when checking i_size on direct i/o read
hfsplus: remove can_set_xattr
nfsd: use get_acl and ->set_acl
fs: remove generic_acl
nfs: use generic posix ACL infrastructure for v3 Posix ACLs
gfs2: use generic posix ACL infrastructure
jfs: use generic posix ACL infrastructure
xfs: use generic posix ACL infrastructure
reiserfs: use generic posix ACL infrastructure
ocfs2: use generic posix ACL infrastructure
jffs2: use generic posix ACL infrastructure
hfsplus: use generic posix ACL infrastructure
f2fs: use generic posix ACL infrastructure
ext2/3/4: use generic posix ACL infrastructure
btrfs: use generic posix ACL infrastructure
fs: make posix_acl_create more useful
fs: make posix_acl_chmod more useful
...
So far I've had one ACK for this, and no other comments. So I think it
is probably time to send this via some suitable tree. I'm guessing that
the vfs tree would be the most appropriate route, but not sure that
there is one at the moment (don't see anything recent at kernel.org)
so in that case I think -mm is the "back up plan". Al, please let me
know if you will take this?
Steve.
---------------------
Following on from the "Re: [PATCH v3] vfs: fix a bug when we do some dio
reads with append dio writes" thread on linux-fsdevel, this patch is my
current version of the fix proposed as option (b) in that thread.
Removing the i_size test from the direct i/o read path at vfs level
means that filesystems now have to deal with requests which are beyond
i_size themselves. These I've divided into three sets:
a) Those with "no op" ->direct_IO (9p, cifs, ceph)
These are obviously not going to be an issue
b) Those with "home brew" ->direct_IO (nfs, fuse)
I've been told that NFS should not have any problem with the larger
i_size, however I've added an extra test to FUSE to duplicate the
original behaviour just to be on the safe side.
c) Those using __blockdev_direct_IO()
These call through to ->get_block() which should deal with the EOF
condition correctly. I've verified that with GFS2 and I believe that
Zheng has verified it for ext4. I've also run the test on XFS and it
passes both before and after this change.
The part of the patch in filemap.c looks a lot larger than it really is
- there are only two lines of real change. The rest is just indentation
of the contained code.
There remains a test of i_size though, which was added for btrfs. It
doesn't cause the other filesystems a problem as the test is performed
after ->direct_IO has been called. It is possible that there is a race
that does matter to btrfs, however this patch doesn't change that, so
its still an overall improvement.
Signed-off-by: Steven Whitehouse <swhiteho@redhat.com>
Reported-by: Zheng Liu <gnehzuil.liu@gmail.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Dave Chinner <david@fromorbit.com>
Acked-by: Miklos Szeredi <miklos@szeredi.hu>
Cc: Chris Mason <clm@fb.com>
Cc: Josef Bacik <jbacik@fb.com>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
open/release operations require userspace transitions to keep track
of the open count and to perform any FS-specific setup. However,
for some purely read-only FSs which don't need to perform any setup
at open/release time, we can avoid the performance overhead of
calling into userspace for open/release calls.
This patch adds the necessary support to the fuse kernel modules to prevent
open/release operations from hitting in userspace. When the client returns
ENOSYS, we avoid sending the subsequent release to userspace, and also
remember this so that future opens also don't trigger a userspace
operation.
Signed-off-by: Miklos Szeredi <mszeredi@suse.cz>
Various read operations (e.g. readlink, readdir) invalidate the cached
attrs for atime changes. This patch adds a new function
'fuse_invalidate_atime', which checks for a read-only super block and
avoids the attr invalidation in that case.
Signed-off-by: Andrew Gallagher <andrewjcg@fb.com>
Signed-off-by: Miklos Szeredi <mszeredi@suse.cz>
All async fuse requests must be supplied with extra reference to a fuse
file. This is necessary to ensure that the fuse file is not released until
all in-flight requests are completed. Fuse secondary writeback requests
must obey this rule as well.
Signed-off-by: Maxim Patlasov <MPatlasov@parallels.com>
Signed-off-by: Miklos Szeredi <mszeredi@suse.cz>
BDI_WRITTEN counter is used to estimate bdi bandwidth. It must be
incremented every time as bdi ends page writeback. No matter whether it
was fulfilled by actual write or by discarding the request (e.g. due to
shrunk i_size).
Note that even before writepages patches, the case "Got truncated off
completely" was handled in fuse_send_writepage() by calling
fuse_writepage_finish() which updated BDI_WRITTEN unconditionally.
Signed-off-by: Maxim Patlasov <MPatlasov@parallels.com>
Signed-off-by: Miklos Szeredi <mszeredi@suse.cz>
If writeback happens while fuse is in FUSE_NOWRITE condition, the request
will be queued but not processed immediately (see fuse_flush_writepages()).
Until FUSE_NOWRITE becomes relaxed, more writebacks can happen. They will
be queued as "secondary" requests to that first ("primary") request.
Existing implementation crops only primary request. This is not correct
because a subsequent extending write(2) may increase i_size and then
secondary requests won't be cropped properly. The result would be stale
data written to the server to a file offset where zeros must be.
Similar problem may happen if secondary requests are attached to an
in-flight request that was already cropped.
The patch solves the issue by cropping all secondary requests in
fuse_writepage_end(). Thanks to Miklos for idea.
Signed-off-by: Maxim Patlasov <MPatlasov@parallels.com>
Signed-off-by: Miklos Szeredi <mszeredi@suse.cz>
fuse_writepage_in_flight() returns false if it fails to find request with
given index in fi->writepages. Then the caller proceeds with populating
data->orig_pages[] and incrementing req->num_pages. Hence,
fuse_writepage_in_flight() must revert changes it made in request before
returning false.
Signed-off-by: Maxim Patlasov <MPatlasov@parallels.com>
Signed-off-by: Miklos Szeredi <mszeredi@suse.cz>
If ->writepage() tries to write back a page whose copy is still in flight,
then just skip by calling redirty_page_for_writepage().
This is OK, since now ->writepage() should never be called for data
integrity sync.
Signed-off-by: Miklos Szeredi <mszeredi@suse.cz>
As Maxim Patlasov pointed out, it's possible to get a dirty page while it's
copy is still under writeback, despite fuse_page_mkwrite() doing its thing
(direct IO).
This could result in two concurrent write request for the same offset, with
data corruption if they get mixed up.
To prevent this, fuse needs to check and delay such writes. This
implementation does this by:
1. check if page is still under writeout, if so create a new, single page
secondary request for it
2. chain this secondary request onto the in-flight request
2/a. if a seconday request for the same offset was already chained to the
in-flight request, then just copy the contents of the page and discard
the new secondary request. This makes sure that for each page will
have at most two requests associated with it
3. when the in-flight request finished, send off all secondary requests
chained onto it
Signed-off-by: Miklos Szeredi <mszeredi@suse.cz>
Checking against tmp-page indexes is not very useful, and results in one
(or rarely two) page requests. Which is not much of an improvement...
Signed-off-by: Miklos Szeredi <mszeredi@suse.cz>
The patch fixes a race between ftruncate(2), mmap-ed write and write(2):
1) An user makes a page dirty via mmap-ed write.
2) The user performs shrinking truncate(2) intended to purge the page.
3) Before fuse_do_setattr calls truncate_pagecache, the page goes to
writeback. fuse_writepages_fill attaches a new page to FUSE_WRITE request,
then releases the original page by end_page_writeback and unlock it.
4) fuse_do_setattr completes and successfully returns. Since now, i_mutex
is free.
5) Ordinary write(2) extends i_size back to cover the page. Note that
fuse_send_write_pages do wait for fuse writeback, but for another
page->index.
6) fuse_writepages_fill attaches more pages to the request (if any), then
fuse_writepages_send is eventually called. It is supposed to crop
inarg->size of the request, but it doesn't because i_size has already been
extended back.
Moving end_page_writeback behind fuse_writepages_send guarantees that
__fuse_release_nowrite (called from fuse_do_setattr) will crop inarg->size
of the request before write(2) gets the chance to extend i_size.
Signed-off-by: Maxim Patlasov <mpatlasov@parallels.com>
Signed-off-by: Miklos Szeredi <mszeredi@suse.cz>
The .writepages one is required to make each writeback request carry more than
one page on it. The patch enables optimized behaviour unconditionally,
i.e. mmap-ed writes will benefit from the patch even if fc->writeback_cache=0.
[SzM: simplify, add comments]
Signed-off-by: Maxim Patlasov <MPatlasov@parallels.com>
Signed-off-by: Miklos Szeredi <mszeredi@suse.cz>
Don't bug if there's no writable files found for page writeback. If ever
this is triggered, a WARN_ON helps debugging it much better then a BUG_ON.
Signed-off-by: Miklos Szeredi <mszeredi@suse.cz>
Lock the page in fuse_page_mkwrite() to protect against a race with
fuse_writepage() where the page is redirtied before the actual writeback
begins.
Signed-off-by: Miklos Szeredi <mszeredi@suse.cz>
The .writepages callback will issue writeback requests with more than one
page aboard. Make existing end/check code be aware of this.
Signed-off-by: Maxim Patlasov <MPatlasov@parallels.com>
Signed-off-by: Miklos Szeredi <mszeredi@suse.cz>
There will be a .writepageS callback implementation which will need to
get a fuse_file out of a fuse_inode, thus make a helper for this.
Signed-off-by: Maxim Patlasov <MPatlasov@parallels.com>
Signed-off-by: Pavel Emelyanov <xemul@openvz.org>
Signed-off-by: Miklos Szeredi <mszeredi@suse.cz>
A former patch introducing FUSE_I_SIZE_UNSTABLE flag provided detailed
description of races between ftruncate and anyone who can extend i_size:
> 1. As in the previous scenario fuse_dentry_revalidate() discovered that i_size
> changed (due to our own fuse_do_setattr()) and is going to call
> truncate_pagecache() for some 'new_size' it believes valid right now. But by
> the time that particular truncate_pagecache() is called ...
> 2. fuse_do_setattr() returns (either having called truncate_pagecache() or
> not -- it doesn't matter).
> 3. The file is extended either by write(2) or ftruncate(2) or fallocate(2).
> 4. mmap-ed write makes a page in the extended region dirty.
This patch adds necessary bits to fuse_file_fallocate() to protect from that
race.
Signed-off-by: Maxim Patlasov <mpatlasov@parallels.com>
Signed-off-by: Miklos Szeredi <mszeredi@suse.cz>
Cc: stable@vger.kernel.org
The patch fixes a race between mmap-ed write and fallocate(PUNCH_HOLE):
1) An user makes a page dirty via mmap-ed write.
2) The user performs fallocate(2) with mode == PUNCH_HOLE|KEEP_SIZE
and <offset, size> covering the page.
3) Before truncate_pagecache_range call from fuse_file_fallocate,
the page goes to write-back. The page is fully processed by fuse_writepage
(including end_page_writeback on the page), but fuse_flush_writepages did
nothing because fi->writectr < 0.
4) truncate_pagecache_range is called and fuse_file_fallocate is finishing
by calling fuse_release_nowrite. The latter triggers processing queued
write-back request which will write stale data to the hole soon.
Changed in v2 (thanks to Brian for suggestion):
- Do not truncate page cache until FUSE_FALLOCATE succeeded. Otherwise,
we can end up in returning -ENOTSUPP while user data is already punched
from page cache. Use filemap_write_and_wait_range() instead.
Changed in v3 (thanks to Miklos for suggestion):
- fuse_wait_on_writeback() is prone to livelocks; use fuse_set_nowrite()
instead. So far as we need a dirty-page barrier only, fuse_sync_writes()
should be enough.
- rebased to for-linus branch of fuse.git
Signed-off-by: Maxim Patlasov <mpatlasov@parallels.com>
Signed-off-by: Miklos Szeredi <mszeredi@suse.cz>
Cc: stable@vger.kernel.org
The way how fuse calls truncate_pagecache() from fuse_change_attributes()
is completely wrong. Because, w/o i_mutex held, we never sure whether
'oldsize' and 'attr->size' are valid by the time of execution of
truncate_pagecache(inode, oldsize, attr->size). In fact, as soon as we
released fc->lock in the middle of fuse_change_attributes(), we completely
loose control of actions which may happen with given inode until we reach
truncate_pagecache. The list of potentially dangerous actions includes
mmap-ed reads and writes, ftruncate(2) and write(2) extending file size.
The typical outcome of doing truncate_pagecache() with outdated arguments
is data corruption from user point of view. This is (in some sense)
acceptable in cases when the issue is triggered by a change of the file on
the server (i.e. externally wrt fuse operation), but it is absolutely
intolerable in scenarios when a single fuse client modifies a file without
any external intervention. A real life case I discovered by fsx-linux
looked like this:
1. Shrinking ftruncate(2) comes to fuse_do_setattr(). The latter sends
FUSE_SETATTR to the server synchronously, but before getting fc->lock ...
2. fuse_dentry_revalidate() is asynchronously called. It sends FUSE_LOOKUP
to the server synchronously, then calls fuse_change_attributes(). The
latter updates i_size, releases fc->lock, but before comparing oldsize vs
attr->size..
3. fuse_do_setattr() from the first step proceeds by acquiring fc->lock and
updating attributes and i_size, but now oldsize is equal to
outarg.attr.size because i_size has just been updated (step 2). Hence,
fuse_do_setattr() returns w/o calling truncate_pagecache().
4. As soon as ftruncate(2) completes, the user extends file size by
write(2) making a hole in the middle of file, then reads data from the hole
either by read(2) or mmap-ed read. The user expects to get zero data from
the hole, but gets stale data because truncate_pagecache() is not executed
yet.
The scenario above illustrates one side of the problem: not truncating the
page cache even though we should. Another side corresponds to truncating
page cache too late, when the state of inode changed significantly.
Theoretically, the following is possible:
1. As in the previous scenario fuse_dentry_revalidate() discovered that
i_size changed (due to our own fuse_do_setattr()) and is going to call
truncate_pagecache() for some 'new_size' it believes valid right now. But
by the time that particular truncate_pagecache() is called ...
2. fuse_do_setattr() returns (either having called truncate_pagecache() or
not -- it doesn't matter).
3. The file is extended either by write(2) or ftruncate(2) or fallocate(2).
4. mmap-ed write makes a page in the extended region dirty.
The result will be the lost of data user wrote on the fourth step.
The patch is a hotfix resolving the issue in a simplistic way: let's skip
dangerous i_size update and truncate_pagecache if an operation changing
file size is in progress. This simplistic approach looks correct for the
cases w/o external changes. And to handle them properly, more sophisticated
and intrusive techniques (e.g. NFS-like one) would be required. I'd like to
postpone it until the issue is well discussed on the mailing list(s).
Changed in v2:
- improved patch description to cover both sides of the issue.
Signed-off-by: Maxim Patlasov <mpatlasov@parallels.com>
Signed-off-by: Miklos Szeredi <mszeredi@suse.cz>
Cc: stable@vger.kernel.org
The patch fixes a race between ftruncate(2), mmap-ed write and write(2):
1) An user makes a page dirty via mmap-ed write.
2) The user performs shrinking truncate(2) intended to purge the page.
3) Before fuse_do_setattr calls truncate_pagecache, the page goes to
writeback. fuse_writepage_locked fills FUSE_WRITE request and releases
the original page by end_page_writeback.
4) fuse_do_setattr() completes and successfully returns. Since now, i_mutex
is free.
5) Ordinary write(2) extends i_size back to cover the page. Note that
fuse_send_write_pages do wait for fuse writeback, but for another
page->index.
6) fuse_writepage_locked proceeds by queueing FUSE_WRITE request.
fuse_send_writepage is supposed to crop inarg->size of the request,
but it doesn't because i_size has already been extended back.
Moving end_page_writeback to the end of fuse_writepage_locked fixes the
race because now the fact that truncate_pagecache is successfully returned
infers that fuse_writepage_locked has already called end_page_writeback.
And this, in turn, infers that fuse_flush_writepages has already called
fuse_send_writepage, and the latter used valid (shrunk) i_size. write(2)
could not extend it because of i_mutex held by ftruncate(2).
Signed-off-by: Maxim Patlasov <mpatlasov@parallels.com>
Signed-off-by: Miklos Szeredi <mszeredi@suse.cz>
Cc: stable@vger.kernel.org
Pull second set of VFS changes from Al Viro:
"Assorted f_pos race fixes, making do_splice_direct() safe to call with
i_mutex on parent, O_TMPFILE support, Jeff's locks.c series,
->d_hash/->d_compare calling conventions changes from Linus, misc
stuff all over the place."
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs: (63 commits)
Document ->tmpfile()
ext4: ->tmpfile() support
vfs: export lseek_execute() to modules
lseek_execute() doesn't need an inode passed to it
block_dev: switch to fixed_size_llseek()
cpqphp_sysfs: switch to fixed_size_llseek()
tile-srom: switch to fixed_size_llseek()
proc_powerpc: switch to fixed_size_llseek()
ubi/cdev: switch to fixed_size_llseek()
pci/proc: switch to fixed_size_llseek()
isapnp: switch to fixed_size_llseek()
lpfc: switch to fixed_size_llseek()
locks: give the blocked_hash its own spinlock
locks: add a new "lm_owner_key" lock operation
locks: turn the blocked_list into a hashtable
locks: convert fl_link to a hlist_node
locks: avoid taking global lock if possible when waking up blocked waiters
locks: protect most of the file_lock handling with i_lock
locks: encapsulate the fl_link list handling
locks: make "added" in __posix_lock_file a bool
...