Commit Graph

598 Commits

Author SHA1 Message Date
Kees Cook
fe9c842695 NFC: llcp: Limit size of SDP URI
The tlv_len is u8, so we need to limit the size of the SDP URI. Enforce
this both in the NLA policy and in the code that performs the allocation
and copy, to avoid writing past the end of the allocated buffer.

Fixes: d9b8d8e19b ("NFC: llcp: Service Name Lookup netlink interface")
Signed-off-by: Kees Cook <keescook@chromium.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
2018-02-16 15:16:05 -05:00
Linus Torvalds
a9a08845e9 vfs: do bulk POLL* -> EPOLL* replacement
This is the mindless scripted replacement of kernel use of POLL*
variables as described by Al, done by this script:

    for V in IN OUT PRI ERR RDNORM RDBAND WRNORM WRBAND HUP RDHUP NVAL MSG; do
        L=`git grep -l -w POLL$V | grep -v '^t' | grep -v /um/ | grep -v '^sa' | grep -v '/poll.h$'|grep -v '^D'`
        for f in $L; do sed -i "-es/^\([^\"]*\)\(\<POLL$V\>\)/\\1E\\2/" $f; done
    done

with de-mangling cleanups yet to come.

NOTE! On almost all architectures, the EPOLL* constants have the same
values as the POLL* constants do.  But they keyword here is "almost".
For various bad reasons they aren't the same, and epoll() doesn't
actually work quite correctly in some cases due to this on Sparc et al.

The next patch from Al will sort out the final differences, and we
should be all done.

Scripted-by: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-02-11 14:34:03 -08:00
Al Viro
ade994f4f6 net: annotate ->poll() instances
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2017-11-27 16:20:04 -05:00
Kees Cook
e99e88a9d2 treewide: setup_timer() -> timer_setup()
This converts all remaining cases of the old setup_timer() API into using
timer_setup(), where the callback argument is the structure already
holding the struct timer_list. These should have no behavioral changes,
since they just change which pointer is passed into the callback with
the same available pointers after conversion. It handles the following
examples, in addition to some other variations.

Casting from unsigned long:

    void my_callback(unsigned long data)
    {
        struct something *ptr = (struct something *)data;
    ...
    }
    ...
    setup_timer(&ptr->my_timer, my_callback, ptr);

and forced object casts:

    void my_callback(struct something *ptr)
    {
    ...
    }
    ...
    setup_timer(&ptr->my_timer, my_callback, (unsigned long)ptr);

become:

    void my_callback(struct timer_list *t)
    {
        struct something *ptr = from_timer(ptr, t, my_timer);
    ...
    }
    ...
    timer_setup(&ptr->my_timer, my_callback, 0);

Direct function assignments:

    void my_callback(unsigned long data)
    {
        struct something *ptr = (struct something *)data;
    ...
    }
    ...
    ptr->my_timer.function = my_callback;

have a temporary cast added, along with converting the args:

    void my_callback(struct timer_list *t)
    {
        struct something *ptr = from_timer(ptr, t, my_timer);
    ...
    }
    ...
    ptr->my_timer.function = (TIMER_FUNC_TYPE)my_callback;

And finally, callbacks without a data assignment:

    void my_callback(unsigned long data)
    {
    ...
    }
    ...
    setup_timer(&ptr->my_timer, my_callback, 0);

have their argument renamed to verify they're unused during conversion:

    void my_callback(struct timer_list *unused)
    {
    ...
    }
    ...
    timer_setup(&ptr->my_timer, my_callback, 0);

The conversion is done with the following Coccinelle script:

spatch --very-quiet --all-includes --include-headers \
	-I ./arch/x86/include -I ./arch/x86/include/generated \
	-I ./include -I ./arch/x86/include/uapi \
	-I ./arch/x86/include/generated/uapi -I ./include/uapi \
	-I ./include/generated/uapi --include ./include/linux/kconfig.h \
	--dir . \
	--cocci-file ~/src/data/timer_setup.cocci

@fix_address_of@
expression e;
@@

 setup_timer(
-&(e)
+&e
 , ...)

// Update any raw setup_timer() usages that have a NULL callback, but
// would otherwise match change_timer_function_usage, since the latter
// will update all function assignments done in the face of a NULL
// function initialization in setup_timer().
@change_timer_function_usage_NULL@
expression _E;
identifier _timer;
type _cast_data;
@@

(
-setup_timer(&_E->_timer, NULL, _E);
+timer_setup(&_E->_timer, NULL, 0);
|
-setup_timer(&_E->_timer, NULL, (_cast_data)_E);
+timer_setup(&_E->_timer, NULL, 0);
|
-setup_timer(&_E._timer, NULL, &_E);
+timer_setup(&_E._timer, NULL, 0);
|
-setup_timer(&_E._timer, NULL, (_cast_data)&_E);
+timer_setup(&_E._timer, NULL, 0);
)

@change_timer_function_usage@
expression _E;
identifier _timer;
struct timer_list _stl;
identifier _callback;
type _cast_func, _cast_data;
@@

(
-setup_timer(&_E->_timer, _callback, _E);
+timer_setup(&_E->_timer, _callback, 0);
|
-setup_timer(&_E->_timer, &_callback, _E);
+timer_setup(&_E->_timer, _callback, 0);
|
-setup_timer(&_E->_timer, _callback, (_cast_data)_E);
+timer_setup(&_E->_timer, _callback, 0);
|
-setup_timer(&_E->_timer, &_callback, (_cast_data)_E);
+timer_setup(&_E->_timer, _callback, 0);
|
-setup_timer(&_E->_timer, (_cast_func)_callback, _E);
+timer_setup(&_E->_timer, _callback, 0);
|
-setup_timer(&_E->_timer, (_cast_func)&_callback, _E);
+timer_setup(&_E->_timer, _callback, 0);
|
-setup_timer(&_E->_timer, (_cast_func)_callback, (_cast_data)_E);
+timer_setup(&_E->_timer, _callback, 0);
|
-setup_timer(&_E->_timer, (_cast_func)&_callback, (_cast_data)_E);
+timer_setup(&_E->_timer, _callback, 0);
|
-setup_timer(&_E._timer, _callback, (_cast_data)_E);
+timer_setup(&_E._timer, _callback, 0);
|
-setup_timer(&_E._timer, _callback, (_cast_data)&_E);
+timer_setup(&_E._timer, _callback, 0);
|
-setup_timer(&_E._timer, &_callback, (_cast_data)_E);
+timer_setup(&_E._timer, _callback, 0);
|
-setup_timer(&_E._timer, &_callback, (_cast_data)&_E);
+timer_setup(&_E._timer, _callback, 0);
|
-setup_timer(&_E._timer, (_cast_func)_callback, (_cast_data)_E);
+timer_setup(&_E._timer, _callback, 0);
|
-setup_timer(&_E._timer, (_cast_func)_callback, (_cast_data)&_E);
+timer_setup(&_E._timer, _callback, 0);
|
-setup_timer(&_E._timer, (_cast_func)&_callback, (_cast_data)_E);
+timer_setup(&_E._timer, _callback, 0);
|
-setup_timer(&_E._timer, (_cast_func)&_callback, (_cast_data)&_E);
+timer_setup(&_E._timer, _callback, 0);
|
 _E->_timer@_stl.function = _callback;
|
 _E->_timer@_stl.function = &_callback;
|
 _E->_timer@_stl.function = (_cast_func)_callback;
|
 _E->_timer@_stl.function = (_cast_func)&_callback;
|
 _E._timer@_stl.function = _callback;
|
 _E._timer@_stl.function = &_callback;
|
 _E._timer@_stl.function = (_cast_func)_callback;
|
 _E._timer@_stl.function = (_cast_func)&_callback;
)

// callback(unsigned long arg)
@change_callback_handle_cast
 depends on change_timer_function_usage@
identifier change_timer_function_usage._callback;
identifier change_timer_function_usage._timer;
type _origtype;
identifier _origarg;
type _handletype;
identifier _handle;
@@

 void _callback(
-_origtype _origarg
+struct timer_list *t
 )
 {
(
	... when != _origarg
	_handletype *_handle =
-(_handletype *)_origarg;
+from_timer(_handle, t, _timer);
	... when != _origarg
|
	... when != _origarg
	_handletype *_handle =
-(void *)_origarg;
+from_timer(_handle, t, _timer);
	... when != _origarg
|
	... when != _origarg
	_handletype *_handle;
	... when != _handle
	_handle =
-(_handletype *)_origarg;
+from_timer(_handle, t, _timer);
	... when != _origarg
|
	... when != _origarg
	_handletype *_handle;
	... when != _handle
	_handle =
-(void *)_origarg;
+from_timer(_handle, t, _timer);
	... when != _origarg
)
 }

// callback(unsigned long arg) without existing variable
@change_callback_handle_cast_no_arg
 depends on change_timer_function_usage &&
                     !change_callback_handle_cast@
identifier change_timer_function_usage._callback;
identifier change_timer_function_usage._timer;
type _origtype;
identifier _origarg;
type _handletype;
@@

 void _callback(
-_origtype _origarg
+struct timer_list *t
 )
 {
+	_handletype *_origarg = from_timer(_origarg, t, _timer);
+
	... when != _origarg
-	(_handletype *)_origarg
+	_origarg
	... when != _origarg
 }

// Avoid already converted callbacks.
@match_callback_converted
 depends on change_timer_function_usage &&
            !change_callback_handle_cast &&
	    !change_callback_handle_cast_no_arg@
identifier change_timer_function_usage._callback;
identifier t;
@@

 void _callback(struct timer_list *t)
 { ... }

// callback(struct something *handle)
@change_callback_handle_arg
 depends on change_timer_function_usage &&
	    !match_callback_converted &&
            !change_callback_handle_cast &&
            !change_callback_handle_cast_no_arg@
identifier change_timer_function_usage._callback;
identifier change_timer_function_usage._timer;
type _handletype;
identifier _handle;
@@

 void _callback(
-_handletype *_handle
+struct timer_list *t
 )
 {
+	_handletype *_handle = from_timer(_handle, t, _timer);
	...
 }

// If change_callback_handle_arg ran on an empty function, remove
// the added handler.
@unchange_callback_handle_arg
 depends on change_timer_function_usage &&
	    change_callback_handle_arg@
identifier change_timer_function_usage._callback;
identifier change_timer_function_usage._timer;
type _handletype;
identifier _handle;
identifier t;
@@

 void _callback(struct timer_list *t)
 {
-	_handletype *_handle = from_timer(_handle, t, _timer);
 }

// We only want to refactor the setup_timer() data argument if we've found
// the matching callback. This undoes changes in change_timer_function_usage.
@unchange_timer_function_usage
 depends on change_timer_function_usage &&
            !change_callback_handle_cast &&
            !change_callback_handle_cast_no_arg &&
	    !change_callback_handle_arg@
expression change_timer_function_usage._E;
identifier change_timer_function_usage._timer;
identifier change_timer_function_usage._callback;
type change_timer_function_usage._cast_data;
@@

(
-timer_setup(&_E->_timer, _callback, 0);
+setup_timer(&_E->_timer, _callback, (_cast_data)_E);
|
-timer_setup(&_E._timer, _callback, 0);
+setup_timer(&_E._timer, _callback, (_cast_data)&_E);
)

// If we fixed a callback from a .function assignment, fix the
// assignment cast now.
@change_timer_function_assignment
 depends on change_timer_function_usage &&
            (change_callback_handle_cast ||
             change_callback_handle_cast_no_arg ||
             change_callback_handle_arg)@
expression change_timer_function_usage._E;
identifier change_timer_function_usage._timer;
identifier change_timer_function_usage._callback;
type _cast_func;
typedef TIMER_FUNC_TYPE;
@@

(
 _E->_timer.function =
-_callback
+(TIMER_FUNC_TYPE)_callback
 ;
|
 _E->_timer.function =
-&_callback
+(TIMER_FUNC_TYPE)_callback
 ;
|
 _E->_timer.function =
-(_cast_func)_callback;
+(TIMER_FUNC_TYPE)_callback
 ;
|
 _E->_timer.function =
-(_cast_func)&_callback
+(TIMER_FUNC_TYPE)_callback
 ;
|
 _E._timer.function =
-_callback
+(TIMER_FUNC_TYPE)_callback
 ;
|
 _E._timer.function =
-&_callback;
+(TIMER_FUNC_TYPE)_callback
 ;
|
 _E._timer.function =
-(_cast_func)_callback
+(TIMER_FUNC_TYPE)_callback
 ;
|
 _E._timer.function =
-(_cast_func)&_callback
+(TIMER_FUNC_TYPE)_callback
 ;
)

// Sometimes timer functions are called directly. Replace matched args.
@change_timer_function_calls
 depends on change_timer_function_usage &&
            (change_callback_handle_cast ||
             change_callback_handle_cast_no_arg ||
             change_callback_handle_arg)@
expression _E;
identifier change_timer_function_usage._timer;
identifier change_timer_function_usage._callback;
type _cast_data;
@@

 _callback(
(
-(_cast_data)_E
+&_E->_timer
|
-(_cast_data)&_E
+&_E._timer
|
-_E
+&_E->_timer
)
 )

// If a timer has been configured without a data argument, it can be
// converted without regard to the callback argument, since it is unused.
@match_timer_function_unused_data@
expression _E;
identifier _timer;
identifier _callback;
@@

(
-setup_timer(&_E->_timer, _callback, 0);
+timer_setup(&_E->_timer, _callback, 0);
|
-setup_timer(&_E->_timer, _callback, 0L);
+timer_setup(&_E->_timer, _callback, 0);
|
-setup_timer(&_E->_timer, _callback, 0UL);
+timer_setup(&_E->_timer, _callback, 0);
|
-setup_timer(&_E._timer, _callback, 0);
+timer_setup(&_E._timer, _callback, 0);
|
-setup_timer(&_E._timer, _callback, 0L);
+timer_setup(&_E._timer, _callback, 0);
|
-setup_timer(&_E._timer, _callback, 0UL);
+timer_setup(&_E._timer, _callback, 0);
|
-setup_timer(&_timer, _callback, 0);
+timer_setup(&_timer, _callback, 0);
|
-setup_timer(&_timer, _callback, 0L);
+timer_setup(&_timer, _callback, 0);
|
-setup_timer(&_timer, _callback, 0UL);
+timer_setup(&_timer, _callback, 0);
|
-setup_timer(_timer, _callback, 0);
+timer_setup(_timer, _callback, 0);
|
-setup_timer(_timer, _callback, 0L);
+timer_setup(_timer, _callback, 0);
|
-setup_timer(_timer, _callback, 0UL);
+timer_setup(_timer, _callback, 0);
)

@change_callback_unused_data
 depends on match_timer_function_unused_data@
identifier match_timer_function_unused_data._callback;
type _origtype;
identifier _origarg;
@@

 void _callback(
-_origtype _origarg
+struct timer_list *unused
 )
 {
	... when != _origarg
 }

Signed-off-by: Kees Cook <keescook@chromium.org>
2017-11-21 15:57:07 -08:00
Michal Kubecek
0a833c29d8 genetlink: fix genlmsg_nlhdr()
According to the description, first argument of genlmsg_nlhdr() points to
what genlmsg_put() returns, i.e. beginning of user header. Therefore we
should only subtract size of genetlink header and netlink message header,
not user header.

This also means we don't need to pass the pointer to genetlink family and
the same is true for genl_dump_check_consistent() which is the only caller
of genlmsg_nlhdr(). (Note that at the moment, these functions are only
used for families which do not have user header so that they are not
affected.)

Fixes: 670dc2833d ("netlink: advertise incomplete dumps")
Signed-off-by: Michal Kubecek <mkubecek@suse.cz>
Reviewed-by: Johannes Berg <johannes@sipsolutions.net>
Signed-off-by: David S. Miller <davem@davemloft.net>
2017-11-16 10:49:00 +09:00
Mark Greer
4d63adfe12 NFC: Add NFC_CMD_DEACTIVATE_TARGET support
Once an NFC target (i.e., a tag) is found, it remains active until
there is a failure reading or writing it (often caused by the target
moving out of range).  While the target is active, the NFC adapter
and antenna must remain powered.  This wastes power when the target
remains in range but the client application no longer cares whether
it is there or not.

To mitigate this, add a new netlink command that allows userspace
to deactivate an active target.  When issued, this command will cause
the NFC subsystem to act as though the target was moved out of range.
Once the command has been executed, the client application can power
off the NFC adapter to reduce power consumption.

Signed-off-by: Mark Greer <mgreer@animalcreek.com>
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
2017-11-10 00:03:39 +01:00
Mark Greer
72ad533acc NFC: digital: Abort cmd when deactivating target
When deactivating an active target, the outstanding command should
be aborted.

Signed-off-by: Mark Greer <mgreer@animalcreek.com>
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
2017-11-10 00:03:39 +01:00
Allen Pais
4b519bb493 NFC: Convert timers to use timer_setup()
Switch to using the new timer_setup() and from_timer()
for net/nfc/*

Signed-off-by: Allen Pais <allen.pais@oracle.com>
Reviewed-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
2017-11-06 01:12:10 +01:00
Johan Hovold
c45e3e4c5b NFC: fix device-allocation error return
A recent change fixing NFC device allocation itself introduced an
error-handling bug by returning an error pointer in case device-id
allocation failed. This is clearly broken as the callers still expected
NULL to be returned on errors as detected by Dan's static checker.

Fix this up by returning NULL in the event that we've run out of memory
when allocating a new device id.

Note that the offending commit is marked for stable (3.8) so this fix
needs to be backported along with it.

Fixes: 20777bc57c ("NFC: fix broken device allocation")
Cc: stable <stable@vger.kernel.org>	# 3.8
Reported-by: Dan Carpenter <dan.carpenter@oracle.com>
Signed-off-by: Johan Hovold <johan@kernel.org>
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
2017-11-06 00:53:39 +01:00
David S. Miller
2a171788ba Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net
Files removed in 'net-next' had their license header updated
in 'net'.  We take the remove from 'net-next'.

Signed-off-by: David S. Miller <davem@davemloft.net>
2017-11-04 09:26:51 +09:00
Greg Kroah-Hartman
b24413180f License cleanup: add SPDX GPL-2.0 license identifier to files with no license
Many source files in the tree are missing licensing information, which
makes it harder for compliance tools to determine the correct license.

By default all files without license information are under the default
license of the kernel, which is GPL version 2.

Update the files which contain no license information with the 'GPL-2.0'
SPDX license identifier.  The SPDX identifier is a legally binding
shorthand, which can be used instead of the full boiler plate text.

This patch is based on work done by Thomas Gleixner and Kate Stewart and
Philippe Ombredanne.

How this work was done:

Patches were generated and checked against linux-4.14-rc6 for a subset of
the use cases:
 - file had no licensing information it it.
 - file was a */uapi/* one with no licensing information in it,
 - file was a */uapi/* one with existing licensing information,

Further patches will be generated in subsequent months to fix up cases
where non-standard license headers were used, and references to license
had to be inferred by heuristics based on keywords.

The analysis to determine which SPDX License Identifier to be applied to
a file was done in a spreadsheet of side by side results from of the
output of two independent scanners (ScanCode & Windriver) producing SPDX
tag:value files created by Philippe Ombredanne.  Philippe prepared the
base worksheet, and did an initial spot review of a few 1000 files.

The 4.13 kernel was the starting point of the analysis with 60,537 files
assessed.  Kate Stewart did a file by file comparison of the scanner
results in the spreadsheet to determine which SPDX license identifier(s)
to be applied to the file. She confirmed any determination that was not
immediately clear with lawyers working with the Linux Foundation.

Criteria used to select files for SPDX license identifier tagging was:
 - Files considered eligible had to be source code files.
 - Make and config files were included as candidates if they contained >5
   lines of source
 - File already had some variant of a license header in it (even if <5
   lines).

All documentation files were explicitly excluded.

The following heuristics were used to determine which SPDX license
identifiers to apply.

 - when both scanners couldn't find any license traces, file was
   considered to have no license information in it, and the top level
   COPYING file license applied.

   For non */uapi/* files that summary was:

   SPDX license identifier                            # files
   ---------------------------------------------------|-------
   GPL-2.0                                              11139

   and resulted in the first patch in this series.

   If that file was a */uapi/* path one, it was "GPL-2.0 WITH
   Linux-syscall-note" otherwise it was "GPL-2.0".  Results of that was:

   SPDX license identifier                            # files
   ---------------------------------------------------|-------
   GPL-2.0 WITH Linux-syscall-note                        930

   and resulted in the second patch in this series.

 - if a file had some form of licensing information in it, and was one
   of the */uapi/* ones, it was denoted with the Linux-syscall-note if
   any GPL family license was found in the file or had no licensing in
   it (per prior point).  Results summary:

   SPDX license identifier                            # files
   ---------------------------------------------------|------
   GPL-2.0 WITH Linux-syscall-note                       270
   GPL-2.0+ WITH Linux-syscall-note                      169
   ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause)    21
   ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause)    17
   LGPL-2.1+ WITH Linux-syscall-note                      15
   GPL-1.0+ WITH Linux-syscall-note                       14
   ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause)    5
   LGPL-2.0+ WITH Linux-syscall-note                       4
   LGPL-2.1 WITH Linux-syscall-note                        3
   ((GPL-2.0 WITH Linux-syscall-note) OR MIT)              3
   ((GPL-2.0 WITH Linux-syscall-note) AND MIT)             1

   and that resulted in the third patch in this series.

 - when the two scanners agreed on the detected license(s), that became
   the concluded license(s).

 - when there was disagreement between the two scanners (one detected a
   license but the other didn't, or they both detected different
   licenses) a manual inspection of the file occurred.

 - In most cases a manual inspection of the information in the file
   resulted in a clear resolution of the license that should apply (and
   which scanner probably needed to revisit its heuristics).

 - When it was not immediately clear, the license identifier was
   confirmed with lawyers working with the Linux Foundation.

 - If there was any question as to the appropriate license identifier,
   the file was flagged for further research and to be revisited later
   in time.

In total, over 70 hours of logged manual review was done on the
spreadsheet to determine the SPDX license identifiers to apply to the
source files by Kate, Philippe, Thomas and, in some cases, confirmation
by lawyers working with the Linux Foundation.

Kate also obtained a third independent scan of the 4.13 code base from
FOSSology, and compared selected files where the other two scanners
disagreed against that SPDX file, to see if there was new insights.  The
Windriver scanner is based on an older version of FOSSology in part, so
they are related.

Thomas did random spot checks in about 500 files from the spreadsheets
for the uapi headers and agreed with SPDX license identifier in the
files he inspected. For the non-uapi files Thomas did random spot checks
in about 15000 files.

In initial set of patches against 4.14-rc6, 3 files were found to have
copy/paste license identifier errors, and have been fixed to reflect the
correct identifier.

Additionally Philippe spent 10 hours this week doing a detailed manual
inspection and review of the 12,461 patched files from the initial patch
version early this week with:
 - a full scancode scan run, collecting the matched texts, detected
   license ids and scores
 - reviewing anything where there was a license detected (about 500+
   files) to ensure that the applied SPDX license was correct
 - reviewing anything where there was no detection but the patch license
   was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied
   SPDX license was correct

This produced a worksheet with 20 files needing minor correction.  This
worksheet was then exported into 3 different .csv files for the
different types of files to be modified.

These .csv files were then reviewed by Greg.  Thomas wrote a script to
parse the csv files and add the proper SPDX tag to the file, in the
format that the file expected.  This script was further refined by Greg
based on the output to detect more types of files automatically and to
distinguish between header and source .c files (which need different
comment types.)  Finally Greg ran the script using the .csv files to
generate the patches.

Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-02 11:10:55 +01:00
Allen Pais
d835b63cc4 net: nfc: llcp_core: use setup_timer() helper.
Use setup_timer function instead of initializing timer with the
   function and data fields.

Signed-off-by: Allen Pais <allen.lkml@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2017-09-25 13:19:20 -07:00
Allen Pais
22d387e13a net: nfc: hci: llc_shdlc: use setup_timer() helper.
Use setup_timer function instead of initializing timer with the
   function and data fields.

Signed-off-by: Allen Pais <allen.lkml@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2017-09-25 13:19:20 -07:00
Allen Pais
b1e07c5486 net: nfc: hci: use setup_timer() helper.
Use setup_timer function instead of initializing timer with the
   function and data fields.

Signed-off-by: Allen Pais <allen.lkml@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2017-09-25 13:19:20 -07:00
Allen Pais
2ed343f981 net:nfc: use setup_timer
Use setup_timer function instead of initializing timer with the
    function and data fields.

Signed-off-by: Allen Pais <allen.lkml@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2017-09-21 15:47:57 -07:00
Mateusz Jurczyk
f6a5885fc4 NFC: Add sockaddr length checks before accessing sa_family in bind handlers
Verify that the caller-provided sockaddr structure is large enough to
contain the sa_family field, before accessing it in bind() handlers of the
AF_NFC socket. Since the syscall doesn't enforce a minimum size of the
corresponding memory region, very short sockaddrs (zero or one byte long)
result in operating on uninitialized memory while referencing .sa_family.

Signed-off-by: Mateusz Jurczyk <mjurczyk@google.com>
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
2017-06-23 00:38:31 +02:00
Gustavo A. R. Silva
03036184e9 nfc: nci: remove unnecessary null check
Remove unnecessary NULL check for pointer conn_info.
conn_info is set in list_for_each_entry() using container_of(),
which is never NULL.

Addresses-Coverity-ID: 1362349
Reviewed-by: Guenter Roeck <linux@roeck-us.net>
Signed-off-by: Gustavo A. R. Silva <garsilva@embeddedor.com>
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
2017-06-23 00:34:18 +02:00
Mateusz Jurczyk
a0323b979f nfc: Ensure presence of required attributes in the activate_target handler
Check that the NFC_ATTR_TARGET_INDEX and NFC_ATTR_PROTOCOLS attributes (in
addition to NFC_ATTR_DEVICE_INDEX) are provided by the netlink client
prior to accessing them. This prevents potential unhandled NULL pointer
dereference exceptions which can be triggered by malicious user-mode
programs, if they omit one or both of these attributes.

Signed-off-by: Mateusz Jurczyk <mjurczyk@google.com>
Acked-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
2017-06-23 00:28:39 +02:00
Mateusz Jurczyk
608c4adfca nfc: Fix the sockaddr length sanitization in llcp_sock_connect
Fix the sockaddr length verification in the connect() handler of NFC/LLCP
sockets, to compare against the size of the actual structure expected on
input (sockaddr_nfc_llcp) instead of its shorter version (sockaddr_nfc).

Both structures are defined in include/uapi/linux/nfc.h. The fields
specific to the _llcp extended struct are as follows:

   276		__u8 dsap; /* Destination SAP, if known */
   277		__u8 ssap; /* Source SAP to be bound to */
   278		char service_name[NFC_LLCP_MAX_SERVICE_NAME]; /* Service name URI */;
   279		size_t service_name_len;

If the caller doesn't provide a sufficiently long sockaddr buffer, these
fields remain uninitialized (and they currently originate from the stack
frame of the top-level sys_connect handler). They are then copied by
llcp_sock_connect() into internal storage (nfc_llcp_sock structure), and
could be subsequently read back through the user-mode getsockname()
function (handled by llcp_sock_getname()). This would result in the
disclosure of up to ~70 uninitialized bytes from the kernel stack to
user-mode clients capable of creating AFC_NFC sockets.

Signed-off-by: Mateusz Jurczyk <mjurczyk@google.com>
Acked-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
2017-06-23 00:26:19 +02:00
Mark Greer
1b609e4384 NFC: digital: NFC-DEP Target WT(nfcdep,max) is now 14
Version 1.1 of the NFC Forum's NFC Digital Protocol Technical
Specification dated 2014-07-14 specifies that the NFC-DEP Protocol's
Target WT(nfcdep,max) value is 14.  In version 1.0 it was 8 so change
the value in the Linux NFC-DEP Protocol code accordingly.

Signed-off-by: Mark Greer <mgreer@animalcreek.com>
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
2017-06-23 00:19:59 +02:00
Mark Greer
7f9f171336 NFC: digital: NFC-A SEL_RES must be one byte
Section 4.8.2 (SEL_RES Response) of NFC Forum's NFC Digital Protocol
Technical Specification dated 2010-11-17 clearly states that the size
of a SEL_RES Response is one byte.  Enforce this restriction in the
code.

Signed-off-by: Mark Greer <mgreer@animalcreek.com>
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
2017-06-23 00:19:59 +02:00
Markus Elfring
dcfca27faf NFC: digital: Delete an error message for memory allocation failure
Omit an extra message for a memory allocation failure in this function.

This issue was detected by using the Coccinelle software.

Link: http://events.linuxfoundation.org/sites/events/files/slides/LCJ16-Refactor_Strings-WSang_0.pdf
Signed-off-by: Markus Elfring <elfring@users.sourceforge.net>
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
2017-06-23 00:14:12 +02:00
Markus Elfring
ae72c9910b NFC: digital: Improve a size determination in four functions
Replace the specification of four data structures by pointer dereferences
as the parameter for the operator "sizeof" to make the corresponding size
determination a bit safer according to the Linux coding style convention.

Signed-off-by: Markus Elfring <elfring@users.sourceforge.net>
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
2017-06-23 00:07:04 +02:00
Johan Hovold
20777bc57c NFC: fix broken device allocation
Commit 7eda8b8e96 ("NFC: Use IDR library to assing NFC devices IDs")
moved device-id allocation and struct-device initialisation from
nfc_allocate_device() to nfc_register_device().

This broke just about every nfc-device-registration error path, which
continue to call nfc_free_device() that tries to put the device
reference of the now uninitialised (but zeroed) struct device:

kobject: '(null)' (ce316420): is not initialized, yet kobject_put() is being called.

The late struct-device initialisation also meant that various work
queues whose names are derived from the nfc device name were also
misnamed:

  421 root         0 SW<  [(null)_nci_cmd_]
  422 root         0 SW<  [(null)_nci_rx_w]
  423 root         0 SW<  [(null)_nci_tx_w]

Move the id-allocation and struct-device initialisation back to
nfc_allocate_device() and fix up the single call site which did not use
nfc_free_device() in its error path.

Fixes: 7eda8b8e96 ("NFC: Use IDR library to assing NFC devices IDs")
Cc: stable <stable@vger.kernel.org>     # 3.8
Cc: Samuel Ortiz <sameo@linux.intel.com>
Signed-off-by: Johan Hovold <johan@kernel.org>
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
2017-06-18 23:57:58 +02:00
Johannes Berg
634fef6107 networking: add and use skb_put_u8()
Joe and Bjørn suggested that it'd be nicer to not have the
cast in the fairly common case of doing
	*(u8 *)skb_put(skb, 1) = c;

Add skb_put_u8() for this case, and use it across the code,
using the following spatch:

    @@
    expression SKB, C, S;
    typedef u8;
    identifier fn = {skb_put};
    fresh identifier fn2 = fn ## "_u8";
    @@
    - *(u8 *)fn(SKB, S) = C;
    + fn2(SKB, C);

Note that due to the "S", the spatch isn't perfect, it should
have checked that S is 1, but there's also places that use a
sizeof expression like sizeof(var) or sizeof(u8) etc. Turns
out that nobody ever did something like
	*(u8 *)skb_put(skb, 2) = c;

which would be wrong anyway since the second byte wouldn't be
initialized.

Suggested-by: Joe Perches <joe@perches.com>
Suggested-by: Bjørn Mork <bjorn@mork.no>
Signed-off-by: Johannes Berg <johannes.berg@intel.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2017-06-16 11:48:40 -04:00
Johannes Berg
d58ff35122 networking: make skb_push & __skb_push return void pointers
It seems like a historic accident that these return unsigned char *,
and in many places that means casts are required, more often than not.

Make these functions return void * and remove all the casts across
the tree, adding a (u8 *) cast only where the unsigned char pointer
was used directly, all done with the following spatch:

    @@
    expression SKB, LEN;
    typedef u8;
    identifier fn = { skb_push, __skb_push, skb_push_rcsum };
    @@
    - *(fn(SKB, LEN))
    + *(u8 *)fn(SKB, LEN)

    @@
    expression E, SKB, LEN;
    identifier fn = { skb_push, __skb_push, skb_push_rcsum };
    type T;
    @@
    - E = ((T *)(fn(SKB, LEN)))
    + E = fn(SKB, LEN)

    @@
    expression SKB, LEN;
    identifier fn = { skb_push, __skb_push, skb_push_rcsum };
    @@
    - fn(SKB, LEN)[0]
    + *(u8 *)fn(SKB, LEN)

Note that the last part there converts from push(...)[0] to the
more idiomatic *(u8 *)push(...).

Signed-off-by: Johannes Berg <johannes.berg@intel.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2017-06-16 11:48:40 -04:00
Johannes Berg
4df864c1d9 networking: make skb_put & friends return void pointers
It seems like a historic accident that these return unsigned char *,
and in many places that means casts are required, more often than not.

Make these functions (skb_put, __skb_put and pskb_put) return void *
and remove all the casts across the tree, adding a (u8 *) cast only
where the unsigned char pointer was used directly, all done with the
following spatch:

    @@
    expression SKB, LEN;
    typedef u8;
    identifier fn = { skb_put, __skb_put };
    @@
    - *(fn(SKB, LEN))
    + *(u8 *)fn(SKB, LEN)

    @@
    expression E, SKB, LEN;
    identifier fn = { skb_put, __skb_put };
    type T;
    @@
    - E = ((T *)(fn(SKB, LEN)))
    + E = fn(SKB, LEN)

which actually doesn't cover pskb_put since there are only three
users overall.

A handful of stragglers were converted manually, notably a macro in
drivers/isdn/i4l/isdn_bsdcomp.c and, oddly enough, one of the many
instances in net/bluetooth/hci_sock.c. In the former file, I also
had to fix one whitespace problem spatch introduced.

Signed-off-by: Johannes Berg <johannes.berg@intel.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2017-06-16 11:48:39 -04:00
Johannes Berg
59ae1d127a networking: introduce and use skb_put_data()
A common pattern with skb_put() is to just want to memcpy()
some data into the new space, introduce skb_put_data() for
this.

An spatch similar to the one for skb_put_zero() converts many
of the places using it:

    @@
    identifier p, p2;
    expression len, skb, data;
    type t, t2;
    @@
    (
    -p = skb_put(skb, len);
    +p = skb_put_data(skb, data, len);
    |
    -p = (t)skb_put(skb, len);
    +p = skb_put_data(skb, data, len);
    )
    (
    p2 = (t2)p;
    -memcpy(p2, data, len);
    |
    -memcpy(p, data, len);
    )

    @@
    type t, t2;
    identifier p, p2;
    expression skb, data;
    @@
    t *p;
    ...
    (
    -p = skb_put(skb, sizeof(t));
    +p = skb_put_data(skb, data, sizeof(t));
    |
    -p = (t *)skb_put(skb, sizeof(t));
    +p = skb_put_data(skb, data, sizeof(t));
    )
    (
    p2 = (t2)p;
    -memcpy(p2, data, sizeof(*p));
    |
    -memcpy(p, data, sizeof(*p));
    )

    @@
    expression skb, len, data;
    @@
    -memcpy(skb_put(skb, len), data, len);
    +skb_put_data(skb, data, len);

(again, manually post-processed to retain some comments)

Reviewed-by: Stephen Hemminger <stephen@networkplumber.org>
Signed-off-by: Johannes Berg <johannes.berg@intel.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2017-06-16 11:48:37 -04:00
linzhang
173e7837a2 net: socket: mark socket protocol handler structs as const
Signed-off-by: linzhang <xiaolou4617@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2017-05-16 11:54:07 -04:00
David S. Miller
69e3948aaa NFC 4.12 pull request
This is the NFC pull request for 4.12. We have:
 
 - Improvements for the pn533 command queue handling and device
   registration order.
 - Removal of platform data for the pn544 and st21nfca drivers.
 - Additional device tree options to support more trf7970a hardware options.
 - Support for Sony's RC-S380P through the port100 driver.
 - Removal of the obsolte nfcwilink driver.
 - Headers inclusion cleanups (miscdevice.h, unaligned.h) for many drivers.
 -----BEGIN PGP SIGNATURE-----
 
 iQIcBAABAgAGBQJY8//bAAoJEIqAPN1PVmxKYVsP/0d9V98WuvBiyNffRwNLbol1
 w37Er17cIma4Tzrm9jWzwGFCAd4k5Bn3K6rEXejsnSCkvSPZaRvlsd9itpmxmYhs
 SkWPl9IoPi9wWrHkr20p34n1OdZdqx+R6CtKNB4B7t7EASWlZ6BMl4RgeO03QckA
 FHZSGszOWMr9OF/+ZLBJm66JlNTkNiaumjFXeayXEzkv2JhnZqxdLqR8117Ycwa1
 MvSYzvcOAV1OWlaiyc3VzyF49D3DcxweC4lgx3JkQ1CPzcIIgPYaws1QGLraSwUT
 JSVWn3P0WFM8sPJEGDa7XKjVPfy7mW2wgQ2oJVZJR5TOygyonkNuTK2ohEXp0SUI
 xzH/qbQmvKb/VbwdXWj4N7rnfpdry/C52S5+nn/pLV6Y2S7LF4FGvUMWUQmh2uu3
 kw2SQqEHLcbHnDz3G50UfTJ9mH1CVP8a4HsM39Wtm79H3IVmnS2+owm/wdSrqq6h
 5i/nL7L/6XDj+yg+2th1BdHxhA6F7aTDxxFpgF25K+y79tm2Fvnic6pQBfwRTpvv
 FfvTMpJAdC9OkLppNb3PLUT+YnSN1YgH7Hgv6rFc/KiVJ4rMFMXV1EaWdzWWuRd5
 U8Obl1Nag2SmSSVrRAr56yfltkJlhqcoLk01Go3d/qYF4GO7LFrmSoODH0L0JDaE
 mH/vYF47mkFvWicF950v
 =Zy1M
 -----END PGP SIGNATURE-----

Merge tag 'nfc-next-4.12-1' of git://git.kernel.org/pub/scm/linux/kernel/git/sameo/nfc-next

Samuel Ortiz says:

====================
NFC 4.12 pull request

This is the NFC pull request for 4.12. We have:

- Improvements for the pn533 command queue handling and device
  registration order.
- Removal of platform data for the pn544 and st21nfca drivers.
- Additional device tree options to support more trf7970a hardware options.
- Support for Sony's RC-S380P through the port100 driver.
- Removal of the obsolte nfcwilink driver.
- Headers inclusion cleanups (miscdevice.h, unaligned.h) for many drivers.
====================

Signed-off-by: David S. Miller <davem@davemloft.net>
2017-04-21 15:29:40 -04:00
Johannes Berg
fe52145f91 netlink: pass extended ACK struct where available
This is an add-on to the previous patch that passes the extended ACK
structure where it's already available by existing genl_info or extack
function arguments.

This was done with this spatch (with some manual adjustment of
indentation):

@@
expression A, B, C, D, E;
identifier fn, info;
@@
fn(..., struct genl_info *info, ...) {
...
-nlmsg_parse(A, B, C, D, E, NULL)
+nlmsg_parse(A, B, C, D, E, info->extack)
...
}

@@
expression A, B, C, D, E;
identifier fn, info;
@@
fn(..., struct genl_info *info, ...) {
<...
-nla_parse_nested(A, B, C, D, NULL)
+nla_parse_nested(A, B, C, D, info->extack)
...>
}

@@
expression A, B, C, D, E;
identifier fn, extack;
@@
fn(..., struct netlink_ext_ack *extack, ...) {
<...
-nlmsg_parse(A, B, C, D, E, NULL)
+nlmsg_parse(A, B, C, D, E, extack)
...>
}

@@
expression A, B, C, D, E;
identifier fn, extack;
@@
fn(..., struct netlink_ext_ack *extack, ...) {
<...
-nla_parse(A, B, C, D, E, NULL)
+nla_parse(A, B, C, D, E, extack)
...>
}

@@
expression A, B, C, D, E;
identifier fn, extack;
@@
fn(..., struct netlink_ext_ack *extack, ...) {
...
-nlmsg_parse(A, B, C, D, E, NULL)
+nlmsg_parse(A, B, C, D, E, extack)
...
}

@@
expression A, B, C, D;
identifier fn, extack;
@@
fn(..., struct netlink_ext_ack *extack, ...) {
<...
-nla_parse_nested(A, B, C, D, NULL)
+nla_parse_nested(A, B, C, D, extack)
...>
}

@@
expression A, B, C, D;
identifier fn, extack;
@@
fn(..., struct netlink_ext_ack *extack, ...) {
<...
-nlmsg_validate(A, B, C, D, NULL)
+nlmsg_validate(A, B, C, D, extack)
...>
}

@@
expression A, B, C, D;
identifier fn, extack;
@@
fn(..., struct netlink_ext_ack *extack, ...) {
<...
-nla_validate(A, B, C, D, NULL)
+nla_validate(A, B, C, D, extack)
...>
}

@@
expression A, B, C;
identifier fn, extack;
@@
fn(..., struct netlink_ext_ack *extack, ...) {
<...
-nla_validate_nested(A, B, C, NULL)
+nla_validate_nested(A, B, C, extack)
...>
}

Signed-off-by: Johannes Berg <johannes.berg@intel.com>
Reviewed-by: Jiri Pirko <jiri@mellanox.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2017-04-13 13:58:22 -04:00
Johannes Berg
fceb6435e8 netlink: pass extended ACK struct to parsing functions
Pass the new extended ACK reporting struct to all of the generic
netlink parsing functions. For now, pass NULL in almost all callers
(except for some in the core.)

Signed-off-by: Johannes Berg <johannes.berg@intel.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2017-04-13 13:58:22 -04:00
Andy Shevchenko
3267183c3d NFC: netlink: Use error code from nfc_activate_target()
It looks like a typo to assign a return code to a variable which is not
used. Found due to a compiler warning:

net/nfc/netlink.c: In function ‘nfc_genl_activate_target’:
net/nfc/netlink.c:903:6: warning: variable ‘rc’ set but not used [-Wunused-but-set-variable]
  int rc;
        ^~

Signed-off-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
2017-04-05 10:15:17 +02:00
OGAWA Hirofumi
85a2566d70 nfc: Send same info for both of NFC_CMD_GET_DEVICE and NFC_EVENT_DEVICE_ADDED
Now, NFC_EVENT_DEVICE_ADDED doesn't send NFC_ATTR_RF_MODE. But
NFC_CMD_GET_DEVICE send.

To get NFC_ATTR_RF_MODE, we have to call NFC_CMD_GET_DEVICE just for
NFC_ATTR_RF_MODE when get NFC_EVENT_DEVICE_ADDED.

This fixes those inconsistent.

Signed-off-by: OGAWA Hirofumi <hirofumi@mail.parknet.co.jp>
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
2017-04-01 23:04:29 +02:00
David Howells
cdfbabfb2f net: Work around lockdep limitation in sockets that use sockets
Lockdep issues a circular dependency warning when AFS issues an operation
through AF_RXRPC from a context in which the VFS/VM holds the mmap_sem.

The theory lockdep comes up with is as follows:

 (1) If the pagefault handler decides it needs to read pages from AFS, it
     calls AFS with mmap_sem held and AFS begins an AF_RXRPC call, but
     creating a call requires the socket lock:

	mmap_sem must be taken before sk_lock-AF_RXRPC

 (2) afs_open_socket() opens an AF_RXRPC socket and binds it.  rxrpc_bind()
     binds the underlying UDP socket whilst holding its socket lock.
     inet_bind() takes its own socket lock:

	sk_lock-AF_RXRPC must be taken before sk_lock-AF_INET

 (3) Reading from a TCP socket into a userspace buffer might cause a fault
     and thus cause the kernel to take the mmap_sem, but the TCP socket is
     locked whilst doing this:

	sk_lock-AF_INET must be taken before mmap_sem

However, lockdep's theory is wrong in this instance because it deals only
with lock classes and not individual locks.  The AF_INET lock in (2) isn't
really equivalent to the AF_INET lock in (3) as the former deals with a
socket entirely internal to the kernel that never sees userspace.  This is
a limitation in the design of lockdep.

Fix the general case by:

 (1) Double up all the locking keys used in sockets so that one set are
     used if the socket is created by userspace and the other set is used
     if the socket is created by the kernel.

 (2) Store the kern parameter passed to sk_alloc() in a variable in the
     sock struct (sk_kern_sock).  This informs sock_lock_init(),
     sock_init_data() and sk_clone_lock() as to the lock keys to be used.

     Note that the child created by sk_clone_lock() inherits the parent's
     kern setting.

 (3) Add a 'kern' parameter to ->accept() that is analogous to the one
     passed in to ->create() that distinguishes whether kernel_accept() or
     sys_accept4() was the caller and can be passed to sk_alloc().

     Note that a lot of accept functions merely dequeue an already
     allocated socket.  I haven't touched these as the new socket already
     exists before we get the parameter.

     Note also that there are a couple of places where I've made the accepted
     socket unconditionally kernel-based:

	irda_accept()
	rds_rcp_accept_one()
	tcp_accept_from_sock()

     because they follow a sock_create_kern() and accept off of that.

Whilst creating this, I noticed that lustre and ocfs don't create sockets
through sock_create_kern() and thus they aren't marked as for-kernel,
though they appear to be internal.  I wonder if these should do that so
that they use the new set of lock keys.

Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2017-03-09 18:23:27 -08:00
Ingo Molnar
174cd4b1e5 sched/headers: Prepare to move signal wakeup & sigpending methods from <linux/sched.h> into <linux/sched/signal.h>
Fix up affected files that include this signal functionality via sched.h.

Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-03-02 08:42:32 +01:00
Johannes Berg
56989f6d85 genetlink: mark families as __ro_after_init
Now genl_register_family() is the only thing (other than the
users themselves, perhaps, but I didn't find any doing that)
writing to the family struct.

In all families that I found, genl_register_family() is only
called from __init functions (some indirectly, in which case
I've add __init annotations to clarifly things), so all can
actually be marked __ro_after_init.

This protects the data structure from accidental corruption.

Signed-off-by: Johannes Berg <johannes.berg@intel.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2016-10-27 16:16:09 -04:00
Johannes Berg
489111e5c2 genetlink: statically initialize families
Instead of providing macros/inline functions to initialize
the families, make all users initialize them statically and
get rid of the macros.

This reduces the kernel code size by about 1.6k on x86-64
(with allyesconfig).

Signed-off-by: Johannes Berg <johannes.berg@intel.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2016-10-27 16:16:09 -04:00
Johannes Berg
a07ea4d994 genetlink: no longer support using static family IDs
Static family IDs have never really been used, the only
use case was the workaround I introduced for those users
that assumed their family ID was also their multicast
group ID.

Additionally, because static family IDs would never be
reserved by the generic netlink code, using a relatively
low ID would only work for built-in families that can be
registered immediately after generic netlink is started,
which is basically only the control family (apart from
the workaround code, which I also had to add code for so
it would reserve those IDs)

Thus, anything other than GENL_ID_GENERATE is flawed and
luckily not used except in the cases I mentioned. Move
those workarounds into a few lines of code, and then get
rid of GENL_ID_GENERATE entirely, making it more robust.

Signed-off-by: Johannes Berg <johannes.berg@intel.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2016-10-27 16:16:09 -04:00
Johannes Berg
c90c39dab3 genetlink: introduce and use genl_family_attrbuf()
This helper function allows family implementations to access
their family's attrbuf. This gets rid of the attrbuf usage
in families, and also adds locking validation, since it's not
valid to use the attrbuf with parallel_ops or outside of the
dumpit callback.

Signed-off-by: Johannes Berg <johannes.berg@intel.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2016-10-27 16:16:08 -04:00
Thierry Escande
d85a301c26 NFC: digital: Fix RTOX supervisor PDU handling
When the target needs more time to process the received PDU, it sends
Response Timeout Extension (RTOX) PDU.

When the initiator receives a RTOX PDU, it must reply with a RTOX PDU
and extends the current rwt value with the formula:
 rwt_int = rwt * rtox

This patch takes care of the rtox value passed by the target in the RTOX
PDU and extends the timeout for the next response accordingly.

Signed-off-by: Thierry Escande <thierry.escande@collabora.com>
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
2016-07-11 02:02:03 +02:00
Thierry Escande
1a09c56f54 NFC: digital: Add support for NFC DEP Response Waiting Time
When sending an ATR_REQ, the initiator must wait for the ATR_RES at
least 'RWT(nfcdep,activation) + dRWT(nfcdep)' and no more than
'RWT(nfcdep,activation) + dRWT(nfcdep) + dT(nfcdep,initiator)'. This
gives a timeout value between 1237 ms and 1337 ms. This patch defines
DIGITAL_ATR_RES_RWT to 1337 used for the timeout value of ATR_REQ
command.

For other DEP PDUs, the initiator must wait between 'RWT + dRWT(nfcdep)'
and 'RWT + dRWT(nfcdep) + dT(nfcdep,initiator)' where RWT is given by
the following formula: '(256 * 16 / f(c)) * 2^wt' where wt is the value
of the TO field in the ATR_RES response and is in the range between 0
and 14. This patch declares a mapping table for wt values and gives RWT
max values between 100 ms and 5049 ms.

This patch also defines DIGITAL_ATR_RES_TO_WT, the maximum wt value in
target mode, to 8.

Signed-off-by: Thierry Escande <thierry.escande@collabora.com>
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
2016-07-11 02:01:14 +02:00
Thierry Escande
e200f008ac NFC: digital: Free supervisor PDUs
This patch frees the RTOX resp sk_buff in initiator mode. It also makes
use of the free_resp exit point for ATN supervisor PDUs in both
initiator and target mode.

Signed-off-by: Thierry Escande <thierry.escande@collabora.com>
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
2016-07-11 02:00:26 +02:00
Thierry Escande
e073eb6797 NFC: digital: Rework ACK PDU handling in initiator mode
With this patch, ACK PDU sk_buffs are now freed and code has been
refactored for better errors handling.

Signed-off-by: Thierry Escande <thierry.escande@collabora.com>
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
2016-07-11 01:59:37 +02:00
Thierry Escande
482333b277 NFC: digital: Fix ACK & NACK PDUs handling in target mode
When the target receives a NACK PDU, it re-sends the last sent PDU.

ACK PDUs are received by the target as a reply from the initiator to
chained I-PDUs. There are 3 cases to handle:
- If the target has previously received 1 or more ATN PDUs and the PNI
  in the ACK PDU is equal to the target PNI - 1, then it means that the
  initiator did not received the last issued PDU from the target. In
  this case it re-sends this PDU.
- If the target has received 1 or more ATN PDUs but the ACK PNI is not
  the target PNI - 1, then this means that this ACK is the reply of the
  previous chained I-PDU sent by the target. The target did not received
  it on the first attempt and it is being re-sent by the initiator. The
  process continues as usual.
- No ATN PDU received before this ACK PDU. This is the reply of a
  chained I-PDU. The target keeps on processing its chained I-PDU.

The code has been refactored to avoid too many indentation levels.

Also, ACK and NACK PDUs were not freed. This is now fixed.

Signed-off-by: Thierry Escande <thierry.escande@collabora.com>
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
2016-07-11 01:58:46 +02:00
Thierry Escande
f23a9868b1 NFC: digital: Fix target DEP_REQ I-PDU handling after ATN PDU
When the initiator sends a DEP_REQ I-PDU, the target device may not
reply in a timely manner. In this case the initiator device must send an
attention PDU (ATN) and if the recipient replies with an ATN PDU in
return, then the last I-PDU must be sent again by the initiator.

This patch fixes how the target handles I-PDU received after an ATN PDU
has been received.

There are 2 possible cases:
- The target has received the initial DEP_REQ and sends back the DEP_RES
  but the initiator did not receive it. In this case, after the
  initiator has sent an ATN PDU and the target replied it (with an ATN
  as well), the initiator sends the saved skb of the initial DEP_REQ
  again and the target replies with the saved skb of the initial
  DEP_RES.
- Or the target did not even received the initial DEP_REQ. In this case,
  after the ATN PDUs exchange, the initiator sends the saved skb and the
  target simply passes it up, just as usual.

This behavior is controlled using the atn_count and the PNI field of the
digital device structure.

Signed-off-by: Thierry Escande <thierry.escande@collabora.com>
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
2016-07-11 01:57:50 +02:00
Thierry Escande
e8e7f42175 NFC: digital: Remove useless call to skb_reserve()
When allocating chained I-PDUs, there is no need to call skb_reserve()
since it's already done by digital_alloc_skb() and contains enough room
for the driver head and tail data.

Signed-off-by: Thierry Escande <thierry.escande@collabora.com>
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
2016-07-11 01:56:45 +02:00
Thierry Escande
1d984c2e03 NFC: digital: Fix handling of saved PDU sk_buff pointers
This patch fixes the way an I-PDU is saved in case it needs to be sent
again. It is now copied using pskb_copy() and not simply referenced
using skb_get() since it could be modified by the driver.

digital_in_send_saved_skb() and digital_tg_send_saved_skb() still get a
reference on the saved skb which is re-sent but release it if the send
operation fails. That way the caller doesn't have to take care about skb
ref in case of error.

RTOX supervisor PDU must not be saved as this can override a previously
saved I-PDU that should be re-sent later on.

Signed-off-by: Thierry Escande <thierry.escande@collabora.com>
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
2016-07-11 01:55:42 +02:00
Thierry Escande
3cc952dbf1 NFC: digital: Abort last command when dep link goes down
With this patch, the Digital Protocol layer abort the last issued
command when the dep link goes down. That way it does not have to wait
for the driver to reply with a timeout error before sending a new
command (i.e. a start poll command if constant polling is on).

Signed-off-by: Thierry Escande <thierry.escande@collabora.com>
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
2016-07-06 10:26:52 +02:00
Thierry Escande
af66df0f53 NFC: digital: Set the command pending flag
There is a flag in the command structure indicating that this command is
pending. It was checked before sending the command to not send the same
command twice but it was actually never set. This is now fixed.

Signed-off-by: Thierry Escande <thierry.escande@collabora.com>
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
2016-07-06 10:10:34 +02:00