This uses feature sections to arrange that we always use HSPRG1
as the scratch register in the interrupt entry code rather than
SPRG2 when we're running in hypervisor mode on POWER7. This will
ensure that we don't trash the guest's SPRG2 when we are running
KVM guests. To simplify the code, we define GET_SCRATCH0() and
SET_SCRATCH0() macros like the GET_PACA/SET_PACA macros.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Pass the register type to the prolog, also provides alternate "HV"
version of hardware interrupt (0x500) and adjust LPES accordingly
We tag those interrupts by setting bit 0x2 in the trap number
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
When running in Hypervisor mode (arch 2.06 or later), we store the PACA
in HSPRG0 instead of SPRG1. The architecture specifies that SPRGs may be
lost during a "nap" power management operation (though they aren't
currently on POWER7) and this enables use of SPRG1 by KVM guests.
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Previously SPRGs 4-7 were improperly read and written in
kvm_arch_vcpu_ioctl_get_regs() and kvm_arch_vcpu_ioctl_set_regs();
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Peter Tyser <ptyser@xes-inc.com>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
IA64 support forces us to abstract the allocation of the kvm structure.
But instead of mixing this up with arch-specific initialization and
doing the same on destruction, split both steps. This allows to move
generic destruction calls into generic code.
It also fixes error clean-up on failures of kvm_create_vm for IA64.
Signed-off-by: Jan Kiszka <jan.kiszka@siemens.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
This was preventing the guest from setting any bits in the
hardware MSR which aren't forced on, such as MSR[SPE].
Signed-off-by: Scott Wood <scottwood@freescale.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
It is not legal to call mutex_lock() with interrupts disabled.
This will assert with debug checks enabled.
If there's a real need to disable interrupts here, it could be done
after the mutex is acquired -- but I don't see why it's needed at all.
Signed-off-by: Scott Wood <scottwood@freescale.com>
Reviewed-by: Christian Ehrhardt <ehrhardt@linux.vnet.ibm.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
The VCPU uninit calls some TLB functions, and the TLB uninit function
frees the memory used by them.
Signed-off-by: Scott Wood <scottwood@freescale.com>
Acked-by: Liu Yu <yu.liu@freescale.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
Structure kvm_ppc_pvinfo is copied to userland with flags and
pad fields unitialized. It leads to leaking of contents of
kernel stack memory.
Signed-off-by: Vasiliy Kulikov <segooon@gmail.com>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
* 'kvm-updates/2.6.37' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (321 commits)
KVM: Drop CONFIG_DMAR dependency around kvm_iommu_map_pages
KVM: Fix signature of kvm_iommu_map_pages stub
KVM: MCE: Send SRAR SIGBUS directly
KVM: MCE: Add MCG_SER_P into KVM_MCE_CAP_SUPPORTED
KVM: fix typo in copyright notice
KVM: Disable interrupts around get_kernel_ns()
KVM: MMU: Avoid sign extension in mmu_alloc_direct_roots() pae root address
KVM: MMU: move access code parsing to FNAME(walk_addr) function
KVM: MMU: audit: check whether have unsync sps after root sync
KVM: MMU: audit: introduce audit_printk to cleanup audit code
KVM: MMU: audit: unregister audit tracepoints before module unloaded
KVM: MMU: audit: fix vcpu's spte walking
KVM: MMU: set access bit for direct mapping
KVM: MMU: cleanup for error mask set while walk guest page table
KVM: MMU: update 'root_hpa' out of loop in PAE shadow path
KVM: x86 emulator: Eliminate compilation warning in x86_decode_insn()
KVM: x86: Fix constant type in kvm_get_time_scale
KVM: VMX: Add AX to list of registers clobbered by guest switch
KVM guest: Move a printk that's using the clock before it's ready
KVM: x86: TSC catchup mode
...
The e500_tlb.c file didn't compile for me due to the following error:
arch/powerpc/kvm/e500_tlb.c: In function ‘kvmppc_e500_shadow_map’:
arch/powerpc/kvm/e500_tlb.c:300: error: format ‘%lx’ expects type ‘long unsigned int’, but argument 2 has type ‘gfn_t’
So let's explicitly cast the argument to make printk happy.
Signed-off-by: Alexander Graf <agraf@suse.de>
The kvmppc_e500_stlbe_invalidate() function was trying to pass too many
parameters to trace_kvm_stlb_inval(). This appears to be a bad
copy-paste from a call to trace_kvm_stlb_write().
Signed-off-by: Kyle Moffett <Kyle.D.Moffett@boeing.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
BookE also wants to support level based interrupts, so let's implement
all the necessary logic there. We need to trick a bit here because the
irqprios are 1:1 assigned to architecture defined values. But since there
is some space left there, we can just pick a random one and move it later
on - it's internal anyways.
Signed-off-by: Alexander Graf <agraf@suse.de>
Now that we have all the level interrupt magic in place, let's
expose the capability to user space, so it can make use of it!
Signed-off-by: Alexander Graf <agraf@suse.de>
The current interrupt logic is just completely broken. We get a notification
from user space, telling us that an interrupt is there. But then user space
expects us that we just acknowledge an interrupt once we deliver it to the
guest.
This is not how real hardware works though. On real hardware, the interrupt
controller pulls the external interrupt line until it gets notified that the
interrupt was received.
So in reality we have two events: pulling and letting go of the interrupt line.
To maintain backwards compatibility, I added a new request for the pulling
part. The letting go part was implemented earlier already.
With this in place, we can now finally start guests that do not randomly stall
and stop to work at random times.
This patch implements above logic for Book3S.
Signed-off-by: Alexander Graf <agraf@suse.de>
Match only the first part of cur_cpu_spec->platform.
440GP (the first 440 processor) is identified by the string "ppc440gp", while
all later 440 processors use simply "ppc440".
Signed-off-by: Hollis Blanchard <hollis_blanchard@mentor.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
Developers can now tell at a glace the exact type of the premature interrupt,
instead of just knowing that there was some premature interrupt.
Signed-off-by: Hollis Blanchard <hollis_blanchard@mentor.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
On Book3S a mtmsr with the MSR_POW bit set indicates that the OS is in
idle and only needs to be waked up on the next interrupt.
Now, unfortunately we let that bit slip into the stored MSR value which
is not what the real CPU does, so that we ended up executing code like
this:
r = mfmsr();
/* r containts MSR_POW */
mtmsr(r | MSR_EE);
This obviously breaks, as we're going into idle mode in code sections that
don't expect to be idling.
This patch masks MSR_POW out of the stored MSR value on wakeup, making
guests happy again.
Signed-off-by: Alexander Graf <agraf@suse.de>
Up until now we were doing segment mappings wrong on Book3s_32. For Book3s_64
we were using a trick where we know that a single mmu_context gives us 16 bits
of context ids.
The mm system on Book3s_32 instead uses a clever algorithm to distribute VSIDs
across the available range, so a context id really only gives us 16 available
VSIDs.
To keep at least a few guest processes in the SID shadow, let's map a number of
contexts that we can use as VSID pool. This makes the code be actually correct
and shouldn't hurt performance too much.
Signed-off-by: Alexander Graf <agraf@suse.de>
When having a decrementor interrupt pending, the dequeuing happens manually
through an mtdec instruction. This instruction simply calls dequeue on that
interrupt, so the int_pending hint doesn't get updated.
This patch enables updating the int_pending hint also on dequeue, thus
correctly enabling guests to stay in guest contexts more often.
Signed-off-by: Alexander Graf <agraf@suse.de>
Now that the actual mtsr doesn't do anything anymore, we can move the sr
contents over to the shared page, so a guest can directly read and write
its sr contents from guest context.
Signed-off-by: Alexander Graf <agraf@suse.de>
Right now we're examining the contents of Book3s_32's segment registers when
the register is written and put the interpreted contents into a struct.
There are two reasons this is bad. For starters, the struct has worse real-time
performance, as it occupies more ram. But the more important part is that with
segment registers being interpreted from their raw values, we can put them in
the shared page, allowing guests to mess with them directly.
This patch makes the internal representation of SRs be u32s.
Signed-off-by: Alexander Graf <agraf@suse.de>
The current approach duplicates the spr->bat finding logic and makes it harder
to reuse the actually used variables. So let's move everything down to the spr
handler.
Signed-off-by: Alexander Graf <agraf@suse.de>
We will soon add SR PV support to the shared page, so we need some
infrastructure that allows the guest to query for features KVM exports.
This patch adds a second return value to the magic mapping that
indicated to the guest which features are available.
Signed-off-by: Alexander Graf <agraf@suse.de>
It turns out the in-kernel hash function is sub-optimal for our subtle
hash inputs where every bit is significant. So let's revert to the original
hash functions.
This reverts commit 05340ab4f9a6626f7a2e8f9fe5397c61d494f445.
Signed-off-by: Alexander Graf <agraf@suse.de>
There is a race condition in the pte invalidation code path where we can't
be sure if a pte was invalidated already. So let's move the spin lock around
to get rid of the race.
Signed-off-by: Alexander Graf <agraf@suse.de>
When hitting a no-execute or read-only data/inst storage interrupt we were
flushing the respective PTE so we're sure it gets properly overwritten next.
According to the spec, this is unnecessary though. The guest issues a tlbie
anyways, so we're safe to just keep the PTE around and have it manually removed
from the guest, saving us a flush.
Signed-off-by: Alexander Graf <agraf@suse.de>
When the guest jumps into kernel mode and has the magic page mapped, theres a
very high chance that it will also use it. So let's detect that scenario and
map the segment accordingly.
Signed-off-by: Alexander Graf <agraf@suse.de>
The different ways of flusing shadow ptes have their own debug prints which use
stupid old printk.
Let's move them to tracepoints, making them easier available, faster and
possible to activate on demand
Signed-off-by: Alexander Graf <agraf@suse.de>
After a flush the sid map contained lots of entries with 0 for their gvsid and
hvsid value. Unfortunately, 0 can be a real value the guest searches for when
looking up a vsid so it would incorrectly find the host's 0 hvsid mapping which
doesn't belong to our sid space.
So let's also check for the valid bit that indicated that the sid we're
looking at actually contains useful data.
Signed-off-by: Alexander Graf <agraf@suse.de>
We have a debug printk on every exit that is usually #ifdef'ed out. Using
tracepoints makes a lot more sense here though, as they can be dynamically
enabled.
This patch converts the most commonly used debug printks of EXIT_DEBUG to
tracepoints.
Signed-off-by: Alexander Graf <agraf@suse.de>
Add kvm_release_page_clean() after is_error_page() to avoid
leakage of error page.
Signed-off-by: Wei Yongjun <yjwei@cn.fujitsu.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
On Book3S KVM we directly expose some asm pointers to C code as
variables. These need to be relocated and thus break on relocatable
kernels.
To make sure we can at least build, let's mark them as long instead
of u32 where 64bit relocations don't work.
This fixes the following build error:
WARNING: 2 bad relocations^M
> c000000000008590 R_PPC64_ADDR32 .text+0x4000000000008460^M
> c000000000008594 R_PPC64_ADDR32 .text+0x4000000000008598^M
Please keep in mind that actually using KVM on a relocated kernel
might still break. This only fixes the compile problem.
Reported-by: Subrata Modak <subrata@linux.vnet.ibm.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
Book3S_32 requires MSR_DR to be disabled during load_up_xxx while on Book3S_64
it's supposed to be enabled. I misread the code and disabled it in both cases,
potentially breaking the PS3 which has a really small RMA.
This patch makes KVM work on the PS3 again.
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
On Book3s_32 the tlbie instruction flushed effective addresses by the mask
0x0ffff000. This is pretty hard to reflect with a hash that hashes ~0xfff, so
to speed up that target we should also keep a special hash around for it.
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
On failure gfn_to_pfn returns bad_page so use correct function to check
for that.
Signed-off-by: Gleb Natapov <gleb@redhat.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
So far we've been running all code without locking of any sort. This wasn't
really an issue because I didn't see any parallel access to the shadow MMU
code coming.
But then I started to implement dirty bitmapping to MOL which has the video
code in its own thread, so suddenly we had the dirty bitmap code run in
parallel to the shadow mmu code. And with that came trouble.
So I went ahead and made the MMU modifying functions as parallelizable as
I could think of. I hope I didn't screw up too much RCU logic :-). If you
know your way around RCU and locking and what needs to be done when, please
take a look at this patch.
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
Due to previous changes, the Book3S_32 guest MMU code didn't compile properly
when enabling debugging.
This patch repairs the broken code paths, making it possible to define DEBUG_MMU
and friends again.
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
We need to tell the guest the opcodes that make up a hypercall through
interfaces that are controlled by userspace. So we need to add a call
for userspace to allow it to query those opcodes so it can pass them
on.
This is required because the hypercall opcodes can change based on
the hypervisor conditions. If we're running in hardware accelerated
hypervisor mode, a hypercall looks different from when we're running
without hardware acceleration.
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
Now that we have the shared page in place and the MMU code knows about
the magic page, we can expose that capability to the guest!
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
We need to override EA as well as PA lookups for the magic page. When the guest
tells us to project it, the magic page overrides any guest mappings.
In order to reflect that, we need to hook into all the MMU layers of KVM to
force map the magic page if necessary.
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
On PowerPC it's very normal to not support all of the physical RAM in real mode.
To check if we're matching on the shared page or not, we need to know the limits
so we can restrain ourselves to that range.
So let's make it a define instead of open-coding it. And while at it, let's also
increase it.
Signed-off-by: Alexander Graf <agraf@suse.de>
v2 -> v3:
- RMO -> PAM (non-magic page)
Signed-off-by: Avi Kivity <avi@redhat.com>
When the guest turns on interrupts again, it needs to know if we have an
interrupt pending for it. Because if so, it should rather get out of guest
context and get the interrupt.
So we introduce a new field in the shared page that we use to tell the guest
that there's a pending interrupt lying around.
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>